
Vol:.(1234567890)

Data Science and Engineering (2020) 5:80–93
https://doi.org/10.1007/s41019-020-00116-2

1 3

Clusterix‑Like BigData DBMS

Vadim A. Raikhlin1 · Roman K. Klassen1 

Received: 21 June 2019 / Revised: 2 February 2020 / Accepted: 10 February 2020 / Published online: 20 February 2020
© The Author(s) 2020

Abstract
Commercial OLAP systems are economically unavailable for organizations with limited financial capabilities. Analytical
processing of large amounts of data in these organizations can be accomplished using open-source software systems on a
cost-effective cluster platform. Previously created Clusterix-like DBMS using a regular query processing plan is not efficient
enough. Therefore, research on such systems was developed with a focus on a full load of processor cores and using the
GPU acceleration (systems Clusterix-N, N—from new) up to the development of a system comparable in efficiency to the
open-source system Spark, which is currently considered the most promising. The development methodology was based on
the constructive system modeling methodology.

Keywords  Clusterix-like DBMS · Databases of significant volumes · BigData · Regular query processing plan · Full load
of processor cores · GPU acceleration · Constructive modeling of systems

1 � Introduction and Solvable Problem

Earlier, we already presented the results of our research on
the topic of this article [21] as part of the report at the con-
ference. The report included only the results of the work
without a detailed review. Now, we give the necessary expla-
nations, because this is one of the most important functions
of science. In addition, this article presents new results of
iteration 5 (Sect. 5.6).

Database volumes of hundreds GB or more are not
uncommon for relatively small businesses with limited
financial capabilities. Acquisition of cost-effective comput-
ing clusters and specialized software of conservative (with
an occasional update of data) by such organizations makes
it possible for them to timely process the accumulated data.
For conservative DBMSs, OLAP load [6, 29] is typical, and
it is characterized by a high weight of complex queries such
as “selection–projection–connection,” which operates with a
set of tables with numerous connection operations. Develop-
ments in this direction are under way. Commercial DBMSs

have high performance and reliability, but are too expensive.
For example, MS SQL Server 2016 DBMS [3, 17] on the
one Lenovo x3950 X6 server [14] has a total system cost of
$2 634 342 ($1.5 million for server + $1 million for soft-
ware). Oracle Database [18] with an extension for OLAP
and a license for 384 cores will cost $9 million. Plus the cost
of hardware (Exadata) is $1.5 million.

A good alternative to expensive parallel DBMS in the
field of BigData is freely distributed open-source systems
Hadoop [8, 30] and Spark [15, 31, 32]. Both systems have
high performance and are well scaled, and their hardware
platform requirements are quite modest. This makes Hadoop
and Spark very promising systems for analytical processing
of large data sets with MapReduce technique [27].

The typical relational DBMS architecture by Stonebraker
and Helerstein [11] includes five main components (Fig. 1):

1.	 Client communication manager, including information
exchange protocols for local and remote clients.

2.	 A process control manager that performs the functions
of a dispatcher and a processing scheduler.

3.	 Transaction manager—access, block, log and data buffer
management.

4.	 Common components and utilities: batch utilities, repli-
cation and load services, administration and monitoring
utilities, directory and memory managers.

5.	 Relational query processor

 *	 Roman K. Klassen
	 klassen.rk@gmail.com

	 Vadim A. Raikhlin
	 no‑form@evm.kstu‑kai.ru

1	 Kazan National Research Technical University named
after A. N. Tupolev - KAI, Kazan, Russian Federation

http://orcid.org/0000-0003-2214-426X
http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-020-00116-2&domain=pdf

81Clusterix‑Like BigData DBMS﻿	

1 3

This architecture is suitable for single-node sequential
DBMS and is actively used by them. For example, this archi-
tecture is applied to each node on developing Clusterix-N
system, where the highlighted black is an instrumental
DBMS MySQL. The architecture of parallel DBMSs is
significantly different from single-node/sequential: Net-
work communication between modules is added, process
management is performed on multiple nodes, and utilities
are used by various modules as needed, but in general the
components are the same, presented in a slightly different
(extended) interpretation. Below are shown the parallel
architectures SD, SN and CD used in the work.

In [28], Stonebraker proposed a classification of parallel
DBMSs by the distribution of data across disks, memory and
processors. A schematic image of the classification is pre-
sented in Fig. 2. In the figure, P—processor, M—memory,
D—disk, and N—data transmission network.

In accordance with this classification, parallel DBMS is
divided into the following base classes depending on the
division of hardware resources:

–	 SD (Shared-Disks)—shared disk architecture.
–	 SN (Shared-Nothing)—architecture without sharing

resources.

Copeland and Keller [7] proposed an extension of the Stone-
braker classification by introducing additional classes of
architectures of parallel database machines (Fig. 3):

–	 CD (Clustered-Disk)—architecture with SD clusters,
united by the principle of SN. The boundary of the SD
clusters in Fig. 3 is extended to the common (global)
connecting network, as they may have their own (local)
connecting network.

Fig. 1   The typical relational
DBMS architecture

Fig. 2   Stonebraker classification (a SD, b SN) Fig. 3   Stonebraker classification extension

82	 V. A. Raikhlin, R. K. Klassen

1 3

For conservative DBMS, the most important is the case of
processing the flow of queries translated to scheme

Here, ⟨x⟩ is the Cartesian product. Selection in a join opera-
tion is performed according to �-matching the tuples of the
R and S relations. Development of a parallel DBMS is desir-
able to accomplish from the condition of implementing a
stream-pipelined method for query processing. It is not easy
to fulfill such a condition, because it implies an ideal balance
of all parts of the pipeline. But if we assume that acceptable
balancing is achievable, then the choice of a regular plan
(tree) (Fig. 4) for processing queries [22] is valid.

An algebraic expression representing a query to a rela-
tional database, written in terms of “x,” “ �, ” “ �, ” is always
reducible to this tree. During the SQL queries pretranslation
to a regular plan, subqueries select-project, join and sort
(perform aggregation operations (SUM(), AVG(), MAX(),
MIN(), etc.) and sort the result) are formed.

When using the strategy “many cluster nodes—for one
query,” the database is distributed across nodes. Obtaining
any intermediate R′

i
 and any temporary RTj relations occurs

in parallel on the IO and JOIN processors. At the same time,
it is theoretically possible to combine both processes if dur-
ing the preprocessing (selection and projection) of the ini-
tial relation Ri, the relation RT(i−2) is formed, which is the
basis for the implementation of a balanced pipeline with an
acceptable duration of its stages. These are the motives of
our hypothesis:

Regular query processing plan is preferred for conserva-
tive parallel DBMSs and large database volumes.

