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Abstract
Expressing machine-interpretable statements in the form of subject-predicate-object triples is a well-established practice for
capturing semantics of structured data. However, the standard used for representing these triples, RDF, inherently lacks the
mechanism to attach provenance data, which would be crucial to make automatically generated and/or processed data author-
itative. This paper is a critical review of data models, annotation frameworks, knowledge organization systems, serialization
syntaxes, and algebras that enable provenance-aware RDF statements. The various approaches are assessed in terms of stan-
dard compliance, formal semantics, tuple type, vocabulary term usage, blank nodes, provenance granularity, and scalability.
This can be used to advance existing solutions and help implementers to select the most suitable approach (or a combination
of approaches) for their applications. Moreover, the analysis of the mechanisms and their limitations highlighted in this paper
can serve as the basis for novel approaches in RDF-powered applications with increasing provenance needs.

Keywords RDF provenance · Contextual knowledge graph · RDF reification alternatives · RDF data model

1 Introduction to RDF Provenance

The Resource Description Framework (RDF)1 is a Seman-
tic Web standard for formal knowledge representation,
which can be used to efficiently manipulate and interchange
machine-interpretable, structured data. Its data model is par-
ticularly powerful due to its syntax and semantics; RDF
allows statements to bemade in the formof subject-predicate-
object triples, resulting in fixed-length dataset fields that are
much easier to process than variable-length fields. Formally
speaking, assume pairwise disjoint infinite sets of

1. Internationalized Resource Identifiers (IRIs, I), i.e., sets
of strings of Unicode characters of the form scheme:
[//[user:password@]host[:port]] [/]

1 https://www.w3.org/RDF/
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path[?query] [#fragment] used to identify a
resource,2

2. RDF literals (L), which can be a) self-denoting plain
literals LP in the form "<string>"(@<lang>)?,
where <string> is a string and <lang> is an optional
language tag, or b) typed literals LT of the form
"<string>"^^<datatype>, where <datatype>
is an IRI denoting a datatype according to a schema (e.g.,
XML Schema), and <string> is an element of the lex-
ical space corresponding to the datatype, and

3. blank nodes (B), i.e., unique anonymous resources that
do not belong to either of the above sets.

A triple of the form (s, p, o) ∈ (I ∪ B) × I × (I ∪ L ∪ B)

is called an RDF triple, also known as an RDF statement,
where s is the subject, p is the predicate, and o is the object.

The RDF data model is the canonicalization of a directed
graph, offering compatibility with graph algorithms, such
as graph traversal algorithms [1]. In addition, the RDF data
model inherently supports basic inferences. Being modular,
it allows fully parallelized data processing and can represent
partial information. RDF is one of the primary graph-based
data models that are well-utilized in fields that require data

2 https://tools.ietf.org/html/rfc3987
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fusion and/or aggregation from diverse data sources, such as
cybersecurity [2].

RDF has a variety of serialization formats and syntaxes,
including RDF/XML,3 Turtle,4 Notation3 (N3),5 N-triples,6

N-quads,7 JSON-LD,8 RDF/JSON,9 RDFa,10 and HTML5
Microdata.11 These make it possible to express RDF state-
ments differently for applications that require compatibility
with XML, the most compact representation possible, define
property values in website markup attributes, and so on [3].

RDF can be used to provide the uniform representation
of knowledge for processing data from diverse web sources
via syntactic and semantic interoperability. Moreover, RDF
facilitates the partial or full automation of tasks that otherwise
would have to be processed manually [4, 5].

These benefits make RDF appealing for a wide range
of applications; however, RDF has shortcomings when it
comes to encapsulating metadata to statements. With the
proliferation of heterogeneous structured data sources, such
as triplestores and LOD datasets, capturing data prove-
nance,12 i.e., the origin or source of data [7], and the
technique used to extract it, is becoming more and more
important, because it enables the verification of data, the
assessment of reliability [8], the analysis of the processes
that generated the data [9], decision support for areas such
as cybersecurity [10, 11], cyberthreat intelligence [12], and
cyber-situational awareness [13], and helps express trustwor-
thiness [14, 15], uncertainty [16], and data quality [17]. Yet,
the RDF data model does not have a built-in mechanism to
attach provenance to triples or elements of triples.13 Con-
sequently, representing provenance data with RDF triples is
a long-standing, non-trivial problem [19]. While the World
Wide Web Consortium (W3C) suggested RDF extensions in
2010 to support provenance in the upcoming version of the
standard [20, 21], none of these have been implemented in the
next release in 2014, namely in RDF 1.1.14 Related efforts

3 https://www.w3.org/TR/rdf-syntax-grammar/
4 https://www.w3.org/TR/turtle/
5 https://www.w3.org/TeamSubmission/n3/
6 https://www.w3.org/TR/n-triples/
7 https://www.w3.org/TR/n-quads/
8 https://www.w3.org/TR/json-ld/
9 https://www.w3.org/TR/rdf-json/
10 https://www.w3.org/TR/rdfa-primer/
11 https://www.w3.org/TR/microdata/
12 Note that provenance is a complex term, and its usage varies greatly
in different contexts [6].
13 This can be circumvented by using alternate knowledge representa-
tions, such as considering entities as embeddings in a vector space, for
example [18], however, none of the alternate representations share all
the strengths of RDF.
14 https://www.w3.org/TR/rdf11-new/

of the W3C have been kept to a minimum with the shutdown
of the Provenance Working Group in 2013 [22].

However, in Semantic Web applications, provenance can
be seen as a means to develop trust [23], as witnessed
by implementations of augmented provenance [24, 25] and
semantic provenance [26, 27] in application areas such as
eScience [28–32] and scientific data processing [33], work-
flow management, bioinformatics [34], laboratory informa-
tion management [35], digital media archives [36], rec-
ommender systems [37], query search result ranking [38],
and decision support for cybersecurity and cyber-situational
awareness [39, 40].

This paper is a critical review of alternate approaches to
capture provenance for RDF, demonstrates their use in, and
provides their quantitative comparison for, the cybersecu-
rity domain (which is known to be reliant on provenance)
from various perspectives. Section 2 covers extensions of the
standard RDF data model, state-of-the-art annotation frame-
works, and purpose-built knowledge organization systems
(KOS), including controlled vocabularies15 and ontolo-
gies,16 typically written inRDFS17 andOWL,18 respectively.
Section 3 discusses the requirements of RDF triplestores,
quadstores, and graph databases to be suitable for stor-
ing provenance-aware RDF data, and Sect. 4 details how
RDF provenance can be queried. Section 5 reviews the most
prominent software tools for manipulating RDF provenance.
Section 6 describes common application domains. Finally,
Sect. 7 demonstrates how application-specific implemen-
tations can outperform general-purpose RDF provenance
techniques.

2 Formal Representation of RDF Data
Provenance

RDF reification19 refers to making an RDF statement
about another RDF statement by instantiating the rdf:

15 A controlled vocabulary is a finite set of IRI symbols denoting
concept names or classes (atomic concepts), role names, properties,
and relationships (atomic roles), and individual names (entities), where
these three sets are pairwise disjoint.
16 Ontologies are formal conceptualizations of a knowledge domain
with complex relationships, and optionally complex rules, suitable for
inferring new statements, thereby making implicit knowledge explicit.
17 RDF Schema, an extension of RDF’s vocabulary for creating vocab-
ularies, taxonomies, and thesauri; see https://www.w3.org/TR/rdf-
schema/ for reference.
18 WebOntology Language (intentionally abbreviatedwith theWandO
swapped as OWL), a fully featured knowledge representation language
for the conceptualization of knowledge domains with complex property
restrictions and concept relationships; see https://www.w3.org/OWL/
for reference.
19 https://www.w3.org/TR/2004/REC-rdf-primer-20040210/#
reification
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Statement class and using the rdf:subject, rdf:
predicate, and rdf:object properties of the stan-
dard RDF vocabulary20 to identify the elements of the
triple. It is the only standard syntax to capture RDF prove-
nance and the only syntax with which all RDF systems
are compatible. As an example, assume the RDF statement
"DREAMSCAPE-AS-AP" : hasASNumber "38719",
expressing that the autonomous system number of Dream-
scape Networks is 38719. By reifying this statement, its
source can be captured as shown in Listing 1.

Listing 1 RDF reification

@prefix : <http :// example.com/ > .
@prefix dc: <http :// purl.org/dc/

elements /1.1/> .
@prefix rdf: <http ://www.w3.org

/1999/02/22 -rdf -syntax -ns#> .
_:x rdf:type rdf:Statement .
_:x rdf:subject "DREAMSCAPE -AS -AP"

.
_:x rdf:predicate :hasASNumber .
_:x rdf:object "38719"^^ xsd:integer

.
_:x dc:source :APNIC .

The last statement captures the provenance of the orig-
inal statement, namely that the source of the AS number
is the Asia-Pacific Network Information Centre (APNIC).21

However, the blank node (bnode) _:x used as part of the
mechanism has no associated meaning and cannot be deref-
erenced globally.

Reified statements can describe not only the source of
RDF triples, but also changes made to the structure of RDF
graphs, for example, by referring to statements that have been
amended in, added to, or removed from, an RDF dataset.

