
Vol.:(0123456789)1 3

Data Science and Engineering (2019) 4:309–322
https://doi.org/10.1007/s41019-019-00110-3

Which Category Is Better: Benchmarking Relational and Graph
Database Management Systems

Yijian Cheng1 · Pengjie Ding1 · Tongtong Wang1 · Wei Lu1 · Xiaoyong Du1

Received: 16 August 2019 / Revised: 21 October 2019 / Accepted: 28 October 2019 / Published online: 11 November 2019
© The Author(s) 2019

Abstract
Over decades, relational database management systems (RDBMSs) have been the first choice to manage data. Recently, due
to the variety properties of big data, graph database management systems (GDBMSs) have emerged as an important com-
plement to RDBMSs. As pointed out in the existing literature, both RDBMSs and GDBMSs are capable of managing graph
data and relational data; however, the boundaries of them still remain unclear. For this reason, in this paper, we first extend
a unified benchmark for RDBMSs and GDBMSs over the same datasets using the same query workload under the same
metrics. We then conduct extensive experiments to evaluate them and make the following findings: (1) RDBMSs outperform
GDMBSs by a substantial margin under the workloads which mainly consist of group by, sort, and aggregation operations,
and their combinations; (2) GDMBSs show their superiority under the workloads that mainly consist of multi-table join,
pattern match, path identification, and their combinations.

Keywords  Relational database · Graph database · Benchmark

1  Introduction

E.F. Codd introduced the relational data model with rela-
tions to represent data, with relational algebra and relational
calculus to operate data, and relational integrity constraint
to control the consistency and completeness of data. Since
then, various RDBMSs have been developed with standard
SQL to support data definition, data manipulation, and data
control operations. The relational data model achieves great
success to support a wide spectrum of applications that are
related to financial, personnel, manufacturing, and logistical

data management. Even until now, RDBMSs still remain as
mainstreaming data management systems.

In recent years, graphs have been shown increasingly
important to big data applications such as social network
analysis, spatiotemporal analysis and navigation, and con-
sumer analytics, as it is able to capture complex relation-
ships and data dependencies. For example, in social net-
works, users, pictures, and events are modeled as vertices,
and relationships between them are modeled as edges. So
far, RDBMSs have been shown to be capable of dealing
with graph processing and analysis. RDF-3X [1], Hexastore
[2], and SW-store [3] are commonly used RDF stores based
on RDBMSs to manage semantic Web ontology and RDF
knowledge bases. They transform SPARQL [4] queries over
RDF [5] data to SQL using sort-merge joins in the relational
world, and various relational optimization techniques are
utilized to speed up the query processing.

As another alternative solution, Neo4j [6] was proposed
as a graph database management system based on the graph
model to manage graph data, and many other graph database
management systems including ArangoDB [7], gStore [8, 9]
are efficient in processing SPARQL queries over RDF data-
sets. Titan has been designed for graph data management
and analysis. As a typical application example, in finance
service industry, behaviors (like account statement, calling

 *	 Wei Lu
	 lu‑wei@ruc.edu.cn

	 Yijian Cheng
	 yijiancheng@ruc.edu.cn

	 Pengjie Ding
	 pengjie@ruc.edu.cn

	 Tongtong Wang
	 wttrucer@ruc.edu.cn

	 Xiaoyong Du
	 duyong@ruc.edu.cn

1	 Renmin University of China, Beijing, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-019-00110-3&domain=pdf

310	 Y. Cheng et al.

1 3

list, loan history) of enterprises and customers are collected
and modeled as graphs. Because GDBMSs such as Neo4j
and ArangoDB often have rich graph algorithms, they are
used to not only manage these behavior data, but also help
do the analysis over these data using the algorithms, like
personal or enterprise credit analysis.

Thus far, great controversies have been raised for the
comparison between RDBMSs and GDBMSs: which cat-
egory is better. On the one hand, from the perspective of
GDBMSs, their advantage lies in schema-less property. They
are able to manage structured, unstructured, or semi-struc-
tured data and thus are more flexible than RDBMSs. Given
that GDBMSs are able to manage relational data, it is argued
that RDBMSs may be replaced by GDBMSs. On the other
hand, from the perspective of RDBMSs, RDBMSs have been
proved to be capable of dealing with graph data management
and analysis, and a few recent works have shown that by
simply extending SQL languages in RDBMSs to support
graph operations, the performance is comparable between
RDBMSs and GDBMSs [10–14], verifying this capacity of
RDBMSs. Furthermore, due to the lack of a unified graph
model and query language across GDBMSs, which often
incurs an extra programming and maintenance overhead for
users, the necessity of GDBMSs is disputed.

To clearly answer this question, we propose a unified
benchmark for both RDBMSs and GDBMSs. Because
RDBMSs and GDBMSs have different data models and dif-
ferent query languages, in this benchmark, we target to eval-
uate RDBMSs and GDBMSs over the same datasets using
the same query workload under the same metrics. First, to
address the issue that RDBMSs and GDBMSs have differ-
ent data models, we propose a relation-to-graph mapping
scheme, under which relational data are able to be trans-
formed to graph data. In this way, we use TPC-H [15], which
is a commonly accepted benchmark in RDBMSs, and extend
it to evaluate GDBMSs. Similarly, we propose a graph-to-
relation mapping scheme, under which graph data are able to
be transformed to relational data. We use LDBC [16], which
is commonly used in GDBMSs, and extend it to evaluate
RDBMSs. Second, to address the issue that RDBMSs and
GDBMSs have different query languages, we transform all
22 SQL queries in TPC-H to graph queries and transform
all 5 graph queries in LDBC into SQL queries. Third, con-
sider that GDMBSs can adopt different back-end storage
engines, which could potentially affect the performance of
GDMBSs. We then evaluate the GDBSMs using different
storage engines and report our findings. We select Post-
gresql, a popular open-source RDBMS, as the representative
of RDBMSs and two popular GDBMSs Neo4j, ArangoDB
as the representatives. We conduct extensive experimental
evaluations to compare GDBMSs and RDBMSs over TPC-H
and LDBC under the metrics, including query processing
time, memory utilization ratio, and CPU utilization ratio.

In summary, our contributions are as follows:

–	 We extend a unified benchmark for both RDBMSs and
GDBMSs to evaluate them under the same datasets as
well as the same metrics.