But the early created research versions of the Clusterix-
like systems were ineffective. It was necessary to look for
ways to improve their efficiency. The objective of this work
is analyzing possibilities of developing economical con-
servative high-volume DBMSs comparable in efficiency

SELECT (�) − PROJECT (�) − JOIN(�
�
(R x S)).

(by performance/cost criterion) with the Spark system while
processing a query flow to a database with data amounts
of hundreds and more GB on relatively inexpensive cluster
platforms using a regular query processing plan, and also
using MySQL and GPU accelerators at the executive level.
MySQL allows you to use different “engines” and has an
extension system [19]. These features simplify and speed up
system development compared to using PostgreSQL.

2 � Accepted Limitations

They are dictated by the requirement of the economy:

1.	 The hardware platform of the studied DBMSs is com-
puting clusters assembled from supplied components by
firms.

2.	 Cluster SMP nodes—two processor nodes, equipped
with MySQL instrumental DBMS and Linux/Windows
operating system.

3.	 Processors in the nodes—serial with the number of pro-
cessor cores not more than 8.

4.	 It is allowed to connect to nodes via PCI-e bus GPU
accelerators with the number of cores not more than 512.

5.	 Communication network between nodes—GigabitEth-
ernet (10 GigabitEthernet/Infiniband—if possible).

6.	 Disk subsystem—SATA (SAS—if possible).
7.	 The amount of RAM in the node—no more than

512 GB.
8.	 The hashed database is fully hosted in the aggregate

RAM of all cluster nodes.
9.	 The considered DBMS is multi-user systems with batch

query processing.

Accordingly, all the research experiments were carried out
on the GPU cluster platform consisting of seven nodes.
Node parameters: 2 six-core E5-2640 CPU/2.5 GHz/DDR3
128 GB; 2 448-core Tesla GPU C2075/1.15 GHz/GDDR5
6 GB (no GPU MGM). Node disk subsystem—RAID 10 of
4 WD1000DHTZ/1 TB total volume (minus RAID “mirror”)
2 TB. The operating system is Windows Server 2012 R2.
Interconnect between nodes—GigabitEthernet with 24-port
switch SSE G24-TG4. The volume of DB—120 GB. The
representative test (RT) is the concatenation of six permuta-
tions of the TPC-H throughput test without write operations.

In the experiment with Spark, the database was presented
in the form of structured text files and was evenly distrib-
uted over six execution nodes. Data access was implemented
using Hadoop (HDFS). Load balancing was performed by
the YARN module, also part of Hadoop. The query process-
ing was performed by Spark in the configuration “worker
per core” (total 6 × 12 = 72 workers per cluster). Queries
were launched without any changes and optimizations. The Fig. 4   Regular plan

83Clusterix‑Like BigData DBMS﻿	

1 3

Spark spark-sql extension was responsible for working with
SQL queries, which performed parsing and optimization of
the original query.

3 � The Methodology Used for Solving
the Problem

The basis of the research was adopted methodology CSM—
constructive system modeling [23]. Cardinal questions of
synthesis under incomplete information conditions are:

•	 WHERE (in which area of some space) to find the right
solution?

•	 HOW (by what methods) to organize such a search?
•	 WHY exactly there and so?

The methodological basis of the CSM consists of the fol-
lowing provisions:

1.	 It is assumed that the object being synthesized models
the behavior of a certain hypothetical system—some-
thing of a single whole, infinitely knowable and explica-
ble, given by its purpose operator. Modeling of this sys-
tem is treated as S-modeling synthesis process (S—from
synthesis). Under the process in cybernetics, we mean
the sequential change of states of some object. There-
fore, the model being developed is not a static formation,
but a dynamically developing (evolving) system, each
state of which corresponds to a certain quality of mod-
eling. Development is stopped by obtaining the required
quality. As a result, we obtain the desired constructive
method. This is the rationale for the adopted name—
constructive system modeling.

2.	 The properties that a device must possess in order for
S-modeling to be sufficiently effective can be revealed
in the dynamics of S-modeling in the form of postu-
lates that state sufficiently proved ideas. The S-modeling
process is considered as a multi-step iterative process,
in which both explanatory and informative premises
(postulates as elements of the theory) and the construc-
tive method itself (realization of an acceptable S-model
iteration) are complementary. The system of postulates
must be open for corrections. The initiation of postulates
is advisable, only if the development of a constructive
method based on them shows its prospects for its time,
and the method itself does not fit into the framework of
the existing theory.

3.	 The ultimate goal of S-modeling is to develop a theoreti-
cally justified constructive method, i.e., synthesis pro-
cedure. Formally, the S-modeling process includes two
stages—external modeling (postulating a mathematical
S-model as a relevant description—frame, logical, alge-

braic or others—of an oriented sequence of a complete
set of solutions areas—answers to questions: WHERE?
And WHY?) and internal (an iterative study of the found
S-model in order to develop a constructive method—the
answer to the question: HOW?).

4.	 There are S-models: unitary (US-models) and hierar-
chical (IS-models). The US-model is a single abstract
image (a single search area), for example a local area
of a certain metric space. The preference of such a
description of the systems is undoubted. IS-model is
a set of representations of the hierarchical system. It is
built when a single abstract image of the system cannot
be found. Systemic balancing of model index values at
all levels of the hierarchy is achieved in the process of
internal modeling.

Larger systems are typically described as hierarchical IS-
models. The process of IS-modeling should not take too
much time, as is typical of natural evolution. Therefore, in
such a process, a mathematical (external) model should be
found as the minimum set of states (areas) in the space of
all possible states of the IS-model, the transitions between
which form the shortest path to obtain the desired result.
Algorithmic and software development of each state is the
subject of internal modeling.

Among the IS-models is also DBMS with hierarchy
levels: select-project, join, sort, dynamic segmentation
of relations, their indexing, network, etc. In this case, the
assignment operator of a hypothetical system is set by the
condition of obtaining high-efficiency query processing
with the minimum system cost determined by the previ-
ously formulated restrictions. The state of the IS-model is
the architecture of the software system as a set of interacting
software modules. Its name will be associated with some
characteristic feature, and the full software development will
be called the full state.

IS-modeling is never carried out on the “empty place.”
From the space of complete states, we can go to the param-
eter space. Under the parameter, we will understand the
average processing time of a single request of the RT at a
particular level. For a given platform, there is a unique map-
ping of the space of complete states into the space of param-
eters (we leave the question of mutual uniqueness open), in
which we will carry out the consideration. By analogy with
that adopted in synergetics [10], for each complete state we
will single out the so-called rank parameter, minimizing the
effect of which on system performance will determine transi-
tions between iteration states.