However, reification has no formal semantics, and leads
to a high increase in the number of triples, hence, it does not
scale well. After all, reification requires a statement about the
subject, another statement about the predicate, and a third
statement about the object of the triple, plus at least one
more statement that captures provenance, i.e., the number of
statements in the dataset will increase at least four times. This
“triple bloat” is one of the main reasons for the unpopularity
of reification.

Note that if the provenance triple is stored in the same
RDF/XMLfile as the original statement, a shorthand notation
can also be used. Instead of specifying the subject, predicate,
and object of the original triple, the reified statement can
be identified with the value of the rdf:ID property (see
Listing 2).22

20 https://www.w3.org/1999/02/22-rdf-syntax-ns.ttl
21 https://www.apnic.net
22 https://www.w3.org/TR/rdf-syntax-grammar/#section-Syntax-
reifying.

Listing 2 Shorthand notation for RDF reification

<?xml version ="1.0"? >
<rdf:RDF xmlns:rdf="http ://www.w3.

org /1999/02/22 -rdf -syntax -ns#"
xmlns:ex="http :// example.com/">

<rdf:Description rdf:about="http ://
example.org/DREAMSCAPE -AS -AP/">

<ex:hasASNumber rdf:ID="DCAS">
38719 </ex:hasASNumber >

</rdf:Description >
<rdf:Description rdf:about=
"https ://www.apnic.net">

<ex:sourceOf rdf:resource ="# DCAS"
/>

</rdf:Description >
</rdf:RDF >

The triple identified this way is recognized by RDF
parsers, which then automatically annotate the subject, the
predicate, and the object.

Nevertheless, reification has another shortcoming: writing
queries to retrieve statement-level provenance data is cum-
bersome, because an additional subexpression has to com-
plement the provenance-related subexpressions in queries to
be able to match the reification triples. For these reasons,
some proposed reification to be deprecated.23,24

The other approach suggested by the W3C to define
additional attributes, including provenance, to RDF triples,
is called n-ary relations, which provides a mechanism to
describe the relationship of an individual with more than one
other individual or data type value [41]. This is in contrast
with the binary relationsmost common in SemanticWeb lan-
guages, which link an entity either to another entity or to a
datatype value, such as a string or an integer number.

To express our previous example with an n-ary relation,
hasASNumber is defined as a property of the individ-
ual DREAMSCAPE-AS-AP, with another object (_:AS_
Relation_1, an instance of the class AS_Relation) as
its value (see Listing 3).

Listing 3 N-ary relation in RDF

:DREAMSCAPE -AS -AP a :AS ;
:hasASNumber _:AS_Relation_1 .
:AS_Relation_1 a :AS_Relation ;
:hasASNumber "38719";
:accordingTo :APNIC .

The individual _:AS_Relation_1 represents a single
object that encapsulates both the AS number (38719) and
its source (APNIC), as shown in Fig. 1.

Notice the use of a (self-serving) blank node,which cannot
be dereferenced globally, to represent instances of an n-ary
RDF relation.

23 https://www.w3.org/2009/12/rdf-ws/papers/ws11
24 https://lists.w3.org/Archives/Public/public-rdf-wg/2011Apr/0164.
html
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Fig. 1 An n-ary relationship AS_Relation

APNIC

:hasASNumber

rdf:type

:accordingTo

:hasASNumber 38719DREAMSCAPE-AS-AP _:AS_Relation_1

The implementation issues arising from the design of
reification and n-ary relations, and the scalability limita-
tions in particular, resulted in alternate approaches to provide
provenance to RDF triples. The next sections provide a com-
prehensive systematic review of these approaches.

2.1 Data Models and Annotation Frameworks for
RDF Provenance

Approaches to provide alternatives to RDF reification and
n-ary relations include

– lossless decomposition of RDF graphs: RDF Molecule
[42];

– extensions of the RDF data model: N3Logic [43, 44],
RDF+ [45, 46], annotated RDF (aRDF) [47], SPO+
Time+Location (SPOTL) [48],RDF* [49],RSP-QL∗ [50];

– alternate data models: mapping objects to vectors [18],
GSMM [51];

– extensions of the RDFS semantics: Annotated RDF
Schema [52, 53];

– purpose-designed implementation techniques

– using annotations: RDF/XML Source Declaration,25

resource annotation [54];
– via encapsulating provenance information in tuple
elements: Provenance Context Entity (PaCE) [55],
Singleton property [56];

– using knowledge organization systems;

– adding provenance to triples, forming RDF quadru-
ples: N-Quads,26 Named graphs [57, 58], RDF/S graph-
sets [59],RDF triple coloring [60],nanopublications [61],
Hoganification [62]),GraphSource (Sikos et al. [40] and
Sikos et al. [63] collectively);

– hybrid approaches, which have multiple traits of the
above categories, such as g-RDF [64], which extends
RDFS semantics, defines provenance stable models and
provenanceHerbrand interpretations, and utilizes ontolo-

25 https://www.w3.org/Submission/rdfsource/
26 https://www.w3.org/TR/n-quads/

gies with positive and strongly negated RDF triples
(gRDF triples) and derivation rules.

Approaches have also been developed for capturing other
types of metadata, such as temporal constraints, for RDF,
some of which may be suitable for capturing provenance as
well (e.g., temporal RDF [65–67]).

The reasoning potential of provenance representations can
be improved by using OWL and SWRL reasoning rules [68],
extending OWL to be able to define contexts-dependent
axioms [69], and purpose-designed context-aware reasoning
rules that are not restricted by the limitations of Semantic
Web languages [39].27

The abstraction of reification techniques with description
logics led to the introduction of contextual annotation, which
focuses on the logical formalism behind provenance-aware
statements rather than on the data model [70]. Moreover, a
family ofDLs has been proposed specifically for representing
data provenance [71].

To demonstrate the fundamental differences, let us briefly
describe our running example with various approaches.

The RDF/XML syntax extension can turn triples into
quadruples, where the forth tuple element is the IRI of the
source of the triple, defined as the attribute of cos:graph
(see Listing 4).

Listing 4 RDF/XML Source Declaration

<rdf:RDF
xmlns:ex="http :// example.com/"
xmlns:rdf="http ://www.w3.org/

1999/02/22 -rdf -syntax -ns#"
xmlns:cos="http ://www.inria.fr/

acacia/corese#"
cos:graph="http ://www.apnic.net">

27 Because the context identifiers of RDF quadruples have no restric-
tions regarding what they represent, there is no general entailment
regime for the context element in quad-based provenance-aware state-
ments, and therefore, provenance-related inferences rely on the triple
elements in both triple-based and quad-based representations. Although
writing custom, application-specific rulesets could provide far more
sophisticated reasoning capabilities than what is possible with standard
RDFS and OWL entailment and reasoning over standard provenance
ontologies, such rulesets are yet to be developed.

123

https://www.w3.org/Submission/rdfsource/
https://www.w3.org/TR/n-quads/


Provenance-Aware Knowledge Representation: A Survey of Data Models. . . 297

Table 1 An RDF+ quintuple Subject Predicate Object Meta-property Meta-value

DREAMSCAPE-AS-AP hasASNumber 38719 accordingTo APNIC

<rdf:Description rdf:about="http ://
example.com/DREAMSCAPE/">

<ex:hasASNumber >38719
</ex:hasASNumber >

</rdf:Description >
</rdf:RDF >

An aRDF triple consists of an ordinary RDF triple and its
annotation (see Listing 5).

Listing 5 Annotated RDF (aRDF)

(APNIC , states: (hasASNumber ,
38719), DREAMSCAPE -AS -AP)

ByusingRDFmolecules, RDFgraphs can be decomposed
to their finest, lossless subgraphs. The decomposition can be
performed by identifying blank nodes in RDF graphs that
connect triples (naïve decomposition), use functional depen-
dency semantics (functional decomposition), or use extended
functional dependency (heuristic decomposition). For exam-
ple, a triple from a network knowledge discovery dataset and
another triple from a dataset of APNIC autonomous systems
can form an RDF molecule (see Listing 6).

Listing 6 An RDF molecule

{t1} (:ASDS :hasASname "DREAMSCAPE -
AS-AP" )

{t2} (" DREAMSCAPE -AS -AP"
:hasASNumber "38719" )

In N3Logic, provenance can be captured in the form of
quoted N3 formulae, for example the one shown in Listing 7.

Listing 7 A quoted N3 formula

:APNIC :states { "DREAMSCAPE -AS -AP"
:hasASNumber "38719" } .

RDF+ extends RDF with provenance data support by
attaching a metadata property and its value to each triple
(see Table 1).

SPOTL base facts can be written with semantic meta-facts
as demonstrated in Listing 8.

Listing 8 A SPOTL base fact with a semantic meta-fact

#42: "DREAMSCAPE -AS-AP"
:hasASNumber "38719"

#43: #42: accordingTo: APNIC

RDF* encloses embedded triples between<< and>> in
the Turtle extension Turtle* (see Listing 9).

Listing 9 An embedded triple in RDF*

<<"DREAMSCAPE -AS -AP" :hasASNumber
"38719"> > :accordingTo

:APNIC .

Listing 10 shows the same statement using Annotated
RDF Schema.

Listing 10 Annotated RDF Schema

(" DREAMSCAPE -AS -AP" :hasASNumber
"38719") : [: accordingTo ,

:APNIC]

Our running example can be expressed using PaCE as
shown in Listing 11 and with a singleton property as shown
in Listing 12.

Listing 11 PaCE example

:DREAMSCAPE -AS -AP_APNIC a
:DREAMSCAPE -AS -AP .

