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Abstract
With the growing availability of different knowledge graphs in a variety of domains, question answering over knowledge 
graph (KG-QA) becomes a prevalent information retrieval approach. Current KG-QA methods usually resort to semantic 
parsing, search or neural matching models. However, they cannot well tackle increasingly long input questions and complex 
information needs. In this work, we propose a new KG-QA approach, leveraging the rich domain context in the knowledge 
graph. We incorporate the new approach with question and answer domain context descriptions. Specifically, for questions, 
we enrich them with users’ subsequent input questions within a session and expand the input question representation. For 
the candidate answers, we equip them with surrounding context structures, i.e., meta-paths within the targeting knowledge 
graph. On top of these, we design a cross-attention mechanism to improve the question and answer matching performance. 
An experimental study on real datasets verifies these improvements. The new approach is especially beneficial for specific 
knowledge graphs with complex questions.

Keywords  Question answering · Knowledge graph · Meta-path

1  Introduction

Recent years have witnessed an information access para-
digm shift, from a proactive search to voice/question-ori-
ented automatic answering. A lot of personal assistants, e.g., 
Siri, Alexa Echo, and Google Home, are emerging. In these 
question answering services, we submit questions and get 
answers or suggestions. Under the hood, the crucial ingre-
dient is the structured knowledge graph, including a full 
range of necessary information, constructed from related 
data sources.

Question answering over knowledge graph (KG-QA) 
has attracted many attentions [2, 6, 25, 26]. It accepts 
freestyle questions from users and responds with a direct 
answer, which is generated or retrieved from the underlying 
knowledge graph [9, 13]. Common ways of KG-QA include 
semantic parsing and retrieval based. The semantic parsing 
methods formalize the input question into the logical forms 
and locate the entities in the target knowledge graph. The 

retrieval methods conduct IR-based metrics to rank the can-
didate entities from the knowledge graph. With the recent 
improvement in deep learning algorithms, some embedding 
representation and generated models [6] are also introduced 
to tackle the problem of KG-QA as the matching between 
the input question and answers. Different from the previ-
ous parsing or retrieval ones, deep learning-based methods 
usually represent both questions and answers in the form 
of a semantic vector. First, the question in natural language 
is analyzed and transformed into the latent representation. 
Next, candidate answers are collected from the knowledge 
graph into the candidate set. Finally, the final answers are 
found in the candidate set which match the question properly.

Though remarkable progress has been achieved, KG-QA 
is still a challenging problem. The difficulty issues lie at 
not only the vague question description but also a vari-
ety of entity and relationship types within the knowledge 
graph [23, 31]. Take the insurance product domain as our 
motivation scenario; we have constructed a knowledge 
graph for insurance products (InsKG, abbrv. later in this 
paper) and set up an online question–answer service on top 
of it. This insurance product knowledge graph has more 
than 200k triples, consisting of insurance companies, cat-
egories, diseases, attributes, terms, etc. With intuitive and 
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comprehensive answers, the question–answer service on top 
of it has attracted almost 100k input questions from ordinary 
users. The returned answers of commonly used and the pro-
posed KG-QA approaches are listed in Table 1. For factual 
questions (first question), i.e., related to product attributes, 
both current and proposed methods can return satisfying 
answers. However, for some general category relevant or 
survey questions (second, third), the current method cannot 
compete with the proposed approach.

By investigating the underlying knowledge graph, we 
find that difficult questions usually cover more nodes in 
the knowledge graph, and the corresponding nodes have 
more connections between them. Due to the complexity of 
KG-QA and the generality of current methods, they cannot 
uncover or utilize the context information within the knowl-
edge graph. In contrast to the general ones, domain knowl-
edge graphs have particular schema patterns, i.e., specific 
node and relationship types.

Motivated by the rich features of the domain knowl-
edge graph, this paper introduces a new KG-QA model, 
incorporated with more domain context. Figure 1 shows 
the novel process of input question example. We equip the 
question representation with more corpus features and the 

generated answers with more meta-path features. Specifi-
cally, in the feature extraction stage, we extract the meta-
path patterns and push the embedded graph features into 
the meta-path levels [10]. We also discuss the semantic 
parsing of input questions with the tree model [24] for bet-
ter identifying the users’ information needs. Besides, as an 
integrated neural generation KG-QA model, we fit the new 
approach into a cross-attention framework [13], which can 
model the interactive question–answer matching process.

State-of-the-art models usually initialize the embedding 
matrix for words or adopt some pre-trained word vectors. 
The vocabularies of the general pre-trained word embed-
ding lack these proper nouns. Here, we improve the ques-
tion representation with existing question corpus and novel 
question intent extraction.

In the representation of the answer, existing methods 
over open-domain knowledge graph usually adopt the 
translation model, i.e., TransE [5]. These methods embed 
the entire knowledge graph and obtain the vector repre-
sentation for entities and relations in the knowledge graph. 
One advantage of the specific-domain knowledge graph 
is that the relation types are fixed, and it is suitable for 

Table 1   QA cases of the current and proposed approaches

Question Truth State of the art Proposed

What is the release time of this product ? 12/9/2015 12/9/2015 12/9/2015
What types of insurance products does China 

Life sell?
12, including disease, medicine, 

accident insurances, etc.
8, including disease, medicine, 

accident insurances, etc.
Same as ground truth

What categories does CPIC’s critical disease 
insurance belong to?

