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Abstract
Commercial OLAP systems are economically unavailable for organizations with limited financial capabilities. Analytical 
processing of large amounts of data in these organizations can be accomplished using open-source software systems on a 
cost-effective cluster platform. Previously created Clusterix-like DBMS using a regular query processing plan is not efficient 
enough. Therefore, research on such systems was developed with a focus on a full load of processor cores and using the 
GPU acceleration (systems Clusterix-N, N—from new) up to the development of a system comparable in efficiency to the 
open-source system Spark, which is currently considered the most promising. The development methodology was based on 
the constructive system modeling methodology.

Keywords  Clusterix-like DBMS · Databases of significant volumes · BigData · Regular query processing plan · Full load 
of processor cores · GPU acceleration · Constructive modeling of systems

1 � Introduction and Solvable Problem

Earlier, we already presented the results of our research on 
the topic of this article [21] as part of the report at the con-
ference. The report included only the results of the work 
without a detailed review. Now, we give the necessary expla-
nations, because this is one of the most important functions 
of science. In addition, this article presents new results of 
iteration 5 (Sect. 5.6).

Database volumes of hundreds GB or more are not 
uncommon for relatively small businesses with limited 
financial capabilities. Acquisition of cost-effective comput-
ing clusters and specialized software of conservative (with 
an occasional update of data) by such organizations makes 
it possible for them to timely process the accumulated data. 
For conservative DBMSs, OLAP load [6, 29] is typical, and 
it is characterized by a high weight of complex queries such 
as “selection–projection–connection,” which operates with a 
set of tables with numerous connection operations. Develop-
ments in this direction are under way. Commercial DBMSs 

have high performance and reliability, but are too expensive. 
For example, MS SQL Server 2016 DBMS [3, 17] on the 
one Lenovo x3950 X6 server [14] has a total system cost of 
$2 634 342 ($1.5 million for server + $1 million for soft-
ware). Oracle Database [18] with an extension for OLAP 
and a license for 384 cores will cost $9 million. Plus the cost 
of hardware (Exadata) is $1.5 million.

A good alternative to expensive parallel DBMS in the 
field of BigData is freely distributed open-source systems 
Hadoop [8, 30] and Spark [15, 31, 32]. Both systems have 
high performance and are well scaled, and their hardware 
platform requirements are quite modest. This makes Hadoop 
and Spark very promising systems for analytical processing 
of large data sets with MapReduce technique [27].

The typical relational DBMS architecture by Stonebraker 
and Helerstein [11] includes five main components (Fig. 1): 

1.	 Client communication manager, including information 
exchange protocols for local and remote clients.

2.	 A process control manager that performs the functions 
of a dispatcher and a processing scheduler.

3.	 Transaction manager—access, block, log and data buffer 
management.

4.	 Common components and utilities: batch utilities, repli-
cation and load services, administration and monitoring 
utilities, directory and memory managers.

5.	 Relational query processor
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This architecture is suitable for single-node sequential 
DBMS and is actively used by them. For example, this archi-
tecture is applied to each node on developing Clusterix-N 
system, where the highlighted black is an instrumental 
DBMS MySQL. The architecture of parallel DBMSs is 
significantly different from single-node/sequential: Net-
work communication between modules is added, process 
management is performed on multiple nodes, and utilities 
are used by various modules as needed, but in general the 
components are the same, presented in a slightly different 
(extended) interpretation. Below are shown the parallel 
architectures SD, SN and CD used in the work.

In [28], Stonebraker proposed a classification of parallel 
DBMSs by the distribution of data across disks, memory and 
processors. A schematic image of the classification is pre-
sented in Fig. 2. In the figure, P—processor, M—memory, 
D—disk, and N—data transmission network.

In accordance with this classification, parallel DBMS is 
divided into the following base classes depending on the 
division of hardware resources:

–	 SD (Shared-Disks)—shared disk architecture.
–	 SN (Shared-Nothing)—architecture without sharing 

resources.

Copeland and Keller [7] proposed an extension of the Stone-
braker classification by introducing additional classes of 
architectures of parallel database machines (Fig. 3):

–	 CD (Clustered-Disk)—architecture with SD clusters, 
united by the principle of SN. The boundary of the SD 
clusters in Fig. 3 is extended to the common (global) 
connecting network, as they may have their own (local) 
connecting network.

Fig. 1   The typical relational 
DBMS architecture

Fig. 2   Stonebraker classification (a SD, b SN) Fig. 3   Stonebraker classification extension
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For conservative DBMS, the most important is the case of 
processing the flow of queries translated to scheme

Here, ⟨x⟩ is the Cartesian product. Selection in a join opera-
tion is performed according to �-matching the tuples of the 
R and S relations. Development of a parallel DBMS is desir-
able to accomplish from the condition of implementing a 
stream-pipelined method for query processing. It is not easy 
to fulfill such a condition, because it implies an ideal balance 
of all parts of the pipeline. But if we assume that acceptable 
balancing is achievable, then the choice of a regular plan 
(tree) (Fig. 4) for processing queries [22] is valid.