The parameter having the maximum value for a given
full state is taken as the “rank parameter.” But the function-
ing of all levels in a large system is interconnected (system
unity principle). Therefore, reducing the influence of “rank
parameter” on system performance inevitably leads to a

84	 V. A. Raikhlin, R. K. Klassen

1 3

change in the influence of other levels as well. The number
of iterations is usually relatively small if the quality criterion
of the final solution is acceptable (in this case—obtaining
efficiency comparable to the efficiency of the Spark system).

4 � Accepted Postulates

In the process of IS-modeling, a system of postulates was
formulated as a declaration of expedient directions for the
development of the desired models.

POSTULATE 1. The solution of the problem should
ensure the evolution of Clusterix-like DBMS from the initial
implementation of the principles of hybrid technology (see
below the accepted initial state of the IS-model).

POSTULATE 2. The search for the next states (iterations)
of the Clusterix-like DBMS IS-model should be carried out
in the way of replacing the “core for one relation” strategy
adopted for its initial state with the strategy “node group
(cores) for one relation.” This is necessary to ensure the
reliable operation of an effective system with significant
volumes of databases and requires dynamic segmentation
of relations, which can be both concentrated and distributed.

POSTULATE 3. Internal IS-modeling of Clusterix-like
systems should be carried out in the directions determined
by the external (mathematical) synthesis process frame
model shown in Fig. 5. In the figure:

CONSTR—constraint frame.
BA—frame of the adopted block architecture consist-
ing of five program blocks: IO (DB data access module,
executes select-project subqueries), JOIN (join subquery
processing module), MGM (control module), SORT
(query final processing module) and HASH (implements
dynamic segmentation relations; it is not in the initial
state).
Clusterix-N (N—from new)—a development frame for
Clusterix-like systems.

HT w/o DS—frame of the initial state of the IS-model
(transition to the hybrid technology of Clusterix-like sys-
tems without dynamic segmentation of relations).
w/DS—Clusterix-N frame with dynamic relations seg-
mentation.
CON DS HT—frame (w/DS) systems with concentrated
dynamic segmentation of relations in the framework of
the hybrid technology (the first iteration of the IS-mod-
eling).
DIS DS—frame (w/DS) systems with distributed
dynamic segmentation.
DIS DS HT—frame (DIS DS) systems implemented
using hybrid technology (the second iteration of IS-
modeling).
DIS DS CS—frame (DIS DS) systems in the “combined
symmetry” configuration (the third iteration of the IS-
modeling).
DIS DS CC—frame (DIS DS) systems in the “combined
core” configuration.
DIS DS CC DSM—frame (DIS DS CC) systems in the
“database server for module” configuration (the fourth
iteration of the IS-simulation).
DIS DS CC MDS—frame (DIS DS CC) systems in the
“many database servers” configuration (the fifth iteration
of the IS-simulation).

5 � IS‑Modeling

5.1 � Characteristic of the Initial State

In the first Clusterix-like systems, dynamic segmentation
of intermediate and temporal relations was used to speed
up the join operations as the individual records R′

i
 and RTj

were formed. It took a lot of time and, with an increase in
the number of nodes, could lead to system malfunctions. In
[24], it was shown that the performance can be improved by
moving to the Clusterix-N architecture by abandoning the

Fig. 5   External frame synthesis
process model of Clusterix-like
systems

85Clusterix‑Like BigData DBMS﻿	

1 3

principle of “homogeneity” (typical for the optimal Clus-
terix configuration “combined symmetry” [25]) in favor
of “hybridity,” which implies a cluster into two different
parts—IO and JOIN blocks—with independent variation of
the nodes number in each block. It was the reason for the
choice of the initial state.

The database was hashed at the IO node level. They
implemented the “core for one relation” strategy. At the
level of JOIN nodes, the “query to the core” strategy was
used (the feasibility of such a strategy using MySQL was
shown in [13]), which made it possible to exclude dynamic
segmentation of intermediate and temporal relations and
perform the join as a single procedure

for each query. This is much faster than its consistent imple-
mentation and leads to a significant increase in efficiency
compared to Clusterix.

Detailed program development of the initial state allowed
us to create peculiar “billet modules,” which were further
modified for each new state. The presence of such “blanks”
greatly facilitated the carry out of subsequent iterations,
where they were modified accordingly. These are subsys-
tems of statistics collection, visualization and journaling;
network interaction module; DBMS driver; MGM module
as the core of the system; IO, JOIN and SORT modules; the
way to pretranslating query to the regular plan; configuring
MySQL for maximum load on all node processor cores.

The effectiveness of the initial state was significantly
lower than that of Spark. In addition, even with database
volumes < 100 GB, a large total volume of intermediate rela-
tions for some queries of the TPC-H test led to an overload
of JOIN nodes RAM and, as a result, to loss of the DBMS
performance. Unreliability is a “rank parameter” for the ini-
tial state.

5.2 � The First Iteration of IS‑Modeling

Reliable work with a database of hundreds GB and more
requires switching to the strategy “set of cores in each block
for relation,” which requires dynamic segmentation. There-
fore, it is restored in the first iteration of Clusterix-N, but

R1� join (joinR2� (joinR3� (…))) …)

(unlike Clusterix) with the segments transfer as a whole.
Distributing data across all processor cores of the JOIN level
is implemented by the HASH module on a dedicated node
with GPU accelerators. Hashing is performed using the divi-
sion algorithm [16]. The result of the hash is placed in the
send buffer for the cores. (HASH module forms a buffer in
its memory for each core in the JOIN nodes.) Sending data
occurs when the hash operation is ready.

As a result of the changes made, the Clusterix-N pro-
gram now consists of five modules: MGM, IO, JOIN, HASH
and SORT. As before, the database is distributed over the
IO nodes. The IO and JOIN modules implement the “node
group for relation” strategy. Cluster configuration for the
first iteration experiment: two IO nodes, three JOIN nodes,
one HASH node and one MGM node, what combining
MGM and SORT modules.

The principal feature of this iteration (and further) is the
pipeline-cyclic execution of select-project and join opera-
tions for each request (the presence of internal pipelining
plus the external). But now Clusterix-N remains uncompeti-
tive. The results of the experiments for the processing time
RT are as follows: Clusterix-N—19.7 h; Spark—4.5 h. They
are clearly not in favor of Clusterix-N.