Cancer, disease, investment Cancer, disease Cancer, disease, investment

Where does PICC locate? 

Beijing

PICC

1949

Founding_date

Question representation

Answer representation

Answer Aspects
entity: e.112

relation: Locate
type: city

Ranking

Beijing

main entity

Candidate generation

Sum up

Embedding
with

Meta-path

External
Texts

Word2Vec

Locate

Word 
Embedding

output

PICC

S(q1 e)S(q1, ae) S(q2, ar)S(q2 r)
S(q3, at)S(q3 t) S(q4 c)S(q4, ac)

Fig. 1   KG-QA with the help of domain features
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context pattern extraction. In this work, we resort to meta-
path-based answer type extraction.

The contributions of this paper can be listed as follows:

1.	 We exploit the domain context in KG-QA, improving 
the QA performance with more KG patterns as the rep-
resentation features.

2.	 We utilize a cross-attention model to match the question 
and answers in the KG-QA task, taking the rich con-
nections between the comprehensive representation of 
questions and answers.

3.	 The experimental results demonstrate the effectiveness 
of our proposed approach, especially in domain knowl-
edge graphs.

The remaining of this paper is organized as follows. We 
briefly review the related literature in Sect. 2. We then 
illustrate the framework and design of our new approach 
in Sect. 3. The experimental results are reported in Sect. 4.

2 � Related Work

We briefly review the related research directions of KG-QA. 
Existing KG-QA models can be categorized into two lines, 
i.e., general and neural network-based methods.

Parsing and retrieval-based KG-QA In general KG-QA 
methods, semantic parsing and retrieval-based methods are 
popular ones. Semantic parsing-based methods compile the 
input natural language questions into logical forms, with the 
help of a combinatory grammar [7] or dependency-based 
compositional semantics [18]. The answers are then returned 
through SPARQL queries or other well-designed query pro-
cessing mechanism. These methods are strict and usually 
take many efforts in the annotation and preprocessing stage 
[11, 16].

The retrieval-based methods turn to analyze the depend-
ency of the words in the question and then use the target 
information extracted from the question to locate candi-
date answers from the knowledge graph. Final answers are 
selected from the candidate set by further quality or rel-
evance evaluation [26].

Neural network-based KG-QA In recent years, with the 
rapid growth of the deep learning techniques, there are 
more and more tasks in the NLP field, including KG-QA 
task, benefiting from the neural network-based method. 
Recent deep learning methods usually transform ques-
tions and answers into the form of semantic vectors [4, 
6] and then conduct the matching and ranking operations. 
Attention models received a lot of attentions, with its 
versatile ability to model the matching stage. Yin et al. 
[29] designed an attentive max-pooling layer for CNN 
to answer factual questions. Hao et  al. [13] discussed 

attention-based end-to-end model with the global knowl-
edge graph features for question answering. Li et al. [17] 
introduced the interactive model for question answering. 
We proceed to design a mutual attention model, combin-
ing both question and knowledge graph features, from the 
local and global perspectives.

Domain features in KG-QA Existing KG-QA meth-
ods are always designed for the open-domain knowledge 
graph. However, in reality, the application of a specific-
domain knowledge graph is also widespread. Although the 
existing method mentioned above can be directly applied 
to a specific-domain knowledge graph QA task, several 
unique characteristics of the specific-domain knowledge 
graph are neglected. Yih et al. [27] developed a seman-
tic parsing framework utilizing convolutional neural net-
works to process single-relation questions. Yang et al. [25] 
proposed a model to map the natural language questions 
into logical forms by leveraging the semantic associations 
between lexical representations and KG properties in the 
latent space.

However, sequential recurrent neural network-based 
models ignore the constituency and recursion information 
in natural language. Yin et al. [28] utilized recursive neural 
networks to understand the question, and the experiment 
demonstrated that recursive neural networks are more 
appealing to characterize the semantics of a query in the 
QA task. With the benefits for relation inference, knowl-
edge graph completion, even collective classification, and 
relation detection in a knowledge graph are becoming 
more and more important. Several detection methods are 
proposed and demonstrated. Fan et al. [12, 14] discussed 
the reasoning framework and translation-based methods 
for relation detection in knowledge graph. Miyanishi et al. 
[21, Zhang et al. 31] presented type selection approach. Yu 
et al. [30] discussed relation detection for precise question 
match with edge descriptions.