An algebraic expression representing a query to a rela-
tional database, written in terms of “x,” “ �, ” “ �, ” is always 
reducible to this tree. During the SQL queries pretranslation 
to a regular plan, subqueries select-project, join and sort 
(perform aggregation operations (SUM(), AVG(), MAX(), 
MIN(), etc.) and sort the result) are formed.

When using the strategy “many cluster nodes—for one 
query,” the database is distributed across nodes. Obtaining 
any intermediate R′

i
 and any temporary RTj relations occurs 

in parallel on the IO and JOIN processors. At the same time, 
it is theoretically possible to combine both processes if dur-
ing the preprocessing (selection and projection) of the ini-
tial relation Ri, the relation RT(i−2) is formed, which is the 
basis for the implementation of a balanced pipeline with an 
acceptable duration of its stages. These are the motives of 
our hypothesis:

Regular query processing plan is preferred for conserva-
tive parallel DBMSs and large database volumes.

But the early created research versions of the Clusterix-
like systems were ineffective. It was necessary to look for 
ways to improve their efficiency. The objective of this work 
is analyzing possibilities of developing economical con-
servative high-volume DBMSs comparable in efficiency 

SELECT (�) − PROJECT (�) − JOIN(�
�
(R x S)).

(by performance/cost criterion) with the Spark system while 
processing a query flow to a database with data amounts 
of hundreds and more GB on relatively inexpensive cluster 
platforms using a regular query processing plan, and also 
using MySQL and GPU accelerators at the executive level. 
MySQL allows you to use different “engines” and has an 
extension system [19]. These features simplify and speed up 
system development compared to using PostgreSQL.

2 � Accepted Limitations

They are dictated by the requirement of the economy: 

1.	 The hardware platform of the studied DBMSs is com-
puting clusters assembled from supplied components by 
firms.

2.	 Cluster SMP nodes—two processor nodes, equipped 
with MySQL instrumental DBMS and Linux/Windows 
operating system.

3.	 Processors in the nodes—serial with the number of pro-
cessor cores not more than 8.

4.	 It is allowed to connect to nodes via PCI-e bus GPU 
accelerators with the number of cores not more than 512.

5.	 Communication network between nodes—GigabitEth-
ernet (10 GigabitEthernet/Infiniband—if possible).

6.	 Disk subsystem—SATA (SAS—if possible).
7.	 The amount of RAM in the node—no more than 

512 GB.
8.	 The hashed database is fully hosted in the aggregate 

RAM of all cluster nodes.
9.	 The considered DBMS is multi-user systems with batch 

query processing.

Accordingly, all the research experiments were carried out 
on the GPU cluster platform consisting of seven nodes. 
Node parameters: 2 six-core E5-2640 CPU/2.5 GHz/DDR3 
128 GB; 2 448-core Tesla GPU C2075/1.15 GHz/GDDR5 
6 GB (no GPU MGM). Node disk subsystem—RAID 10 of 
4 WD1000DHTZ/1 TB total volume (minus RAID “mirror”) 
2 TB. The operating system is Windows Server 2012 R2. 
Interconnect between nodes—GigabitEthernet with 24-port 
switch SSE G24-TG4. The volume of DB—120 GB. The 
representative test (RT) is the concatenation of six permuta-
tions of the TPC-H throughput test without write operations.

In the experiment with Spark, the database was presented 
in the form of structured text files and was evenly distrib-
uted over six execution nodes. Data access was implemented 
using Hadoop (HDFS). Load balancing was performed by 
the YARN module, also part of Hadoop. The query process-
ing was performed by Spark in the configuration “worker 
per core” (total 6 × 12 = 72 workers per cluster). Queries 
were launched without any changes and optimizations. The Fig. 4   Regular plan
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Spark spark-sql extension was responsible for working with 
SQL queries, which performed parsing and optimization of 
the original query.

3 � The Methodology Used for Solving 
the Problem

The basis of the research was adopted methodology CSM—
constructive system modeling [23]. Cardinal questions of 
synthesis under incomplete information conditions are:

•	 WHERE (in which area of some space) to find the right 
solution?

•	 HOW (by what methods) to organize such a search?
•	 WHY exactly there and so?

The methodological basis of the CSM consists of the fol-
lowing provisions: 

1.	 It is assumed that the object being synthesized models 
the behavior of a certain hypothetical system—some-
thing of a single whole, infinitely knowable and explica-
ble, given by its purpose operator. Modeling of this sys-
tem is treated as S-modeling synthesis process (S—from 
synthesis). Under the process in cybernetics, we mean 
the sequential change of states of some object. There-
fore, the model being developed is not a static formation, 
but a dynamically developing (evolving) system, each 
state of which corresponds to a certain quality of mod-
eling. Development is stopped by obtaining the required 
quality. As a result, we obtain the desired constructive 
method. This is the rationale for the adopted name—
constructive system modeling.

