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Abstract
Over decades, relational database management systems (RDBMSs) have been the first choice to manage data. Recently, due 
to the variety properties of big data, graph database management systems (GDBMSs) have emerged as an important com-
plement to RDBMSs. As pointed out in the existing literature, both RDBMSs and GDBMSs are capable of managing graph 
data and relational data; however, the boundaries of them still remain unclear. For this reason, in this paper, we first extend 
a unified benchmark for RDBMSs and GDBMSs over the same datasets using the same query workload under the same 
metrics. We then conduct extensive experiments to evaluate them and make the following findings: (1) RDBMSs outperform 
GDMBSs by a substantial margin under the workloads which mainly consist of group by, sort, and aggregation operations, 
and their combinations; (2) GDMBSs show their superiority under the workloads that mainly consist of multi-table join, 
pattern match, path identification, and their combinations.

Keywords Relational database · Graph database · Benchmark

1 Introduction

E.F. Codd introduced the relational data model with rela-
tions to represent data, with relational algebra and relational 
calculus to operate data, and relational integrity constraint 
to control the consistency and completeness of data. Since 
then, various RDBMSs have been developed with standard 
SQL to support data definition, data manipulation, and data 
control operations. The relational data model achieves great 
success to support a wide spectrum of applications that are 
related to financial, personnel, manufacturing, and logistical 

data management. Even until now, RDBMSs still remain as 
mainstreaming data management systems.

In recent years, graphs have been shown increasingly 
important to big data applications such as social network 
analysis, spatiotemporal analysis and navigation, and con-
sumer analytics, as it is able to capture complex relation-
ships and data dependencies. For example, in social net-
works, users, pictures, and events are modeled as vertices, 
and relationships between them are modeled as edges. So 
far, RDBMSs have been shown to be capable of dealing 
with graph processing and analysis. RDF-3X [1], Hexastore 
[2], and SW-store [3] are commonly used RDF stores based 
on RDBMSs to manage semantic Web ontology and RDF 
knowledge bases. They transform SPARQL [4] queries over 
RDF [5] data to SQL using sort-merge joins in the relational 
world, and various relational optimization techniques are 
utilized to speed up the query processing.

As another alternative solution, Neo4j [6] was proposed 
as a graph database management system based on the graph 
model to manage graph data, and many other graph database 
management systems including ArangoDB [7], gStore [8, 9] 
are efficient in processing SPARQL queries over RDF data-
sets. Titan has been designed for graph data management 
and analysis. As a typical application example, in finance 
service industry, behaviors (like account statement, calling 
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list, loan history) of enterprises and customers are collected 
and modeled as graphs. Because GDBMSs such as Neo4j 
and ArangoDB often have rich graph algorithms, they are 
used to not only manage these behavior data, but also help 
do the analysis over these data using the algorithms, like 
personal or enterprise credit analysis.

Thus far, great controversies have been raised for the 
comparison between RDBMSs and GDBMSs: which cat-
egory is better. On the one hand, from the perspective of 
GDBMSs, their advantage lies in schema-less property. They 
are able to manage structured, unstructured, or semi-struc-
tured data and thus are more flexible than RDBMSs. Given 
that GDBMSs are able to manage relational data, it is argued 
that RDBMSs may be replaced by GDBMSs. On the other 
hand, from the perspective of RDBMSs, RDBMSs have been 
proved to be capable of dealing with graph data management 
and analysis, and a few recent works have shown that by 
simply extending SQL languages in RDBMSs to support 
graph operations, the performance is comparable between 
RDBMSs and GDBMSs [10–14], verifying this capacity of 
RDBMSs. Furthermore, due to the lack of a unified graph 
model and query language across GDBMSs, which often 
incurs an extra programming and maintenance overhead for 
users, the necessity of GDBMSs is disputed.

To clearly answer this question, we propose a unified 
benchmark for both RDBMSs and GDBMSs. Because 
RDBMSs and GDBMSs have different data models and dif-
ferent query languages, in this benchmark, we target to eval-
uate RDBMSs and GDBMSs over the same datasets using 
the same query workload under the same metrics. First, to 
address the issue that RDBMSs and GDBMSs have differ-
ent data models, we propose a relation-to-graph mapping 
scheme, under which relational data are able to be trans-
formed to graph data. In this way, we use TPC-H [15], which 
is a commonly accepted benchmark in RDBMSs, and extend 
it to evaluate GDBMSs. Similarly, we propose a graph-to-
relation mapping scheme, under which graph data are able to 
be transformed to relational data. We use LDBC [16], which 
is commonly used in GDBMSs, and extend it to evaluate 
RDBMSs. Second, to address the issue that RDBMSs and 
GDBMSs have different query languages, we transform all 
22 SQL queries in TPC-H to graph queries and transform 
all 5 graph queries in LDBC into SQL queries. Third, con-
sider that GDMBSs can adopt different back-end storage 
engines, which could potentially affect the performance of 
GDMBSs. We then evaluate the GDBSMs using different 
storage engines and report our findings. We select Post-
gresql, a popular open-source RDBMS, as the representative 
of RDBMSs and two popular GDBMSs Neo4j, ArangoDB 
as the representatives. We conduct extensive experimental 
evaluations to compare GDBMSs and RDBMSs over TPC-H 
and LDBC under the metrics, including query processing 
time, memory utilization ratio, and CPU utilization ratio.