The proposed approach in this paper follows fusion 
paradigm. We extract the question and answer represen-
tation in a more general way and provide more compre-
hensive question–answer matching model. Recently, some 
combined or fused methods are proposed, and at the same 
time, some domain features are investigated in the models. 
Deng et al. [8] utilized a multitask learning framework to 
solve answer selection and relation detection simultane-
ously. Qu et al. [22] proposed a similarity matrix-based 
CNN model to improve the detection performance. This 
paper differs from these recent works, and we focus on 
answer relation detection and composition mutually. We 
further profile the question representation in a tree struc-
ture and the knowledge graph representation with meta-
path. The new approach presents a more general context 
feature extraction approach.
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3 � Proposed Approach

In this section, we first present the general framework for 
the proposed KG-QA approach, and then we reveal our 
improvement designs, especially domain context feature 
extraction. KG-QA is designed to extract the answer set 
A from the knowledge graph when the input question q is 
given. KG-QA process involves the input question and the 
underlying knowledge graph, respectively. Input questions 
are in the form of natural language and consisting of a set 
of words. The knowledge graph is regarded as a set of enti-
ties and the associated edges, i.e., fact triples, in the form of 
(subject, predicate, object).

3.1 � Framework

We introduce the design of the proposed KG-QA framework 
proposed in Fig. 2. In the domain context feature extraction 
and representation layer, the proposed approach processes 
input question with two modules, i.e., question represen-
tation and answer representation. For the specific-domain 
knowledge graph, we make some modifications to the gen-
eral framework. As mentioned in Sect. 1, we carefully design 
the novel domain context features. Both the answer- and 
question-related contexts are utilized.

The main steps of this model can be divided into three 
steps. First, the question representation is extracted. Second, 
according to the question, we select the candidate set from 
the knowledge graph and generate the answer representation. 
Finally, to find the answer which matches the input question 

more accurately, a similarity score function S is designed to 
measure the correlation between the question and the can-
didate answers. The answer with the highest score will be 
selected as the final answer.

To represent the input question, we collect the related 
text (users’ existing input questions) in the specific domain 
and train the word embedding using Word2vec. After that, 
we parse the input question with the help of the tree model, 
which profiles the users’ question intents, i.e., targeted enti-
ties in the question. We adopt the tree structure LSTM to 
understand the question and obtain the representation of 
questions.

For the answers, the knowledge graph embedding method 
TransE [5] is usually used to obtain the representation for 
different answers. We adopt the meta-path random walk [10] 
to capture the context of the targeted entities in the knowl-
edge graph. The extracted paths are used to represent the 
entities and later answers.

After the domain context feature extraction, in the match-
ing stage, the cross-attention model [13, 17] is designed to 
capture the relations between input questions and selected 
answers. Finally, the score function is trained to measure the 
matching score between the representation of questions and 
candidate answers.

3.2 � Input Question Representation

Formally, the question q consists of several words 
q = (w1,w2,… ,wn) , where wi means the ith word in the 
question. For each word, xwi

 denotes the latent representation 
of the word wi , i.e., embedded vectors in our case.

Fig. 2   Domain context for KG-QA tasks
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As shown in Fig. 2, the question representation has two 
stages. In offline training, we collect external text resources, 
to embed and represent the questions. After that, we parse 
the input question with the help of the tree model, which 
parses the users’ question intents, i.e., targeted entities. In 
the online response, the extracted embedding vectors are 
used to represent the input questions.

3.2.1 � Question Embedding

Hence, we train the word embedding using this related text. 
For example, in the insurance knowledge graph, we collect 
the text of users’ existing input questions, the company, and 
the product descriptions as the text corpus and utilize the 
Word2Vec to generate word embedding.

Speaking of the word embedding, we choose Word2Vec 
[19, 20] method to train the word vectors, with the help of 
the specific-domain text corpus. Here, we use the users’ 
input question logs. The word embedding vectors of InsKG 
are generated and then used as input to the later question 
training and online response.

3.2.2 � Question Parsing

We continue to discuss the tree-structured LSTM model, 
a variant of recursive neural networks [24, 28]. Different 
from sequential LSTM, which only allows strictly sequential 
information propagation, the tree-LSTM is a network that 
accepts tree-structured input. Moreover, the architecture of 
the network will be constructed according to the tree struc-
ture of the extracted concept layers from the input question. 
Here, we set up constituency trees for each question and use 
tree-LSTM to handle the constituency tree. The constituency 
tree is intuitive to cover different semantic modules within 
it, beneficial for the question representation.

Take the question “What products does PICC provide?” 
as an example. Its corresponding constituency tree is shown 
in Fig. 3. The left subtree contains the words “What” and 
“products,” while the right subtree contains the words “does,” 
“PICC,” and “sell.” In this question, “PICC” is the main 

entity, denoting the target, and “products” is a noun indicat-
ing the question type and “sell” is a verb, meaning the relation 
between the target and answers. Therefore, the question type 
information and relation information are implied in the left 
subtree and right subtree, respectively.

Intuitively, the representation of the left subtree’s root is 
valuable in deciding answer type, and the representation of the 
right subtree’s root is precise in deciding answer relations. As 
a consequence, when generating the embedding for questions, 
we only take the vector of the root, root’s left child, and root’s 
right child into account, respectively, hroot , hleft, and hright . We 
propose an attention mechanism-based method to generate 
the final representation according to different answer aspects, 
which will be explained in Sect. 3.4 in detail.