:DREAMSCAPE -AS -AP_APNIC
:hasASNumber "38719" .

:DREAMSCAPE -AS -AP_APNIC
:accordingTo :APNIC .

Listing 12 A singleton property example

"DREAMSCAPE -AS -AP" :hasASNumber #1
"38719" .

:hasASNumber#1
rdf:singletonPropertyOf
:hasASNumber ;

:accordingTo :APNIC .

N-Quads inherently has a fourth column, which can be
used, among other things, to declare provenance (see List-
ing 13).

Listing 13 N-Quads example

"DREAMSCAPE -AS -AP" :hasASNumber
"38719" _:prov .

_:prov :source :accordingTo
: APNIC .

By using two named graphs, an RDF graph can describe
the RDF statements (default graph or assertion graph), and
another graph can detail the provenance data (provenance
graph), as demonstrated in Listing 14.

Listing 14 Named graphs (GraphSource implementation)

ASDATA1 { "DREAMSCAPE -AS -AP"
:hasASNumber "38719" . }

PROVENANCE { <http :// example.org/
ntwknowledge/>

prov:wasDerivedFrom
:BGP143R1to221R1 . }

RDF triple coloring can capture data integration scenarios
inwhich the same datawere derived fromdifferent resources.
For example, assume the scenario shown in Table 2.

Based on the statements in Table 2, the triple in Listing 15
can be inferred.
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Table 2 RDF triple coloring s p o “Color”

:APNICassigned rdf:type owl:Class c1

:APNICassigned rdfs:subclassOf :RIRassigned c1

:RIRassigned rdfs:subclassOf :IANAregistered c2

Listing 15 Statement inferred from the statements of Table 2

:APNICassigned
rdfs:subclassOf :IANAregistered .

In this case, to define the origin of the statement, both c1
and c2 have to be assigned (see Listing 16).

Listing 16 Expressing composite origin with two triple colors

:APNICassigned rdfs:subclassOf :RIRassigned . −→ c1

:RIRassigned rdfs:subclassOf :IANAregistered .−→ c2

Otherwise, the composite nature of the data prove-
nance would not be captured, because querying the triples
with color c1 would return :APNICassigned rdfs:
subclassOf :IANAregistered, even though this is
based on both c1 and c2, not just c1. RDF triple coloring can
capture implicit triples using colors defined by the + opera-
tion, such as c1,2 = c1 + c2. In this case, c1,2 is a new URI
assigned to those triples that are implied by triples colored
c1 and c2.

Nanopublications can be efficiently implemented in the
form of named graphs, as demonstrated in Listing 17.

Listing 17 A nanopublication

@prefix : <http ://www.example.org/
networkdataset180322#> .

@prefix prov: <http ://www.w3.org/ns
/prov#> .

:NETW { "DREAMSCAPE -AS -AP"
:hasASNumber "38719" . }

:PROV { :NETW prov:wasDerivedFrom
:APNIC . }

:META { :PROV prov:generatedAtTime
"2018 -03 -22 T15 :49:00+09:30"^^ xsd:

dateTime . }

For the detailed comparison of these approaches, the fol-
lowing aspects have been considered: availability of formal
semantics, tuple type (triple, quad, or quintuple), compliance
with the standard RDF data model and standard SPARQL
algebra, reliance on external vocabularies, utilization of
blank nodes, the granularity of data provenance that can be
captured, and scalability.

2.1.1 Formal Semantics

The definition of Tarski-stylemodel-theoretic semantics [72]
for RDF graphs and the RDF and RDFS vocabularies pro-
vides a formal specification of when truth is preserved by
RDF transformations and operations that derive RDF content

from other RDF resources [73]. This is why defining formal
semantics is a fundamental requirement for RDF reification
approaches.

The semantics of RDF graphs is fixed via interpretations,
such as simple interpretations and RDF interpretations [74].
A simple interpretation I is defined as follows [75]. IR is a
nonempty set of resources, called the domain or universe of
discourse of I; IP is the set of generic properties of I; IEXT is a
function that assigns to each property a set of pairs from IR,
i.e., IEXT: IP→ 2IR×IR, where IEXT(p) is called the extension
of property p; Is is a function that maps IRIs from V into the
union set of IR and IP; IL is a function mapping the typed
literals from V into the set of resources R; and LV is a subset
of IR (the set of literal values). RDF interpretations have to
satisfy additional semantic conditions on xsd:string and
part of the infinite set of IRIs with the namespace prefix.

An RDFS interpretation is an RDF interpretation, which
satisfies additional semantic conditions outlined by Hayes
and Patel-Schneider [76]. ICEXT(y) is defined to be {x
: 〈x,y〉 is in IEXT(I(rdf:type))}. IC is defined to be
ICEXT(I(rdfs:Class)). By definition, LV is ICEXT

(I(rdfs:Literal)). ICEXT(I(rdfs:Resource)) = IR.
ICEXT(I(rdf:langString)) is the set I(E), where E is
a language-tagged string. For every other IRI aaa in D,
ICEXT(I(aaa)) is the value space of I(aaa) and for every
IRI aaa in D, I(aaa) is in ICEXT(I(rdfs:Datatype)). If
〈x,y〉 is in IEXT(I(rdfs:domain)) and 〈u,v〉 is in IEXT(x)
then u is in ICEXT(y). If 〈x,y〉 is in IEXT(I(rdfs:range))
and 〈u,v〉 is in IEXT(x), then v is in ICEXT(y). IEXT(I(rdfs:
subPropertyOf)) is transitive and reflexive on IP. If 〈x,y〉
is in IEXT(I(rdfs:subPropertyOf)), then x and y are in
IP and IEXT(x) is a subset of IEXT(y). If x is in IC, then
〈x, I(rdfs:Resource)〉 is in IEXT(I(rdfs:subClassOf)).
IEXT(I(rdfs:subClassOf)) is transitive and reflexive on
IC. If 〈x,y〉 is in IEXT(I(rdfs:subClassOf)), then x and
y are in IC and ICEXT(x) is a subset of ICEXT(y). If x is in
ICEXT(I(rdfs:ContainerMembershipProperty)),
then 〈x, I(rdfs:member)〉 is in IEXT(I(rdfs:subProperty
Of)). If x is in ICEXT(I(rdfs:Datatype)), then 〈x,
I(rdfs:Literal)〉 is in IEXT(I(rdfs:subClassOf)).

In addition, an RDFS interpretation also has to satisfy all
the RDFS axiomatic triples.28

Among the RDF reification alternatives that definemodel-
theoretic semantics, PaCE, the singleton property approach,

28 https://www.w3.org/TR/rdf11-mt/#RDFS_axiomatic_triples
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Table 3 Formal semantics of reification alternatives

Approach Formal semantics

RDF/XML Source Declaration Inherently (RDF semantics)

aRDF Formal declarative semantics (model theory)

RDF Molecule –

N3Logic Model-theoretic semantics

RDF+ Model-theoretic semantics

SPOTL An extension of the standard RDF triple model

RDF* Model-theoretic semantics (allows RDF* graphs to be transformed to standard RDF graphs)

Annotated RDFS An extension of RDFS semantics

PaCE Model-theoretic semantics extending standard RDFS semantics with additional condition (meta-rule)

Singleton property Model-theoretic semantics; extension of simple and RDF interpretation

N-Quads Inherently (RDF semantics)

Named graphs (incl. GraphSource) Model-theoretic semantics; simple semantic extension of RDF(S) semantics

RDF/S graphsets Model-theoretic semantics (generalizes named graphs)

RDF triple coloring Coherence semantics [77]

Nanopublications Depends on the implementation (model-theoretic semantics when implemented as named graphs)

and named graphs define their semantics as extensions of
these standard semantics (see Table 3).

The aRDF declarative semantics are defined as follows.
An aRDF interpretation I is amapping fromUniv toA, where
A is a partial order, and satisfies (r, p:a, v) iff a � I(r,p,v).
I satisfies an aRDF theory iff I satisfies every (r,p:a,v) ∈ O
and for all transitive properties p ∈ P and for all p-paths Q
= {t1, …,tk} in O, where ti = (ri , pi : ai , ri+1), and for all
a ∈ A such that a � ai for all 1 ≤ i ≤ k, it is the case
that a � I (r1, p, rk+1). O is consistent iff there is at least
one aRDF interpretation that satisfies it. O entails (r,p:a,v)
iff every aRDF interpretation that satisfies O also satisfies
(r,p:a,v).

The model-theoretic semantics of PaCE is an extension of
RDFS semantics and can be defined as follows. Let prove-
nance context pc of an RDF triple α = (S,P,O) be a common
object of the predicate provenir:derives_from29

associated with the triple. An RDFS-PaCE interpretation I
of a vocabulary V is defined as an RDFS interpretation of
the vocabulary V ∪ VPaCE satisfying the additional con-
dition (meta-rule) that for RDF triples α = (S1,P1,O1) and
β = (S2,P2,O2), provenance-determined predicates (that are
specified to the application domain), and entities v, if pc(α)
= pc(β), then (S1,p,v) = (S2,p,v), (P1,p,v) = (P2,p,v), and
(O1,p,v) = (O2,p,v). A graph G1 PaCE-entails a graph G2 if
every RDFS-PaCE interpretation that is a model of G1 is also
a model of G2. All inferences that can be made using simple,
RDF, or RDFS entailment are also PaCE entailments.