2.	 The properties that a device must possess in order for 
S-modeling to be sufficiently effective can be revealed 
in the dynamics of S-modeling in the form of postu-
lates that state sufficiently proved ideas. The S-modeling 
process is considered as a multi-step iterative process, 
in which both explanatory and informative premises 
(postulates as elements of the theory) and the construc-
tive method itself (realization of an acceptable S-model 
iteration) are complementary. The system of postulates 
must be open for corrections. The initiation of postulates 
is advisable, only if the development of a constructive 
method based on them shows its prospects for its time, 
and the method itself does not fit into the framework of 
the existing theory.

3.	 The ultimate goal of S-modeling is to develop a theoreti-
cally justified constructive method, i.e., synthesis pro-
cedure. Formally, the S-modeling process includes two 
stages—external modeling (postulating a mathematical 
S-model as a relevant description—frame, logical, alge-

braic or others—of an oriented sequence of a complete 
set of solutions areas—answers to questions: WHERE? 
And WHY?) and internal (an iterative study of the found 
S-model in order to develop a constructive method—the 
answer to the question: HOW?).

4.	 There are S-models: unitary (US-models) and hierar-
chical (IS-models). The US-model is a single abstract 
image (a single search area), for example a local area 
of a certain metric space. The preference of such a 
description of the systems is undoubted. IS-model is 
a set of representations of the hierarchical system. It is 
built when a single abstract image of the system cannot 
be found. Systemic balancing of model index values at 
all levels of the hierarchy is achieved in the process of 
internal modeling.

Larger systems are typically described as hierarchical IS-
models. The process of IS-modeling should not take too 
much time, as is typical of natural evolution. Therefore, in 
such a process, a mathematical (external) model should be 
found as the minimum set of states (areas) in the space of 
all possible states of the IS-model, the transitions between 
which form the shortest path to obtain the desired result. 
Algorithmic and software development of each state is the 
subject of internal modeling.

Among the IS-models is also DBMS with hierarchy 
levels: select-project, join, sort, dynamic segmentation 
of relations, their indexing, network, etc. In this case, the 
assignment operator of a hypothetical system is set by the 
condition of obtaining high-efficiency query processing 
with the minimum system cost determined by the previ-
ously formulated restrictions. The state of the IS-model is 
the architecture of the software system as a set of interacting 
software modules. Its name will be associated with some 
characteristic feature, and the full software development will 
be called the full state.

IS-modeling is never carried out on the “empty place.” 
From the space of complete states, we can go to the param-
eter space. Under the parameter, we will understand the 
average processing time of a single request of the RT at a 
particular level. For a given platform, there is a unique map-
ping of the space of complete states into the space of param-
eters (we leave the question of mutual uniqueness open), in 
which we will carry out the consideration. By analogy with 
that adopted in synergetics [10], for each complete state we 
will single out the so-called rank parameter, minimizing the 
effect of which on system performance will determine transi-
tions between iteration states.

The parameter having the maximum value for a given 
full state is taken as the “rank parameter.” But the function-
ing of all levels in a large system is interconnected (system 
unity principle). Therefore, reducing the influence of “rank 
parameter” on system performance inevitably leads to a 
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change in the influence of other levels as well. The number 
of iterations is usually relatively small if the quality criterion 
of the final solution is acceptable (in this case—obtaining 
efficiency comparable to the efficiency of the Spark system).

4 � Accepted Postulates

In the process of IS-modeling, a system of postulates was 
formulated as a declaration of expedient directions for the 
development of the desired models.

POSTULATE 1. The solution of the problem should 
ensure the evolution of Clusterix-like DBMS from the initial 
implementation of the principles of hybrid technology (see 
below the accepted initial state of the IS-model).

POSTULATE 2. The search for the next states (iterations) 
of the Clusterix-like DBMS IS-model should be carried out 
in the way of replacing the “core for one relation” strategy 
adopted for its initial state with the strategy “node group 
(cores) for one relation.” This is necessary to ensure the 
reliable operation of an effective system with significant 
volumes of databases and requires dynamic segmentation 
of relations, which can be both concentrated and distributed.

POSTULATE 3. Internal IS-modeling of Clusterix-like 
systems should be carried out in the directions determined 
by the external (mathematical) synthesis process frame 
model shown in Fig. 5. In the figure:

CONSTR—constraint frame.
BA—frame of the adopted block architecture consist-
ing of five program blocks: IO (DB data access module, 
executes select-project subqueries), JOIN (join subquery 
processing module), MGM (control module), SORT 
(query final processing module) and HASH (implements 
dynamic segmentation relations; it is not in the initial 
state).
Clusterix-N (N—from new)—a development frame for 
Clusterix-like systems.