–	 We propose a graph-to-relation inter-mapping scheme
under which graph data and relational data are inter-
transformed. We rewrite all SQL queries in TPC-H to
graph queries and rewrite all graph queries in LDBC to
SQL queries.

–	 We evaluate the performance of the GDBMSs using dif-
ferent back-end storage engines and report our findings.

–	 We conduct extensive experimental evaluations for exist-
ing popular RDBMSs and GDBMSs over both standard
TPC-H and LDBC, and report our findings in detail.

The remainder of this paper is organized as follows: We
review the related work in Sect. 2 and elaborate our unified
benchmark in Sect. 3, following which we report experimen-
tal results and our findings in Sect. 4, before concluding the
paper in Sect. 5.

2 � Related Work

Our work is related to both RDBMSs benchmark and
GDBMSs benchmark.

RDBMSs Benchmark As the mainstream commercial data-
base systems, there exist rich RDBMSs benchmarks. Among
them, the most well accepted are the TPC series. TPC-C
[17] is an online transaction processing (OLTP) benchmark,
which involves a mix of five concurrent transactions of dif-
ferent types and complexity. It models order management
and extracts the workload. TPC-C is mainly used to test the
capacity of transaction processing. TPC-H is a decision sup-
port benchmark which models business procurement, whose
datasets consist of 8 tables representing general business
procedure. The 22 queries and the data populating the data-
base have been designed to evaluate the capacity of handling
critical business questions. TPC-DS [18] is also a decision
support benchmark which models several generally applica-
ble aspects of a decision support system, including 24 tables,
and 99 randomly replaceable SQL queries. It focuses on
emerging technologies, such as big data systems, to execute
the benchmark.

GDBMSs Benchmark Unlike RDBMSs benchmarks which
are proposed by authoritative organization, GDBMSs bench-
marks come from some database companies. NoSQL perfor-
mance benchmark [19] is proposed by ArangoDB [7], with
its prime target to compare the performance among Mon-
goDB, PostgreSQL, OrientDB, ArangoDB, and Neo4j under

311Which Category Is Better: Benchmarking Relational and Graph Database Management Systems﻿	

1 3

the metrics including read/write performance test, memory
utilization ratio. GDBMSs benchmark [20] is created by
TigerGraph [21], mainly evaluating the data loading and
query performance of TigerGraph, Neo4j, Amazon Neptune
[22], JanusGraph [23], and ArangoDB. The LDBC graph
analytics benchmark [16] is an industrial-grade benchmark
for graph analysis platforms. It consists of several typical
graph algorithms, standard datasets, data generators, and ref-
erence outputs, enabling the objective comparison of graph
analysis platforms.

As pointed out in existing literature [10], both RDBMSs
and GDBMSs are shown to be capable of managing rela-
tional and graph data. Nevertheless, the boundary of using
RDBMSs and GDBMSs still remains unclear, i.e., for
RDBMSs and GDBMSs, which category should be properly
used under a given application scenario. To cope with this
issue, in this paper, we then propose a unified benchmark for
both RDBMSs and GDBMSs.

3 � A Unified Benchmark for RDBMSs
and GDBMSs

In this section, we present the unified benchmark that is
applicable for both RDBMSs and GDBMSs. The main idea
can be described as follows:

–	 We utilize the standard RDBMSs benchmark, TPC-H,
and extend it to evaluate the performance for GDBMSs.

–	 Similarly, we utilize a widely used GDBMSs benchmark,
LDBC, and extend it to evaluate the performance for
RDBMSs.

By doing this, we can evaluate RDBMSs and GDBMSs on
the same datasets with the same query workloads under the
same metrics.

3.1 � Data Generation

3.1.1 � Data Generation Schemes

Since RDBMSs and GDBMSs have different data models,
we need to develop an inter-transformation mechanism
between relational data and graph data. To transform rela-
tional data to graph data, we propose a relation-to-graph
mapping schema shown in Tables 1 and 2. In this schema, we
generate one-to-one mapping between records of tables and
vertices of the graph. In particular, records from the same
table are mapped to the same class of vertices, i.e., vertices
that correspond to the records of the same table are associ-
ated with the same label. Edges of the graph are generated
according to the primary key and foreign key relationships.
Specifically, the table containing the foreign key is called the

child table, and the table containing the primary key is called
the parent table. For a given record r from a child table,
and its referenced record s (if any) from the parent table,

Fig. 1   The database schema for TPC-H benchmark

Fig. 2   The graph schema for TPC-H benchmark

Table 1   Table and vertex mapping

RDBMSs table GDBMSs vertex

PART​ Part
SUPPLIER Supplier
PARTSUPP Partsupp
LINEITEM Lineitem
ORDERS Orders
CUSTOMER Customer
NATION Nation
REGION Region

312	 Y. Cheng et al.

1 3

an edge is generated from r to s. By doing this, it is able to
generate vertices and their edges based on the primary key
and foreign key relationships. Note that in this paper, we use
property graph model for GDBMSs to manage data. Thus,
we generate one-to-one mapping between the attributes and
the properties for each tuple from entity tables (or relation-
ship tables) and its corresponding vertex (or edge), and set
the property value to the attribute value accordingly. Then,
we extract relational data from RDBMSs and transfer it to
vertex files and edge files that follow the definition of the
graph schema. By doing this, we can migrate relational data
to GDBMSs via the built-in import tools in GDBMSs, such
as neo4j-import in Neo4j and arangoimp in ArangoDB. Fig-
ure 1 shows the database schema for TPC-H benchmark, and
Fig. 2 gives the transformed graph schema for the TPC-H
benchmark in RDBMSs. We omit the details since Fig. 2 is
self-explained.

Similarly, to transform the graph data to the relational
data, we propose a graph-to-relation mapping scheme as
well. In this scheme, we simply store the directed edges
as triples, which are maintained in a relation with three
attributes, namely fromVertex, edgeLabel, toVertex. As
mentioned before, we utilize LDBC as the graph bench-
mark. This benchmark includes four datasets ranging from
thousands of vertices and edges to millions of vertices and
edges. The data sets cover four application domains, rang-
ing from social network, citation network, Web graphs, to
communication network. For ease of illustration, we label
the dataset to small(S), medium(M), large(L), and extra
(XL) according to its data size. Since there are no labels
associated with the vertices, we do not create a separate
vertex table for them.