In summary, our contributions are as follows:

– We extend a unified benchmark for both RDBMSs and 
GDBMSs to evaluate them under the same datasets as 
well as the same metrics.

– We propose a graph-to-relation inter-mapping scheme 
under which graph data and relational data are inter-
transformed. We rewrite all SQL queries in TPC-H to 
graph queries and rewrite all graph queries in LDBC to 
SQL queries.

– We evaluate the performance of the GDBMSs using dif-
ferent back-end storage engines and report our findings.

– We conduct extensive experimental evaluations for exist-
ing popular RDBMSs and GDBMSs over both standard 
TPC-H and LDBC, and report our findings in detail.

The remainder of this paper is organized as follows: We 
review the related work in Sect. 2 and elaborate our unified 
benchmark in Sect. 3, following which we report experimen-
tal results and our findings in Sect. 4, before concluding the 
paper in Sect. 5.

2  Related Work

Our work is related to both RDBMSs benchmark and 
GDBMSs benchmark.

RDBMSs Benchmark As the mainstream commercial data-
base systems, there exist rich RDBMSs benchmarks. Among 
them, the most well accepted are the TPC series. TPC-C 
[17] is an online transaction processing (OLTP) benchmark, 
which involves a mix of five concurrent transactions of dif-
ferent types and complexity. It models order management 
and extracts the workload. TPC-C is mainly used to test the 
capacity of transaction processing. TPC-H is a decision sup-
port benchmark which models business procurement, whose 
datasets consist of 8 tables representing general business 
procedure. The 22 queries and the data populating the data-
base have been designed to evaluate the capacity of handling 
critical business questions. TPC-DS [18] is also a decision 
support benchmark which models several generally applica-
ble aspects of a decision support system, including 24 tables, 
and 99 randomly replaceable SQL queries. It focuses on 
emerging technologies, such as big data systems, to execute 
the benchmark.

GDBMSs Benchmark Unlike RDBMSs benchmarks which 
are proposed by authoritative organization, GDBMSs bench-
marks come from some database companies. NoSQL perfor-
mance benchmark [19] is proposed by ArangoDB [7], with 
its prime target to compare the performance among Mon-
goDB, PostgreSQL, OrientDB, ArangoDB, and Neo4j under 
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the metrics including read/write performance test, memory 
utilization ratio. GDBMSs benchmark [20] is created by 
TigerGraph [21], mainly evaluating the data loading and 
query performance of TigerGraph, Neo4j, Amazon Neptune 
[22], JanusGraph [23], and ArangoDB. The LDBC graph 
analytics benchmark [16] is an industrial-grade benchmark 
for graph analysis platforms. It consists of several typical 
graph algorithms, standard datasets, data generators, and ref-
erence outputs, enabling the objective comparison of graph 
analysis platforms.

As pointed out in existing literature [10], both RDBMSs 
and GDBMSs are shown to be capable of managing rela-
tional and graph data. Nevertheless, the boundary of using 
RDBMSs and GDBMSs still remains unclear, i.e., for 
RDBMSs and GDBMSs, which category should be properly 
used under a given application scenario. To cope with this 
issue, in this paper, we then propose a unified benchmark for 
both RDBMSs and GDBMSs.

3  A Unified Benchmark for RDBMSs 
and GDBMSs

In this section, we present the unified benchmark that is 
applicable for both RDBMSs and GDBMSs. The main idea 
can be described as follows:

– We utilize the standard RDBMSs benchmark, TPC-H, 
and extend it to evaluate the performance for GDBMSs.

– Similarly, we utilize a widely used GDBMSs benchmark, 
LDBC, and extend it to evaluate the performance for 
RDBMSs.

By doing this, we can evaluate RDBMSs and GDBMSs on 
the same datasets with the same query workloads under the 
same metrics.

