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Abstract
Customers demand typical type of products with multiple features. We want to develop a business intelligence system which 
helps the company to set the blue ocean strategy by discovering k-most promising features (k-MPF) from the customers’ 
query and a set of existing products of the similar type. In this paper, we have formulated k-MPF to set the blue ocean strategy 
with compatible features. We have experimented with our proposed algorithms using different synthetic and real datasets, 
and the results showed the effectiveness of our proposed algorithms.
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1  Introduction

To retain in the market, the decision makers may use busi-
ness intelligence systems to improve the manufacturer’s stra-
tegic position among competitors, customers, and suppliers 
[1–3]. The manufacturers can collect customer choices for 
products and product features from their sales, e-commerce, 
and social networking websites [4]. Now to set the blue 
ocean strategy [5], the manufacturer can make intelligent 
use of these customer choices/query data, to decide on the 
features that should be selected to produce new competitive 
products, so that demand of the product can be maximized. 
To make the competition immaterial, the blue ocean strat-
egy identifies the market space that is vast, deep, and not 
yet explored [5]. Using the blue ocean strategy, we can (a) 
build uncontested market space, (b) build and restrain new 
demand, (c) make the competition immaterial, and (d) break 
the value-cost trade-off [5]. We may construct uncontested 
market space by developing new products with popular fea-
tures. The newly developed competitive products may attract 
as many customers as possible to increase the profit [4].

We may use the products–customers-features relationship 
(PCFR) table (Table 1) to display the relationship between 
products-features and customers-features. The ep1 to ep5 
are the existing products (EP), cq1 to cq10 are the customer 
queries (CQ) and f1 to f6 are the product (sub) features (F). 
The content {1, 1, 1, 1, 1, 0} of the existing product ep1 
indicates that the product consists of the features { f1 , f2 , f3 , 
f4 , and f5 }, but the feature f6 is not present in the product 
ep1 . Similarly, the content {0, 1, 1, 0, 1, 1} of the customer 
query cq1 indicates that the customer c1(∈ C) is looking for 
products with the features { f2 , f3 , f5 and f6 }, but the fea-
tures { f1 and f4 } are not in his/her priority list. Note that a 
customer can put any number of queries and total number of 
customer queries must be more than and equal to total num-
ber of customers, but in this paper, we have used the term 
number of customers and the number of customers queries 
interchangeably.

Suppose k is set to 3, i.e., select 3 ( = k ) most pro-
spective features, say { fi , fj and fk }, where fi , fj , fk ∈ F 
and i ≠ j ≠ k . The promising quotient (Pf) of a sub-
feature f while considering the existing products is 
Pf1 = 5∕(4 + 10) = 0.3571 , where 5 is the total number of 
customers who are looking for the feature f1 , 4 is the total 
number of existing products which contain the feature f1 and 
10 is the total number of customers who inquire about the 
products. Similarly, the Pf2 to Pf6 of the features f2 to f6 are 
10∕(5 + 10) = 0.6667, 9∕(1 + 10) = 0.8181, 5∕(5 + 10) =

0.3333, 3∕(5 + 10) = 0.2, 10∕(0 + 10) = 1 , respectively, 
(from Table 1).
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Now to set the blue ocean strategy, from the calcu-
lated Pf values, we must select the three features (as 
k = 3 ) { f2 , f3 , and f6 } to develop a new viable product. In 
other words, these are the three features { f2 , f3 , and f6 } 
which are three most demanding features among the cus-
tomers. The popularity among the customers for the fea-
ture set kF is EkF (i.e., for the features { f2 , f3 , and f6 }) 
= (0.6667 + 0.8181 + 1.0 =)2.4848 . The value 2.4848 is the 
highest value among all the combinations consisting of 3 (k) 
features. The k-most (here, k is set to 3) promising features 
are { f2 , f3 , and f6}.

Now, it could be possible that we cannot put these three 
features { f2 , f3 , and f6 } in a single product, i.e., the features 
may be non-compatible (or contradict) with each other. It 
could be possible that the features { f2 and f3 }, { f2 and f6 }, 
or { f3 and f6 }, or all { f2 , f3 and f6 } are non-compatible with 
each other. As an illustration of non-compatibility, assume 
feature f3 (color: white) and feature f6 (color: black) are non-
compatible with each other, and in such scenario we cannot 
put these two features f3 and f6 together, because, for a single 
colored product, the color should be any one of the colors, 
either black or white, but not both (if we do not allow mixed 
color). In such non-compatible situation, we have to explore 
a kF set, which consists of features, which are compatible 
with each other so that the EkF is maximized. Now, such 
k-most promising features (k-MPF), which are identified by 
the business intelligence system, help the producer to set 
the blue ocean strategy by developing products using kF 
set features.

We have sets of existing products (EP) and customer 
queries (CQ) on typical type of products with product fea-
tures (F). The promising quotient Pf for features f is influ-
enced by the number of customer queries for the feature 
f, the total number of customer queries |CQ|, i.e., nc and 

the total number of other existing products which consist 
of the feature f. If the compatibility issue is there then, no 
simple strategy can be applied to find the best kF set with 
the highest EkF value. Our main objective is to develop a 
business intelligence system to set the blue ocean strategy by 
selecting k-most promising features (k-MPF) from F. Such 
set of features kF may guide the producers to develop new 
competitive products by designing a product using all the 
features present in kF.