The rank parameter revealed as a result of the first itera-
tion is determined by the histogram in Fig. 6 (ordinate—time
in seconds). It is time contribution of the network layer.

5.3 � The Second Iteration of IS‑Modeling

The main idea underlying the second iteration, and hoping
for success, is to implement dynamic segmentation of inter-
mediate/temporal relations (hashing) in the IO and JOIN
modules with transferring the hashed data directly between
the execution nodes (bypassing the MGM). The rejection
of the dedicated HASH hashing node and the transfer of its
functionality to the execution nodes (using GPU accelera-
tors to hash data) should speed up the data transfer process
(due to a decrease in the amount of data transferred). The
hash implementation developed for the HASH module has
been adapted and transferred to the IO and JOIN software
modules. The organization of the system operation mode
with direct data transfer between execution nodes required
changes in the MGM module.

Fig. 6   The average processing
time for a single query of the
RT by levels (iteration 1)

0

100

200

300

400

500

600
700

Data transfer
Drop relations Ri'
Preparation for loading in MySQL
Data hashing
Data loading in MySQL
Executing "join"
Executing "select-project"
Executing "sort"

86	 V. A. Raikhlin, R. K. Klassen

1 3

The IO module performs a select-project operation for
one relation in parallel on the set of available processor cores
to produce a set of result blocks. These blocks are subjected
to GPU-accelerated hashing and are transferred immediately
to certain JOIN nodes. Block-by-block selection allows us to
combine three operations in time: After one block formation,
the next select operation is started, the result is transferred
to the hash queue, and the hashed blocks are sent to the
transmission queue.

JOIN module completely repeats the algorithm of its
work in the first iteration. The only difference is in the pro-
cessing of the join result. Now, it is hashed on the GPU and
passed to the JOIN nodes (to perform the next to join opera-
tion) or SORT with overlapping operations, similar to IO.
The SORT module uses the “core for query” strategy and
transmits the result to MGM. The only change in his work is
getting data from JOIN nodes, not from BUF MGM.

An experimental study of the software-implemented
new version of Clusterix-N was made in the configuration
of a GPU cluster: two IO nodes, four JOIN nodes and one
MGM node, what combining MGM and SORT modules.
The database is distributed over the IO nodes. Analysis of
the experimental results showed that the transmission time
over the network decreased ∼ 3 times, and the join opera-
tions accelerated ∼ 1.5 times (due to adding one more node
and reducing the amount of data in each node). And yet, the
time of the RT is 14.5 h, i.e., the total processing time of the
RT decreased by only ∼ 26% compared with the previous
modification of Clusterix-N. This is clearly not enough to
talk about possible competition with Spark.

The rank parameter for iteration 2 is determined by the
histograms in Fig. 7. In this case, this is the execution time
of operations at the select-project level.

5.4 � The Third Iteration of IS‑Modeling

The easiest way to speed up operations at a specified level is
to reduce the amount of data processed in one node, which
requires an increasing number of nodes in each block. With
an unchanged total number of cluster nodes, the desired
effect can be achieved by returning (on the new turn of “spi-
ral”) to the “combined symmetry” configuration [25], which
involves placing two modules on one node at once: IO and
JOIN.

An experiment in this configuration was carried out with
the following distribution of nodes of a GPU cluster: six
nodes with IO and JOIN modules, one MGM node combin-
ing MGM and SORT modules. The database is distributed
over six nodes. For each module are allocated one CPU
(six cores) and one GPU accelerator. On all nodes (except
MGM), two MySQL DBMSs are functioning at once: one
for IO and second for JOIN. The use of two MySQL DBMS
due to the SMP node architecture and different DBMS con-
figuration is: for IO, the configuration is aimed at optimiz-
ing the work with select-project queries, and for JOIN—at
optimizing the work with the MEMORY engine and join
operations.

The obtained histograms are shown in Fig. 8.
The results of the experiment in comparison with Spark

are presented in Table 1, where T—execution time of the
entire RT, M—average waiting time for a response to a
query, and �—standard deviation.

The fact that Clusterix-N is significantly inferior to the
Spark system in values of M and � is important to the user.
A comparison of the times of individual operations execu-
tion for Clusterix-N averaged over a set of RT queries is
presented in Table 2. As follows from Table 2 and from the

Fig. 7   The average processing
time for a single query of the
RT by levels (iteration 2)

0

100

200

300

400

500

600

700
Data transfer
Drop relations Ri'
Preparation for loading in MySQL
Data hashing
Data loading in MySQL
Executing "join"
Executing "select-project"
Executing "sort"

Fig. 8   The average processing
time for a single query of the
RT by levels (iteration 3)

0

100

200

300

400

500

600

700
Data transfer
Drop relations Ri'
Preparation for loading in MySQL
Data hashing
Data loading in MySQL
Executing "join"
Executing "select-project"
Executing "sort"

87Clusterix‑Like BigData DBMS﻿	

1 3

histogram in Fig. 8, in the “combined symmetry” configu-
ration, the longest operation was loading data in MySQL.
This is the notorious “rank parameter” for the third iteration.

The dynamics of the processes in this iteration are illus-
trated in Fig. 9.

5.5 � The Fourth Iteration of IS‑Modeling

Data loading in MySQL for JOIN modules can be acceler-
ated by increasing the number of cores on which these mod-
ules are work. It can be noticed (see Fig. 9) that IO modules
are far from always busy at processing queries, because one
of the CPUs at each node is idle for a long time. Would not
it be better to work consistently with select-project and join
operations on the same core and load all cores of the cluster
with these operations? In this case, the IO modules will work
without downtime, and the load operations in MySQL will
be significantly accelerated, which should reduce the values
of M and � . But would such a violation of external pipelining
reduce efficiency?

To obtain an answer to this question, a preliminary study
was carried out with minimal system modifications. Each
node uses one GPU for hashing the results of the IO and
JOIN modules. The operations of the SORT module are
accelerated by changing the MySQL engine from MyISAM
to MEMORY.

The experimentally obtained histograms are shown in
Fig. 10. They meet the data in Tables 3 and 4. They con-
firm the predictions and concerns made. Despite the seri-
ous acceleration of the load operation in MySQL, with a

decrease in M and � , the processing time of the RT increased
by ∼ 23% compared with iteration 3.

This is the fee for a partial violation of pipelining. Further
acceleration of the select-project and a number of other oper-
ations can slightly improve the situation. With an unchanged
platform, the efficiency of iteration 4 can be improved,
firstly, by switching to IO from database hashing by nodes
to hashing by cores; this should speed up the select-project,
and secondly the transition to a more advanced version of
MySQL 8.0. It can be expected that its use will speed up
the execution of a number of other operations. The soft-
ware implementation of such transitions was associated with
modifications of database driver and IO module.