3.1  Data Generation

3.1.1  Data Generation Schemes

Since RDBMSs and GDBMSs have different data models, 
we need to develop an inter-transformation mechanism 
between relational data and graph data. To transform rela-
tional data to graph data, we propose a relation-to-graph 
mapping schema shown in Tables 1 and 2. In this schema, we 
generate one-to-one mapping between records of tables and 
vertices of the graph. In particular, records from the same 
table are mapped to the same class of vertices, i.e., vertices 
that correspond to the records of the same table are associ-
ated with the same label. Edges of the graph are generated 
according to the primary key and foreign key relationships. 
Specifically, the table containing the foreign key is called the 

child table, and the table containing the primary key is called 
the parent table. For a given record r from a child table, 
and its referenced record s (if any) from the parent table, 

Fig. 1  The database schema for TPC-H benchmark

Fig. 2  The graph schema for TPC-H benchmark

Table 1  Table and vertex mapping

RDBMSs table GDBMSs vertex

PART Part
SUPPLIER Supplier
PARTSUPP Partsupp
LINEITEM Lineitem
ORDERS Orders
CUSTOMER Customer
NATION Nation
REGION Region
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an edge is generated from r to s. By doing this, it is able to 
generate vertices and their edges based on the primary key 
and foreign key relationships. Note that in this paper, we use 
property graph model for GDBMSs to manage data. Thus, 
we generate one-to-one mapping between the attributes and 
the properties for each tuple from entity tables (or relation-
ship tables) and its corresponding vertex (or edge), and set 
the property value to the attribute value accordingly. Then, 
we extract relational data from RDBMSs and transfer it to 
vertex files and edge files that follow the definition of the 
graph schema. By doing this, we can migrate relational data 
to GDBMSs via the built-in import tools in GDBMSs, such 
as neo4j-import in Neo4j and arangoimp in ArangoDB. Fig-
ure 1 shows the database schema for TPC-H benchmark, and 
Fig. 2 gives the transformed graph schema for the TPC-H 
benchmark in RDBMSs. We omit the details since Fig. 2 is 
self-explained.

Similarly, to transform the graph data to the relational 
data, we propose a graph-to-relation mapping scheme as 
well. In this scheme, we simply store the directed edges 
as triples, which are maintained in a relation with three 
attributes, namely fromVertex, edgeLabel, toVertex. As 
mentioned before, we utilize LDBC as the graph bench-
mark. This benchmark includes four datasets ranging from 
thousands of vertices and edges to millions of vertices and 
edges. The data sets cover four application domains, rang-
ing from social network, citation network, Web graphs, to 
communication network. For ease of illustration, we label 
the dataset to small(S), medium(M), large(L), and extra 
(XL) according to its data size. Since there are no labels 
associated with the vertices, we do not create a separate 
vertex table for them.

3.1.2  Datasets to be Used

In TPC-H benchmark, the relational datasets, shown in 
Table 3, are generated using the TPC-H data generator 
with different sizes, ranging from 50 MB to 1 GB. Accord-
ingly, we transform the relational datasets to the graph 
datasets based on the relation-to-graph mapping scheme, 

and the number of vertices and edges is shown in Table 3 
as well, respectively. In LDBC benchmark, the graph data-
sets are shown in Table 4. Accordingly, we transform the 
graph datasets to relational datasets based on the graph-
to-relation mapping scheme.

3.2  Query Workload

The query workload is divided into three categories which 
are listed in Table 5. The first category is named as atomic 
relational queries consisting of four primitive operations, 
including Projection, Aggregation, Join, and Order by. We 
build this category of query workload to evaluate the per-
formance of primitive relational operations implemented 
in GDBMSs. The second category is named as TPC-H 
query workloads. This category consists of 22 queries 
used in TPC-H. We target to evaluate the performance 
of GDMBSs under the case that the legacy RDBMSs are 
good at. The third category is named as graph query work-
loads, including 5 graph algorithms in LDBC Benchmark. 

Table 2  Table key and 
relationship mapping

From key To key Relationship

PART.PARTKEY PARTSUPP.PARTKEY Part2partsupp
SUPPLIER.SUPPKEY PARTSUPP.SUPPKEY Supplier2partsupp
PARTSUPP.PARTSUPPKEY LINEITEM.PARTSUPPKEY Partsupp2lineitem
ORDERS.ORDERKEY LINEITEM.ORDERKEY orders2lineitem
CUSTOMER.CUSTKEY ORDERS.CUSTKEY Customer2orders
NATION.NATIONKEY SUPPLIER.NATIONKEY Nation2supplier
NATION.NATIONKEY CUSTOMER.NATIONKEY Nation2customer
REGION.REGIONKEY NATION.REGIONKEY Region2nation

Table 3  TPC-H datasets

ID Size Vertices Edges

tpch-0.05 50 MB 432,844 2,261,723
tpch-0.1 100 MB 866,602 4,530,029
tpch-0.5 500 MB 4,330,622 22,634,256
tpch-1 1 GB 8,661,245 45,268,530

Table 4  The real graph datasets

Graphs Vertices Edges Size Domain

Wiki-Vote 7115 103,689 S Social
Cit-HepTh 27,770 352,807 M Citation
Web-Stanford 281,903 2,312,497 L Web graphs
Wiki-Talk 2,394,385 5,021,410 XL Communication
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We target to evaluate the performance of RDBMSs under 
the case that the GDBMSs are good at.