3.1.2 � Datasets to be Used

In TPC-H benchmark, the relational datasets, shown in
Table 3, are generated using the TPC-H data generator
with different sizes, ranging from 50 MB to 1 GB. Accord-
ingly, we transform the relational datasets to the graph
datasets based on the relation-to-graph mapping scheme,

and the number of vertices and edges is shown in Table 3
as well, respectively. In LDBC benchmark, the graph data-
sets are shown in Table 4. Accordingly, we transform the
graph datasets to relational datasets based on the graph-
to-relation mapping scheme.

3.2 � Query Workload

The query workload is divided into three categories which
are listed in Table 5. The first category is named as atomic
relational queries consisting of four primitive operations,
including Projection, Aggregation, Join, and Order by. We
build this category of query workload to evaluate the per-
formance of primitive relational operations implemented
in GDBMSs. The second category is named as TPC-H
query workloads. This category consists of 22 queries
used in TPC-H. We target to evaluate the performance
of GDMBSs under the case that the legacy RDBMSs are
good at. The third category is named as graph query work-
loads, including 5 graph algorithms in LDBC Benchmark.

Table 2   Table key and
relationship mapping

From key To key Relationship

PART.PARTKEY PARTSUPP.PARTKEY Part2partsupp
SUPPLIER.SUPPKEY PARTSUPP.SUPPKEY Supplier2partsupp
PARTSUPP.PARTSUPPKEY LINEITEM.PARTSUPPKEY Partsupp2lineitem
ORDERS.ORDERKEY LINEITEM.ORDERKEY orders2lineitem
CUSTOMER.CUSTKEY ORDERS.CUSTKEY Customer2orders
NATION.NATIONKEY SUPPLIER.NATIONKEY Nation2supplier
NATION.NATIONKEY CUSTOMER.NATIONKEY Nation2customer
REGION.REGIONKEY NATION.REGIONKEY Region2nation

Table 3   TPC-H datasets

ID Size Vertices Edges

tpch-0.05 50 MB 432,844 2,261,723
tpch-0.1 100 MB 866,602 4,530,029
tpch-0.5 500 MB 4,330,622 22,634,256
tpch-1 1 GB 8,661,245 45,268,530

Table 4   The real graph datasets

Graphs Vertices Edges Size Domain

Wiki-Vote 7115 103,689 S Social
Cit-HepTh 27,770 352,807 M Citation
Web-Stanford 281,903 2,312,497 L Web graphs
Wiki-Talk 2,394,385 5,021,410 XL Communication

313Which Category Is Better: Benchmarking Relational and Graph Database Management Systems﻿	

1 3

We target to evaluate the performance of RDBMSs under
the case that the GDBMSs are good at.

3.2.1 � Atomic Relational Queries

Atomic relational queries emphasize on the evaluation of
primitive relational operations, which are Projection, Aggre-
gation, Join, and Order by. Projection queries are utilized for
choosing which columns (or expressions) the queries should
return. Join queries combine columns from one or more tables
in a RDBMS. Aggregation queries are designed for grouping
together the values of multiple rows. Order by queries are for
sorting the rows of result set.

3.2.2 � TPC‑H Query Workloads

Typically, each GDBMS provides an SQL-like query language
(e.g., Cypher for Neo4j and AQL for ArangoDB) to support
data manipulation over graph data [24]. We transform all of
the 22 queries of TPC-H into equivalent SQL-like graph query
statements. Although among different GDBMSs, graph query
languages could vary a lot, they basically belong to declarative
languages, a user or a programmer merely specifies what is
to be done rather than how to do in the query statements. For
ease of illustration, we choose Neo4j as the representative of
GDBMSs. For reference, as compared to the primitive rela-
tional operations in the RDBMSs, we list their counterparts

in the GDBMSs and show them in Table 6. For the opera-
tions, Projection, Aggregation, and Order by in the RDBMSs,
GDBMSs provide similar operations of the RDBMSs. How-
ever, GDBMSs implement the Join operation in quite a dif-
ferent way. Recall that a record in RDBMSs is mapped to one
and single one vertex in the graph. Besides, for a given record r
from a child table, and its referenced record s (if any) from the
parent table, an edge in the graph is generated from r to s. For
this reason, we transform the Join operation to a path query
starting from r to s. To gain a better understanding, we further
provide two examples of the transformations from primitive
operations in RDBMSs to their counterpart in GDBMSs which
are shown in Algorithm 1 and Algorithm 2, respectively.

Algorithm 1 AQL for TPC-H Query 1
1: FOR line IN lineitem
2: FILTER
3: DATE ISO8601(line.L SHIPDATE)<=DATE ADD(
4: DATE ISO8601(′1998− 12− 01′),−90, ”day”)
5: COLLECT
6: RETURNFLAG = line.L RETURNFLAG,
7: LINESTATUS = line.L LINESTATUS,
8: sum qty =SUM(TO NUMBER(line.L QUANTITY)),
9: and other aggregation operations
10: SORT RETURNFLAG,LINESTATUS
11: RETURN
12: L RETURNFLAG : RETURNFLAG,
13: L LINESTATUS : LINESTATUS,
14: sum pty,
15: and other elements retrieved by collect

Table 5   Representatives of
RDBMSs and GDBMSs to be
compared

Category Operations # Of queries

Atomic relational queries Project, Aggregation, Join, Order by 4
TPC-H workloads All the TPC-H query workloads 22
Graph query workloads BFS, CDLP, PR, LCC, WCC​ 5

Algorithm 2 Cypher for TPC-H Query 2
1: MATCH(ps : Partsupp) − []− > (s : Supplier) − []− > (n : Nation) − []− > (r :

Region)
2: WHERE
3: r.rName =′ EUROPE′

4: WITH min(ps.psSupplycost) as minvalue
5: MATCH(ps : Partsupp) − []− > (p : Part), (ps : Partsupp) − []− > (s : Supplier) −

[]− > (n : Nation)− []− > (r : Region)
6: WHERE
7: p.pSize = 13 and p.pType = ′. ∗ SMALL.∗′ and r.rName =′ EUROPE′

and ps.psSupplycost = minvalue
8: RETURN
9: s.sAcctbal,
10: s.sName,
11: and other elements
12: ORDER BY
13: s.sAcctbal desc, n.nName, s.sName, p.pPartkey

314	 Y. Cheng et al.

1 3

Algorithm 3 Bread-First Search in SQL
1: with RECURSIVE BFS(toID, level, fromid, paths)
2: as(
3: select toID, 0, fromID,ARRAY [null, toID] from Rrel