29 The provenir prefix abbreviates the now-discontinued ontology
URL http://knoesis1.wright.edu/library/ontologies/provenir/provenir.
owl.

The model-theoretic semantics of the singleton prop-
erty approach extends a simple interpretation I to satisfy
the following additional criteria: IPS is a subset of IR,
called the set of singleton properties of I, and IS_EXT(ps)
is a function assigning to each singleton property a pair
of entities from IR, formally IS_EXT:IPs → IR × IR. As
for an RDF interpretation I, the semantics of the singleton
property approach defines the following additional crite-
ria: xs ∈ IPs if 〈xs, rdf:singletonPropertyOfI〉 ∈
IEXT(rdf:typeI ), xs ∈ IPs if 〈xs,xI〉 ∈ IEXT(rdf:singl
etonPropertyOfI ), and x ∈ IP, IS_EXT(xs)= 〈s1,s2〉.

The semantics of named graphs extends the RDF(S)
semantics. An RDF(S) interpretation I conforms to a set of
named graphs N if for every named graph ng ∈ N , name(ng)
is in the vocabulary of I and I(name(ng)) = ng. While named
graphs can attach metadata to a set of triples, they may have
ambiguous semantics while associating different types of
metadata at the triple level.

The semantics of Annotated RDFS can be defined as fol-
lows. An annotation domain for RDFS is an idempotent,
commutative semiring of the form D = 〈L,⊕,⊗,⊥,�〉,
where L a nonempty set of annotation values and ⊕ is
�-annihilating.30 Being an idempotent semi-ring, an anno-
tation domain D induces a partial order � over L defined
as λ1 � λ2 iff λ1 ⊕ λ2 = λ2, which is suitable for
expressing entailed or subsumed information. An anno-
tated interpretation I over a vocabulary V is a tuple I =
〈ΔR,ΔP ,ΔC ,ΔL , P�.�,C�.�,.I 〉, where ΔR , ΔP , ΔC , ΔL

30 For λ, λi ∈ L , ⊕ is idempotent, commutative, and associative; ⊗ is
commutative and associative; ⊥ ⊕ λ = λ, � ⊗ λ = λ, ⊥ ⊗ λ = λ, and
� ⊕ λ = �; ⊗ is a distributive order over ⊕, i.e., λ1 ⊗ (λ2 ⊕ λ3) =
(λ1 ⊗ λ2) ⊕ (λ1 ⊗ λ3).
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Table 4 Reification alternatives
employ 3–6 elements per
statement

Approach Tuple type

RDF/XML Source Declaration Triple (in RDF/XML)—implies quadruple

aRDF Nonstandard

RDF Molecule Quadruple

N3Logic Triple (in N3)

RDF+ Quintuple

SPOTL Quadruple/nonstandard (quintuple/sextuple)

RDF* Nonstandard (“metadata triple”)

Annotated RDFS Nonstandard (“annotated triple”)

PaCE Triple

Singleton property Triple

N-Quads Quadruple

Named graphs (incl. GraphSource) Quadruple

RDF/S graphsets Quadruple

RDF triple coloring Quadruple

Nanopublications Quadruple

are interpretation domains of I and P�.�, C�.�, .I are inter-
pretation functions of I. ΔR is a nonempty finite set of
resources (the domain of I), ΔP is a finite set of property
names (not necessarily disjoint from ΔR), ΔC ⊆ ΔR is a
distinguished subset of ΔR) identifying if a resource denotes
a class of resources, ΔL ⊆ ΔR the set if literal values, ΔL

contains all plain literals in L ∩ V , P�.� maps each property
name p ∈ ΔP into a function P�p� : ΔR × ΔR → L , i.e.,
assigns an annotation value to each pair of resources; C�.�
maps each class c ∈ ΔC into a functionC�c� : ΔR → L , i.e.,
assigns an annotation value representing class membership
in c to every resource; .I maps each t ∈ UL ∩ V into a value
tI ∈ ΔR∪ΔP and such that .I is the identity for plain literals
and assigns an element in ΔR to each element in L.

2.1.2 Tuple Type

RDF reification alternatives use either standard RDF triples
or quads, or nonstandard tuples to capture provenance (see
Table 4).

RDF/XML Source Declaration employs standard RDF
triples written in RDF/XML serialization. PaCE uses stan-
dard triples with carefully named entities to describe
provenance-aware facts by indicating the data source in sub-
jects and objects. In contrast, the singleton property approach
uses standard RDF triples to capture provenance with the
predicate; the instantiation triples define singleton proper-
ties as singleton properties of the base predicates, which can
be used as predicates in singleton triples and as subjects in
metadata triples.

N-Quads, named graphs, RDF triple coloring, RDF/S
graphsets, and nanopublications use standard RDF quadru-
ples. Annotated RDFS defines a proprietary tuple that,
depending on the application, may be expressed using stan-

dard RDF quads. RDF+ is the only approach that employs
quintuples to capture provenance. aRDF and RDF* define
tuples that are not compatible with RDF triples or quads.

The number of tuple elements for SPOTL depends on
the implementation. When implemented in named graphs,
SPOTL uses quadruples. RDF triples extended with tem-
poral and spatial information can be written in quintuples,
which can be further extended into sextuples with context or
provenance information (the latter is called SPOTLX).

2.1.3 Standard Compliance

RDF reification alternatives include various data models,
some of which extend the standard RDF data model [17].
The RDF/XML Source Declaration is compliant with RDF
and SPARQL, although it has some minor implementation
prerequisites, and is bound to a single serialization format.
RDFmolecules are decompositions of standard RDF graphs,
and may be implemented in standard quadruple serializa-
tions. Only its advanced version is compatible with standard
SPARQL queries [78]. N3Logic is a minimal extension of
the standard RDF data model. It is natively supported by
the standard N3 serialization. RDF+ extends the standard
RDF data model, and requires mapping from/to RDF. It has
a limited downward compatibility with the standard RDF
data model in applications that ignore RDF+ extensions not
supported by RDF. Due to its significant divergence from
standard RDF, it cannot be expressed in any standard RDF
serialization. Furthermore, it extends the standard SPARQL
syntax and semantics, making it necessary to map queries.
SPOTL extends the triple-based RDF data model to support
additional data for statements. Depending on the implemen-
tation, it may or may not be implemented in named graphs.
RDF* extends the standard RDF data model and requires
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Table 5 Not all reification alternatives are standard-compliant

Approach Compliance with standard

RDF data model RDF serializations SPARQL algebra

RDF/XML Source Declaration + RDF/XML only +

aRDF – – –

RDF Molecule + TriG, TriX, N-Quads –/+

N3Logic – N3 +

RDF+ – – –

SPOTL – –/+ (quadruple serializations) –

RDF* – – –

Annotated RDFS – – (potentially TriG/TriX/N-Quads) –

PaCE + RDF/XML, N3, Turtle,
N-Triples, RDF-JSON,
JSON-LD, RDFa,
HTML5 Microdata

+

Singleton property + RDF/XML, N3, Turtle,
N-Triples, RDF-JSON,
JSON-LD, RDFa,
HTML5 Microdata

+

N-Quads + N-Quads +

Named graphs (incl. GraphSource) + TriG, TriX, N-Quads +

RDF/S graphsets – TriG, TriX, N-Quads –

RDF triple coloring + TriG, TriX, N-Quads +

Nanopublications + TriG, TriX +

mapping. It proposes a proprietary extension to Turtle, called
Turtle*, in which triples are embedded in other triples. How-
ever, it cannot be directly implemented in any standard
serialization. For querying, it extends the standard SPARQL
algebra to SPARQL*, which requires mapping. Annotated
RDFS extends the standard RDF data model, although it may
be expressed using standard quadruple serializations. More-
over, it extends the standard SPARQL algebra to “Annotated
SPARQL” (AnQL). The PaCE approach is compatible with
the standard RDF data model, and can be expressed using
standard triple serialization formats. Similarly, the single-
ton property approach is RDF-compatible and can be written
in any standard triple serialization. The singleton property
approach is compatible with the standard SPARQL algebra,
and allows the utilization of three types of triples in graph
patterns: the statement about the instantiating singleton prop-
erty, the singleton triple, and the metadata triple. N-Quads
and named graphs are standard-compliant approaches. The
RDF/S graphsets approach extends the RDFS data model
and is not compatible with SPARQL: It extends the RDF
query language (RQL) instead. Table 5 summarizes these
approaches in terms of standard compliance.

2.1.4 Reliance on External Vocabularies

Some approaches rely on external vocabularies as part of
their mechanism to capture provenance for RDF data (see
Table 6).