To compare the performance of our proposed algorithms, 
experiments have been conducted in which all the k-MPF 
algorithms and the existing technique (ConsumeAttrCumul-
SOC-CB-QL) of Miah et al. [6] (k-MPFsoc) and k-MPF5 
with the Bayes’ theorem [7] (k-MPFb) have been executed 
and results are compared. The k-MPF algorithms perform 
fairly well in almost all cases. For large dataset, the sug-
gested technique (ConsumeAttrCumul-SOC-CB-QL) of 
Miah et al. [6] worked well but did not consider the com-
patibility issue.

The contributions of this paper are summarized as 
follows:

•	 We formulate the problem of identification of k-MPF to 
set a blue ocean strategy.

•	 Identification of highly promising features (HF), least 
promising features (LF), and basic features (BF) of the 
products.

•	 Three algorithms (k-MPF2, k-MPF4, and k-MPF5) are 
proposed to solve the k-MPF discovering problems. In 
k-MPF2, we use a simple greedy method where compat-
ibility issue is not present. To address the compatibility 
issue, a recursive version of k-MPF algorithm k-MPF4 
is implemented using backtracking concept. An iterative 
version of k-MPF algorithm k-MPF5 is also implemented 
where the Pf values are in sorted order. Moreover, exist-
ing techniques (ConsumeAttrCumul-SOC-CB-QL) of 
Miah et al. [6] (k-MPFsoc) and k-MPF5 with the Bayes′ 
theorem [7] (k-MPFb) have been executed for compari-
son purpose.

The outline of this paper is organized as follows: related 
work is presented in Sect. 2; in Sect. 3, we describe the 
proposed k-MPF algorithms. Section 4 presents the experi-
ments. Finally, in Sect. 5, we conclude this paper.

2 � Related Work

Determining the right positioning for products, potential 
customer finding, and the product advantage discovery are 
few popular microeconomics research where data mining 
techniques have been used [8]. Product positioning helps the 
producer to increase profitability by identifying the position 

Table 1   The products–
customers-features relationship 
table

f1 f2 f3 f4 f5 f6

ep1 1 1 1 1 1 0
ep2 1 1 0 1 1 0
ep3 1 1 0 1 1 0
ep4 0 1 0 1 1 0
ep5 1 1 0 1 1 0
cq1 0 1 1 0 1 1
cq2 0 1 1 0 1 1
cq3 1 1 1 0 1 1
cq4 1 1 1 1 0 1
cq5 0 1 1 1 0 1
cq6 1 1 0 0 0 1
cq7 1 1 1 1 0 1
cq8 0 1 1 0 0 1
cq9 0 1 1 1 0 1
cq10 1 1 1 1 0 1
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of a product by analyzing the customer’s mind with respect 
to the existing products [8].

Goulding [9] discussed various aspects of new product 
development. The author mentioned the need for new prod-
uct development, critical factors in successful new product 
development, the role of creativity in the new product devel-
opment process, and test marketing in new product develop-
ment [9].

Wan et al. [10] suggested a technique to create competi-
tive products. Given a set of products in the existing mar-
ket, they recommended a technique to create a set of “best” 
possible competitive products such that the newly created 
products are not dominated by the products in the existing 
market. In this paper, they did not consider customer query/
choice/references for the product development process.

Wong et al. [11] proposed an algorithm to compute the 
skyline results efficiently using online responses for nomi-
nal data. Zhang et al. [12] proposed domination games for 
a modeling competition among manufacturers of a product 
for maximizing their expected market share. They showed 
that the Nash equilibrium always exists and it can be com-
puted in polynomial time in the number of customers and 
products.

Michalek et al. [13] presented and demonstrated a meth-
odology for defining a formal link between marketing prod-
uct planning and engineering design decision making. Using 
analytical target cascading, a hierarchical optimization meth-
odology was proposed to frame a formal optimization model 
which links marketing and engineering design decision-
making models by defining and coordinating interactions 
between the two.

Miah et al. [6] introduced the problem of selecting the 
best attributes of a new tuple, such that this tuple would 
be ranked higher, given a dataset, a query log, or both, i.e., 
the tuple “stands out in the crowd”. They suggested two 
algorithms (a) an optimal algorithm for small dataset and 
(b) three greedy algorithms for large dataset. But, in all the 
above mentioned techniques the compatibility issues were 
not considered.

Blijlevens et al. [14] discussed the knowledge of how con-
sumers perceive product appearance by identifying appear-
ance attributes that consumers use to distinguish the appear-
ances of durable products.

Wu et al. [15] suggested a technique to find the quali-
ties of the particular product. The company can promote the 
product by using the found qualities.

Moreover, the articles from [4, 8, 16, 17] help producer to 
identify the profitable products for marketing purpose. The 
articles from [18–20] suggested potential customers finding 
for marketing and advertising purpose. In this section, we 
have reviewed the related works, but to identify the best 
features no research has been proposed in consideration of 
the customer query and features compatibility issue.