The results of the experiment illustrate the histogram in
Fig. 11 and the data in Tables 5 and 6. Now, the estimates for
Clusterix-N and Spark are comparable to a greater degree.

5.6 � The Fifth Iteration of IS‑Modeling

In the article [21], we found that performance can be
improved by developing specialized engines for MySQL.
This is necessary to speed up relation drop and loading oper-
ations. The main reason for the slowness of these operations
is table locking. But in [2], it is written that the MEMORY
engine performs table-level locking. That is, when per-
forming data modification operations (INSERT, UPDATE,
DELETE, ALTER and others), the table is denied access
until the named operations are completed. In Clusterix-
N, these operations are performed in the “query for table”
mode, i.e., locks should not occur. But the experimental data
of four iterations suggest the opposite.

A detailed analysis of the MySQL source codes helped to
establish that the MEMORY engine storage is presented as
heap and is shared to the entire MySQL process. Therefore,
locking a single table causes blocking of the entire memory
of this engine in a single process. There are two ways around
this limitation. First, make such changes to the MEMORY
engine that would allow you to lock within the table or
remove it altogether. Secondly, run multiple instances of
MySQL in the number of CPU cores.

Table 1   Results for the “combined symmetry” configuration versus
spark

Clusterix-N Spark Clusterix-
N/spark
ratio

T (min) 455.8 260.6 1.75
M (min) 14.3 3.1 4.61
� (min) 15.7 0.9 17.44

Table 2   The average execution
time of individual operations in
Clusterix-N

Iteration 1 � (s) Iteration 2 � (s) Iteration 3 � (s) �

�

�

�

�

�

Data transfer 569.77 190.82 133.62 2.99 1.43 4.26
Drop relations R′

i
 , RTj 375.27 311.87 180.03 1.20 1.73 2.08

Preparation for loading in MySQL 18.90 19.01 22.40 0.99 0.85 0.84
Data hashing 177.03 151.05 93.61 1.17 1.61 1.89
Data loading to MySQL 466.64 555.30 447.28 0.84 1.24 1.04
Executing “join” 186.09 116.06 89.09 1.60 1.30 2.09
Executing “select-project” 522.73 611.32 159.86 0.86 3.82 3.27
Executing “sort” 162.61 168.97 178.42 0.96 0.95 0.91

88	 V. A. Raikhlin, R. K. Klassen

1 3

The first option is extremely time-consuming and can
damage the stability of the system. The second option is sim-
ple and can be implemented without modifying the instru-
mental DBMS (MySQL), so this option is preferable for us.
To implement it, we need to make a number of changes to
the operation of Clusterix-N.

Working with multiple MySQL will require establishing
many Clusterix-N ↔ MySQL connections, controlling the

distribution of hashed result data, and replicating queries in
multiple connected MySQL. Some of these changes were
implemented in fourth iteration for IO modules during the
transition to hashing by cores at the IO level. Transferring
these developments to other modules (JOIN and SORT) with
a slight improvement made it possible to perform hashing
in several instrumental DBMSs. This allows Clusterix-N to
work with multiple MySQL on a single host.

Fig. 9   Visualization of RT execution (iteration 3)

Fig. 10   Histograms for the start
of iteration 4

0

100

200

300

400

500

600

700
Data transfer
Drop relations Ri'
Preparation for loading in MySQL
Data hashing
Data loading in MySQL
Executing "join"
Executing "select-project"
Executing "sort"

89Clusterix‑Like BigData DBMS﻿	

1 3

The experiment for this iteration was carried out as fol-
lows. On each node launched 13 MySQL servers: one for IO
and 12 for JOIN. MySQL for IO uses the InnoDB engine,
which does not have the problems described at the beginning
of this section, but it is not applicable for loading data in real
time, since this operation takes a long time. The experimen-
tal design is shown in Fig. 12.

The results of the experiment are presented in Tables 7
and 8. From Table 7, it is seen that the operations of “Drop
relations” and “Data loading in MySQL” were significantly
accelerated: 3.4 and 1.9 times, respectively. The average
execution time for other operations has not changed signifi-
cantly. Table 8 shows the parity of Clusterix-N and Spark
on test processing time. But Clusterix-N is still significantly
inferior to Spark in parameters M and �.

The histograms from the experimental results (Fig. 13)
show that the “rank parameter” for the fifth iteration is data
transmission.

6 � Conclusion

The paper shows that using a regular query processing plan
with appropriate architectural and software-algorithmic
development of cost-effective, conservative, high-perfor-
mance BigData class DBMS shows results comparable
with the best open systems. The cost of the acquisition
and commissioning of a GPU cluster similar to that used
in the comparative experiments will be no more than $85
000. All versions of the Clusterix-N software system are
placed in open access [12] and can be used by interested
organizations.

Table 3   Comparative evaluation of accelerations for iteration 3 and
start of 4

Iteration 3, � (s) Start of
iteration 4
� (s)

�

�

Data transfer 133.62 133.36 1.00
Drop relations R′

i
 , RTj 180.03 170.47 1.06

Preparation for loading in
MySQL

22.40 17.80 1.26

Data hashing 93.61 94.62 0.99
Data loading in MySQL 447.28 198.75 2.25
Executing “join” 89.09 66.83 1.33
Executing “select-project” 159.86 148.17 1.08
Executing “sort” 178.42 43.03 4.15

Table 4   Comparative estimates for T, M and � for iteration 3 and start
of 4

Iteration 3, � (min) Start of iteration 4 �
(min)

�

�

T 455.80 560.60 0.81
M 14.30 8.20 1.74
� 15.70 6.40 2.45

Fig. 11   Histograms for the final
version of iteration 4

0

100

200

300

400

500

600

700
Data transfer
Drop relations Ri'
Preparation for loading in MySQL
Data hashing
Data loading in MySQL
Executing "join"
Executing "select-project"
Executing "sort"

Table 5   The estimation of accelerations at the transition from the
start of iteration 4 to its end

Start of
iteration 4
� (s)

Iteration 4 � (s) �

�

Data transfer 133.36 106.12 1.26
Drop relations R′

i
 , RTj 170.47 140.91 1.21

Preparation for loading in
MySQL

17.80 24.15 0.74

Data hashing 94.62 56.43 1.68
Data loading in MySQL 198.75 164.01 1.21
Executing “join” 66.83 54.77 1.22
Executing “select-project” 148.17 55.40 2.67
Executing “sort” 43.03 42.90 1.00