RDF/XML Source Declaration utilizes the cos:graph
attribute31 in standardRDF/XMLdocuments.RDFmolecules
do not rely on external vocabularies, however, for fine
decompositions, a backgroundontology is required.N3Logic
extends RDF with a vocabulary of predicates by reusing
terms from the log,32 crypto,33 list,34 math,35 os,36

string,37 and time38 namespaces. The nanopublications
approach defines an ontology, called the Nanopublication
Ontology,39 but its use is not essential for implement-
ing nanopublications. The application-specific GraphSource

31 The cos: prefix abbreviates the now-discontinued ontology IRI
http://www.inria.fr/acacia/corese#.
32 http://www.w3.org/2000/10/swap/log#
33 http://www.w3.org/2000/10/swap/crypto#
34 http://www.w3.org/2000/10/swap/list#
35 http://www.w3.org/2000/10/swap/math#
36 http://www.w3.org/2000/10/swap/os#
37 http://www.w3.org/2000/10/swap/string#
38 http://www.w3.org/2000/10/swap/time#
39 http://www.nanopub.org/nschema
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Table 6 Some approaches rely on a single term or an entire ontology to capture provenance

Approach Proprietary term or external vocabulary

RDF/XML Source Declaration cos:graph attribute

aRDF –

RDF Molecule –

N3Logic N3Logic Vocabulary

RDF+ –

SPOTL –

RDF* –

Annotated RDFS –

PaCE PROVENIR Ontology (proprietary)

Singleton property Nonstandard extension of rdfV with the singletonPropertyOf property

N-Quads –

Named graphs (incl. GraphSource) –

RDF/S graphsets –

RDF triple coloring –

Nanopublications –

approach does not have a prerequisite for ontologies, but it is
most efficient when used with the Communication Network
Topology and Forwarding Ontology (CNTFO).40

In contrast to these, there are approaches that constitute
ontological models, such as resource annotation [54], which
associates a single rdfs:Resourcewith a target, and uti-
lizes domain ontology terms to associate annotations with
concept definitions.

2.1.5 Blank Nodes

Among the alternatives to RDF reification and n-ary rela-
tions, the only approach that relies on blank nodes to capture
provenance is N-Quads. However, blank nodes have to be
mentioned not only to emphasize that they cannot be deref-
erenced, but also because they can be useful in certain
scenarios, such as for network discovery tasks, where blank
nodes may be useful for collecting statements for subjects
that could not be named at the time the task was performed.
In fact, such blank nodes can be utilized not only after the
subject has been identified, but even during network knowl-
edge discovery. For example, RDF molecules can capture
provenance information for two triples that share the same
blank node (which cannot be captured with RDF triples
or document-level provenance). Note that if an RDF graph
has no blank nodes, each triple in the graph constitutes a
molecule.

40 https://purl.org/ontology/network/

2.1.6 Provenance Granularity

The following six levels of provenance granularity can be
differentiated from course-grained to fine-grained, depend-
ing on the smallest set of represented information for which
provenance can be defined:

1. Dataset-level provenance: the provenance of Linked
(Open) Data datasets. Every statement is globally deref-
erencable.

2. RDFdocument-level provenance: the provenanceofRDF
statements stored in the same file.

3. Graph-level provenance: statements are made to cap-
ture the provenance of named graphs, whose URIs are
utilized in quadruples to declare coarse provenance infor-
mation. It can be used when a set of RDF statements
share the same provenance data. In case the provenance
data applies to an entire set of RDF triples and not just
a subset of them, graph-level provenance is identical to
document-level provenance.

4. Molecule-level provenance: RDF molecules introduce
a granularity level finer than named graphs but coarser
than triples, constituting the finest components of loss-
less RDF graph decomposition for provenance tracking
situations when graph-level provenance would result
in low recall and triple-level provenance in low preci-
sion.Molecule-level provenance provides high precision,
because all the RDF documents asserting at least one
molecule of a given RDF graph (partially) justify the
graph.

5. Triple-level provenance: provenance information is pro-
vided for RDF triples. This is the most common prove-
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Table 7 Some approaches can capture either coarse or fine-grained provenance only

Approach Provenance Granularity

RDF/XML Source Declaration Sets of triples, RDF graph

aRDF Triple

RDF Molecule Molecule, RDF document

N3Logic Triple

RDF+ Triple

SPOTL Triple

RDF* Triple

Annotated RDFS Triple, RDF graph, RDF document

PaCE Triple (application-aware)

Singleton property Predicate

N-Quads Triple

Named graphs (incl. GraphSource) Set of triples, RDF graph, or RDF document

RDF/S graphsets Triple, set of triples (even if derived from multiple named graphs),
RDF graph (covering both explicit and implicit statements)

RDF triple coloring Set of elements, triple, collection of triples

Nanopublications Set of triples, RDF graph, or RDF document

nance level for RDF data, because it can represent the
provenance of statements, which is adequate for a num-
ber of applications. Triple-level provenance offers high
recall. For example, two RDF graphs containing a triple
with a unique identifier as the object implies that the two
subjects are identical (even if they may be named differ-
ently), and therefore, all the statements about that subject
in these graphs are relevant.

6. Element-level provenance: fine-grained provenance that
enables to track how individual elements of RDF triples
have been derived from other RDF triple elements.
Many mechanisms to capture provenance cannot assign
provenance to arbitrary statement elements, i.e., sub-
jects, predicates, and objects of RDF triples, only to one
of them. Statement-element-level provenance is useful
for representing various claims of disputed or uncertain
information from diverse sources. Some of these might
be contradictory, which can be handled by considering
the trustworthiness, reputation, reliability, and quality of
the data sources with weight values or preference order.
Element-level provenance can also be used in entity res-
olution.

Table 7 summarizes the RDF reification alternatives from
the provenance granularity point of view.

Note that most approaches capture triple- or higher-level
provenance, although there are options to capture element-
level provenance as well. The singleton property approach
captures provenance for predicates, while resource annota-
tion can be used to track how individual triple elements of
annotations were derived from triple elements of other anno-
tations.

2.1.7 Scalability

Those approaches that lead to triple bloat are not scalable,
and hence, they are not suitable for Big Data applications.
Some approaches may be scalable at a particular level only,
such as at the triple level (see Table 8).

2.2 Knowledge Organization Systems for
Provenance

Knowledge organization systems designed for working with
RDF data provenance include purpose-built and related con-
trolled vocabularies and ontologies. The next sections will
give a brief overview of these vocabularies and ontologies.

2.2.1 Provenance Vocabularies and Ontologies

Various vocabularies and ontologies are available for repre-
senting specific types and aspects of provenance informa-
tion, such as attributes, characteristics, licensing, version-
ing [79], proof [80], and entailment. These include upper
ontologies, which can be used across knowledge domains,
domain ontologies that provide provenance terms for specific
knowledge domains [81], and provenance-related ontologies,
which define terms often captured together with provenance,
such as to capture trust and licensing information.

Upper Ontologies for Provenance There is a wide range of
domain-agnostic ontologies to represent generic provenance
data. The core datamodel for provenance, PROV,41 was stan-

41 https://www.w3.org/TR/prov-dm/
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Table 8 Not all reification
alternatives are scalable

Approach Scalable?

RDF/XML Source Declaration –

aRDF +

RDF Molecule Depends on implementation

N3Logic +

RDF+ –

SPOTL –

RDF* –

Annotated RDFS Depends on implementation

PaCE –

Singleton property –

N-Quads +

Named graphs (incl. GraphSource) +

RDF/S graphsets +

RDF triple coloring +

Nanopublications +

dardized in 2013 by the W3C [82], serving as the basis for
the Provenance Interchange Ontology (PROV-O),42 the de
facto standard provenance ontology [83]. The Open Prove-
nance Model Ontology (OPMO)43 is an OWL ontology for
theOpen ProvenanceModel, which extendsOPMVby defin-
ing more constraints using complex OWL 2 constructors.
It was designed to allow provenance information exchange
and technology-independent capturing of multi-level prove-
nance, and defines inference rules to identify the validity
of provenance inferences. The Proof Markup Language
(PML) Ontology is an OWL ontology for general-purpose
provenance interlingua [80, 84]. Provenir is an upper-level
provenance ontology written in OWLDL, which covers core
concepts related to information manipulation that can be
used across knowledge domains [85]. As mentioned ear-
lier, the PaCE approach utilizes the term derivesFrom
from this ontology. An extension of Provenir is the Janus
Ontology, which models the semantic provenance terms
that are adequate for representing the domain semantics of
workflows [86]. The Provenance, Authoring and Version-
ing Ontology (PAV)44 defines concepts and properties for
describing general, data creation, and data access provenance
of web data [87].

42 http://www.w3.org/ns/prov-o
43 https://github.com/KRAETS/ccerschema/blob/master/KRAETS/
ccerschema/core/third_party/provenance/opmo-20101012.owl
44 http://purl.org/pav/

Domain Ontologies for Provenance Domain-aware prove-
nance ontologies can be used to represent provenance for
specific knowledge domains, e.g., broadcasting, workflows,
and scientific processes. The BBC Provenance Ontology
(BBCPROV)45 supports datamanagement and auditing tasks.
It is suitable for defining different types of named graphs
used in quadstores, and associate them with metadata to
manage, validate and expose data to services of the British
BroadcastingCorporation. TheOntology forProvenance and
Plans (P-Plan)46 is an extension of the PROV-O ontology for
the representation of how-provenance for plans used to exe-
cute scientific processes. TheWfprovOntology (WFPROV)47

can express provenance information about the execution of
a workflow. The Open Provenance Model for Workflows
(OPMW)48 is an ontology for describing workflow traces
and their templates based on the Open Provenance Model.
TheOpen proVenanceOntology (OvO)was design to support
scientific experiments [88]. PREMIS49 is the OWL imple-
mentation of the U.S. Government’s provenance vocabulary
of the same name. It supports long-term preservation, with
a focus on the provenance of archived digital objects, such
as files, bitstreams, and aggregations, rather than the prove-
nance of descriptive metadata [89].