3 � Problem Statement of k‑MPF Algorithm

In this section, we describe and define the proposed business 
intelligence system which helps the company to set the blue 
ocean strategy by selecting k-most promising features (k-
MPF) from the customer queries so that a new competitive 
product can be developed. First, we describe the symbols 
used in the paper as follows: 

EP	� Set of existing products, ep ∈ EP

nep	� Number of existing products
CQ	� Set of customer queries, cq ∈ CQ

F	� Set of sub-features, f ∈ F

f	� The sub-feature
d	� Total number of sub-features, d = |F|
k	� Number of most promising features
kF	� Set of k sub-features
EkF	� sum of Pf values of k sub-features f (∈ kF)
C	� Set of customers, c ∈ C

NC	� Total number of customers
nc	� Total number of customer queries
�	� The feature
�	� Set of features, � ∈ �

d�	� Number of features
d�	� Number of sub-features of the feature � and 

d� = |DOM(�)|
DOM(�)	� Set of sub-features of the feature �
NEPf 	� The total number of existing products which con-

tain the sub-feature f
NCQf 	� The total number of customer queries about the 

products with sub-feature f
Pf	� NCQf∕(NEPf + nc)

Bf	� NCQf∕nc

PEf	� NEPf∕nep

3.1 � Problem Definition

Assume a set of (potential) customers C = {c1, c2,… , cNC} , 
where NC ≥ 1 is the number of customers, demand-
ing some particular type of products. Every customer 
ci ∈ C put query cqi ∈ CQ , about the products, where 
CQ = {cq1, cq2,… , cqnc} , where nc is the number of cus-
tomer queries. The � = {�1,�2,… ,�d�

} is the set of fea-
tures of the products, where d� is the number of features. 
According to the domain of every feature, �i ∈ � are 
broken into sub-features fj , 1 ≤ j ≤ d�i , d�i is the number 
of sub-features of the feature �i . Total number of sub-
features is d =

∑d�
i=1

d�i . The EP = {ep1, ep2,… , epnep} is 
the set of existing products, which are already present in 
the market. Here, nep is the number of existing products. 
From the existing products (EP) and customer queries 
(CQ) about certain types of products, we can construct the 
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products–customers-features relationship (PCFR) table (e.g., 
Table 1). The PCFR table contains nRow ( = |EP ∪ CQ| , i.e., 
nep + nc ) rows and nCol (= |F| = d , F is the set of sub-fea-
tures) columns. For each epi , 1 ≤ i ≤ nep , the PCFR[i][j] = 1 , 
1 ≤ i ≤ nep , 1 ≤ j ≤ d indicates that the product epi , con-
tains the sub-feature fj and the PCFR[i][j] = 0 , 1 ≤ i ≤ nep , 
1 ≤ j ≤ d , indicates that the sub-feature fj is absent from the 
product epi.

Similarly, for each query cqi , 1 ≤ i ≤ nc in CQ the 
PCFR[i][j], nep + 1 ≤ i ≤ nep + nc , 1 ≤ j ≤ d contains 
the value 1 or 0. The PCFR[i][j] = 1 indicates that the cus-
tomer ci is looking for a product with sub-feature fj and 
PCFR[i][j] = 0 , indicates that the customer ci is not inter-
ested in the product with the sub-feature fj.

It is assumed that each customer ci ∈ C will certainly 
search a product with at least one sub-feature. If the cus-
tomer is looking for more than one sub-features fj , 1 ≤ j ≤ d , 
then the preferences among the sub-features are equal.

Promising Feature
A (sub) feature is promising feature, if high number of 

customers is looking for that (sub) feature, and at the same 
time availability of the products consisting of the same (sub) 
feature is less. To manufacture a product, if we select prom-
ising features, then the demand of the product can be met.

Definition 1  The promising quotient (Pf) of a sub-feature 
f is defined to be: Pf = NCQf

NEPf+nc
 , where, NEPf  is the total 

number of existing products which contain the sub-feature 
f, and NCQf  is the total number of customer queries about 
the products with sub-feature f and nc is the total number of 
queries. It is expected that if a sub-feature f is highly promis-
ing, its promising quotient is also high.

Now, we discuss various characteristics of the Pf. The 
characteristics of the promising quotient are as follows:

Characteristic (i): The value of Pf is in between 0 and 1, 
i.e., 0 ≤ Pf ≤ 1 . By definition nc ≥ NCQf  . Hence, 

Pf =
NCQf

NEPf+nc
≤ 1 . Moreover, NCQf  , NEPf  , nc all are non-

negative quantities and the minimum value of NCQf  be 0. 
Hence, the minimum value of Pf is also 0, when NCQf = 0 . 
Hence, 0 ≤ Pf ≤ 1.

Characteristic (ii): If Pf = 1 , then NCQf

NEPf+nc
= 1 . Now, 

NCQf

NEPf+nc
= 1 ⇒ NCQf = NEPf + nc . Since, NCQf ≤ nc and 

all these quantities are positive ( ≥ 0 ), NEPf  has to be 0 and 
NCQf = nc .  Hence, when Pf = 1 ,  NEPf = 0 ,  and 
NCQf = nc . This shows that if a sub-feature is demanded by 
all customers and the number of products satisfying this sub-
feature f is not at all available in the market, the sub-feature 
f is the highly promising feature to be selected by the 
manufacturer.

Characteristic (iii): The scenario when a sub-feature f 
has least promising quotient (least promising feature), that 
is, Pf = 0 , can be described as follows: Pf = 0 
⇒

NCQf

NEPf+nc
= 0 ⇒ NCQf = 0 , that is no customer is looking 

for the sub-feature f. Hence, there is no question of including 
f in the forthcoming product.

Characteristic (iv): If two sub-features fi and fj are 
equally popular (i.e., NCQfi

= NCQfj
 ) then Pfi ≥ Pfj iff the 

availabilities of fi are less than that of fj (i.e., NEPfi
< NEPfj

 ). 
Pfi ≥ Pfj  ⇔

NCQfi

NEPfi
+nc

>
NCQfj

NEPfj
+nc

 ⇔ NEPfi
< NEPfj

 ( a s 

NCQfi
= NCQfj

).
Characteristic (v): If the availability of two sub-features 

fi and fj is same ( NEPfi
= NEPfj

 ), then to a manufacturer fi 
is more promising than fj ( Pfi > Pfj ), if fi is more popular 
among the customers than fj . Pfi > Pfj ⇒

NCQfi

NEPfi
+nc

>
NCQfj

NEPfj
+nc

 

⇒ NCQfi
> NCQfj

 (as NEPfi
= NEPfj

).
Characteristic (vi): Given that NCQfi

> NCQfj
 , that is, 

ith sub-feature fi is more popular than the jth sub-feature fj 
and their popularity ratio 

NCQfi

NCQfj

 be 𝛼(> 1) , the promising fac-

tor pfi of the sub-feature fi is more than that of fj , Pfj , iff 
their availability ratio 

NEPfi

NEPfj

 is less than � +
nc(�−1)

NEPfj
.