3.2.1  Atomic Relational Queries

Atomic relational queries emphasize on the evaluation of 
primitive relational operations, which are Projection, Aggre-
gation, Join, and Order by. Projection queries are utilized for 
choosing which columns (or expressions) the queries should 
return. Join queries combine columns from one or more tables 
in a RDBMS. Aggregation queries are designed for grouping 
together the values of multiple rows. Order by queries are for 
sorting the rows of result set.

3.2.2  TPC‑H Query Workloads

Typically, each GDBMS provides an SQL-like query language 
(e.g., Cypher for Neo4j and AQL for ArangoDB) to support 
data manipulation over graph data [24]. We transform all of 
the 22 queries of TPC-H into equivalent SQL-like graph query 
statements. Although among different GDBMSs, graph query 
languages could vary a lot, they basically belong to declarative 
languages, a user or a programmer merely specifies what is 
to be done rather than how to do in the query statements. For 
ease of illustration, we choose Neo4j as the representative of 
GDBMSs. For reference, as compared to the primitive rela-
tional operations in the RDBMSs, we list their counterparts 

in the GDBMSs and show them in Table 6. For the opera-
tions, Projection, Aggregation, and Order by in the RDBMSs, 
GDBMSs provide similar operations of the RDBMSs. How-
ever, GDBMSs implement the Join operation in quite a dif-
ferent way. Recall that a record in RDBMSs is mapped to one 
and single one vertex in the graph. Besides, for a given record r 
from a child table, and its referenced record s (if any) from the 
parent table, an edge in the graph is generated from r to s. For 
this reason, we transform the Join operation to a path query 
starting from r to s. To gain a better understanding, we further 
provide two examples of the transformations from primitive 
operations in RDBMSs to their counterpart in GDBMSs which 
are shown in Algorithm 1 and Algorithm 2, respectively.

Algorithm 1 AQL for TPC-H Query 1
1: FOR line IN lineitem
2: FILTER
3: DATE ISO8601(line.L SHIPDATE)<=DATE ADD(
4: DATE ISO8601(′1998− 12− 01′),−90, ”day”)
5: COLLECT
6: RETURNFLAG = line.L RETURNFLAG,
7: LINESTATUS = line.L LINESTATUS,
8: sum qty =SUM(TO NUMBER( line.L QUANTITY )),
9: and other aggregation operations
10: SORT RETURNFLAG,LINESTATUS
11: RETURN
12: L RETURNFLAG : RETURNFLAG,
13: L LINESTATUS : LINESTATUS,
14: sum pty,
15: and other elements retrieved by collect

Table 5  Representatives of 
RDBMSs and GDBMSs to be 
compared

Category Operations # Of queries

Atomic relational queries Project, Aggregation, Join, Order by 4
TPC-H workloads All the TPC-H query workloads 22
Graph query workloads BFS, CDLP, PR, LCC, WCC 5

Algorithm 2 Cypher for TPC-H Query 2
1: MATCH(ps : Partsupp) − [ ]− > (s : Supplier) − [ ]− > (n : Nation) − [ ]− > (r :

Region)
2: WHERE
3: r.rName =′ EUROPE′

4: WITH min(ps.psSupplycost) as minvalue
5: MATCH(ps : Partsupp) − [ ]− > (p : Part), (ps : Partsupp) − [ ]− > (s : Supplier) −

[ ]− > (n : Nation)− [ ]− > (r : Region)
6: WHERE
7: p.pSize = 13 and p.pType = ′. ∗ SMALL.∗′ and r.rName =′ EUROPE′

and ps.psSupplycost = minvalue
8: RETURN
9: s.sAcctbal,
10: s.sName,
11: and other elements
12: ORDER BY
13: s.sAcctbal desc, n.nName, s.sName, p.pPartkey
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Algorithm 3 Bread-First Search in SQL
1: with RECURSIVE BFS(toID, level, fromid, paths)
2: as(
3: select toID, 0, fromID,ARRAY [null, toID] from Rrel