The left subtree of the constituency tree denotes the noun 
phrase, while the right subtree corresponds to the verb phrase. 
Concretely, the left subtree “What products” is more likely 
to decide the type of the answer. In this example, the answer 
entity’s type should be insurance products. The right subtree 
“does PICC sell” is more likely to indicate the relation between 
the main entity and the answer entity. Since this question’s 
main entity is “PICC,” the relation between PICC and answers 
entity should be “sell.”

3.2.3 � Question Output

After the generation of the constituency tree, the tree-LSTM is 
adopted to handle the questions. The following equations show 
the underlying tree-LSTM. The leaf units of the tree-LSTM 
receive the word representation as input, and the internal units 
take their left and right children’s output as the input.

(1)ij = �(W (i)xj + U
(i)

l
hjl + U(i)

r
hjr + b(i))

(2)fjk = �(W (f )xj + U
(f )

kl
hjl + U

(f )

kr
hjr + b(f ))

(3)oj = �(W (o)xj + U
(o)

l
hjl + U(o)

r
hjr + b(o))

Fig. 3   Constituency tree and the 
corresponding tree-LSTM

What

does

products

PICC

sell

NounNoun
V erbV erb

(a) Constituency tree (b) Tree-LSTM architecture

hroothroot

hrighthrighthlefthleft

w1w1 w2w2

w3w3 w4w4

w5w5
xw1xw1 xw2xw2 xw5xw5

xw4xw4xw3xw3
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When the node is a leaf node, the input h is set to zero. On 
the contrary, when the node is an internal node, the input 
x is set to zero. Equations (1)–(3), respectively, define the 
input gate, forget gate, and output gate in the tree-LSTM. In 
Eq. (2), the k denotes a binary index variable that indicates 
the left or right child of the current node.

3.3 � Answer Representation

3.3.1 � Answer Aspects

In this paper, we categorize four different kinds of answer 
aspects, i.e., answer entity ae , answer relation ar , answer 
type at, and answer context ac . The context set of an answer 
is C = {ec1 , ec2 ,… , ecn} , and the final answer context repre-
sentation is calculated as ec =

1

n

∑n

i
eci.

Specifically, the answer entity denotes the entity identifi-
cation in the knowledge graph. Answer relation indicates the 
relation path from the main entity to answer entity. For each 
answer in the training or online response stages, we generate 
latent representation ee , er , et, and ec for each aspect. If the 
relation path only includes one relation, we can directly use 
the relation representation as er . If there is more than one 
relation in the path, the relation path representation should 
be calculated in er =

1

n

∑n

i
eri . For answer type, in InsKG, 

there is a special relation called “ entity_type ” denoting the 
entity’s type, and we use it as the answer type in our model. 
For answer context, we first take all entities on the path from 
the main entity to answer entity into consideration and gen-
erate a context set. Moreover, all the neighbors connected to 
the set members will be added to the set too.

For the example question “Where does PICC locate?”, the 
answer comes from the triple (PICC, locate, Beijing). Here, 
the entity identification for entity “Beijing” is “e.112” in 
the knowledge graph; thus, “e.112” is selected as an answer 
entity. As to answer relation, “locate” should be chosen. For 
answer type, we find the triple (Beijing, entity_type, city) , and 
we take the “city” as the answer type.

3.3.2 � Answer Extraction

To fully utilize the structure information of the knowledge 
graph, we employ the knowledge graph embedding method 
TransE [5]. TransE takes the pairwise training as the training 
strategy; thus, for every fact triple (h, r, t), we should sample 
negative triple (h�, r, t�) . The basic idea of TransE is trying to 

(4)uj = tanh(W (u)xj + U
(u)

l
hjl + U(u)

r
hjr + b(u))

(5)cj = ij ⊙ uj + fjl ⊙ cjl + fjr ⊙ cjr

(6)hj = oj ⊙ tanh(cj).

make the distance between h + r and t shorter, while h� + r 
and t′ should be far away. TransE usually utilizes the L1-
norm or L2-norm to define the distance d(h + r, t) . In this 
paper, we use the L2-norm as a distance function.

For every fact triple (h, r, t), negative triple (h�, r, t�) is 
randomly sampled. The basic idea of TransE is trying to 
make h + r ≈ t, while h� + r should be far away from t′ . 
Meanwhile, in the training step, the loss function is given 
in Eq. (7):

Then, we should minimize the margin-based loss func-
tion over the training set. The []+ here means the function 
max(0, z). The �k here denotes the margin, and the S′ is the 
set of negative triples. However, there are millions of entities 
and relations in Freebase, which costs too much if we run the 
TransE on the whole knowledge graph. Moreover, to avoid 
costly computation, we only reserve part of the entities in 
the knowledge graph, which may be used in the QA task and 
also keep the relations between these entities to reduce the 
scale of the knowledge graph.