HT w/o DS—frame of the initial state of the IS-model 
(transition to the hybrid technology of Clusterix-like sys-
tems without dynamic segmentation of relations).
w/DS—Clusterix-N frame with dynamic relations seg-
mentation.
CON DS HT—frame (w/DS) systems with concentrated 
dynamic segmentation of relations in the framework of 
the hybrid technology (the first iteration of the IS-mod-
eling).
DIS DS—frame (w/DS) systems with distributed 
dynamic segmentation.
DIS DS HT—frame (DIS DS) systems implemented 
using hybrid technology (the second iteration of IS-
modeling).
DIS DS CS—frame (DIS DS) systems in the “combined 
symmetry” configuration (the third iteration of the IS-
modeling).
DIS DS CC—frame (DIS DS) systems in the “combined 
core” configuration.
DIS DS CC DSM—frame (DIS DS CC) systems in the 
“database server for module” configuration (the fourth 
iteration of the IS-simulation).
DIS DS CC MDS—frame (DIS DS CC) systems in the 
“many database servers” configuration (the fifth iteration 
of the IS-simulation).

5 � IS‑Modeling

5.1 � Characteristic of the Initial State

In the first Clusterix-like systems, dynamic segmentation 
of intermediate and temporal relations was used to speed 
up the join operations as the individual records R′

i
 and RTj 

were formed. It took a lot of time and, with an increase in 
the number of nodes, could lead to system malfunctions. In 
[24], it was shown that the performance can be improved by 
moving to the Clusterix-N architecture by abandoning the 

Fig. 5   External frame synthesis 
process model of Clusterix-like 
systems
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principle of “homogeneity” (typical for the optimal Clus-
terix configuration “combined symmetry” [25]) in favor 
of “hybridity,” which implies a cluster into two different 
parts—IO and JOIN blocks—with independent variation of 
the nodes number in each block. It was the reason for the 
choice of the initial state.

The database was hashed at the IO node level. They 
implemented the “core for one relation” strategy. At the 
level of JOIN nodes, the “query to the core” strategy was 
used (the feasibility of such a strategy using MySQL was 
shown in [13]), which made it possible to exclude dynamic 
segmentation of intermediate and temporal relations and 
perform the join as a single procedure

for each query. This is much faster than its consistent imple-
mentation and leads to a significant increase in efficiency 
compared to Clusterix.

Detailed program development of the initial state allowed 
us to create peculiar “billet modules,” which were further 
modified for each new state. The presence of such “blanks” 
greatly facilitated the carry out of subsequent iterations, 
where they were modified accordingly. These are subsys-
tems of statistics collection, visualization and journaling; 
network interaction module; DBMS driver; MGM module 
as the core of the system; IO, JOIN and SORT modules; the 
way to pretranslating query to the regular plan; configuring 
MySQL for maximum load on all node processor cores.

The effectiveness of the initial state was significantly 
lower than that of Spark. In addition, even with database 
volumes < 100 GB, a large total volume of intermediate rela-
tions for some queries of the TPC-H test led to an overload 
of JOIN nodes RAM and, as a result, to loss of the DBMS 
performance. Unreliability is a “rank parameter” for the ini-
tial state.

5.2 � The First Iteration of IS‑Modeling

Reliable work with a database of hundreds GB and more 
requires switching to the strategy “set of cores in each block 
for relation,” which requires dynamic segmentation. There-
fore, it is restored in the first iteration of Clusterix-N, but 

R1� join (joinR2� (joinR3� (…))) …)

(unlike Clusterix) with the segments transfer as a whole. 
Distributing data across all processor cores of the JOIN level 
is implemented by the HASH module on a dedicated node 
with GPU accelerators. Hashing is performed using the divi-
sion algorithm [16]. The result of the hash is placed in the 
send buffer for the cores. (HASH module forms a buffer in 
its memory for each core in the JOIN nodes.) Sending data 
occurs when the hash operation is ready.

As a result of the changes made, the Clusterix-N pro-
gram now consists of five modules: MGM, IO, JOIN, HASH 
and SORT. As before, the database is distributed over the 
IO nodes. The IO and JOIN modules implement the “node 
group for relation” strategy. Cluster configuration for the 
first iteration experiment: two IO nodes, three JOIN nodes, 
one HASH node and one MGM node, what combining 
MGM and SORT modules.

The principal feature of this iteration (and further) is the 
pipeline-cyclic execution of select-project and join opera-
tions for each request (the presence of internal pipelining 
plus the external). But now Clusterix-N remains uncompeti-
tive. The results of the experiments for the processing time 
RT are as follows: Clusterix-N—19.7 h; Spark—4.5 h. They 
are clearly not in favor of Clusterix-N.

The rank parameter revealed as a result of the first itera-
tion is determined by the histogram in Fig. 6 (ordinate—time 
in seconds). It is time contribution of the network layer.

5.3 � The Second Iteration of IS‑Modeling

The main idea underlying the second iteration, and hoping 
for success, is to implement dynamic segmentation of inter-
mediate/temporal relations (hashing) in the IO and JOIN 
modules with transferring the hashed data directly between 
the execution nodes (bypassing the MGM). The rejection 
of the dedicated HASH hashing node and the transfer of its 
functionality to the execution nodes (using GPU accelera-
tors to hash data) should speed up the data transfer process 
(due to a decrease in the amount of data transferred). The 
hash implementation developed for the HASH module has 
been adapted and transferred to the IO and JOIN software 
modules. The organization of the system operation mode 
with direct data transfer between execution nodes required 
changes in the MGM module.