4: where toID = m and fromID is NULL
5: union all
6: select Rrel.toID, level + 1, BFS.toID, paths||Rrel.toID
7: from Rrel, BFS
8: where Rrel.fromID = BFS.toID
9: and level < n
10: )
11: select level, paths from BFS

3.2.3  Graph Query workload

We re-implement the five graph algorithms using 
SQL statements. For recursive algorithms, taking BFS 

WCC (weakly connected components) [32], none of them 
can be implemented in recursive SQL queries due to their 
Group by and Aggregation operations. So we use the pro-
cedure with While loop. Taking CDLP for example (shown 
in Algorithm 4), we first create a table LP(ID, label) to 
store ID and label of a vertex. Secondly, we figure out its 
neighbors of each vertex in LP and store the neighbors into 
Radj . Thirdly, for each vertex v, we calculate the frequency 
of the labels that v’s neighbors have and set the label of v 
to the most frequent label that v’s neighbors have. In case 
that there might exist multiple labels to be the most fre-
quent, we can simply choose one label among them with 
the minimum value, e.g., alphabetical order. Finally, loop 
operations with the while clause continue to execute until 
rectimes >= times , where times represents the loop times.

Table 6  RDBMSs’ and 
GDBMSs’ operations mapping

DB/Operations Projection Aggregation Join Order by

RDBMS Select Group by/sum/average ... Join Order by
GDBMS Match Group by/sum/average ... Edges between 

vertexes
Order by

(breadth-first search) [25] for example (shown in Algo-
rithm 3), we use with [recursive] [26] clause to do the 
transformation by referring to SQL’99 [27, 28]. Algo-
rithm 3 shows the details on how to implement BFS in 
SQL. We first insert a record which fromID equals NULL 
and toID equals the start vertex’s ID into relation Rrel . 
Then, we select the initial record into the temporary table 
BFS(toID, level, fromid, paths). Finally, iterative opera-
tions with the with...unionall clause continue to execute 
until level >= n , where n represents the depth of BFS.

For the following iterative algorithms, CDLP (com-
munity detection using label propagation) [29], PR (Pag-
eRank) [30], LCC (local clustering coefficient) [31], and 

Algorithm 4 Community Detection Using Label Propagation in SQL
1: LP (ID, label) as select ID, ID from Rvertex

2: while (rec times ≤ times) do
3: Radj(ID, label) as select lp1.ID, lp2.label from LP lp1
4: left join Rrel rel on lp1.ID = Rrel.fromID
5: left join LP lp2 on Rrel.toID = lp2.ID
6: Rcount(ID, label, cnt) as select ID, label, count(label) from Radj

7: group by ID, label
8: TRUNCATE LP ;
9: LP (ID, label) as select distinct on(vertexid)vertexid, label from Rcount

10: group by ID, label, cnt
11: order by ndoeid, cnt desc, label
12: TRUNCATE Radj

13: TRUNCATE Rcount

14: rec times := rec times+ 1
15: end while

3.3  Representatives of RDBMSs and GDBMSs to be 
Compared

We choose PostgreSQL, Oracle, and Microsoft SQL 
SERVER as the representatives of RDBMSs because they 
are widely used in the application domains. Note that our 
focus is to make a thorough study between RDBMSs and 
GDBMSs. Thus, we do not evaluate RDBMSs and GDBMSs 
separately. Namely, we choose PostgreSQL as the represent-
ative for RDBMSs in the relational operation evaluation. 
Similarly, we choose Neo4j and ArangoDB as the repre-
sentatives of GDBMSs. For reference, versions of RDBMSs 
and GDBMSs are listed in Table 7.
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3.4  Metrics

We measure the performance of RDMBSs and GDBMSs 
under the following metrics:

– Query processing time: the execution time of a graph 
query or an SQL query, which is returned and collected 
by RDBMSs and GDBMSs;

– Memory usage ratio: the peak usage ratio of memory 
during the execution of the whole workload;

– CPU usage ratio: the peak usage ratio of CPU during the 
execution of the whole workload;

We run each graph and SQL query for five times, and all the 
query processing time, memory usage ratio, and CPU usage 
ratio are computed on average.

4  Experiments

In this section, we first introduce the experimental setup. We 
then conduct extensive analysis of GDBMSs and RDBMSs 
over the same datasets, using the same query workload, 
under the same metrics. We finally summarize our findings.

4.1  Experimental Setup

Experimental Environment The experiments are con-
ducted on a single vertex with a Intel(R) Xeon(R) Gold 6138 
CPU @ 2.00 GHz processor, 256 G RAM, a 60T hard disk. 
We install Ubuntu 16.04 operating system, Java 1.8.0 with a 
64-bit server VM. All the databases we examine are installed 
in this vertex. The hardware specifications of the machines 
are listed in Table 8.