As mentioned above, for the representation of answer, 
the translation model TransE is usually adopted to embed 
the entire knowledge graph, so as to obtain the vector rep-
resentation for entities, relations, and types in the knowl-
edge graph. However, TransE model always ignores the 
path information in the knowledge graph. In addition, the 
quality of the representation generated by TransE is some-
times conditioned by the initialization of the vector. The 
poor initialization may lead to inadequate representation. 
In the specific-domain knowledge graphs, the relation types 
are usually limited, which means that it is suitable to capture 
and summarize the paths. Here, we propose an approach 
that utilizes the meta-path to model the path context in the 
knowledge graph.

Take the insurance domain as the motivat-
ing example;  we def ine a meta-path scheme 
pi = (Company → Product → Type → Product → Company).

Under this scheme, we sample several sequences of nodes 
in the knowledge graph. As the example shown in Fig.  4, the 
path (Pingan → p1 → term insurance → p2 → ChinaLife) 
marked with the red solid line is one of the chosen sequence. 
The meta-path usually implies rich information. The marked 
path means that the companies Pingan and ChinaLife pro-
vide products of the same type. From this path, we find that 
the companies Pingan and ChinaLife are similar, and they 
would be embedded close in the latent representation space.

(7)L =
∑

(h,r,t)∈S

∑

(h�,r,t�)∈S�

[�k + d(h + r, t) − d(h� + t, t�)]+
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3.3.3 � Answer Output

We choose several meta-path schemes to form a scheme set 
as P, based on prior knowledge or expert advice. The meta-
path schemes in knowledge graph can be denoted in the 
form of (e1 → e2 → ⋯ → en) . After the selection of meta-
path schemes, we utilize them to sample sequences in the 
knowledge graph. Then, these sequences are fed into the 
Skip-gram model as the input [20], which shows in Fig.  5 a 
natural language processing model, and are widely applied 
in the embedding field.

3.4 � Cross‑attention

Usually, in the question representation generation, there are 
several strategies to generate the final question representation. 
However, these approaches cannot fully utilize the abundant 
information of the constituency tree. We propose a cross-atten-
tion mechanism to improve the representation. In the ques-
tion–answer matching stage of KG-QA tasks, the objective is 
to choose correct answers from a candidate set according to 
the given question. The overview of cross-attention mecha-
nism [15] used in this work is shown in Fig. 6.

It consists of two attention models, i.e., answer-towards-
question and question-towards-answer attention.

1.	 Given one answer’s type, we should re-read the given 
question to target the corresponding part related to the 
answer type. As one answer usually has several aspects, 
we can re-read the question several scans, i.e., answer-
towards-question attention.

2.	 On the other hand, when we concatenate different ques-
tion parts together, we could re-read the answer to iden-
tify more important parts. It is the effect of question-
towards-answer attention.

It is vivid that the cross-attention model can be interpreted as 
a re-reading mechanism to mutually align the question and 
answers. The following details will reveal the closeness match-
ing process, with the help of a cross-attention model.

3.4.1 � Answer‑Towards‑Question Attention

Here, we discuss how to combine the hroot , hleft, and hright . The 
weight of attention is measured by the relevance between each 
tree node on question representation and answer aspect repre-
sentation. Final representation should be dynamic according 
to the different aspects of the answer that each answer aspect 
should focus on different nodes in the constituency tree of the 
same question.

Pingan

China
Life

p3

p2

p4

term 
insurance

life 
insurance

company product type

Juvenile insurance policy

Group life insurance policy

Life term insurance policy

Student life insurance policy

Fig. 4   Meta-path examples

Fig. 5   Skip-gram examples

Fig. 6   Cross-attention mecha-
nism

What

does

products

PICC

sell

Answer 
entity

Answer 
relation

Answer 
type

Answer 
context

Question-towards-answer

Answer-towards-question
αr
1α
r
1

αr
3α
r
3

αr
2α
r
2
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Here, �ij denotes the attention weight between an 
answer aspect ai and tree node representation hj where 
hj ∈ {hleft, hroot, hright} . For each answer aspect, there is a 
corresponding question representation.

When a question is extracted into a constituency tree, 
the left subtree’s root corresponds to the noun phrase, i.e., 
question type, while the right subtree’s root corresponds to 
the verb phrase, as a kind of question focus. We may pay 
more attention to the hleft in the choice of the final answer 
type. We also pay more attention to hright when choosing the 
answer relation. For answer type, the corresponding question 
representation is defined as follows:

vr
q
 , ve

q
, and vc

q
 are formalized in the same way. Given a candi-

date answer, we derive the scores of different aspects, which 
are S(ve

q
, ee) , S(vrq, er) , S(v

t
q
, et), and S(vc

q
, ec), respectively, 

where the scoring function S(⋅) is the inner product between 
question representation and aspect representation.

After we get all the aspect scores, a straightforward 
answer-decision strategy is to sum these scores up and select 
the candidate with the highest score as the final answer.

3.4.2 � Question‑Towards‑Answer Attention

Questions should also take varying attention to different 
answer aspects. As we know, different questions should 
concentrate on different answer aspects, which leads to 
question-towards-answer attention. We generate question-
towards-answer attention distribution � and �ee , �er , �et , �ec , 
respectively, denoting the attention weight for each answer 
aspect. This weight distribution reflects the importance of 
different answers aspects w.r.t. the given question.