Table 6   The final comparison on T, M and � for iteration 4 and Spark

Iteration 4 � (min) Spark � (min) �

�

T 403.8 260.6 1.55
M 6.3 3.1 2.03
� 5.6 0.9 6.22

90	 V. A. Raikhlin, R. K. Klassen

1 3

Nevertheless, the Clusterix-N DBMS is significantly
inferior to the Spark system in terms of M and � . As fol-
lows from the histograms in Fig. 13, operations remain
rather slow (1) data transfer, (2) data loading into MySQL,
(3) data hashing, (4) “select-project.” Operations (1, 4) can
be accelerated by working with compressed databases (see

“Appendix”). Operation (2)—development of a special-
ized MySQL engine. The issue of accelerating operation
(4) remains open so far. All this is the subject of special
studies.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

Fig. 12   Experiment design of
iteration 5

Node 1

JO
IN

Mgm

2x CPU
12 cores

MGM

SORT

ROUTER

IO
GPU

Node 2 Node 3 Node 4 Node 5 Node 6

12xDB

JO
INIO

GPU

12xDB

JO
INIO

GPU

12xDB

JO
INIO

GPU

12xDB

JO
INIO

GPU

12xDB

JO
INIO

GPU

12xDB

GigabitEthernet network

Table 7   The estimation of
accelerations for iterations 4
and 5

Iteration 4 � (s) Iteration 5 � (s) �

�

Data transfer 106.12 116.17 0.91
Drop relations R′

i
 . RTj 140.91 41.06 3.43

Preparation for loading in MySQL 24.15 25.29 0.95
Data hashing 56.43 56.14 1.01
Data loading in MySQL 164.01 85.18 1.93
Executing “join” 54.77 26.76 2.05
Executing “select-project” 55.40 59.93 0.92
Executing “sort” 42.90 43.41 0.99

Table 8   The comparison on T, M and � for iterations 4 and 5 and
Spark

Iteration 4
� (min)

Iteration 5 � (min) Spark � (min) �

�

�

�

T 403.8 276.13 260.6 1.46 1.06
M 6.3 4.8 3.1 1.33 1.54
� 5.6 4.5 0.9 1.26 4.78

Fig. 13   Experiment design of
iteration 5

0

100

200

300

400

500

600

700
Data transfer
Drop relations Ri'
Preparation for loading in MySQL
Data hashing
Data loading in MySQL
Executing "join"
Executing "select-project"
Executing "sort"

http://creativecommons.org/licenses/by/4.0/

91Clusterix‑Like BigData DBMS﻿	

1 3

Appendix: Note on Working
with Compressed Databases

With a limited number of nodes, a database of significant
volumes may not fit in the RAM of the cluster. Therefore,
it is useful to consider the possible organization of work
with compressed databases. We show that when storing a
compressed database in the memory of the nodes, using the
GPU acceleration of the select operation can have a serious
impact. In this case, we slightly shift the emphasis of [20].

As is known, the use of a GPU allows us to repeatedly
reduce the time to perform individual operations [1, 4].
But with significant volumes of DB, the need to exchange
CPU ↔ GPU data significantly reduces the performance
of whole system. The data transfer rate on the PCI-e bus
is significantly lower than the exchange rate with the
RAM. So, the read/write speed for three-channel DDR3-
1600 RAM is 38.4 GB/s, while for the PCI-e 2.0 × 16
bus—6.4 GB/s. It is for this reason that the increase in the
performance of the database server from using the GPU in
processing fairly simple single requests achieved in [26]
did not exceed 40%.

Distinguish between DBMS-oriented data storage in rows
and columns. The second type DBMS has the best values
of compression. This question is studied in [9]. The com-
pressed database is divided into blocks. Farther, the data
block means the part of a compressed column (or a set of
“short” columns) with decompressed data volume, equal
to the decompressed data buffer volume on the GPU. The
select operations and dynamic segmentation of relations are
performed by graphics accelerators, and the CPUs at the IO
stage are engaged in projecting, promotion of the subquery
queue, forming and transmitting compressed blocks to the
GPU and obtaining results from them.

The data preparation for compression is next:

1.	 Find the longest field (length RS) in treated ratio R.
2.	 Find in the appropriate column(s) number of records

RC, which guaranteed fit in reserved memory,
RC = [BS∕RS] , where BS—the memory volume for the
decompressed data in a graphics accelerator.

3.	 Issue from the ratio R data into columns for compression
with increments of RC.

The tool has been selected DBMS MySQL 5.6. The
experiment was performed on the basis of the computing
node with the following characteristics: Quad-core Intel
Core i5-4670K CPU/2.5 GHz/24 GB RAM (DDR3-1600
in two-channel mode), 64-bit OS Windows 8, node disk
subsystem—SSD SV300S37A/120 GB with a bandwidth
of 450 MB/s. The experiment was aimed at comparing
times what spent on simple copy, with the sum of times,

necessary to copy data, compressed by algorithm RLE
(run-length encoding) [5], and their expansion in GPU.
The highest efficiency of data transmission was achieved
for compression ratio K = 4 − 5 . Higher compression
increases the data compression time, which may exceed
the regular copy time.

In Table 9, it is shown the increasing efficiency percent-
age of the transmission of the compressed data (K = 4 and
5) with following expansion in comparison with simple
copying. As shown in table, during transferring small data
volume, simple copying comes out faster. When volumes
> 12 MB, precompression provides acceleration in about
30% (approximately 1.5 times).

A qualitative assessment of the effectiveness of the
transition to compressed databases with GPU-accelerated
select operations was obtained as follows. According to
the regular processing plan for 14 selected TPC-H test,
queries have been generated load modules “select-pro-
ject.” Thus, all “project” operations have been “pulled
down.” The volume of the test database was 1 GB. It is
preloaded into main memory. The experiment platform
remained the same.