Pfi > Pfj ⇔ 
NCQfi

NEPfi
+nc

≥
NCQfj

NEPfj
+nc

 ⇔ 
NCQfi

NCQfj

>
NEPfi

+nc

NEPfj
+nc

 ⇔ 

𝛼 >
NEPfi

+nc

NEPfj
+nc

 ⇔  𝛼NEPfj
− NEPfi

> nc(1 − 𝛼)  ⇔ 
NEPfi

NEPfj

< 𝛼 +
nc(𝛼−1)

NEPfj
 . Note: If the popularity ratio 

NCQfi

NCQfj

 of two 

sub-features fi and fj be 𝛼(> 1) , then their availability ratio 
NEPfi

NEPfj

< 𝛼 is a sufficient condition for fi to be more promising 

than fj.
On the basis of the above observations, we conclude the 

following theorem:

Theorem 1  The definition of promising quotient is justified.

Let kF ⊆ F be a set of k sub-features which are compat-
ible with each other. The popularity among the customers for 
the sub-feature set kF is EkF is defined as 

∑k

i=1
Pfi , ∀fi ∈ kF . 

The strategy to select k-most promising features is by select-
ing k sub-features whose EkF is the maximum.

Definition 2  (k-MPF) Given a set of existing products EP, 
a set of customer queries CQ, a set of sub-features F, and the 
k-MPF (k-most promising features) are a set of k sub-features 
chosen from F with the maximum of EkF, where all the fea-
tures fi, 1 ≤ i ≤ k in kF are compatible with each other.

Example 1  According to Table  1, the Pfi values are 
Pf1 = 0.3571 , Pf2 = 0.6667 , Pf3 = 0.8181 , Pf4 = 0.3333 , 
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Pf5 = 0.2 , Pf6 = 1 . Assume all the sub-features are compat-
ible to each other, hence the 3-MPF is kF = {f2, f3, f6} , where 
EkF = {0.6667 + 0.8181 + 1} = 2.4848 which is maximum 
EkF value.

Definition 3  (Highly promising feature) Given a set of 
existing products EP, a set of customer queries CQ, a set of 
sub-features F, and the sub-feature fi , 1 ≤ i ≤ d in F are the 
highly promising feature (HF) (Characteristics ii), if Pfi ≈ 1 , 
i.e., currently the potential customers are looking for the 
products with the sub-feature fi but no or very few such 
products are present in the market with the sub-feature fi . 
Highly promising features help the producer to set the blue 
ocean strategy and campaign selection [1].

Example 2  According to Table 1, the Pf6 = 1 , i.e., currently 
the customers are looking for the products with sub-feature 
f6 , but no such products are present in the market with the 
sub-feature f6 . Here, sub-feature f6 is the highly promising 
sub-feature.

Definition 4  (Least promising feature) Given a set of exist-
ing products EP, a set of customer queries CQ, a set of sub-
features F, and the sub-feature fi , 1 ≤ i ≤ d in F are the least 
promising feature (LF), if Pfi ≈ 0 (Characteristics iii), i.e., 
currently no or very few customers are looking for products 
with the sub-feature fi . Least promising features may help 
the producer to set the marketing strategy.

Definition 5  (Compatible/non-compatible features) Given 
a set of sub-features F, and the sub-features fi and fj are in F, 
are compatible (or non-compatible) with each other if using 
these two sub-features fi and fj , we can (or cannot) develop 
a new product. In kF, all the sub-features should be compat-
ible with each other.

We have to construct a compatibility (CMT) table to 
store the information about the compatibility among the 
sub-features.

Example 3  Let four sub-features f1 , f2 , f3 , and f4 be there 
and f1 and f2 are non-compatible with each other. We can 
form kF (let k = 3 ) set using sub-features { f1 , f3 , f4 } or using 
sub-features { f2 , f3 , f4 }, but in kF set we cannot keep the 
sub-features f1 and f2 together. Moreover, in the k-MPF, all 
the sub-features should be compatible with each other with 
the maximum of EkF.

Definition 6  (Basic feature) For all the sub-feature 
fi , 1 ≤ i ≤ d , we have to calculate Bfi and PEfi where 
Bfi = NCQfi

∕nc and PEfi = NEPfi
∕nep . If for any sub-feature 

fi ∈ F , the Bfi ≈ 1 and PEfi ≈ 1 then the fi is the basic sub-
feature (BF). Basic features help the producer to develop 
products with common but popular sub-features.

Example 4  The Bfi and PEfi values of the sub-features f1 to 
f6 , i.e., Bf1 to Bf6 (from Table 1) are 5/10 = 0.5, 10/10 = 1, 
9/10 = 0.9, 5/10 = 0.5, 3/10 = 0.3, and 10/10 = 1 and PEf1 
to PEf6 values are 4/5 = 0.80, 5/5 = 1, 1/5 =0.20, 5/5 = 1, 
5/5 = 1, 0/5 = 0, respectively. Here, the PEfi values of the 
sub-features f2 , f4 , f5 are 1 and corresponding Bfi values are 
1, 0.5, and 0.3, respectively. Therefore, as per Definition 6, 
f2 is the basic feature.