4: where toID = m and fromID is NULL
5: union all
6: select Rrel.toID, level + 1, BFS.toID, paths||Rrel.toID
7: from Rrel, BFS
8: where Rrel.fromID = BFS.toID
9: and level < n
10:)
11: select level, paths from BFS

3.2.3 � Graph Query workload

We re-implement the five graph algorithms using
SQL statements. For recursive algorithms, taking BFS

WCC (weakly connected components) [32], none of them
can be implemented in recursive SQL queries due to their
Group by and Aggregation operations. So we use the pro-
cedure with While loop. Taking CDLP for example (shown
in Algorithm 4), we first create a table LP(ID, label) to
store ID and label of a vertex. Secondly, we figure out its
neighbors of each vertex in LP and store the neighbors into
Radj . Thirdly, for each vertex v, we calculate the frequency
of the labels that v’s neighbors have and set the label of v
to the most frequent label that v’s neighbors have. In case
that there might exist multiple labels to be the most fre-
quent, we can simply choose one label among them with
the minimum value, e.g., alphabetical order. Finally, loop
operations with the while clause continue to execute until
rectimes >= times , where times represents the loop times.

Table 6   RDBMSs’ and
GDBMSs’ operations mapping

DB/Operations Projection Aggregation Join Order by

RDBMS Select Group by/sum/average ... Join Order by
GDBMS Match Group by/sum/average ... Edges between

vertexes
Order by

(breadth-first search) [25] for example (shown in Algo-
rithm 3), we use with [recursive] [26] clause to do the
transformation by referring to SQL’99 [27, 28]. Algo-
rithm 3 shows the details on how to implement BFS in
SQL. We first insert a record which fromID equals NULL
and toID equals the start vertex’s ID into relation Rrel .
Then, we select the initial record into the temporary table
BFS(toID, level, fromid, paths). Finally, iterative opera-
tions with the with...unionall clause continue to execute
until level >= n , where n represents the depth of BFS.

For the following iterative algorithms, CDLP (com-
munity detection using label propagation) [29], PR (Pag-
eRank) [30], LCC (local clustering coefficient) [31], and

Algorithm 4 Community Detection Using Label Propagation in SQL
1: LP (ID, label) as select ID, ID from Rvertex

2: while (rec times ≤ times) do
3: Radj(ID, label) as select lp1.ID, lp2.label from LP lp1
4: left join Rrel rel on lp1.ID = Rrel.fromID
5: left join LP lp2 on Rrel.toID = lp2.ID
6: Rcount(ID, label, cnt) as select ID, label, count(label) from Radj

7: group by ID, label
8: TRUNCATE LP ;
9: LP (ID, label) as select distinct on(vertexid)vertexid, label from Rcount

10: group by ID, label, cnt
11: order by ndoeid, cnt desc, label
12: TRUNCATE Radj

13: TRUNCATE Rcount

14: rec times := rec times+ 1
15: end while

3.3 � Representatives of RDBMSs and GDBMSs to be
Compared

We choose PostgreSQL, Oracle, and Microsoft SQL
SERVER as the representatives of RDBMSs because they
are widely used in the application domains. Note that our
focus is to make a thorough study between RDBMSs and
GDBMSs. Thus, we do not evaluate RDBMSs and GDBMSs
separately. Namely, we choose PostgreSQL as the represent-
ative for RDBMSs in the relational operation evaluation.
Similarly, we choose Neo4j and ArangoDB as the repre-
sentatives of GDBMSs. For reference, versions of RDBMSs
and GDBMSs are listed in Table 7.

315Which Category Is Better: Benchmarking Relational and Graph Database Management Systems﻿	

1 3

3.4 � Metrics

We measure the performance of RDMBSs and GDBMSs
under the following metrics:

–	 Query processing time: the execution time of a graph
query or an SQL query, which is returned and collected
by RDBMSs and GDBMSs;

–	 Memory usage ratio: the peak usage ratio of memory
during the execution of the whole workload;

–	 CPU usage ratio: the peak usage ratio of CPU during the
execution of the whole workload;

We run each graph and SQL query for five times, and all the
query processing time, memory usage ratio, and CPU usage
ratio are computed on average.

4 � Experiments

In this section, we first introduce the experimental setup. We
then conduct extensive analysis of GDBMSs and RDBMSs
over the same datasets, using the same query workload,
under the same metrics. We finally summarize our findings.

4.1 � Experimental Setup

Experimental Environment The experiments are con-
ducted on a single vertex with a Intel(R) Xeon(R) Gold 6138
CPU @ 2.00 GHz processor, 256 G RAM, a 60T hard disk.
We install Ubuntu 16.04 operating system, Java 1.8.0 with a
64-bit server VM. All the databases we examine are installed
in this vertex. The hardware specifications of the machines
are listed in Table 8.

Consider that the adoption of different storage engines
could potentially affect the performance of GDBMSs.
We first evaluate the effect of back-end storage engines of
GDBMSs. We then compare GDBMSs and RDBMSs on
the same datasets (i.e., TCP-H and LDBC), using the same
query workload, and the same metrics. Details of the com-
parison setup are listed in the following.

•	 Back-end storage engines of GDBMSs The GDBMSs
use a variety of back-end storage engines, which will
bring different query performance for the same data
model. Therefore, we first investigate the impact of dif-
ferent back-end storage engines on read and write per-
formance under the same graph model.

•	 Relational operations We evaluate the performance of
each database when processing general TPC-H queries
and some extra evaluation queries. For TPC-H queries,
we execute 22 queries on three databases: PostgreSQL
as the representative for RDBMSs, Neo4j as the repre-
sentative GDBMSs, and ArangoDB as a typical system
for multi-model NoSQL database which includes graph
data models. Twenty-two queries are executed on each of
them, and meanwhile, the processing time, CPU usage,
and main memory usage are recorded. Mean values are
calculated for the processing results of the 22 queries to
measure the general capacity of handling business-ori-
ented ad hoc queries and concurrent data modifications
for 3 databases. The evaluation for TPC-H queries only
measures general capacity for business-oriented scenar-
ios, yet every query in TPC-H consists of many atomic
operations such as Projection, Aggregation, Join and so
on. Four extra queries have been designed to measure the
performance of processing 4 typical atomic operations:
Projection, Join, Aggregation, and Order by.