45 https://www.bbc.co.uk/ontologies/provenance/1.9.ttl
46 http://vocab.linkeddata.es/p-plan/p-plan.owl
47 http://purl.org/wf4ever/wfprov
48 http://www.opmw.org/model/OPMW/
49 http://premisontologypublic.pbworks.com/w/file/fetch/58521655/
premis2.2_v0.1.owl
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2.2.2 Provenance Vocabularies

The Provenance Vocabulary (PRV)50 is an OWL 2 vocabu-
lary designed for tracking information manipulation [90]. It
is a Web data-specific specialization of the PROV Ontol-
ogy, and defines core concepts for tracking data creation
and access, and concepts of data transfer and informa-
tion authentication in a taxonomical structure. The Open
Provenance Model Vocabulary (OPMV),51 a lightweight
vocabulary designed to assert Open Provenance Model
(OPM)52 concepts, and the Open Provenance Model OWL
Ontology (OPMO), which extends OPM to support inferenc-
ing [91]. The Vocabulary of Interlinked Datasets (VoID)53

is suitable for providing generic dataset-level provenance
information. The provenance extension of VoID, called
VoIDP, can be used to answer queries, such as how
data was derived, who carried out the transformation,
and what processes have been used for the transforma-
tions [92, 93]. The OAI-ORE Terms Vocabulary is the
provenance vocabulary of the Open Archives Initiative
for the description and exchange of aggregations of web
resources [94].

The Semantic Web Publishing Vocabulary (SWP)54 is an
RDFS vocabulary for capturing information provision and
assuring the origin of information with digital signatures.
Web Annotation Vocabulary,55 used by the Web Annota-
tion Data Model56 to annotate web resources in JSON-LD.
The POWDER Vocabulary (WDR)57 of the Protocol for Web
Description Resource58 can be used to describe a group of
resources, such as by using user-defined tags associated with
a semantically explicit description.

2.2.3 Provenance-Related Ontologies

Dublin Core (DC),59 standardized in ISO 15836-1:2017,60

is a set of 25 elements that can be broadly classified as
provenance-related, including one generic term, namely,
provenance, and terms of three specific provenance cate-
gories: terms that capture who affected a change
(contributor, creator, publisher, rights-

50 http://purl.org/net/provenance/ns
51 http://purl.org/net/opmv/ns
52 https://openprovenance.org
53 https://www.w3.org/TR/void/
54 https://www.w3.org/2004/03/trix/swp-2/
55 https://www.w3.org/TR/annotation-vocab/
56 https://www.w3.org/TR/annotation-model/
57 http://www.w3.org/2007/05/powder#
58 https://www.w3.org/TR/powder-dr/
59 http://purl.org/dc/terms/dcterms.ttl
60 https://www.iso.org/standard/71339.html

Holder), terms to answer questions about when a change
was affected (available, created, date,
dateAccepted, dateCopyrighted, dateSub-
mitted,issued,modified,valid), and terms that can
be used to describe how a changewas affected (isVersion
Of, hasVersion, isFormatOf, hasFormat,
license, references, isReferencedBy,
replaces, isReplacedBy, rights, source). The
DC Terms can partially be mapped to PROV-O terms [95].
Creative Commons61 is an RDFS ontology for describ-
ing licensing information, some of which are provenance-
related. The Changeset Vocabulary62 can be used to store
the changes between two versions of a resource descrip-
tion. The Web of Trust Ontology (WOT)63 defines terms for
describing how the validity of data items has been assured
through encryption or digital signature. In particular, WOT
captures provenance data, such as the timestamp and key
of digital signatures. The Trust Assertion Ontology (TAO)64

is a lightweight ontology to describe subjective trust values
of users. Ontologies designed to capture metadata beyond
(or not specifically for) provenance, such as temporal con-
straints, may also be suitable to capture provenance (e.g.,
4DFluents [96], NDFluents [97]).

3 Provenance-Aware RDF Data Management

The graph model that powers graph databases is fundamen-
tally a match for the core of provenance [98]. The impor-
tance of provenance attributes caught the attention of graph
database vendors, resulted in proprietary implementations
for storing various properties for RDF triples and quadru-
ples [99]. The efficient implementation of provenance-
enabled queries resulted in novel indexing techniques for
RDF provenance [100] and approaches such as provenance
polynomials [101] andadaptiveRDFquery processing [102].

3.1 Provenance-Aware RDF Data in Graph Databases

AllegroGraph65 is an industry-leadinggraphdatabase famous
for not only its high scalability over millions of quads, but
also for its support for additional fields at the triple level,
making it possible to define permissions, trust, and prove-
nance data for source tracking, quality evaluation, and access
control. AllegroGraph supports a format called Extended N-
Quad, orNQX for short, which extends the standardN-Quads

61 https://creativecommons.org/schema.rdf
62 http://vocab.org/changeset/schema-20090518.rdf
63 http://xmlns.com/wot/0.1/index.rdf
64 http://vocab.deri.ie/tao.ttl
65 https://franz.com/agraph/allegrograph/
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format to allow the specification of optional attributes for
each triple or quad in JSON format.66 NQX allows an arbi-
trary number of attributes and an arbitrary number of attribute
values, with a maximum attribute size limited only by the
amount of available virtual memory and address space (the-
oretically up to approximately 1TB).Because the permissible
characters in attribute names are restricted to a composition
of lower ASCII characters, including letters, digits, dashes,
and underscores, and URIs may contain characters beyond
this character set, this implementation would only be an
option if the provenance attributes would be declared on
quads, i.e., the graph identifier would be defined as part
of the quadruples, rather than an attribute value. However,
attributes can be defined only when adding the triples/quads
to the repository, i.e., their associated attributes cannot be
changed or removed afterwards.

Neo4j67 is a graph database, which employs a property
graph model. This model allows the definition of properties
for both roles and relationships, and labels to assign roles or
types to nodes. These features are suitable for, among others,
storing provenance data, as evidenced by implementations
such as theCAPS framework [103] andMITRE’s provenance
management software, PLUS.68

OpenLink Virtuoso69 supports additional metadata to be
stored with RDF triples, which can be used for represent-
ing provenance data [104]. However, how to add provenance
data to triples in Virtuoso is not trivial, because it requires a
kind of mechanism that extends the standard SPARQL query
syntax [105].

D2R Server70 can be used to expose data from rela-
tional databases asRDF. It implements PROV-Oand supports
provenance information, along with other metadata, to be
attached to every RDF document and web page published
with it.

3.2 Provenance-Aware LOD Datasets

Provenance data can be used in LOD datasets to facilitate
information fusion, thereby avoiding technology-specific
analytics that might be biased toward certain data sources
and eliminating the need for manually pulling information
together [106]. Data inferred by software agents should be
distinguished from data explicitly provided by data publish-
ers, because they differ in terms of trustworthiness [107].
Without sufficient transparency for Linked Data sources and
transformations, government agencies and scientists cannot

66 https://franz.com/agraph/support/documentation/6.1.6/triple-
attributes.html
67 https://neo4j.com
68 https://github.com/plus-provenance/plus
69 https://virtuoso.openlinksw.com
70 http://d2rq.org/d2r-server

trust third-party LOD datasets [82]. The data interlinking
mechanism used by LOD datasets can be utilized for coarse
provenance information in the form of data associations,
but these do not cover data transformations [108]. The
owl:sameAs predicate, which is widely deployed among
LODdatasets [109], can result in the confusionof provenance
and ground truth [110]. The provenance information pro-
vided by named graphs indicate the current location of data,
or the data source described by provenance graphs [111], but
does not hold information about the behavior of processes
that interact with Linked Data, which can be captured using
additional syntax and semantics only [112]. The aforemen-
tioned VoID vocabulary can be used to provide dataset-level
provenance for LOD datasets. However, a complete prove-
nance chain may be required for some applications, allowing
every single statement to be the subject of annotations and
links [113]. Provenance descriptors can be published as
Linked Data in two ways: either a link represents an entity
and links directly to provenance properties, or a provenance
property links the URI to the starting point of a provenance
descriptor [114]. These links allow mechanisms to be imple-
mented for automatically defining provenance information
during data integration [115].

Since datasets enriched with data provenance may have
duplicate provenance values, techniques have been pro-
posed to eliminate these, thereby optimizing the storage of
RDF data provenance [116]. Hybrid storage models exist
for Linked Data to exploit recurring graph patterns and
graph partitioning, which enable complex cloud compu-
tations on Big RDF Data, making the provenance-aware
management of Linked Data efficient and scalable [117].
LOD datasets enriched with provenance data can contain
domain-agnostic provenance graphs or domain-aware prove-
nance graphs, the latter of which can answer far more
specific queries [86]. Tracking data provenance may require
both generic and domain-specific provenance data to sup-
port future reuse via querying, and provenance traces from
diverse resources often require preservation and intercon-
nection to support future aggregation and comparison [118].
Provenance-aware Linked Data querying consists of a work-
load query and a provenance query [119], which can
be executed with various strategies, such as the follow-
ing [120]:

– Post-filtering: the independent execution of the workload
and provenance query;

– Query rewriting: the execution of the provenance query
precedes theworkload query,making it possible to utilize
context values returned by the provenance query to filter
out those tuples that do not conform to the provenance
results;

– Full materialization: the provenance query is executed
on the entire dataset or any relevant subset of it, and
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materializes all tuples whose context values satisfy the
provenance query;

– Pre-filtering: a provenance index is located for each con-
text value and identifier of those tuples that belong to the
context;

– Adaptive partial materialization: introduced a trade-off
between the performance of the provenance query and
that of the workload query.