Fig. 6   The average processing 
time for a single query of the 
RT by levels (iteration 1)

0

100

200

300

400

500

600
700

Data transfer
Drop relations Ri'
Preparation for loading in MySQL
Data hashing
Data loading in MySQL
Executing "join"
Executing "select-project"
Executing "sort"



86	 V. A. Raikhlin, R. K. Klassen 

1 3

The IO module performs a select-project operation for 
one relation in parallel on the set of available processor cores 
to produce a set of result blocks. These blocks are subjected 
to GPU-accelerated hashing and are transferred immediately 
to certain JOIN nodes. Block-by-block selection allows us to 
combine three operations in time: After one block formation, 
the next select operation is started, the result is transferred 
to the hash queue, and the hashed blocks are sent to the 
transmission queue.

JOIN module completely repeats the algorithm of its 
work in the first iteration. The only difference is in the pro-
cessing of the join result. Now, it is hashed on the GPU and 
passed to the JOIN nodes (to perform the next to join opera-
tion) or SORT with overlapping operations, similar to IO. 
The SORT module uses the “core for query” strategy and 
transmits the result to MGM. The only change in his work is 
getting data from JOIN nodes, not from BUF MGM.

An experimental study of the software-implemented 
new version of Clusterix-N was made in the configuration 
of a GPU cluster: two IO nodes, four JOIN nodes and one 
MGM node, what combining MGM and SORT modules. 
The database is distributed over the IO nodes. Analysis of 
the experimental results showed that the transmission time 
over the network decreased ∼ 3 times, and the join opera-
tions accelerated ∼ 1.5 times (due to adding one more node 
and reducing the amount of data in each node). And yet, the 
time of the RT is 14.5 h, i.e., the total processing time of the 
RT decreased by only ∼ 26% compared with the previous 
modification of Clusterix-N. This is clearly not enough to 
talk about possible competition with Spark.

The rank parameter for iteration 2 is determined by the 
histograms in Fig. 7. In this case, this is the execution time 
of operations at the select-project level.

5.4 � The Third Iteration of IS‑Modeling

The easiest way to speed up operations at a specified level is 
to reduce the amount of data processed in one node, which 
requires an increasing number of nodes in each block. With 
an unchanged total number of cluster nodes, the desired 
effect can be achieved by returning (on the new turn of “spi-
ral”) to the “combined symmetry” configuration [25], which 
involves placing two modules on one node at once: IO and 
JOIN.

An experiment in this configuration was carried out with 
the following distribution of nodes of a GPU cluster: six 
nodes with IO and JOIN modules, one MGM node combin-
ing MGM and SORT modules. The database is distributed 
over six nodes. For each module are allocated one CPU 
(six cores) and one GPU accelerator. On all nodes (except 
MGM), two MySQL DBMSs are functioning at once: one 
for IO and second for JOIN. The use of two MySQL DBMS 
due to the SMP node architecture and different DBMS con-
figuration is: for IO, the configuration is aimed at optimiz-
ing the work with select-project queries, and for JOIN—at 
optimizing the work with the MEMORY engine and join 
operations.

The obtained histograms are shown in Fig. 8.
The results of the experiment in comparison with Spark 

are presented in Table 1, where T—execution time of the 
entire RT, M—average waiting time for a response to a 
query, and �—standard deviation.

The fact that Clusterix-N is significantly inferior to the 
Spark system in values of M and � is important to the user. 
A comparison of the times of individual operations execu-
tion for Clusterix-N averaged over a set of RT queries is 
presented in Table 2. As follows from Table 2 and from the 

Fig. 7   The average processing 
time for a single query of the 
RT by levels (iteration 2)
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Fig. 8   The average processing 
time for a single query of the 
RT by levels (iteration 3)
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histogram in Fig. 8, in the “combined symmetry” configu-
ration, the longest operation was loading data in MySQL. 
This is the notorious “rank parameter” for the third iteration.

The dynamics of the processes in this iteration are illus-
trated in Fig. 9.

5.5 � The Fourth Iteration of IS‑Modeling

Data loading in MySQL for JOIN modules can be acceler-
ated by increasing the number of cores on which these mod-
ules are work. It can be noticed (see Fig. 9) that IO modules 
are far from always busy at processing queries, because one 
of the CPUs at each node is idle for a long time. Would not 
it be better to work consistently with select-project and join 
operations on the same core and load all cores of the cluster 
with these operations? In this case, the IO modules will work 
without downtime, and the load operations in MySQL will 
be significantly accelerated, which should reduce the values 
of M and � . But would such a violation of external pipelining 
reduce efficiency?