•	 Graph algorithms For graph algorithms, we execute 5
graph algorithms we have introduced in Sect. 3 on four
databases: Neo4j as the representative for GDBMSs;
Oracle, PostgreSQL, and Microsoft SQL Server as 3
typical RDBMSs. Every graph algorithm is executed on
4 databases, and the processing time is recorded for each
database.

4.2 � Experimental Results and Analysis

In this section, we report the experimental results and ana-
lyze the results by highlighting our findings.

Table 7   Testing object

DBMS VERSION CATEGORY

PostgreSQL 9.5 RDBMS
Oracle 11 g RDBMS
MSSQL 2017 RDBMS
Neo4j 3.4.6 GDBMS
ArangoDB 3.3.19 GDBMS

Table 8   Hardware specifications

Component Parameter

CPU Intel(R) Xeon(R) Gold 6138 CPU @ 2.00GHz
Cores 40 (80 threads)
Memory 256 G
Disk 60 T
GPU Titan V

316	 Y. Cheng et al.

1 3

4.2.1 � Back‑end Storage Engines Evaluation

Note that the separation of compute and storage is archi-
tected in GDBMSs. For this reason, the GDBMSs can
adopt different back-end storage engines. To make a clear

explanation about the impact of the back-end storage engine
on query performance, we conduct the following experi-
ments to evaluate the performance of HugeGraph [33] with
different back-end storage engines shown in Table 9.

Firstly, we test the performance of data loading. The
results of four different back-end storage engines are shown
in Fig. 3. It can be observed that key-value store engines
have clear advantages over the row store engine, owing to
its back-end structure based on LSM-tree, while row store
engines like MySQL utilize B-tree [34] for persistent stor-
age. For B-tree, small update operations may cause much
random write operations. On the contrary, LSM-tree can deal
with the key-value pairs in a batch to convert the random
write operations to sequential write operations, which can
magnificently improve the efficiencies of write operations.

Then, we compare the performance of three typical algo-
rithms on different back-end storage engines. Figures 4, 5,
and 6 illustrate the performances on shortest path algorithm,
k-neighbor algorithm [35], and find-all-paths algorithm,
respectively. We find that back-end storage engines with
Hbase [36] and Cassandra [37] perform the worst in any
algorithm test. MySQL performs similarly to RocksDB [38],
and RocksDB performs even better in some tests. Just as
discussed in the load performance above, key-value store
engines based on the LSM-tree incur better performance in
write operations, but it also costs much more for read opera-
tions, which is why back-end storage engine with MySQL
performs better in these algorithms tests. Interestingly, we
also find that RocksDB performs well and even better than
MySQL. This benefit is from the read performance opti-
mization strategy implemented by RocksDB. Specifically,

Table 9   Different storage engines

Back-end storage
engine

Version Category

RocksDB 5.8 Key-value storage engine
Hbase 2.2 Key-value storage engine
Cassandra 3.11 Key-value storage engine
Neo4j 3.4.6 Native graph storage engine
MySQL 5.7 Row storage engine

Fig. 3   The performance of data load

Fig. 4   Testing the shortest path
algorithm over 4 back-end stor-
age engines

(a) (b)

(c) (d)

317Which Category Is Better: Benchmarking Relational and Graph Database Management Systems﻿	

1 3

RocksDB implements two bloom filters [39]. One is utilized
to filter blocks before reading blocks (the same as LevelDB
[40]) without key. The other is dynamically generated to
achieve key filtering in memory (before block read) when
querying from memtables, improving the read performance
tremendously. Combined with the official benchmark results
[41] given by HugeGraph, Neo4j performs better with native
graph storage than HugeGraph with Rocksdb.

From the above analysis, we can observe that the back-
end storage engine plays an important role in query perfor-
mance. The row-based storage engine used by RDBMSs do
not perform well both for read and write operations. The
key-value storage engines with the built-in LSM-tree index
show their superiority in write operation, while the native
storage of graphs outperforms the others in read operations.

Fig. 5   Testing the K-neighbor
algorithm over 4 back-end stor-
age engines

(a) (b)

(c) (d)

Fig. 6   Testing find-all-paths
algorithm over 4 back-end stor-
age engines

(a) (b)

(c) (d)

318	 Y. Cheng et al.

1 3

4.2.2 � Relational Operation Evaluation

We carry out relational operation evaluation on three data-
bases, namely PostgreSQL, Neo4j, and ArangoDB. Fig-
ure 7a illustrates the averaged processing time of the whole
22 TPC-H queries. From the figure, we can observe that
the processing time in Neo4j and ArangoDB is significantly
longer than that in PostgreSQL, although Neo4j is widely

used by both academic researchers and industrial engineers.
Figure 7b and c depicts the averaged CPU usage rate and
the main memory usage rate, respectively. From the figures,
we can observe that PostgreSQL also outperforms the other
two databases in terms of CPU and main memory usages.
Compared with Neo4j, ArangoDB consumes relatively less
CPU but more main memory.

Fig. 7   Relational operation test

(a) (b)

(c) (d)

Fig. 8   Atomic operation test

(a) (b)

(c) (d)

319Which Category Is Better: Benchmarking Relational and Graph Database Management Systems﻿	

1 3

The above results indicate that compared with GDBMSs,
RDBMSs have advantages in terms of query processing time
and resource consumption. When the data size becomes
larger, GDBMSs tend to be incompetent on the efficiency
of query processing.

Besides, we also carry out an experiment to evaluate the
processing time of 4 typical atomic operations (i.e., Pro-
jection, Join, Aggregation, and Order by) in RDBMSs. As
Fig. 8 illustrates the results, we can observe that GDBMSs
excel in Projection and Join operations but have disadvan-
tages in Aggregation, and Order by operations. Note that
with the increase in data scale, time consumption of Post-
greSQL on Projection and Join raises sharply while Neo4j
and ArangoDB increase smoothly. Meanwhile, for Aggre-
gation, and Order by operations, there is much higher dif-
ference regarding the time consumption when data scale
increases between RDBMSs and GDBMSs.

From the above experiments, we can find that both
RDBMSs and GDBMSs have their own advantages on pro-
cessing relational operations, but unexpectedly there is a
high difference between them when handling TPC-H work-
loads. Therefore, we need to conduct an extra query optimi-
zation experiment to explore the reason.