Consider that the adoption of different storage engines 
could potentially affect the performance of GDBMSs. 
We first evaluate the effect of back-end storage engines of 
GDBMSs. We then compare GDBMSs and RDBMSs on 
the same datasets (i.e., TCP-H and LDBC), using the same 
query workload, and the same metrics. Details of the com-
parison setup are listed in the following.

• Back-end storage engines of GDBMSs The GDBMSs 
use a variety of back-end storage engines, which will 
bring different query performance for the same data 
model. Therefore, we first investigate the impact of dif-
ferent back-end storage engines on read and write per-
formance under the same graph model.

• Relational operations We evaluate the performance of 
each database when processing general TPC-H queries 
and some extra evaluation queries. For TPC-H queries, 
we execute 22 queries on three databases: PostgreSQL 
as the representative for RDBMSs, Neo4j as the repre-
sentative GDBMSs, and ArangoDB as a typical system 
for multi-model NoSQL database which includes graph 
data models. Twenty-two queries are executed on each of 
them, and meanwhile, the processing time, CPU usage, 
and main memory usage are recorded. Mean values are 
calculated for the processing results of the 22 queries to 
measure the general capacity of handling business-ori-
ented ad hoc queries and concurrent data modifications 
for 3 databases. The evaluation for TPC-H queries only 
measures general capacity for business-oriented scenar-
ios, yet every query in TPC-H consists of many atomic 
operations such as Projection, Aggregation, Join and so 
on. Four extra queries have been designed to measure the 
performance of processing 4 typical atomic operations: 
Projection, Join, Aggregation, and Order by.

• Graph algorithms For graph algorithms, we execute 5 
graph algorithms we have introduced in Sect. 3 on four 
databases: Neo4j as the representative for GDBMSs; 
Oracle, PostgreSQL, and Microsoft SQL Server as 3 
typical RDBMSs. Every graph algorithm is executed on 
4 databases, and the processing time is recorded for each 
database.

4.2  Experimental Results and Analysis

In this section, we report the experimental results and ana-
lyze the results by highlighting our findings.

Table 7  Testing object

DBMS VERSION CATEGORY

PostgreSQL 9.5 RDBMS
Oracle 11 g RDBMS
MSSQL 2017 RDBMS
Neo4j 3.4.6 GDBMS
ArangoDB 3.3.19 GDBMS

Table 8  Hardware specifications

Component Parameter

CPU Intel(R) Xeon(R) Gold 6138 CPU @ 2.00GHz
Cores 40 (80 threads)
Memory 256 G
Disk 60 T
GPU Titan V
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4.2.1  Back‑end Storage Engines Evaluation

Note that the separation of compute and storage is archi-
tected in GDBMSs. For this reason, the GDBMSs can 
adopt different back-end storage engines. To make a clear 

explanation about the impact of the back-end storage engine 
on query performance, we conduct the following experi-
ments to evaluate the performance of HugeGraph [33] with 
different back-end storage engines shown in Table 9.

Firstly, we test the performance of data loading. The 
results of four different back-end storage engines are shown 
in Fig. 3. It can be observed that key-value store engines 
have clear advantages over the row store engine, owing to 
its back-end structure based on LSM-tree, while row store 
engines like MySQL utilize B-tree [34] for persistent stor-
age. For B-tree, small update operations may cause much 
random write operations. On the contrary, LSM-tree can deal 
with the key-value pairs in a batch to convert the random 
write operations to sequential write operations, which can 
magnificently improve the efficiencies of write operations.

Then, we compare the performance of three typical algo-
rithms on different back-end storage engines. Figures 4, 5, 
and 6 illustrate the performances on shortest path algorithm, 
k-neighbor algorithm [35], and find-all-paths algorithm, 
respectively. We find that back-end storage engines with 
Hbase [36] and Cassandra [37] perform the worst in any 
algorithm test. MySQL performs similarly to RocksDB [38], 
and RocksDB performs even better in some tests. Just as 
discussed in the load performance above, key-value store 
engines based on the LSM-tree incur better performance in 
write operations, but it also costs much more for read opera-
tions, which is why back-end storage engine with MySQL 
performs better in these algorithms tests. Interestingly, we 
also find that RocksDB performs well and even better than 
MySQL. This benefit is from the read performance opti-
mization strategy implemented by RocksDB. Specifically, 