To obtain an answer to this question, a preliminary study 
was carried out with minimal system modifications. Each 
node uses one GPU for hashing the results of the IO and 
JOIN modules. The operations of the SORT module are 
accelerated by changing the MySQL engine from MyISAM 
to MEMORY.

The experimentally obtained histograms are shown in 
Fig. 10. They meet the data in Tables 3 and 4. They con-
firm the predictions and concerns made. Despite the seri-
ous acceleration of the load operation in MySQL, with a 

decrease in M and � , the processing time of the RT increased 
by ∼ 23% compared with iteration 3.

This is the fee for a partial violation of pipelining. Further 
acceleration of the select-project and a number of other oper-
ations can slightly improve the situation. With an unchanged 
platform, the efficiency of iteration 4 can be improved, 
firstly, by switching to IO from database hashing by nodes 
to hashing by cores; this should speed up the select-project, 
and secondly the transition to a more advanced version of 
MySQL 8.0. It can be expected that its use will speed up 
the execution of a number of other operations. The soft-
ware implementation of such transitions was associated with 
modifications of database driver and IO module.

The results of the experiment illustrate the histogram in 
Fig. 11 and the data in Tables 5 and 6. Now, the estimates for 
Clusterix-N and Spark are comparable to a greater degree.

5.6 � The Fifth Iteration of IS‑Modeling

In the article [21], we found that performance can be 
improved by developing specialized engines for MySQL. 
This is necessary to speed up relation drop and loading oper-
ations. The main reason for the slowness of these operations 
is table locking. But in [2], it is written that the MEMORY 
engine performs table-level locking. That is, when per-
forming data modification operations (INSERT, UPDATE, 
DELETE, ALTER and others), the table is denied access 
until the named operations are completed. In Clusterix-
N, these operations are performed in the “query for table” 
mode, i.e., locks should not occur. But the experimental data 
of four iterations suggest the opposite.

A detailed analysis of the MySQL source codes helped to 
establish that the MEMORY engine storage is presented as 
heap and is shared to the entire MySQL process. Therefore, 
locking a single table causes blocking of the entire memory 
of this engine in a single process. There are two ways around 
this limitation. First, make such changes to the MEMORY 
engine that would allow you to lock within the table or 
remove it altogether. Secondly, run multiple instances of 
MySQL in the number of CPU cores.

Table 1   Results for the “combined symmetry” configuration versus 
spark

Clusterix-N Spark Clusterix-
N/spark 
ratio

T (min) 455.8 260.6 1.75
M (min) 14.3 3.1 4.61
� (min) 15.7 0.9 17.44

Table 2   The average execution 
time of individual operations in 
Clusterix-N

Iteration 1 � (s) Iteration 2 � (s) Iteration 3 � (s) �

�

�

�

�

�

Data transfer 569.77 190.82 133.62 2.99 1.43 4.26
Drop relations R′

i
 , RTj 375.27 311.87 180.03 1.20 1.73 2.08

Preparation for loading in MySQL 18.90 19.01 22.40 0.99 0.85 0.84
Data hashing 177.03 151.05 93.61 1.17 1.61 1.89
Data loading to MySQL 466.64 555.30 447.28 0.84 1.24 1.04
Executing “join” 186.09 116.06 89.09 1.60 1.30 2.09
Executing “select-project” 522.73 611.32 159.86 0.86 3.82 3.27
Executing “sort” 162.61 168.97 178.42 0.96 0.95 0.91
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The first option is extremely time-consuming and can 
damage the stability of the system. The second option is sim-
ple and can be implemented without modifying the instru-
mental DBMS (MySQL), so this option is preferable for us. 
To implement it, we need to make a number of changes to 
the operation of Clusterix-N.

Working with multiple MySQL will require establishing 
many Clusterix-N ↔ MySQL connections, controlling the 

distribution of hashed result data, and replicating queries in 
multiple connected MySQL. Some of these changes were 
implemented in fourth iteration for IO modules during the 
transition to hashing by cores at the IO level. Transferring 
these developments to other modules (JOIN and SORT) with 
a slight improvement made it possible to perform hashing 
in several instrumental DBMSs. This allows Clusterix-N to 
work with multiple MySQL on a single host.

Fig. 9   Visualization of RT execution (iteration 3)

Fig. 10   Histograms for the start 
of iteration 4
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The experiment for this iteration was carried out as fol-
lows. On each node launched 13 MySQL servers: one for IO 
and 12 for JOIN. MySQL for IO uses the InnoDB engine, 
which does not have the problems described at the beginning 
of this section, but it is not applicable for loading data in real 
time, since this operation takes a long time. The experimen-
tal design is shown in Fig. 12.

The results of the experiment are presented in Tables 7 
and 8. From Table 7, it is seen that the operations of “Drop 
relations” and “Data loading in MySQL” were significantly 
accelerated: 3.4 and 1.9 times, respectively. The average 
execution time for other operations has not changed signifi-
cantly. Table 8 shows the parity of Clusterix-N and Spark 
on test processing time. But Clusterix-N is still significantly 
inferior to Spark in parameters M and �.