3.2 � Construction of the Products–
Customers‑Features Relationship (PCFR) Table 
and Compatibility (CMT) Table

In this section, we discuss the construction of the prod-
ucts–customers-features relationship (PCFR) table and the 
compatibility (CMT) table as follows:

The PCFR table The PCFR table is a two-dimensional 
array with nRow and nCol number of rows and columns, 
respectively. The size of nRow is nep + nc (i.e.,|EP ∪ CQ| ), 
and the size of nCol is d, i.e., the total number of sub-fea-
tures. For each (nominal and ordinal) feature �i , 1 ≤ i ≤ d� 
( d� is the number of features), |DOM(�i)| number of sub-
features are there, where DOM(�i) is a set of sub-features 
of feature �i.

Note that all the sub-features fj, 1 ≤ j ≤ |DOM(�i)| of 
feature �i are non-compatible with each other, i.e., fk and fl , 
1 ≤ k, l ≤ |DOM(�i)|, k ≠ l are non-compatible with each 
other. For categorical, ordinal or Boolean data, the size of 
the domain of the feature is natural (i.e., as per domain of 
the feature or as per distinct values present in the feature) 
and for quantitative data, the size of the domain is user 
defined. The size of the nCol is 

∑d�
j=1

�DOM(�j)� . As we 
know that the features are of different types, e.g., nominal 
(e.g., color: red, green), ordinal (e.g., speed: high, moderate, 
low), Boolean (e.g., gender: male, female) or quantitative 
(e.g., height: 161 cm, 170 cm). For nominal, ordinal and 
Boolean features, the generated sub-features are based on 
the domain of the features or distinct values present in the 
features. For example, let the feature be color and for color 
feature the sub-features set be {white, black, silver, golden}, 
i.e., if the feature is color �color and the number of distinct 
colors of the color feature is say black ( fb ), white ( fw ), silver 
( fs ), and golden ( fg ) then DOM(�color) (= { fb, fw, fs, fg }) 
occupies four columns of PCFR table for four sub-features 
{ fb, fw, fs, fg } (Table 2) and |DOM(�color)| = 4. If the feature 
is Boolean, e.g., mobile phone carries more than single 
SIM? ( �sim ), then allocates two columns for yes ( fyes ) and 
no ( fno ) for the sub-features {yes and no}, respectively. If 
the feature is quantitative (e.g., price), then break the feature 
into sub-features as per user’s choice. For example, the quan-
titative feature price ( |�p| ) may be subdivided into sub-fea-
tures as follows: (1K–5K] ( fp1 ), (5K–10K] ( fp2 ), (10K–15K] 
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( fp3 ) (Table 2). Similarly for ordinal data, e.g., feature speed 
( �s ) the distinct values are {e.g., high, moderate, and low} 
then the sub-features high ( fh ), moderate ( fm ), and low ( fl ) 
are allocated three columns of the PCFR table.

Example 5  Table 2 demonstrates the PCFR table for the 
product mobile phone where four features {color, smart 
phone?, single SIM?, price} and eleven sub-features are 
there. For the feature “phone color” (nominal), the sub-
features are white ( f1 ), black ( f2 ), silver ( f3 ), and golden 
( f4 ). Similarly, for the features “smart phone?” (Boolean), 
sub-features are yes ( f5 ), and no ( f6 ), feature “carries single 
SIM?” (Boolean), the sub-features are yes ( f7 ), no ( f8 ), for 
the feature “price” (quantitative) the sub-features are (1K–
5K] ( f9 ), (5K–10K] ( f10 ), (10K–15K] ( f11 ). In Table 2, the 
existing product ep1 consists of {1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 
0}, i.e., the (sub)-features of ep1 are as follows: color: white, 
smart phone: yes, number of SIMs more than 1: yes and the 
price range: more than 5K and less than and equal to 10K. 
The values of the customer query cq1 are {1, 1, 0, 1, 0, 1, 
0, 1, 1, 0, 0}, i.e., the customer c1 is looking for a mobile 
phone with the color white or black or golden, smart phone, 
with more than one SIMs, and the cost of the mobile phone 
should be in between 1k to 5k. Note that the customers may 
select any number of sub-features, for example, at the same 
time he/she may ask for any color, say, black, or white, or 
silver, hence he/she can put 1 on any sub-feature (without 
thinking about compatibility issue). But for the existing 
products, the compatibility issue must be there. Compat-
ibility issue: Here, sub-features f5 and f6 are non-compatible 
with each other, because the mobile phone may be smart or 
non-smart (non-featured) phone but not both at the same 
time. But (as an instance) sub-features f1 and f5 are compat-
ible with each other since the white colored smart phone is 
possible.

Non-listed query using dynamic PCFR table: what if a 
customer is looking for a feature (or sub-feature) which is 
not enlisted in the PCFR table column. In such a scenario, 

we can construct a PCFR table using dynamic memory allo-
cation where we can incorporate customer’s new demand 
dynamically. In this research, we restrict ourselves to only 
static PCFR table.

The CMT table To implement compatibility and non-
compatibility issue, we may construct a compatible table 
(CMT table). The CMT table is a symmetric matrix of order 
d (Table 3). If sub-feature fi is compatible with sub-feature 
fj , then the entry value of CMT [i][j] and CMT[j][i] should 
be zero. Similarly, if sub-feature fi is non-compatible with 
sub-feature fk , then the entry value of CMT [i][k] and CMT 
[k][i] should be one. Note that CMT [i][i] = 0, for all i, 
1 ≤ i, j, k ≤ d.