Table 9  Different storage engines

Back-end storage 
engine

Version Category

RocksDB 5.8 Key-value storage engine
Hbase 2.2 Key-value storage engine
Cassandra 3.11 Key-value storage engine
Neo4j 3.4.6 Native graph storage engine
MySQL 5.7 Row storage engine

Fig. 3  The performance of data load

Fig. 4  Testing the shortest path 
algorithm over 4 back-end stor-
age engines

(a) (b)

(c) (d)
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RocksDB implements two bloom filters [39]. One is utilized 
to filter blocks before reading blocks (the same as LevelDB 
[40]) without key. The other is dynamically generated to 
achieve key filtering in memory (before block read) when 
querying from memtables, improving the read performance 
tremendously. Combined with the official benchmark results 
[41] given by HugeGraph, Neo4j performs better with native 
graph storage than HugeGraph with Rocksdb.

From the above analysis, we can observe that the back-
end storage engine plays an important role in query perfor-
mance. The row-based storage engine used by RDBMSs do 
not perform well both for read and write operations. The 
key-value storage engines with the built-in LSM-tree index 
show their superiority in write operation, while the native 
storage of graphs outperforms the others in read operations.

Fig. 5  Testing the K-neighbor 
algorithm over 4 back-end stor-
age engines

(a) (b)

(c) (d)

Fig. 6  Testing find-all-paths 
algorithm over 4 back-end stor-
age engines

(a) (b)

(c) (d)
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4.2.2  Relational Operation Evaluation

We carry out relational operation evaluation on three data-
bases, namely PostgreSQL, Neo4j, and ArangoDB. Fig-
ure 7a illustrates the averaged processing time of the whole 
22 TPC-H queries. From the figure, we can observe that 
the processing time in Neo4j and ArangoDB is significantly 
longer than that in PostgreSQL, although Neo4j is widely 

used by both academic researchers and industrial engineers. 
Figure 7b and c depicts the averaged CPU usage rate and 
the main memory usage rate, respectively. From the figures, 
we can observe that PostgreSQL also outperforms the other 
two databases in terms of CPU and main memory usages. 
Compared with Neo4j, ArangoDB consumes relatively less 
CPU but more main memory.

Fig. 7  Relational operation test

(a) (b)

(c) (d)

Fig. 8  Atomic operation test

(a) (b)

(c) (d)
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The above results indicate that compared with GDBMSs, 
RDBMSs have advantages in terms of query processing time 
and resource consumption. When the data size becomes 
larger, GDBMSs tend to be incompetent on the efficiency 
of query processing.

Besides, we also carry out an experiment to evaluate the 
processing time of 4 typical atomic operations (i.e., Pro-
jection, Join, Aggregation, and Order by) in RDBMSs. As 
Fig. 8 illustrates the results, we can observe that GDBMSs 
excel in Projection and Join operations but have disadvan-
tages in Aggregation, and Order by operations. Note that 
with the increase in data scale, time consumption of Post-
greSQL on Projection and Join raises sharply while Neo4j 
and ArangoDB increase smoothly. Meanwhile, for Aggre-
gation, and Order by operations, there is much higher dif-
ference regarding the time consumption when data scale 
increases between RDBMSs and GDBMSs.

From the above experiments, we can find that both 
RDBMSs and GDBMSs have their own advantages on pro-
cessing relational operations, but unexpectedly there is a 
high difference between them when handling TPC-H work-
loads. Therefore, we need to conduct an extra query optimi-
zation experiment to explore the reason.

The GDBMSs show their inefficiency when dealing 
with TPC-H datasets. Recall that GDBMSs are separately 
architected in their compute and storage modules. Moreo-
ver, in some GDBMSs, like Neo4J, properties of vertices 
and edges are physically linked in the storage system. This 
is good for traversing graph-structured data. However, 
this kind of storage structures requires plenty of time to 

query data when vertices have many properties without 
any index.

We then analyze the queries that consist of many complex 
operations over attributes (property of vertices in GDBMSs) 
such as the Aggregation operation and the Order by opera-
tion. Then, we create indices on these attributes/properties in 
3 databases and measure the query processing time again. As 
shown in Fig. 7d, the improvement is apparent for GDBMSs, 
especially for Neo4j, whose improvement reaches over 40%, 
making its time consumption be close to PostgreSQL’s time 
consumption. Meanwhile, we have also carried out evalu-
ation on a graph dataset Wiki-Vote. The result indicates 
that the difference of time consumption for GDBMSs and 
RDBMSs tends to be rather slight, since there is no property 
for any vertex in this dataset.