The histograms from the experimental results (Fig. 13) 
show that the “rank parameter” for the fifth iteration is data 
transmission.

6 � Conclusion

The paper shows that using a regular query processing plan 
with appropriate architectural and software-algorithmic 
development of cost-effective, conservative, high-perfor-
mance BigData class DBMS shows results comparable 
with the best open systems. The cost of the acquisition 
and commissioning of a GPU cluster similar to that used 
in the comparative experiments will be no more than $85 
000. All versions of the Clusterix-N software system are 
placed in open access [12] and can be used by interested 
organizations.

Table 3   Comparative evaluation of accelerations for iteration 3 and 
start of 4

Iteration 3, � (s) Start of 
iteration 4 
� (s)

�

�

Data transfer 133.62 133.36 1.00
Drop relations R′

i
 , RTj 180.03 170.47 1.06

Preparation for loading in 
MySQL

22.40 17.80 1.26

Data hashing 93.61 94.62 0.99
Data loading in MySQL 447.28 198.75 2.25
Executing “join” 89.09 66.83 1.33
Executing “select-project” 159.86 148.17 1.08
Executing “sort” 178.42 43.03 4.15

Table 4   Comparative estimates for T, M and � for iteration 3 and start 
of 4

Iteration 3, � (min) Start of iteration 4 � 
(min)

�

�

T 455.80 560.60 0.81
M 14.30 8.20 1.74
� 15.70 6.40 2.45

Fig. 11   Histograms for the final 
version of iteration 4
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Table 5   The estimation of accelerations at the transition from the 
start of iteration 4 to its end

Start of 
iteration 4 
� (s)

Iteration 4 � (s) �

�

Data transfer 133.36 106.12 1.26
Drop relations R′

i
 , RTj 170.47 140.91 1.21

Preparation for loading in 
MySQL

17.80 24.15 0.74

Data hashing 94.62 56.43 1.68
Data loading in MySQL 198.75 164.01 1.21
Executing “join” 66.83 54.77 1.22
Executing “select-project” 148.17 55.40 2.67
Executing “sort” 43.03 42.90 1.00

Table 6   The final comparison on T, M and � for iteration 4 and Spark

Iteration 4 � (min) Spark � (min) �

�

T 403.8 260.6 1.55
M 6.3 3.1 2.03
� 5.6 0.9 6.22



90	 V. A. Raikhlin, R. K. Klassen 

1 3

Nevertheless, the Clusterix-N DBMS is significantly 
inferior to the Spark system in terms of M and � . As fol-
lows from the histograms in Fig. 13, operations remain 
rather slow (1) data transfer, (2) data loading into MySQL, 
(3) data hashing, (4) “select-project.” Operations (1, 4) can 
be accelerated by working with compressed databases (see 

“Appendix”). Operation (2)—development of a special-
ized MySQL engine. The issue of accelerating operation 
(4) remains open so far. All this is the subject of special 
studies.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

Fig. 12   Experiment design of 
iteration 5
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Table 7   The estimation of 
accelerations for iterations 4 
and 5

Iteration 4 � (s) Iteration 5 � (s) �

�

Data transfer 106.12 116.17 0.91
Drop relations R′

i
 . RTj 140.91 41.06 3.43

Preparation for loading in MySQL 24.15 25.29 0.95
Data hashing 56.43 56.14 1.01
Data loading in MySQL 164.01 85.18 1.93
Executing “join” 54.77 26.76 2.05
Executing “select-project” 55.40 59.93 0.92
Executing “sort” 42.90 43.41 0.99

Table 8   The comparison on T, M and � for iterations 4 and 5 and 
Spark

Iteration 4 
� (min)

Iteration 5 � (min) Spark � (min) �

�

�

�

T 403.8 276.13 260.6 1.46 1.06
M 6.3 4.8 3.1 1.33 1.54
� 5.6 4.5 0.9 1.26 4.78

Fig. 13   Experiment design of 
iteration 5
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Appendix: Note on Working 
with Compressed Databases

With a limited number of nodes, a database of significant 
volumes may not fit in the RAM of the cluster. Therefore, 
it is useful to consider the possible organization of work 
with compressed databases. We show that when storing a 
compressed database in the memory of the nodes, using the 
GPU acceleration of the select operation can have a serious 
impact. In this case, we slightly shift the emphasis of [20].

As is known, the use of a GPU allows us to repeatedly 
reduce the time to perform individual operations [1, 4]. 
But with significant volumes of DB, the need to exchange 
CPU ↔ GPU data significantly reduces the performance 
of whole system. The data transfer rate on the PCI-e bus 
is significantly lower than the exchange rate with the 
RAM. So, the read/write speed for three-channel DDR3-
1600  RAM is 38.4  GB/s, while for the PCI-e 2.0 × 16 
bus—6.4 GB/s. It is for this reason that the increase in the 
performance of the database server from using the GPU in 
processing fairly simple single requests achieved in [26] 
did not exceed 40%.