4 Querying RDF Provenance

Querying RDF data provenance is not trivial because of
nonstandard provenance representations that capture static
provenance data and the lack of support for version con-
trol for RDF. Therefore, the following approaches have been
introduced.

Damásio et al. developed an approach for querying
provenance information for LOD obtained from SPARQL
endpoints [121]. This approach translates SPARQL into
annotated relational algebra, in which the annotated relations
have values from the most general m-semiring.

Halpin and Cheney proposed a technique to facilitate
querying dynamic changes of RDF graphs using SPARQL
[122]. This technique is compatible with W3C’s PROV, and
allows the definition of provenance information by reinter-
preting SPARQL updates [123].

Avgoustaki et al. proposed a provenance model that bor-
rows properties from the how and the where provenance
models, allowing to capture triple-level and attribute-level
provenance of data added to datasets via SPARQL INSERT
updates [124].

Another algebraic structure suitable for capturing the
provenance of SPARQLqueries is the evaluation of SPARQL
algebra queries on RDF graphs annotated with elements of
spm-semirings [125]. These extend semirings with an oper-
ator to capture the semantics of non-monotone SPARQL
operators.

5 Software Tools for Manipulating RDF
Provenance

Utilizing data provenance in RDF-based applications allows
data quality assessment, find similar or related resources,
and makes Linked Open Data concept interlinking more effi-
cient [126]. In web applications, provenance can be used not
only to provide information about the trustworthiness of the
data, but also to support project collaboration, identify errors
in data sources, extend insights to other applications [127],
describe and discover web services [128], comment track-
ing [129], improve interoperability, and so on.

The Provenance Tool Suite71 includes provenance soft-
ware tools including Prov Python (ProvPy),72 a Python
library supporting PROV-DM data import and export as
PROV-XML,73 and PROV-JSON;74 ProvToolbox,75 a Java
library to create Java representations of PROV-DM and
convert them to PROV-O, PROV-XML, PROV-N, andPROV-
JSON; and ProvJS, a JavaScript utility for indexing and
searching PROV-JSON objects within JavaScript objects.
These packages are employed by three services:76

ProvStore,77 a free provenance-aware repository hosting
PROV provenance documents; ProvTranslator,78 which
translates PROV documents across different PROV repre-
sentations; and ProvValidator79 for validating PROV docu-
ments. These services can be used viaRESTAPI or a browser
interface.

Beyond Provenance Tool Suite’s ProvValidator, there are
other tools to check provenance data, such as prov-check80

and prov-constraints.81

One of the six web applications of the eagle-I software
suite,82 a resource discovery tool for translational science
research, is an RDF repository that can be used to store
resource and provenance metadata as RDF triples. The
Linked Open Data output can be exported via SPARQL end-
points, flat RDF files, or published URI lists.

Provenance Explorer was designed to provide a customiz-
able visualization of the provenance trail associated with
scientific discovery processes by utilizing both explicit and
implicit RDF relationships [130]. LabelFlow is a tool to
manipulate the workflow provenance of scientific data in
RDF [131]. It enables semi-automated provenance anno-
tation and can handle PROV-O- and WFPROV-compliant
provenance traces. Taverna,83 Apache’s open source work-
flow management system allows the export of workflow
run provenance as PROV-O annotations in RDF through its
PROVplugin. This plugin can export the workflow execution
(output and intermediate values) and the provenance trace as
a PROV-O RDF graph, which can be queried using SPARQL

71 https://www.software.ac.uk/who-do-we-work/provenance-tool-
suite
72 https://pypi.python.org/pypi/prov
73 https://www.w3.org/TR/prov-xml/
74 https://www.w3.org/Submission/prov-json/
75 https://github.com/lucmoreau/ProvToolbox/
76 https://openprovenance.org
77 https://openprovenance.org/store/
78 https://openprovenance.org/services/view/translator
79 https://openprovenance.org/services/view/validator
80 https://github.com/pgroth/prov-check
81 https://github.com/jamescheney/prov-constraints
82 https://www.eagle-i.net/get-involved/for-developers/
83 https://github.com/apache/incubator-taverna-engine/tree/master/
taverna-prov
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and processed with other PROV tools, such as the PROV
Toolbox and the Provenance Extractor,84 a command line
tool to extract provenance information form Taverna prove-
nance databases.

The Core Provenance Library (CPL) is a portable prove-
nance library to be incorporated in a variety of software tools
to collect and integrate provenance data [132]. It can work
with both relational and graph databases via its ODBC and
RDF/SPARQL drivers.PROVoKing85 is a Java library for the
PROV standard. By utilizing Apache Jena, it reads PROV
data from a Turtle, RDF/XML, N3, or N-Triple file, a URI,
or a Jena Model produced from SPARQL query answers.
PROVoKing converts a PROV document to an RDF triple
stream in thememory. It prefers binaryPROV-Orelationships
over qualified PROV-O relations. Provenance data can be
exported to Turtle. The prov-api86 is a Java API to create and
manipulate provenance graphs using core PROV terminol-
ogy. Tupelo is an open source semantic content management
framework, which can manage a range of metadata, includ-
ing provenance [133]. It can be used to develop applications
that listmetadata associatedwith entities and visualize prove-
nance graphs.

DeFacto87 is an application that implements PROV-O
for deep fact validation, i.e., finding confirming sources
for statements on the Web [134]. ProvRPQ is a tool for
provenance-aware regular path queries (RPQs), which are
used to express navigations over RDF graphs [135]. This
interactive querying tool can clearly justify how paths con-
forming to RPQs can be navigated from source to target
resources in RDF graphs by expanding conventional answers
and introducing witness resources. TheHedgehog RDFPub-
lisher88 is a system for publishing datasets in RDF. Its scripts
pull data from a source and expose the data as RDF triples.
It can automatically add metadata about the data, including
provenance. Pubby89 is a Linked Data frontend for SPARQL
endpoints with a metadata extension that provides prove-
nance information.

RDF provenance tools are not limited to domain-agnostic
software libraries and APIs, as some of the tools are
domain-specific. A prime example is Photostuff, a platform-
independent, open source image annotation tool that allows
image and image region annotation with arbitrary ontology
terms [36]. It exploits and provides support for provenance
management, and employs annotations such as submitter
name and email to track image provenance. In Photostuff,

84 http://www.ifs.tuwien.ac.at/dp/process/projects/
provenanceExtractor.html
85 https://sites.google.com/site/provokinglibrary/
86 https://github.com/dcorsar/prov-api/
87 http://defacto.aksw.org
88 https://github.com/ads04r/Hedgehog
89 http://wifo5-03.informatik.uni-mannheim.de/pubby/

provenance data can be browsed directly and is also used to
enrich user experience.

6 Provenance Applications

Applications using provenance can be found in many
domains, especiallywhere evidence or context-awareness are
important, such as in cybersecurity and the medical domain,
as briefly described in this section.

GraphSource has been used for cyber-situational aware-
ness to detect inconsistencies and changes in network
topologies and paths, which may be contributing to cyber-
security incidents [136]. A digital forensics system called
ParFor used the named graphs approach to provide con-
text of each assertion [137]. This enabled files and users
to be correlated across multiple devices, thereby offload-
ing much manual effort of human investigators. Motivated
by controlling privacy concerns and security access con-
trol to RDF triples, Lopes et al. [138] used annotated
RDF to manage permissions and query in a domain-specific
way. Inspired by named graphs and annotated RDF, an
ambient intelligence system is able to detect a violation
if a person is found to be in two locations at once. This
includes an indicator of certainty when time frames over-
lap [139].

PaCE was motivated by the Biomedical Knowledge
Repository (BKR) [55]. The PaCE approach in BKR allows
provenance tracking of two different scientific articles where
both stated that Ibuprofen affects inflammitory cells. From
this corroboration of evidence-based provenance, confidence
values can be inferred. Nanopublications was used to sug-
gest treatment with backup evidence, traceable back to
literature including the population on which treatment was
studied [140].

7 Performance Comparison of RDF Data
Provenance Approaches

The syntactic differences between the presented approaches
and techniques are not always accompanied by semantic
differences. For example, the context identifier for RDF
statements is written differently across quadruple-based and
named graph-based approaches, yet it represents the same
type of provenance information,making it possible to convert
provenance-aware RDF data between them without losing
semantics, as long as the datatype and value range are not
stricter for one than the other (e.g., N-Quads and named
graphs).

Comparing the performance of RDF data provenance
approaches is not trivial because of the variety of knowl-
edge domains and provenance representations, the diversity
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Table 9 Types of metrics considered for quantitative comparison, with their corresponding measurement and impact

Metric Measurement Impact

File size Linux command line Storage

Number of triples Stardog add command Querying, reasoning

Number of quads Stardog add command Querying, compatibility

Number of graphs SPARQL SELECT DISTINCT graphs Querying, reasoning

Number of distinct IRIs SPARQL SELECT DISTINCT subjects filtered for IRI Graph edge count

Average IRI length SPARQL SELECT average length using distinct filters for IRI Readability

Share of provenance statements DataSetGS SPARQL SELECT ALL triples from PROVENANCE
graph; DatasetSP SPARQL SELECT ALL triples with predicate
rdf:singletonPropertyOf and prov:wasDerivedFrom

Contextualization

of data formats, the variable support from RDF data man-
agement tools, the availability of published datasets using
the various RDF data provenance approaches, and the com-
patibility of software tools for manipulating and converting
between the different mechanisms for capturing RDF data
provenance.