The GDBMSs show their inefficiency when dealing
with TPC-H datasets. Recall that GDBMSs are separately
architected in their compute and storage modules. Moreo-
ver, in some GDBMSs, like Neo4J, properties of vertices
and edges are physically linked in the storage system. This
is good for traversing graph-structured data. However,
this kind of storage structures requires plenty of time to

query data when vertices have many properties without
any index.

We then analyze the queries that consist of many complex
operations over attributes (property of vertices in GDBMSs)
such as the Aggregation operation and the Order by opera-
tion. Then, we create indices on these attributes/properties in
3 databases and measure the query processing time again. As
shown in Fig. 7d, the improvement is apparent for GDBMSs,
especially for Neo4j, whose improvement reaches over 40%,
making its time consumption be close to PostgreSQL’s time
consumption. Meanwhile, we have also carried out evalu-
ation on a graph dataset Wiki-Vote. The result indicates
that the difference of time consumption for GDBMSs and
RDBMSs tends to be rather slight, since there is no property
for any vertex in this dataset.

From the experiments and analysis above, we can find
that both RDBMSs and GDBMSs have their advantages
of dealing with relational operations, whereas in business-
oriented scenarios such as TPC-H workload, GDBMSs
cannot have a satisfied performance due to their storage
strategies. According to our extra experiments, the problem
can be solved by creating indexes on properties properly
and changing the schema for graph data transferred from
RDBMSs, for schema of GDBMSs is flexible and adjust-
able. To be specific, by creating indexes on properties that
constantly retrieved and avoid adding too many properties
in vertices via extracting some properties and creating as
vertex, GDBMSs can achieve much better performance for
relational application scenarios than before, but still slightly
worse than RDBMSs.

Fig. 9   Testing 4 graph algo-
rithms over 4 datasets

320	 Y. Cheng et al.

1 3

4.2.3 � Graph Algorithm Evaluation

We carry out graph algorithm evaluation over four real
graphs. Figures 9 and 10 illustrate the performance of the
five algorithms (mentioned in Sect. 3) over four directed
graphs we have introduced in the part of datasets, namely
Wiki-Vote, Cit-HepTh, Web-Stanford, and Wiki-Talk. We
omitted the result for a graph algorithm if it fails to finish in
1 hour. In addition, the variable level represents the depth of
recursive operations for BFS algorithm.

As shown in Fig. 9, we can observe that as expected,
Neo4j has the best efficiency performance on these four real
graphs.

Oracle and MSSQL fail to process LCC and WCC algo-
rithms in large dataset in one hour, since LCC and WCC
have massive sophisticated operations, including multi-
levels recursive join operations which are time-consuming.
Specifically, we find the intermediate results reach at a scale
of ten billions for our M (see Table 4) size dataset when
we execute LCC algorithm. WCC algorithm traverses all
vertexes using for ... in loops, each of which involves sev-
eral iterations to process Join, Insert, Exists operations. The
number of iterations is an important factor in determining
the performance. Departing from WCC algorithm which has
multi-levels recursive join operation, CDLP and PR simply
find adjacent vertexes for every vertex and loop several times
according to a user-defined parameter. Moreover, as graph
datasets scale from S to XL, the time consumption increases
for PR and CDLP.

For BFS algorithm, we set the parameter level from 1
to 4; Fig. 10 shows that the time consumption of Neo4j is
very close to RDBMSs on level 1, whereas, the performance
differential is getting bigger as the level increases. When
level reaches 4, RDBMSs cannot finish their processing in
a certain time, namely stuck or terminated. We also con-
duct extensive tests by setting level to be larger than 4; only
Neo4j processes the workload in a reasonable time. This
result further proves that GDBMSs outperform RDBMSs
in dealing with iterative and recursive operations. RDBMSs
can just complete the operations having only a fewer depth
of iterations and small scale of datasets in a reasonable time.

5 � Conclusion

RDBMSs are ubiquitously used for storing, manipulat-
ing, and retrieving data over past decades. Meanwhile,
the diversity and complexity of the applications led to
challenges for RDBMSs to deal with sophisticated rela-
tionships between entities. For this reason, GDBMSs
have lately received considerable attention which employs
graph structures with vertices, edges, and properties to
represent and store data, whereas both RDBMSs and
GDBMSs are capable of managing relational data and
graph data, making the boundaries of them unclear. To
clearly answer the question, we have proposed a unified
benchmark referring to existing benchmarks for RDBMSs
and GDBMSs, which consist of relational workloads and

Fig. 10   Testing BFS algorithm
over 4 datasets

(a) (b)

(c) (d)

321Which Category Is Better: Benchmarking Relational and Graph Database Management Systems﻿	

1 3

graph algorithms, to evaluate databases on the same data-
sets under the same metrics. We have implemented an
inter-transfer between SQL and graph query languages for
querying and importing data in RDBMSs and GDBMSs,
respectively. We have conducted extensive experimental
evaluations for existing popular RDBMSs and GDBMSs
over both standard TPC-H and LDBC and reported our
findings in detail. Meanwhile, we have conducted further
comparative experiments to find out the effect of differ-
ent data models and back-end storage engines on query
performance for GDBMSs. We can conclude that, shown
in Tables 10 and 11, RDBMSs outperform GDMBSs by
a substantial margin under the workloads which mainly
consist of group by, sort, and aggregation operations, and
their combinations. GDMBSs show their superiority under
the workloads that mainly consist of multi-table join, pat-
tern match, path identification, and their combinations. For
GDBMSs with different storage engines, key-value storage
engines with LSM-tree outperform for write operations,
while native graph storage engine has an advantage for
read operations. Row storage engines do not stand out in
either read or write operations. As a future work, we will
study the optimization on both data models and back-end
storage engines.