Distinguish between DBMS-oriented data storage in rows 
and columns. The second type DBMS has the best values 
of compression. This question is studied in [9]. The com-
pressed database is divided into blocks. Farther, the data 
block means the part of a compressed column (or a set of 
“short” columns) with decompressed data volume, equal 
to the decompressed data buffer volume on the GPU. The 
select operations and dynamic segmentation of relations are 
performed by graphics accelerators, and the CPUs at the IO 
stage are engaged in projecting, promotion of the subquery 
queue, forming and transmitting compressed blocks to the 
GPU and obtaining results from them.

The data preparation for compression is next: 

1.	 Find the longest field (length RS) in treated ratio R.
2.	 Find in the appropriate column(s) number of records 

RC, which guaranteed fit in reserved memory, 
RC = [BS∕RS] , where BS—the memory volume for the 
decompressed data in a graphics accelerator.

3.	 Issue from the ratio R data into columns for compression 
with increments of RC.

The tool has been selected DBMS MySQL 5.6. The 
experiment was performed on the basis of the computing 
node with the following characteristics: Quad-core Intel 
Core i5-4670K CPU/2.5 GHz/24 GB RAM (DDR3-1600 
in two-channel mode), 64-bit OS Windows 8, node disk 
subsystem—SSD SV300S37A/120 GB with a bandwidth 
of 450 MB/s. The experiment was aimed at comparing 
times what spent on simple copy, with the sum of times, 

necessary to copy data, compressed by algorithm RLE 
(run-length encoding) [5], and their expansion in GPU. 
The highest efficiency of data transmission was achieved 
for compression ratio K = 4 − 5 . Higher compression 
increases the data compression time, which may exceed 
the regular copy time.

In Table 9, it is shown the increasing efficiency percent-
age of the transmission of the compressed data (K = 4 and 
5) with following expansion in comparison with simple 
copying. As shown in table, during transferring small data 
volume, simple copying comes out faster. When volumes 
> 12 MB, precompression provides acceleration in about 
30% (approximately 1.5 times).

A qualitative assessment of the effectiveness of the 
transition to compressed databases with GPU-accelerated 
select operations was obtained as follows. According to 
the regular processing plan for 14 selected TPC-H test, 
queries have been generated load modules “select-pro-
ject.” Thus, all “project” operations have been “pulled 
down.” The volume of the test database was 1 GB. It is 
preloaded into main memory. The experiment platform 
remained the same.

When calculating the amount of data for any of the 
considered query, defined length of each field of each 
line of the tables involved in the query processing, and 
all received lengths summed. Counting was performed by 

Table 9   The data transmission efficiency change

Size (MB) Copy (ms) Compressed 
data copying and 
decompression 
(ms)

The data 
transmission effi-
ciency increasing 
(%)

K = 4 K = 5 K = 4 K = 5

0.38 1 4 4 300 300
4.20 3 6 8 167 100
8.01 5 9 9 80 80
11.83 7 12 12 71 71
15.64 21 15 15 29 29
19.45 26 20 19 27 23
23.27 31 23 24 23 26
27.08 35 26 27 23 26
30.90 41 30 29 29 27
34.71 45 35 32 29 22
38.53 50 35 35 30 30
42.34 55 38 38 31 31
46.16 59 41 42 29 31
49.97 64 44 44 31 31
53.79 68 48 48 29 29
57.60 75 50 51 32 33
61.42 80 53 53 34 34
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modification requests with tools of MySQL. Example of 
query number 3 modification: 

-- O’
SELECT O_ORDERDATE,

O_SHIPPRIORITY,
O_ORDERKEY,
O_CUSTKEY

FROM ORDERS
WHERE O_ORDERDATE < DATE ’1995-03-31’;

-- O’ LENGTH
SELECT SUM(LENGTH(O_ORDERDATE),

LENGTH(O_SHIPPRIORITY),
LENGTH(O_ORDERKEY),
LENGTH(O_CUSTKEY))

FROM ORDERS
WHERE O_ORDERDATE < DATE ’1995-03-31’;

Here, O’—one of the subqueries “select-project,” 
which obtained after this request pretranslation; O’ 
LENGTH—query to calculate the amount of data returned.

Measurement of information amount, which is necessary 
for processing requests, is given in Table 10. In this table: 
Voverall—the full scope of the relationship needed to execute 
the query; (�,�)Σ—sum of the volumes of the same relation-
ship after reducing the amount of data using the sampling 
conditions of the request (section ‘where’ of sql query). 
Have, on average, approximately sevenfold reduction of 
amount of data

Thus, the total volumes of CPU → GPU transmissions at 
the IO stage for compressed and uncompressed databases 
are correlated as 7:5 (40% excess). But the time of selection 
on the CPU in tens or more times is longer than the same 
time on the GPU.

When working with compressed databases, the additional 
use of GPU to speed up the select operation should lead to an 
increase in the efficiency of the DBMS in comparison with 
the case of working with the database without compression.
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