For example, in some QA cases, the answer type may 
play a key role in determining the final answer. So the 

(8)�ij =
exp(wij)

∑n

k=1
exp(wik)

(9)wij = tanh(WT [hj;ei] + b).

(10)vt
q
= �

type

1
hleft + �

type

2
hroot + �

type

3
hright.

(11)�ei =
exp(wei

)
∑

ek∈ee,er ,et ,ec
exp(wek

)

(12)wei
= tanh(WT [q̄;ei] + b)

(13)q̄ =
1

3
(hleft + hroot + hright).

corresponding weight �et will be larger than other weights. 
The final score of each answer is summed up by scores from 
different answer aspects in the question-towards-answer 
attention. Candidate with the highest score is selected.

3.5 � Question–Answer Match

For each QA pair, we construct a candidate answer set 
for the question. Then, we expand the candidate set with 
incorrect answers. For each question, we generate m nega-
tive samples from the entities connected to the primary 
entity within k − hops . For example, if the number of main 
entity’s neighbors within 1 − hop is more than m, we will 
randomly choose m negative samples from the 1 − hop 
neighbors. If the number of 1 − hop neighbors is less than 
m, we will randomly select the negative samples within 
2 − hop . We will expand the hop boundaries until there 
are enough negative samples.

3.5.1 � Offline Traning

In the model training procedure, we employ the pairwise 
training strategy. After generating the training set, the 
pairwise training loss is defined in the following:

Here, a denotes the correct answer, a′ denotes the wrong 
answer, and � is the margin which is always a small positive 
real number within 1.

The []+ here denotes the function max(0, z). The basic 
idea of this training strategy is that the score of a question 
paired with a correct answer is higher than any wrong 
answer by at least � . As a result, once the score of correct 
answers S(q, a) is no higher than the score S(q, a�) + � , the 
loss will be counted. The minimized loss objective func-
tion is defined as follows:

In the optimization process, we adopt the stochastic gradient 
descent (SGD) to minimize the learning process with mini-
batches utilized.

3.6 � Online Response

During the question answering stage, for each QA pair, 
we have the question q and the candidate answer set Cq . 
For every candidate answer â ∈ Cq , we calculate the score 

(14)

S(q, a) = �eeS(v
e
q
, ee) + �erS(v

r
q
, er) + �et S(v

t
q
, et) + �ecS(v

c
q
, ec).

(15)Lq,a,a� =
∑

a∈Pq

∑

a�∈Nq

[� + S(q, a�) − S(q, a)]+.

(16)min
∑

q

1

|Pq|
Lq,a,a′ .
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S(q, â) . Finally, the scores are ranked, and the answer with 
the highest score is selected as the final answer.

However, it is worth noting that some questions have 
more than one correct answer. The strategy mentioned 
above is improper because only one answer will be 
returned. We define the margin m, and the answers whose 
gap to the best score is less than m will be put into the final 
answer set Âq as follows:

In practice, we find that for some questions, the number of 
candidate answers in the knowledge graph is very large, 
and the distribution of answers is unbalanced. Therefore, 
we could utilize a heuristic method to prune the candidate 
answer set. As observed from the candidate answers set, 
there are a lot of candidate answers that share the same 
answer type and answer relation. We first aggregate the 
candidate answers based on their answer type and answer 
relation. For each group, if the number of answers is greater 
than a threshold � , we randomly select � candidate answers 
from this group and put them into a new candidate set. If the 
number of groups is less than � , all the answers in this group 
result are added to the new candidate set. After processing 
all groups, we generate a new candidate set, which we will 
use later to calculate the scores. Next, we rank all the can-
didate answers according to their scores and generate pre-
dicted answers by the procedures we have mentioned above.

For every predicted answer, if the rest answers in its 
group are not in the candidate set, we should re-put them 
into the candidate set for calculating. In this way, we have 
reduced the number of calculations, and it also makes the 
number of answers in the candidate set more balanced.

4 � Experiments

Here, we report both the qualitative and quantitative studies 
of the proposed domain-aware KG-QA model.

4.1 � Experimental Setup

4.1.1 � Datasets

Two datasets are used in the experimental study. One is the 
mentioned insurance knowledge graph InsKG, and the other 
is commonly used in open-domain WebQuestions [1].

In the WebQuestions dataset, there are 5.8k q-a pairs, 
containing 3,778 training pairs training and 2,032 testing 
pairs. The questions are collected from Google Suggest API, 
and the answers are annotated by Amazon Mechanical Turk. 
The dataset is extracted from the open-domain knowledge 
graph Freebase [2].

(17)Âq = {â|Smax − S(q, â) < m}.

The InsKG has fixed scheme patterns. As mentioned 
before, InsKG contains 200k triples involving insurance 
companies, insurance products, terms in the insurance field, 
and so on. In the InsKG dataset, we randomly select 2k ques-
tion–answer pairs from the users’ provided questions in our 
InsKG service.