When calculating the amount of data for any of the
considered query, defined length of each field of each
line of the tables involved in the query processing, and
all received lengths summed. Counting was performed by

Table 9   The data transmission efficiency change

Size (MB) Copy (ms) Compressed
data copying and
decompression
(ms)

The data
transmission effi-
ciency increasing
(%)

K = 4 K = 5 K = 4 K = 5

0.38 1 4 4 300 300
4.20 3 6 8 167 100
8.01 5 9 9 80 80
11.83 7 12 12 71 71
15.64 21 15 15 29 29
19.45 26 20 19 27 23
23.27 31 23 24 23 26
27.08 35 26 27 23 26
30.90 41 30 29 29 27
34.71 45 35 32 29 22
38.53 50 35 35 30 30
42.34 55 38 38 31 31
46.16 59 41 42 29 31
49.97 64 44 44 31 31
53.79 68 48 48 29 29
57.60 75 50 51 32 33
61.42 80 53 53 34 34

92	 V. A. Raikhlin, R. K. Klassen

1 3

modification requests with tools of MySQL. Example of
query number 3 modification:

-- O’
SELECT O_ORDERDATE,

O_SHIPPRIORITY,
O_ORDERKEY,
O_CUSTKEY

FROM ORDERS
WHERE O_ORDERDATE < DATE ’1995-03-31’;

-- O’ LENGTH
SELECT SUM(LENGTH(O_ORDERDATE),

LENGTH(O_SHIPPRIORITY),
LENGTH(O_ORDERKEY),
LENGTH(O_CUSTKEY))

FROM ORDERS
WHERE O_ORDERDATE < DATE ’1995-03-31’;

Here, O’—one of the subqueries “select-project,”
which obtained after this request pretranslation; O’
LENGTH—query to calculate the amount of data returned.

Measurement of information amount, which is necessary
for processing requests, is given in Table 10. In this table:
Voverall—the full scope of the relationship needed to execute
the query; (�,�)Σ—sum of the volumes of the same relation-
ship after reducing the amount of data using the sampling
conditions of the request (section ‘where’ of sql query).
Have, on average, approximately sevenfold reduction of
amount of data

Thus, the total volumes of CPU → GPU transmissions at
the IO stage for compressed and uncompressed databases
are correlated as 7:5 (40% excess). But the time of selection
on the CPU in tens or more times is longer than the same
time on the GPU.

When working with compressed databases, the additional
use of GPU to speed up the select operation should lead to an
increase in the efficiency of the DBMS in comparison with
the case of working with the database without compression.

References

	 1.	 PGStrom (2016) https​://wiki.postg​resql​.org/index​.php?title​
=PGStr​om&oldid​=25517​. Accessed: 09 May 2018

	 2.	 The MEMORY Storage Engine—MySQL 8.0 Reference Manual
(2016) https​://dev.mysql​.com/doc/refma​n/8.0/en/memor​y-stora​
ge-engin​e.html. Accessed 03 Dec 2019

	 3.	 TPC-H Result Highlights (2016) Lenovo system x3950 X6. http://
www.tpc.org/3321. Accessed 09 Aug 2018

	 4.	 CoGaDB—Column-oriented GPU-accelerated DBMS (2018)
http://cogad​b.cs.tudor​tmund​.de/wordp​ress/ (2018). Accessed 09
May 2018

	 5.	 Breß S (2015) Efficient query processing in co-processor-accel-
erated database. Ph.D. Dissertation, University of Magdeburg

	 6.	 Codd E, Codd S, Salley C (1993) Providing olap (on-line analyti-
cal processing) to user-analysts: an IT mandate. Codd & Associ-
ates. https​://books​.googl​e.ru/books​?id=pt0lG​wAACA​AJ

	 7.	 Copeland G, Keller T (1989) A comparison of high-availability
media recovery techniques. ACM SIGMOD Rec 18(2):98–109.
https​://doi.org/10.1145/66926​.66936​

	 8.	 EMC Education Services (2015) Data science and big data ana-
lytics: discovering, analyzing, visualizing and presenting data.
Wiley. https​://books​.googl​e.ru/books​?id=J94WB​gAAQB​A

	 9.	 Fang W, He B, Luo Q (2010) Database compression on graph-
ics processors. Proc VLDB Endow 3(1–2):670–680. https​://doi.
org/10.14778​/19208​41.19209​27

	10.	 Haken H (2004) Synergetics: introduction and advanced top-
ics. Physics and astronomy online library. Springer. https​
://books​.googl​e.ru/books​?id=0bc6c​LK0w7​YC. https​://doi.
org/10.1007/978-3-662-10184​-1

	11.	 Hellerstein JM, Stonebraker M, Hamilton J (2007) Architecture of
a database system. Found Trends Databases 1(2):141–259. https​
://doi.org/10.1561/19000​00002​

	12.	 Klassen RK (2018) Clusterix-N. https​://bitbu​cket.org/rozh/clust​
erixn​/. Accessed 09 Mar 2019

	13.	 Klassen RK (2018) PerformSys. https​://githu​b.com/rozh1​/Perfo​
rmSys​/. Accessed 09 Dec 2018

	14.	 Lenovo (2017) System x3950 X6 Rack Server. https​://www3.
lenov​o.com/ru/ru/data-cente​r/serve​rs/missi​on-criti​cal/Syste​
m-x3950​-X6/p/WMD00​00000​2. Accessed 15 July 2018

	15.	 Li X, Zhou W (2015) Performance comparison of hive, impala and
spark sql. In: Proceedings of the 2015 7th international conference
on intelligent human-machine systems and cybernetics, volume
01, IHMSC ’15. IEEE Computer Society, pp 418–423. https​://doi.
org/10.1109/IHMSC​.2015.95

	16.	 Martin J (1977) Computer database organization, 2nd edn. Pren-
tice Hall PTR, Upper Saddle River

	17.	 Microsoft (2018) Parallel query processing. https​://techn​et.micro​
soft.com/en-us/libra​ry/ms178​065(v=sql.105).aspx. Accessed 05
Apr 2018

Table 10   The data volumes of RT before and after “select-project”

Query # The volume of information for process-
ing

Coefficient of
reducing the

Before sampling After sampling

Voverall (�,�)Σ Voverall∕(�,�)Σ

1 675 846 277 134 255 929 5.03
2 137 651 393 13 526 703 10.18
3 855 794 582 76 991 966 11.12
4 832 798 438 428 049 230 1.95
5 857 126 234 139 324 211 6.15
6 675 846 277 1 339 256 504.64
7 857 125 865 78 759 670 10.88
8 879 261 359 179 338 247 4.90
9 970 449 462 234 598 226 4.14
10 855 796 681 49 964 804 17.13
11 342 555 947 27 528 586 12.44
12 832 798 438 23 140 549 35.99
13 179 948 305 18 706 950 9.62
14 697 981 402 6 548 108 106.59
Total 96 950 980 660 1 412 072 435 6.87