From the experiments and analysis above, we can find 
that both RDBMSs and GDBMSs have their advantages 
of dealing with relational operations, whereas in business-
oriented scenarios such as TPC-H workload, GDBMSs 
cannot have a satisfied performance due to their storage 
strategies. According to our extra experiments, the problem 
can be solved by creating indexes on properties properly 
and changing the schema for graph data transferred from 
RDBMSs, for schema of GDBMSs is flexible and adjust-
able. To be specific, by creating indexes on properties that 
constantly retrieved and avoid adding too many properties 
in vertices via extracting some properties and creating as 
vertex, GDBMSs can achieve much better performance for 
relational application scenarios than before, but still slightly 
worse than RDBMSs.

Fig. 9  Testing 4 graph algo-
rithms over 4 datasets



320 Y. Cheng et al.

1 3

4.2.3  Graph Algorithm Evaluation

We carry out graph algorithm evaluation over four real 
graphs. Figures 9 and 10 illustrate the performance of the 
five algorithms (mentioned in Sect. 3) over four directed 
graphs we have introduced in the part of datasets, namely 
Wiki-Vote, Cit-HepTh, Web-Stanford, and Wiki-Talk. We 
omitted the result for a graph algorithm if it fails to finish in 
1 hour. In addition, the variable level represents the depth of 
recursive operations for BFS algorithm.

As shown in Fig. 9, we can observe that as expected, 
Neo4j has the best efficiency performance on these four real 
graphs.

Oracle and MSSQL fail to process LCC and WCC algo-
rithms in large dataset in one hour, since LCC and WCC 
have massive sophisticated operations, including multi-
levels recursive join operations which are time-consuming. 
Specifically, we find the intermediate results reach at a scale 
of ten billions for our M (see Table 4) size dataset when 
we execute LCC algorithm. WCC algorithm traverses all 
vertexes using for ... in loops, each of which involves sev-
eral iterations to process Join, Insert, Exists operations. The 
number of iterations is an important factor in determining 
the performance. Departing from WCC algorithm which has 
multi-levels recursive join operation, CDLP and PR simply 
find adjacent vertexes for every vertex and loop several times 
according to a user-defined parameter. Moreover, as graph 
datasets scale from S to XL, the time consumption increases 
for PR and CDLP.

For BFS algorithm, we set the parameter level from 1 
to 4; Fig. 10 shows that the time consumption of Neo4j is 
very close to RDBMSs on level 1, whereas, the performance 
differential is getting bigger as the level increases. When 
level reaches 4, RDBMSs cannot finish their processing in 
a certain time, namely stuck or terminated. We also con-
duct extensive tests by setting level to be larger than 4; only 
Neo4j processes the workload in a reasonable time. This 
result further proves that GDBMSs outperform RDBMSs 
in dealing with iterative and recursive operations. RDBMSs 
can just complete the operations having only a fewer depth 
of iterations and small scale of datasets in a reasonable time.

5  Conclusion

RDBMSs are ubiquitously used for storing, manipulat-
ing, and retrieving data over past decades. Meanwhile, 
the diversity and complexity of the applications led to 
challenges for RDBMSs to deal with sophisticated rela-
tionships between entities. For this reason, GDBMSs 
have lately received considerable attention which employs 
graph structures with vertices, edges, and properties to 
represent and store data, whereas both RDBMSs and 
GDBMSs are capable of managing relational data and 
graph data, making the boundaries of them unclear. To 
clearly answer the question, we have proposed a unified 
benchmark referring to existing benchmarks for RDBMSs 
and GDBMSs, which consist of relational workloads and 

Fig. 10  Testing BFS algorithm 
over 4 datasets

(a) (b)

(c) (d)
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graph algorithms, to evaluate databases on the same data-
sets under the same metrics. We have implemented an 
inter-transfer between SQL and graph query languages for 
querying and importing data in RDBMSs and GDBMSs, 
respectively. We have conducted extensive experimental 
evaluations for existing popular RDBMSs and GDBMSs 
over both standard TPC-H and LDBC and reported our 
findings in detail. Meanwhile, we have conducted further 
comparative experiments to find out the effect of differ-
ent data models and back-end storage engines on query 
performance for GDBMSs. We can conclude that, shown 
in Tables 10 and 11, RDBMSs outperform GDMBSs by 
a substantial margin under the workloads which mainly 
consist of group by, sort, and aggregation operations, and 
their combinations. GDMBSs show their superiority under 
the workloads that mainly consist of multi-table join, pat-
tern match, path identification, and their combinations. For 
GDBMSs with different storage engines, key-value storage 
engines with LSM-tree outperform for write operations, 
while native graph storage engine has an advantage for 
read operations. Row storage engines do not stand out in 
either read or write operations. As a future work, we will 
study the optimization on both data models and back-end 
storage engines.
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