Example 6  If sub-feature f1 and f2 are non-compatible with 
each other, then the table entry CMT [1] [2] and CMT [2] 
[1] should be 1. Similarly, if sub-features f2 and fd are non-
compatible with each other, then the table entry CMT [2][d] 
and CMT [d][2] should be 1 (Table 3).

3.3 � Proposed k‑MPF Algorithms

Now, we discuss different k-MPF algorithms to identify the 
k-MPF.

3.3.1 � The k‑MPF Algorithms Without Compatibility Issue

Algorithms 1 and 2 demonstrate the simple k-MPF algo-
rithms. First of all, we demonstrate k-MPF1 (exhaustive 
search) algorithm as follows:

Table 2   Construction of the 
products–customers-features 
relationship table

Color Smart phone? Single sim? Price

White Black Silver Golden Yes No Yes No (1K–5K] (5K–10K] (10K–15K]

f1(fw) f2(fb) f3(fs) f4(fg) f5(fyes) f6(fno) f7(fyes) f8(fno) f9(fp1) f10(fp2) f11(fp3)

ep1 1 0 0 0 1 0 0 1 0 1 0
ep2 0 1 0 0 1 0 1 0 1 0 0
ep3 0 1 0 0 1 0 0 1 0 0 1
cq1 1 1 0 1 0 1 0 1 1 0 0
cq2 0 1 1 1 0 1 0 1 0 0 1
cq3 0 1 1 0 0 1 0 1 1 1 0
cq4 0 1 0 0 1 1 1 0 1 1 1

Table 3   Construction of CMT 
table

f1 f2 ⋯ fd

f1 0 1 ⋯ 0
f2 1 0 ⋯ 1
: : : ⋯ :
fd 0 1 ⋯ 0
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Algorithm 1: The k-MPF1 algorithm
Input: PCFR Table, k;
Output: HF, LF, BF, EkF and kF;
1. for all sub-features fi , 1 ≤ i ≤ d from F, calculate Pfi , 
Bfi and PEfi;
//Identify the highly promising, the least promising and 
the basic features.
2. if ( Pfi ≈ 1 ), then fi is the highly promising feature 
(HF);
3. if ( Pfi ≈ 0 ), then fi is the least promising feature (LF);
4. if ((PEfi ≈ 1)&&(Bfi ≈ 1)) then fi is the basic feature 
(BF);
5. for dck different sub-feature sets (kF) of size k, calculate 
EkF values;
6. select kF set with the highest EkF value;
7. return HF, LF, BF, EkF and kF;

Explanation of Algorithm 1: Line 1, for all the sub-features, 
we calculate Pf, Bf and PEf values. Line 2 to 4, we identify 
the highly promising (HP), the least promising (LF), and the 
basic features (BF). Line 5, calculate EkF values for different 
dck number of kF sets of size k. Line 6, select the kF set with 
the maximum EkF value.

Example 7  (k-MPF1): The PCFR table (Table 4) is given. The 
Pf values are Pf1 = 1∕(1 + 2) = 0.33,Pf2 = 0∕(2 + 2) = 0,

Pf3 = 2∕(1 + 2) = 0.66,Pf4 = 1∕(0 + 2) = 0.5   ,  a n d 
Pf5 = 2∕(0 + 2) = 1 . The Bf values are Bf1 = 1∕2 = 0.5 , 
Bf2 = 0 , Bf3 = 1 , Bf4 = 0.5 , and Bf5 = 1. The PEf values are 
PEf1 = 1/2 = 0.5, PEf2 = 1, PEf3 = 0.5, PEf4 = 0 and PEf5 
= 0. In summary, the Pf, Bf, and PEf values are as follows:

f1 f2 f3 f4 f5

Pf1 = 0.33 Pf2 = 0 Pf3 = 0.66 Pf4 = 0.5 Pf5 = 1
Bf1 = 0.5 Bf2 = 0 Bf3 = 1 Bf4 = 0.5 Bf5 = 1
PEf1 = 0.5 PEf2 = 1 PEf3 = 0.5 PEf4 = 0 PEf5 = 0

Here, the sub-feature f5 is the highly promising feature 
and the sub-feature f2 is the least promising feature. No basic 
feature is identified. Here, 5c3 = 10 (where d = 5 and k =3) 
different kF sets (Fig. 1) are formed and associated EkF val-
ues are calculated as follows: 

kF f1, f2, f3 f1, f2, f4 f1, f2, f5 f1, f3, f4 f1, f3, f5

EkF 0.99 0.83 1.33 1.49 1.99
kF f1, f4, f5 f2, f3, f4 f2, f3, f5 f2, f4, f5 f3, f4, f5

EkF 1.83 1.16 1.66 1.5 2.16

The 3-MPF set is { f3 , f4 , f5 } (since the EkF is the highest 
(2.16) for the sub-features { f3, f4, f5}). Here, we assume that 
all the sub-features are compatible with each other.

k-MPF2 algorithm: In the exhaustive version of the K-
MPF algorithm (K-MPF1), we calculate EkF values for dck 
different sets of size k, hence the k-MPF1 algorithm is very 
time inefficient algorithm, therefore we propose k-MPF2 
algorithm as follows:

Algorithm 2: The k-MPF2 algorithm
Input: PCFR Table, k;
Output: HF, LF, BF, EkF, and kF;
1. for all the sub-features fi , 1 ≤ i ≤ d from F, calculate 
Pfi , Bfi and PEfi and identify the highly promising (HF), 
the least promising (LF), and the basic features (BF);// 
(same as Line 1 to 4, of Algorithm 1). The Pf values are 
stored in the PFI[] array;
2. sort the sub-features f in ascending order of Pf;
3. select k sub-features from the right (from the sorted 
PFI[]) to form kF set;
4. return HF, LF, BF, EkF, and kF;

Table 4   The PCFR table
f1 f2 f3 f4 f5

ep1 0 1 0 0 0
ep2 1 1 1 0 0
cq1 0 0 1 0 1
cq2 1 0 1 1 1

Fig. 1   The solution space of the 
K-MPF1 (Example 7)
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Here, in the k-MPF2 algorithm (Line 1), we calculate Pf, 
Bf and PEf for all the sub-features and then identify the HF, 
LF, and BF. In Line 2, we sort the sub-features in ascending 
order of calculated Pf, and (in Line 3), we select the best k 
numbers of the sub-features (From PFI[d] to PFI[d-k+1]).

Example 8  (k-MPF2) Using the PCFR table (Table 4), the 
Pf, the Bf, the PEf values are calculated and the HF, the LF, 
and BF are identified as Example 7. Next, the sub-features 
are sorted in ascending order of Pf values (Table 5). Select 3 
(k) sub-features from the right side of the PFI[] (from PFI[5] 
to PFI[3]) (Table 5). The 3-MPF set is { f3 , f4 , f5 } where the 
EkF value is 2.16.

3.3.2 � The k‑MPF Algorithm with Compatibility Issue

In practical situations, the compatibility issue between the 
sub-features is there. Therefore, we devise a new algorithm 
to address the compatibility issue efficiently. The motivation 
behind the need for new algorithms is: with compatibility 
issue we cannot form the kF set by simply selecting the sub-
features according to the sorted order of the Pf values (as 
discussed in k-MPF2 algorithm). Therefore, to get the proper 
kF set of size k, we need efficient algorithm. Here, with the 
compatibility issue, we discuss three k-MPF algorithms as 
follows: (a) k-MPF3: the k-MPF by checking compatibility 
on different dck number (exhaustive) of kF sets, (b) k-MPF4: 
the recursive version of the k-MPF algorithm with back-
tracking technique, and (c) k-MPF5: the iterative version of 
the k-MPF algorithm where the Pf values are in sorted order.

k-MPF3 algorithm In this version of k-MPF algorithm, 
we identify dck different kF sets of size k and retain few of kF 
sets where all the sub-features of the kF sets are compatible 
to one another. Out of the retained kF sets, the kF set with 
the maximum EkF value is selected. Next, we give the steps 
of the k-MPF3 algorithm as follows:

Algorithm 3: The k-MPF3 algorithm
Input: PCFR Table, CMT Table, k;
Output: HF, LF, BF, EkF, and kF;
1. for all the sub-features fi , 1 ≤ i ≤ d from F, calculate 
Pfi , Bfi and PEfi and identify the highly promising (HF), 
the least promising (LF), and the basic features (BF); // 
same as Step 1 to Step 4 of Algorithm 1.

2. construct dck different kF sets of size k
3. retain the kF sets where (in the kF) the sub-features are 
compatible with each other;
4. select the kF set with the highest EkF value from the 
retained kF sets;
5. return HF, LF, BF, EkF, and kF;

Explanation of the k-MPF3 algorithm: Line 1 (Algorithm 3) 
is the same as Line 1 to Line 4 of Algorithm 1. Line 2, 
dck different kF sets of size k are generated (where d is the 
number of sub-features and k is the number of desired sub-
features). Discard the kFi , 1 ≤ i ≤d ck , if fa and fb (where fa , 
fb ∈ kFi, a ≠ b ) are not compatible with each other. Calcu-
late EkF values for the retained kF sets. Line 4, select the kF 
set with the highest EkF value.

Example 9  (k-MPF3) The PCFR table (Table 4), the CMT 
table (Table 6), and k = 3 are given. The Pf, Bf, and PEf 
values are calculated as Example 7. Here, 5c3 = 10 (where 
d = 5 and k = 3 ) different kF sets are formed. If the sub-
features of kF are compatible with each other, then the kF is 
retained and associated EkF values are calculated as follows:

kF f1, f2, f3 f1, f2, f4 f1, f2, f5 f1, f3, f4 f1, f3, f5

EkF – – – 1.49 1.99
kF f1, f4, f5 f2, f3, f4 f2, f3, f5 f2, f4, f5 f3, f4, f5

EkF – 1.16 – – –

H e r e ,  u s i n g  k - M P F 3 ,  t h r e e  k F 
{f1, f3, f4}, {f1, f3, f5}, {f2, f3, f4} sets are retained (where the 
sub-features are compatible with each other) and associated 
EkF values are calculated. The highest EkF value is 1.99 for 
the sub-features {f1, f3, f5} , hence the 3-MPF is { f1 , f3 , f5}.