https://wiki.postgresql.org/index.php?title=PGStrom&oldid=25517
https://wiki.postgresql.org/index.php?title=PGStrom&oldid=25517
https://dev.mysql.com/doc/refman/8.0/en/memory-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/memory-storage-engine.html
http://www.tpc.org/3321
http://www.tpc.org/3321
http://cogadb.cs.tudortmund.de/wordpress/
https://books.google.ru/books?id=pt0lGwAACAAJ
https://doi.org/10.1145/66926.66936
https://books.google.ru/books?id=J94WBgAAQBA
https://doi.org/10.14778/1920841.1920927
https://doi.org/10.14778/1920841.1920927
https://books.google.ru/books?id=0bc6cLK0w7YC
https://books.google.ru/books?id=0bc6cLK0w7YC
https://doi.org/10.1007/978-3-662-10184-1
https://doi.org/10.1007/978-3-662-10184-1
https://doi.org/10.1561/1900000002
https://doi.org/10.1561/1900000002
https://bitbucket.org/rozh/clusterixn/
https://bitbucket.org/rozh/clusterixn/
https://github.com/rozh1/PerformSys/
https://github.com/rozh1/PerformSys/
https://www3.lenovo.com/ru/ru/data-center/servers/mission-critical/System-x3950-X6/p/WMD00000002
https://www3.lenovo.com/ru/ru/data-center/servers/mission-critical/System-x3950-X6/p/WMD00000002
https://www3.lenovo.com/ru/ru/data-center/servers/mission-critical/System-x3950-X6/p/WMD00000002
https://doi.org/10.1109/IHMSC.2015.95
https://doi.org/10.1109/IHMSC.2015.95
https://technet.microsoft.com/en-us/library/ms178065%28v=sql.105%29.aspx
https://technet.microsoft.com/en-us/library/ms178065%28v=sql.105%29.aspx

93Clusterix‑Like BigData DBMS﻿	

1 3

	18.	 Oracle (2018) Oracle exadata database machine X7. https​://www.
oracl​e.com/ru/engin​eered​-syste​ms/exada​ta/datab​ase-machi​ne-x7/
index​.html. Accessed 10 Aug 2018

	19.	 Oracle (2018) The MySQL plugin API. https​://dev.mysql​.com/
doc/refma​n/5.7/en/plugi​n-api.html. Accessed 09 Apr 2018

	20.	 Raikhlin VA, Klassen RK (2017) Can GPU-accelerator signifi-
cantly increase the effectiveness of conservative DBMS consider-
able volumes on cluster platforms? In: 2017 international siberian
conference on control and communications (SIBCON), pp 1–5.
https​://doi.org/10.1109/SIBCO​N.2017.79984​74

	21.	 Raikhlin VA, Klassen RK (2019) Constructive modeling of con-
servative DBMS. In: 2019 international Russian automation con-
ference (RusAutoCon), pp 1–5. https​://doi.org/10.1109/RUSAU​
TOCON​.2019.88676​78

	22.	 Raikhlin VA (1996) Simulation of distributed database machines.
Program Comput Softw 22(2):68–74

	23.	 Raikhlin VA (2005) Methodology of constructive system mod-
eling [Metodologija konstruktivnogo modelirovanija sistem]. Artif
Intell News 1:5–17

	24.	 Raikhlin VA, Klassen RK (2018) Relatively inexpensive hybrid
technology of large volumes conservative dbms. Inf Technol
Comput Syst 68(1):46–59

	25.	 Raikhlin VA, Minjazev RSh (2011) Multiclusterization of distrib-
uted dbms of conservative type. Nonlinear World 9(85):473–481

	26.	 Rauhe H (2014) Finding the right processor for the job co-proces-
sors in a DBMS. Ph.D. Dissertation, University of Magdeburg

	27.	 Stonebraker M, Abadi D, DeWitt DJ, Madden S, Paulson E, Pavlo
A, Rasin A (2010) Mapreduce and parallel DBMSs: friends or
foes? Commun ACM 53(1):64–71

	28.	 University MS, Stonebraker M (1986) The case for shared noth-
ing. Database Eng 9:4–9

	29.	 Wikipedia Contributors (2018) Online analytical processing. https​
://en.wikip​edia.org/w/index​.php?oldid​=85054​5800. Accessed 08
Oct 2018

	30.	 Wikipedia Contributors (2019) Apache Hadoop. https​://en.wikip​
edia.org/w/index​.php?title​=Apach​e_Hadoo​p&oldid​=88702​3781.
Accessed 15 Mar 2019

	31.	 Wikipedia Contributors (2019) Apache Spark. https​://en.wikip​
edia.org/w/index​.php?title​=Apach​e_Spark​&oldid​=88787​5725.
Accessed 15 Mar 2019

	32.	 Xin RS, Rosen J, Zaharia M, Franklin MJ, Shenker S, Stoica I
Shark (2013) SQL and rich analytics at scale. In: Proceedings of
the 2013 ACM SIGMOD international conference on manage-
ment of data, SIGMOD ’13. ACM, New York, pp 13–24. https​://
doi.org/10.1145/24636​76.24652​88

https://www.oracle.com/ru/engineered-systems/exadata/database-machine-x7/index.html
https://www.oracle.com/ru/engineered-systems/exadata/database-machine-x7/index.html
https://www.oracle.com/ru/engineered-systems/exadata/database-machine-x7/index.html
https://dev.mysql.com/doc/refman/5.7/en/plugin-api.html
https://dev.mysql.com/doc/refman/5.7/en/plugin-api.html
https://doi.org/10.1109/SIBCON.2017.7998474
https://doi.org/10.1109/RUSAUTOCON.2019.8867678
https://doi.org/10.1109/RUSAUTOCON.2019.8867678
https://en.wikipedia.org/w/index.php?oldid=850545800
https://en.wikipedia.org/w/index.php?oldid=850545800
https://en.wikipedia.org/w/index.php?title=Apache_Hadoop&oldid=887023781
https://en.wikipedia.org/w/index.php?title=Apache_Hadoop&oldid=887023781
https://en.wikipedia.org/w/index.php?title=Apache_Spark&oldid=887875725
https://en.wikipedia.org/w/index.php?title=Apache_Spark&oldid=887875725
https://doi.org/10.1145/2463676.2465288
https://doi.org/10.1145/2463676.2465288

	Clusterix-Like BigData DBMS
	Abstract
	1 Introduction and Solvable Problem
	2 Accepted Limitations
	3 The Methodology Used for Solving the Problem
	4 Accepted Postulates
	5 IS-Modeling
	5.1 Characteristic of the Initial State
	5.2 The First Iteration of IS-Modeling
	5.3 The Second Iteration of IS-Modeling
	5.4 The Third Iteration of IS-Modeling
	5.5 The Fourth Iteration of IS-Modeling
	5.6 The Fifth Iteration of IS-Modeling

	6 Conclusion
	References