4.1.2 � Baselines

We use accuracy and average F1 scores in the experimental 
study. We choose several recent works as baselines in this 
experimental study:

•	 SimpleEmbedding [6]. Bag-of-words model is used to gen-
erate question and answer vectors.

•	 SubgraphEmbedding [3]. It takes the candidate answer’s 
neighbor nodes within 2-hops for embedding.

•	 MemNNs [4]. It uses the memory network to embed the 
inputs.

•	 MCCNNs [9]. It includes different aspects of the answers, 
and text CNN is used for each question.

•	 Bi-LSTM [13]. It designs a bi-LSTM model to profile the 
words’ forward and backward dependencies.

•	 Tree-LSTM with A-Q. The tree-LSTM model is utilized 
but only with answer-towards-question attention, which is 
a common attention model.

The WebQuestions dataset has a more varying scheme and 
covers more domains. Therefore, in the WebQuestions experi-
ment, it is noting that our proposed method is lacking question 
and answer representation modifications.

4.1.3 � Parameter Settings

We adopt the mini-batch stochastic gradient descent (SGD) 
as the optimization method to minimize the pairwise training 
loss. The batch size is set to 100, and the learning rate is set 
to 0.01.

In the InsKG experiment, the word embedding dimension 
is set to 128 and the hidden size of the LSTM cell is set to 128. 
The margin here for pairwise training is set to 1. The negative 
example number is set to 200. For the meta-path, with the 
help of the heuristic algorithm, the method generates 18 meta-
path schemes, and we keep 12 meta-path schemes according 
to prior knowledge.

In the WebQuestions experiment, the vector dimension of 
words is set to 256, and thus the tree structure LSTM cell’s 
hidden size is also set to 256. The margin � for pairwise train-
ing is set to 0.8. For every positive answer, we sample 1000 
negative examples. For knowledge graph embedding, we set 
the embedding dimension to 256. The margin �t for TransE 
is set to 1.
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All these hyperparameters of the proposed network are 
determined according to the performance on the validation set.

4.2 � Quantitative Study of KG‑QA

4.2.1 � General Dataset, WebQuestions

KG-QA results on the WebQuestions dataset are listed in 
Table  2.

The neural network methods have better ones, but cannot 
compete with LSTM variants. The proposed approach has 
the best performance, but just with a slight increase.

SimpleEmbedding and SubgraphEmbedding merely get 
the worst results under the bag-of-word assumptions. Bi-
LSTM drops the bag-of-words assumption and considers 
three different aspects of answers and resorts to the sequence 
modeling. Tree-LSTM model with answer-towards-question 
attention also has achieved a better performance than the 
previous work. The proposed model takes both question-
towards-answer and answer-towards-question attention into 
account. The improvements show the advantage of deep 
learning models.

MemNNs also uses the bag-of-words model to represent 
the questions, but it achieves a relatively better performance 
by designing the KG-QA model with the help of the memory 
networks framework.

MCNNs drop the bag-of-words assumption and consider 
three different aspects of answers.

4.2.2 � Specific Domain, InsKG

Results on InsKG are shown in Fig. 7. Similar to the experi-
ments on the general WebQuestions dataset, embedding 
lines cannot compete with LSTM methods. The proposed 
Tree-LSTM with modifications model has significant 
improvement. When the training ratio is 60% in Table 3, the 
improvement is most significant that the proposed method 
ranks first at 76.8% and followed by common Tree-LSTM at 
72.5% . It proves the usefulness of the meta-path in capturing 
the contextual structure information in the knowledge graph, 
as well as the value of domain information in modeling vec-
tor for answers.

Compared to the general model Tree-LSTM, Tree-LSTM 
can effectively improve the performance in QA tasks over 
specific-domain knowledge graphs.

These quantitative QA experiments reveal that the domain 
context features are valuable for KG-QA, and the proposed 
domain context KG-QA is better at specific-domain knowl-
edge graph usages.

Additionally, we find that the model which utilizes meta-
path for sampling in the knowledge graph achieves even bet-
ter performance than the model Tree-LSTM (W2V).

4.3 � Model Component Analysis

4.3.1 � Answer Context Contribution

The KG-QA experiments have revealed the contribu-
tions of meta-path features. We continue to analyze the 
details of different path types. In this experiment on 
InsKG, we take “ company → product → type → type, ” 
“   product → type → type → type,   ”  a n d 
" company → product → status ” as the starting meta-
path schemes, as shown in Fig. 8. Within each meta-path 
scheme, we compare their corresponding questions’ QA per-
formances of Tree-LSTM and Tree-LSTM with meta-path 
modification methods.