In addition, the captured semantics often cannot be
expressed quantitatively, and some of the vocabulary or
ontology terms used as part of a provenance mechanism
do not have an explicitly defined meaning. Therefore, even
if the same case is represented using different approaches
(with the same intended semantics), the overhead caused by
the different requirements and the storage and processing of
extra (usually meaningless) properties and/or relationships
that would not be defined at all without the need of prove-
nance should be judged on a case-by-case basis.

The following sections provide quantitative comparisons
of some of the state-of-the-art approaches for capturing RDF
provenance from the querying performance point of view.

7.1 Experiments

Our experiments to compareRDFdata provenance approaches
used multiple formalisms, datasets, and software tools. For
the knowledge domain of communications networks, ear-
lier we introduced a quad-based RDF provenance capturing
approach [40], GraphSource, and developed a provenance-
aware LOD dataset, ISPNet [106, 111], both of which have
been used in the experiments. To convert provenance-aware
RDF datasets based on RDF quadruples to datasets that uti-
lize the singleton property to capture provenance, we used
the software tool RDFContextualizer90 designed by Nguyen
and Sheth [141]. For RDF data storage and management, we
selected Stardog,91 which supports, among other features,
quad-based representation. Using Stardog and RDF Contex-
tualizer, the following three datasets have been created:

90 https://archive.org/services/purl/rdf-contextualizer
91 https://www.stardog.com

– DatasetGS (GraphSource-based ISPNet dataset)
– DatasetSP (singleton property-based ISPNet dataset)
– DatasetNQ (N-Quad-based ISPNet dataset)

For the purposes of this section, we focus exclusively on
DatasetGS and DatasetSP. This is because Stardog treated
DatasetNQ the sameway as DatasetGS, meaning that it auto-
matically created named graphs fromN-Quads, whichwould
yield identical metrics, queries, and query plan results for the
two.

Table 9 shows the metrics used to provide a simple
quantitative comparison. The technique for measurement is
provided, as well as the most important factors they affect.

These general metrics are suitable for comparing
provenance-aware datasets that use different formalisms to
capture provenance.

The following types of domain-independent provenance
queries were formed to provide a simple quantitative com-
parison:

– Query 1: select all provenance statements
– Query 2: select all triples for a given data source
– Query 3: select all data sources for a given subject
– Query 4: select all triples for a specific predicate ordered
by time

– Query 5: select all triples derived from a specific location
at specific time

Each provenance query was written in SPARQL and exe-
cuted in Stardog. After query execution, the Stardog query
plan was retrieved, which provided insight into the com-
plexity of the queries, as the complexity and length of a
query plan is generally proportional to the query execution
time.92 In the following section, the results are presented for

92 Clearly differentiating between query execution times of various
provenance capturing approaches would require datasets with millions
of provenance-aware triples, but the approaches described in the litera-
ture have not yet been globally deployed to facilitate this.
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Table 10 Metrics-based comparison between implementations of
GraphSource (DatasetGS) and singleton property (DatasetSP)

Metric DatasetGS DatasetSP

File size [in bytes] 93,647 734,781

Number of triples N/A 6261

Number of quads 2182 N/A

Number of graphs 49 N/A

Number of distinct IRIs 368 2454

Average IRI length 49.72 56.38

Share of provenance statements 10% 66%

Query 5 (both time and location). This query was selected
because for many knowledge domains, including commu-
nication networks, context-awareness and context-specific
reasoning will likely occur within specific time periods at
specific geographic locations (or bounds).

7.2 Results

This section provides the results of a complex query, Query
5, allowing a quantitative comparison between the Graph-
Source and the singleton property approach based onmetrics,
queries, and query plans.

Table 10 presents the results of a metrics-based compar-
ison between the DatasetGS and DatasetSP datasets (using
GraphSource and the singleton property, respectively).

These metrics and their impact (discussed earlier in
Sect. 7.1) show that GraphSource implementations outper-
form that of the singleton property approach in terms of file
size, number of distinct IRIs, average IRI length and knowl-
edge statement-provenance statement ratio. This indicates
that, generally speaking, GraphSource is superior from sev-
eral points of view, including impact on storage, queries,
graph edge count, human-readability, and contextualization.

7.3 Queries

Figure 2 presents a comparison of SPARQL queries between
the DatasetGS (GraphSource-based) and DatasetSP (single-
ton property-based).

For DatasetGS, the SPARQL query is 14 lines (see the
left-hand side of Fig. 2). The query uses the PROVENANCE
named graph to get the context name g, i.e., the named
graph identifier (see line 6). From this context, it selects
the net:importTime and net:importHost (loca-
tion) (see lines 7 and 8). Then, on line 10, from within
the context g, it selects the desired predicate, which is
net:hasInterface in this example (see line 11). For

Fig. 2 Query length and complexity comparison based on Query 5 for GraphSource (left) versus singleton property (right)

Fig. 3 Query structure analysis to identify pipeline breakers in the case of GraphSource (left) and singleton property (right)
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convenience, the results are ordered by location and time on
line 14.

In the case of DatasetSP, the SPARQL query is 18 lines
(see the right-hand side of Fig. 2). The query first uses the
rdf:singletonPropertyOf to get the net:import
Time from the PROVENANCE named graph (see lines 8
and 9), and get context g (see line 13). The query then
repeats the process to get the net:importHost (see
lines 11–13). Next, now having the correct context g,
rdf:singletonPropertyOf is needed for net:has
Interface (see line 14) and ensure this predicate comes
from the same context g using prov:wasDerivedFrom
(see line 15). Finally, on line 16, it can retrieve the subject
and the object. Similarly to the previous query, the results are
ordered by time and location (see line 18).

Figure 3 presents a comparison of the query plan between
theGraphSource-basedDatasetGSand the singletonproperty-
based DatasetSP.

The main considerations regarding Stardog query plans
include cardinality estimations, bottom-up semantics, and
pipeline breakers, the latter ofwhich have a significant impact
on query performance, being those operators that require
intermediate results to be evaluated first before continuing
query execution [142]. These include HashJoin, Sort,
and GroupBy.

For DatasetGS, the SPARQL query plan is 7 lines (see the
left-hand side of Fig. 3). The two scans are evaluated first
on lines 6 and 7 (bottom-up semantics) with a cardinality
estimation of 44. This follows with an efficient MergeJoin
on line 5, Scan on line 4 with a cardinality of 268, followed
by a single pipeline breaker, HashJoin, on line 2.

In contrast, the SPARQL query plan of DatasetSP is three
times longer (the GraphSource query plan is 7 lines, in con-
trast to the 22 lines of the same query implemented using
the singleton property approach, as seen in Fig. 3). The
innermost scans are evaluated first (lines 10–11, 14–15, and
17–18). The cardinality estimations are much higher com-
pared toDatasetGS, for example 6300 on line 14.While there
are a number of efficient MergeJoins, there are also four
pipeline breakers: aHashJoin (on line 12) and threeSorts
(on lines 4, 6, and 8). Considering these pipeline breakers,
it is not surprising that DatasetGS produced lower execu-
tion times compared to DatasetSP, and this difference would
increase exponentially with the size of the datasets.

8 Conclusions

Developing a single mechanism for integrating RDF state-
ments with provenance data that is formally grounded and is
not only implementable using standard languages, but also
scalable, has long been in the center of attention of prove-
nance research. Several alternatives have been proposed
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to the highly criticized RDF reification (as summarized in
Fig. 4), all with different representation prerequisites, prove-
nance granularity and precision, and reasoning potential.

These approaches differ in terms of the mechanism they
employ to capture provenance, such as by extending the
RDF data model, using a class instance, defining an instanti-
ated property, or utilizing a graph that contains the relational
assertions. Because these approaches capture different facets
of provenance, the implementation choice depends on the
applications. Nevertheless, the comprehensive comparisons
presented in this paper help implementers find the most suit-
able solution for their projects.

At a higher level of abstraction, there is a variety
of knowledge organization systems that can be utilized
in capturing provenance-aware RDF statements, including
purpose-built controlled vocabularies and ontologies, and
ontologies designed for general or other types of meta-
data. Storing provenance-aware RDF statements requires
solutions that go beyond the capabilities of conventional
triplestores, and either encapsulate metadata with the triples,
or store more than three columns per statement to capture
provenance (quadstores, graph databases). This paper enu-
merated these solutions, and reviewed how to run queries
on provenance-aware RDF statements not only on a single,
but also on multiple datasets (federated queries), including
update operations. Furthermore, software tools for manipu-
lating RDF data provenance have also been discussed, noting
that while PROV and OPM can be implemented in software
tools with RDF support, not all tools that implement PROV
or OPM can actually handle RDF files. A variety of scenarios
require a trust mechanism that can be supported by capturing
data provenance. The research interest in RDF data prove-
nance indicates the importance of this field, for intelligent
systems implementing Semantic Web standards need prove-
nance manipulating capabilities to be viable, particularly in
systems where RDF triples are derived from diverse sources,
are generated and processed on the fly, ormodified via update
queries.
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