Acknowledgements  This work was partially supported by National
Key Research and Development Program of China under Grant
2018YFB10044401, National Natural Science Foundation of China
under Grant 61732014, Beijing Municipal Science and Technology
Project under Grant Z171100005117002.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

	 1.	 Neumann T, Weikum G (2008) RDF-3x: A risc-style engine for
RDF. Proc VLDB Endow 1(1):647–659. https​://doi.org/10.14778​
/14538​56.14539​27

	 2.	 Weiss C, Karras P, Bernstein A (2008) Hexastore: sextuple index-
ing for semantic web data management. Proc VLDB Endow
1(1):1008–1019. https​://doi.org/10.14778​/14538​56.14539​65

	 3.	 Abadi DJ, Marcus A, Madden SR, Hollenbach K (2009) SW-
store: a vertically partitioned DBMS for semantic web data man-
agement. VLDB J 18(2):385–406. https​://doi.org/10.1007/s0077​
8-008-0125-y

	 4.	 Angles R, Gutierrez C (2008) The expressive power of SPARQL.
In: Proceedings of the 7th international conference on the seman-
tic web, ser. ISWC ’08. Springer, Berlin, pp 114–129 https​://doi.
org/10.1007/978-3-540-88564​-1_8

	 5.	 Wylot M, Hauswirth M, Cudré-Mauroux P, Sakr S (2018) RDF
data storage and query processing schemes: a survey. ACM Com-
put Survey 51(4):84:1–84:36. https​://doi.org/10.1145/31778​50

	 6.	 https​://neo4j​.com. Accessed 8 Nov 2019
	 7.	 https​://www.arang​odb.com. Accessed 8 Nov 2019
	 8.	 Zou L, Özsu MT, Chen L, Shen X, Huang R, Zhao D (2014)

gStore: a graph-based SPARQL query engine. VLDB J 23(4):565–
590. https​://doi.org/10.1007/s0077​8-013-0337-7

	 9.	 Zou L, Mo J, Chen L, Özsu MT, Zhao D (2011) gStore: answer-
ing SPARQL queries via subgraph matching. Proc VLDB Endow
4(8):482–493. https​://doi.org/10.14778​/20029​74.20029​76

	10.	 Zhao K, Yu JX (2017) All-in-one: graph processing in RDBMSS
revisited. In: Proceedings of the 2017 ACM international con-
ference on management of data, SIGMOD conference 2017,

Table 10   Performance
conclusion

Perspectives Categories Databases Performance description

Data model Relation model RDBMSs Outperformed in handling aggregate,
group and sort large amounts of
data, and algorithms with fewer
iterations and less depth

Graph model GDBMSs Outperformed in handling multi-
table join and multilayer iterative
calculation

Back-end storage
Engine

Row storage RDBMSs Row-based storage engine used by
RDBMSs did not stand out in either
read or write operations

Key-value storage GDBMSs Key-value storage engines with LSM
-Tree outperforms in write opera-
tions

Native graph storage GDBMSs Native storage of graphs performs
well in read operations

Table 11   The comparisons between RDBMSs and GDBMSs

Database category Performance summary

RDBMSs RDBMSs outperform GDMBSs by a sub-
stantial margin under the workloads which
mainly consist of group by, sort, and aggre-
gation operations, and their combinations

GDBMSs GDMBSs show their superiority under the
workloads that mainly consist of multi-table
join, pattern match, path identification, and
their combinations

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.14778/1453856.1453927
https://doi.org/10.14778/1453856.1453927
https://doi.org/10.14778/1453856.1453965
https://doi.org/10.1007/s00778-008-0125-y
https://doi.org/10.1007/s00778-008-0125-y
https://doi.org/10.1007/978-3-540-88564-1_8
https://doi.org/10.1007/978-3-540-88564-1_8
https://doi.org/10.1145/3177850
https://neo4j.com
https://www.arangodb.com
https://doi.org/10.1007/s00778-013-0337-7
https://doi.org/10.14778/2002974.2002976

322	 Y. Cheng et al.

1 3

Chicago, IL, USA, 14–19 May 2017, pp 1165–1180. https​://doi.
org/10.1145/30359​18.30359​43

	11.	 Gao J, Jin R, Zhou J, Yu JX, Jiang X, Wang T (2012) Relational
approach for shortest path discovery over large graphs, CoRR,
arXiv​:abs/1201.0232. Available: http://arxiv​.org/abs/1201.0232

	12.	 Gao J, Zhou J, Yu JX, Wang T (2014) Shortest path computing in
relational DBMSS. IEEE Trans Knowl Data Eng 26(4):997–1011.
https​://doi.org/10.1109/TKDE.2013.43

	13.	 De Leo D, Boncz P (2017) Extending SQL for computing shortest
paths. In: Proceedings of the 5th international workshop on graph
data-management experiences & systems, ser. GRADES’17.
ACM, New York, NY, USA, pp. 10:1–10:8. Available: https​://
doi.org/10.1145/30784​47.30784​57

	14.	 Qin L, Yu JX, Chang L, Tao Y (2009) Querying communities
in relational databases. In: Proceedings of the 25th international
conference on data engineering, ICDE 2009, 29 March 2009– 2
April 2009, Shanghai, China, pp 724–735 https​://doi.org/10.1109/
ICDE.2009.67

	15.	 TPC-H (2012). https​://www.tpc.org/tpc_docum​ents_curre​nt_versi​
ons/pdf/tpc-h_v2.17.1.pdf. Accessed 8 Nov 2019

	16.	 Iosup A, Hegeman T, Ngai WL, Heldens S, Prat-Pérez A, Man-
hardto T, Chafio H, Capotă M, Sundaram N, Anderson M, Tănase
IG, Xia Y, Nai L, Boncz P (2016) LDBC graphalytics: a bench-
mark for large-scale graph analysis on parallel and distributed
platforms. Proc VLDB Endow 9(13):1317–1328. https​://doi.
org/10.14778​/30072​63.30072​70

	17.	 TPC-TPC-C (2010) https​://www.tpc.org/tpc_docum​ents_curre​
nt_versi​ons/pdf/tpc-c_v5.11.0.pdf. Accessed 8 Nov 2019

	18.	 TPC-TPC-DS (2015) https​://www.tpc.org/tpc_docum​ents_curre​
nt_versi​ons/pdf/tpc-ds_v2.1.0.pdf. Accessed 8 Nov 2019

	19.	 https​://www.arang​odb.com/2018/02/nosql​-perfo​rmanc​e-bench​
mark-2018-mongo​db-post-gresq​l-orien​tdb-neo4j​-arang​odb.
Accessed 8 Nov 2019

	20.	 https​://info.tiger​graph​.com/bench​mark. Accessed 8 Nov 2019
	21.	 https​://www.tiger​graph​.com. Accessed 8 Nov 2019
	22.	 https​://aws.amazo​n.com/neptu​ne. Accessed 8 Nov 2019
	23.	 Janusgraph distributed graph database 2017. http://janus​graph​.org.