Table 2   QA result on 
WebQuestions

Methods Avg F1

SimpleEmbedding 29.7
SubgraphEmbedding 39.2
MemNNs 42.2
MCCNNs 40.8
Bi-LSTM 42.9
Tree-LSTM with A-Q 43.6
Proposed approach 44.1

Fig. 7   QA result on InsKG

Table 3   QA accuracy on InsKG 
(training ratio 60%)

Methods Avg F1

SimpleEmbedding 64.4
SubgraphEmbedding 67.1
Bi-LSTM 70.1
Tree-LSTM 72.5
Proposed approach 76.8
 Only with W2V 74.6
 Only with MP 75.2
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The results show that for some simple/short meta-path 
scheme, two methods get similar results. In the complex/
long meta-path scheme, the method with the meta-path fea-
ture gains an impressive improvement. The meta-path fea-
tures are valuable for complex pattern extraction, leveraging 
the KG-QA performance.

In contrast, such meta-path can significantly improve the 
accuracy of “type” questions, 10.5% . Here, the ‘type’ ques-
tions refer to examples like “What types of insurance prod-
ucts does China Life sell?”.

4.3.2 � Question Context Contribution

We further analyze the contribution from the question’s tree 
model extraction. Here, we classify the questions into fact 
and relation types based on the returned answer sets. In each 
category, we compare their QA performance of bi-LSTM 
and Tree-LSTM models. The results are shown in Fig. 9.

We find that common fact/attribute questions have 
roughly the same performance with/without tree models. 
It is reasonable that, for factual questions, their returned 
answers usually cover just the entity and directly connected 
attributes or categories, and the tree model parsing of input 
questions cannot deliver additional associations. In contrast, 
for relationship questions, sometimes their answers cover 
several entities and the interconnected edges in the knowl-
edge graph. The tree model is good at representing the ques-
tion intent/type and question focus/entity topic. Though the 
relationship questions take a small portion of users’ input 
questions, the tree model’s parsing potential contributes to 
the answering of the complex questions.

By carefully checking the knowledge graph, we find that 
the products’ types in the knowledge graph are in hierarchi-
cal structures. Based on the analysis of the results of the 
models without meta-path, we find that because of the type 

of insurance products often have a hierarchical relationship. 
For example, in the question “What types of insurance prod-
ucts does China Life sell?”, China Life sells a product whose 
type is cancer insurance. Thus, the cancer insurance should 
be included in the answer set. However, cancer insurance 
belongs to a more general category, i.e., insurance type, 
which is disease insurance. Disease insurance should also 
be returned in the result, though it is usually ignored.

With the help of the meta-path information, this prob-
lem is relieved. This example proves that the meta-path 
“ company → product → type → type ” well captures the 
relationship between types.

We find that even only one kind of optimization is 
adopted, we can get a certain degree of improvement in per-
formance. It proves the effectiveness of pre-word embedding 
and Meta-path. At the same time, the performance of using 
Meta-path is better than that of using PWE. It demonstrates 
that the use of meta-path can well capture the relationship 
information between entities in the knowledge graph.

4.3.3 � Cross‑attention Models

To illustrate the contributions of the cross-attention mecha-
nism, we continue to take the question “What city does PICC 
locate?” as the running example. In this question, the answer 
relation path is “locate” and the answer type is denoted as 
“location.city.” We consider four answer aspects, which are 
answer entity, answer relation, answer type, and answer 
context. In the heat map, the abscissa of the table is the left 
subtree’s root, root, right subtree’s root, and the ordinate is 
the answer entity, answer relation, answer type, and con-
text. The heavier the color, the higher the value of attention 
weight (Fig. 10).

As discussed in Sect. 3, we use the constituency tree 
to parse the input question. The left subtree plays a more 
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important role in predicting the type of the answer, while the 
right subtree is more critical in answer relation prediction. 
For the answer-towards-question attention, we first focus 
on the attention distribution for answer type. The results 
show that the left subtree root’s weight is more significant, 
indicating the dominant role that the left subtree plays in 
the answer type prediction. The right subtree root obtains 
the most significant value weight in the distribution. For 
the question-towards-answer attention, the answer type and 
the answer relation are more important in the final answer 
selection. It is vivid that the distribution of attention weights 
fits our expectations, and the tree model well uncovers the 
intents of the input question.

For the question-towards-answer attention, we find the 
answer type, and the answer relation is more important in the 
final answer decision, which is also in line with our intuitive 
experience.

In conclusion of the experimental study, we find that the 
proposed approach shows an advantage in both the KG-QA 
tasks and the question/answer explanation. The introduced 
meta-path features are beneficial for complex answer pro-
cessing. The tree structure is good at question understand-
ing. For the KG-QA performance, the new approach is espe-
cially useful in domain knowledge graph usages.

5 � Conclusion

In this paper, we propose a new KG-QA approach by lever-
aging the domain context, with the help of a cross-attention 
model. We parse the question tree and utilize meta-path to 
enrich the representation for answers. We also introduce 
the cross-attention mechanism and reveal the mutual influ-
ences between the questions and answers. The experimental 
results demonstrate the effectiveness and improvement in the 
proposed model in the specific-domain knowledge graph. 
Besides the improved KG-QA performance, the introduced 
domain context is better at capturing the correlation within 
the knowledge graphs. We are investigating its extensions in 
the relationship inference and entity analytics in future work.
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