Accessed 8 Nov 2019
	24.	 Wood PT (2012) Query languages for graph databases. SIGMOD

Record 41(1):50–60. https​://doi.org/10.1145/22068​69.22068​79
	25.	 Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduc-

tion to algorithms, 3rd edn. The MIT Press, Cambridge
	26.	 Ordonez C (2005) Optimizing recursive queries in SQL. In: Pro-

ceedings of the 2005 ACM SIGMOD international conference on
management of data, ser. SIGMOD ’05. ACM, New York, NY,
USA, pp 834–839. https​://doi.org/10.1145/10661​57.10662​60

	27.	 Melton J, Simon A (2001) SQL:1999: understanding relational
language components. Morgan Kaufmann Publishers Inc, San
Francisco

	28.	 Finkelstein IMSJ, Mattos N, Pirahesh H (1996) Expressing recur-
sive queries in SQL, in ISO-IEC JTC1/SC21 WG3 DBL MCI, pp.
X3H2–96–075

	29.	 Raghavan UN, Albert R, Kumara S (2007) Near linear time algo-
rithm to detect community structures in large-scale networks. Phys
Rev E 76:036106

	30.	 Manning CD, Raghavan P, Schütze H (2008) Introduction to infor-
mation retrieval. Cambridge University Press, New York

	31.	 Krot A, Ostroumova Prokhorenkova L (2015) Local clustering
coefficient in generalized preferential attachment models. In: Pro-
ceedings of the 12th international workshop on algorithms and
models for the web graph, vol 9479, ser. WAW 2015. Springer,
Heidelberg, pp 15–28. https​://doi.org/10.1007/978-3-319-26784​
-5_2

	32.	 Chitnis L, Das Sarma A, Machanavajjhala A, Rastogi V (2013)
Finding connected components in map-reduce in logarithmic
rounds. In: Proceedings of the 2013 IEEE international confer-
ence on data engineering (ICDE 2013), ser. ICDE ’13. IEEE
Computer Society, Washington, DC, USA, pp 50–61. https​://doi.
org/10.1109/ICDE.2013.65448​13

	33.	 https​://githu​b.com/hugeg​raph. Accessed 8 Nov 2019
	34.	 Comer D (1979) Ubiquitous b-tree. ACM Comput Surveys

(CSUR) 11(2):121–137
	35.	 Sankaranarayanan J, Samet H, Varshney A (2006) A fast k-neigh-

borhood algorithm for large point-clouds. In: SPBG, pp. 75–84
	36.	 George L (2011) HBase: the definitive guide: random access to

your planet-size data. O’Reilly Media Inc, Sebastopol
	37.	 Cassandra A (2014) Apache cassandra, p 13. Website https​://plane​

tcass​andra​.org/what-is-apach​e-cassa​ndra. Accessed 8 Nov 2019
	38.	 Yang F, Dou K, Chen S, Hou M, Kang J-U, Cho S (2015) Opti-

mizing NoSQL DB on flash: a case study of RocksDB. In: 2015
IEEE 12th international conference on ubiquitous intelligence and
computing and 2015 IEEE 12th international conference on auto-
nomic and trusted computing and 2015 IEEE 15th international
conference on scalable computing and communications and its
associated workshops (UIC-ATC-ScalCom). IEEE, pp 1062–1069

	39.	 Hao F, Kodialam MS, Lakshman TV (2011) High accuracy bloom
filter using partitioned hashing, US Patent 7,930,547

	40.	 Dent A (2013) Getting started with LevelDB. Packt Publishing
Ltd, Birmingham

	41.	 https​://hugeg​raph.githu​b.io/hugeg​raph-doc/perfo​rmanc​e/hugeg​
raph-bench​mark-0.5.6.html. Accessed 8 Nov 2019

https://doi.org/10.1145/3035918.3035943
https://doi.org/10.1145/3035918.3035943
http://arxiv.org/abs/abs/1201.0232
http://arxiv.org/abs/1201.0232
https://doi.org/10.1109/TKDE.2013.43
https://doi.org/10.1145/3078447.3078457
https://doi.org/10.1145/3078447.3078457
https://doi.org/10.1109/ICDE.2009.67
https://doi.org/10.1109/ICDE.2009.67
https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.1.pdf
https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.1.pdf
https://doi.org/10.14778/3007263.3007270
https://doi.org/10.14778/3007263.3007270
https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-ds_v2.1.0.pdf
https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-ds_v2.1.0.pdf
https://www.arangodb.com/2018/02/nosql-performance-benchmark-2018-mongodb-post-gresql-orientdb-neo4j-arangodb
https://www.arangodb.com/2018/02/nosql-performance-benchmark-2018-mongodb-post-gresql-orientdb-neo4j-arangodb
https://info.tigergraph.com/benchmark
https://www.tigergraph.com
https://aws.amazon.com/neptune
http://janusgraph.org
https://doi.org/10.1145/2206869.2206879
https://doi.org/10.1145/1066157.1066260
https://doi.org/10.1007/978-3-319-26784-5_2
https://doi.org/10.1007/978-3-319-26784-5_2
https://doi.org/10.1109/ICDE.2013.6544813
https://doi.org/10.1109/ICDE.2013.6544813
https://github.com/hugegraph
https://planetcassandra.org/what-is-apache-cassandra
https://planetcassandra.org/what-is-apache-cassandra
https://hugegraph.github.io/hugegraph-doc/performance/hugegraph-benchmark-0.5.6.html
https://hugegraph.github.io/hugegraph-doc/performance/hugegraph-benchmark-0.5.6.html

	Which Category Is Better: Benchmarking Relational and Graph Database Management Systems
	Abstract
	1 Introduction
	2 Related Work
	3 A Unified Benchmark for RDBMSs and GDBMSs
	3.1 Data Generation
	3.1.1 Data Generation Schemes
	3.1.2 Datasets to be Used

	3.2 Query Workload
	3.2.1 Atomic Relational Queries
	3.2.2 TPC-H Query Workloads
	3.2.3 Graph Query workload

	3.3 Representatives of RDBMSs and GDBMSs to be Compared
	3.4 Metrics

	4 Experiments
	4.1 Experimental Setup
	4.2 Experimental Results and Analysis
	4.2.1 Back-end Storage Engines Evaluation
	4.2.2 Relational Operation Evaluation
	4.2.3 Graph Algorithm Evaluation

	5 Conclusion
	Acknowledgements
	References