The complexity of k-MPF3 algorithm is O(dck × kc2) 
(Total dck × kc2 different compatibility checking are there), 
therefore we need a competent algorithm to address the com-
patibility issue.

k-MPF4 Algorithm First of all, we present the k-MPF4 
algorithm as follows:

Table 5   The PFI[] array: sub-features are arranged in ascending order 
of the Pf values

1 2 3 4 5

f2 f1 f4 f3 f5

Pf2 = 0 Pf1 = 0.33 Pf4 = 0.5 Pf3 = 0.66 Pf5 = 1

Table 6   The CMT table
f1 f2 f3 f4 f5

f1 0 1 0 0 0
f2 1 0 0 0 1
f3 0 0 0 0 0
f4 0 0 0 0 1
f5 0 1 0 1 0
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Algorithm 4: The k- MPF4 algorithm
Input: PCFR Table, CMT Table, k;
Output: HF, LF, BF, EkF, and kF;
1. KFTemp = {}, EKFTemp = {}, PFI ={}, Tag =0; // Global variables
2. for all sub-features fi, 1 ≤ i ≤ d from F , calculate Pfi, Bfi and PEfi and
identify the highly promising (HF), the least promising (LF) and the basic
features (BF);
3. kF = {};
4. for (i = 1; i <= d - k + 1; i = i+1){ // d is the number of sub-features
5. MPFCE(kF , i, k); // Call function MPFCE()
6. }
7. if (Tag == 0)
8. print (”No solution exist with present k value, select lesser k value”);
9. else return HF, LF, BF, EkF, kF;

// Function MPFCE
10. MPFCE(kF , i, k) {
11. select the ith sub-feature say (fx); //fx = PFI[i]
12. if (|kF | ! = 0) {
13. for all the sub-features fy present in kF {
14. //check the compatibility between fx with fy
15. if (CMT[x][y] == 1) then return; // Backtrack
16. }
17. }
18. kF = union(kF , fx);
19. if (|kF | == k) {
20. Tag = 1;
21. store kF and EkF values in KFTemp and EKFTemp respectively;
22. return; //Backtrack
23. }else{
24. if (i == d) then return;
25. for (p = i+1; p <= d - (k-|kF|-1); p = p+1) {
26. MPFCE(kF , p, k); // Call MPFCE() recursively
27. }
28. }
29.}

reduces the number of kF sets formation. Line 7, if Tag is 1, 
then the kF with maximum EKF is returned.

The complexity of k-MPF4 algorithm is O(dck × kc2) 
(maximum total dck × kc2 compatibility checking are there) 
in the worst case situation and �((d−k+2)c2) (i.e., (d−k+2)c2 
compatibility checking are there) in the best case situation.

Example 10  (k-MPF4) The PCFR table (Table 4), the CMT 
table (Table 6), and k = 3 are given. Figure 2 demonstrates 
the solution space of the k-MPF4. At each node, we check the 
compatibility to block the paths. To guide the search at each 
node, we check only those successors’ nodes that are compat-
ible with its ancestor’s nodes. Initially, the partial solution (kF) 
is empty and as each new node is visited, the partial solution 
is extended. Line 4, i varies from 1 to 5 − 3 + 1 = 3 . Line 
5, function MPFCE() is called and the parameters kF = {} , 
i = 1 , and k = 3 are passed. Line 11, i = 1, hence f1 is selected 

Explanation of the k-MPF4 algorithm (Algorithm 4): Line 1, 
four global variables KFTemp, EKFTemp, PFI, and Tag are 
declared. Line 4, in for loop, i varies from 1 to (d − k + 1) . Line 
5, algorithm calls the MPFCE() function where kF, i and k are 
passed as the parameters. Line 10 to 29, the function MPFCE() 
is defined. Line 12 to 17, compatibility in between ith, i.e., fx 
with sub-feature(s) present in the kF set is (are) checked. Line 
15, if fx and fy are the non-compatible with each other, then the 
formation of the kF set is stopped and return back (backtrack) to 
check the compatibility of the (i + 1) th sub-feature with the sub-
features present in the kF set. Line 19 to 23, if the size of the kF 
set is same as k then update the KFTemp and the EKFTemp to 
store the kF and associated EkF value, respectively, and the Tag 
variable is set to 1. Line 22, return back to form another kF set 
with (i + 1) th sub-feature. Line 25, call the MPFCE() function 
to check the remaining (p + 1) th sub-features. Note that in Line 
25, p varies from (i + 1) to d − (k − |kF| − 1) , hence algorithm 
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from the PFI[1] (since the Pfi values are stored in PFI[] array). 
The leftmost subtree contains the solution with sub-feature f1 
(Fig. 2). Line 12, the if statement is false since the size of the kF 
is 0. Line 18, the kF is updated, hence partial kF = { f1 }. Line 
19, the if statement is false since the size of the kF is 1. Line 
25, p varies from 2 to 4, and the function MPFCE() is called 
(recursively), where p = 2, k = 3, and kF = { f1 } are passed 
as parameters. Line 11, i = 2, hence f2 is selected from the 
PFI[2]. Line 12, the if statement is true since the size of kF is 1. 
Line 13, sub-feature f1 and sub-feature f2 are non-compatible 
(Table 6: The CMT table) with each other; hence, we do not 
explore further, and the f2 node is killed (and its decedents 
sub-features (by showing faded line)) and return to Line 25, (of 
previously called MPFCE() function), p is incremented to 3, 
and the function MPFCE() is called, where p = 3, k = 3, and kF 
= { f1 } are passed as parameters. Similarly, the f3 (sub-feature) 
node is explored, since f3 is compatible with f1 , the updated 
kF set to {f1, f3} . Next, the compatibility between {f1, f3} with 

sub-feature f4 is checked successively (Line 12 to 16). Sub-
feature f4 is compatible with { f1 and f3 }; hence, f4 is included 
in the kF. Now the kF = { f1 , f3 , f4 } and EkF value is calculated. 
After visiting three (k) nodes, the depth search is blocked and 
the node f4 has no unfinished descended. The depth first search 
now return back to explore for other solutions, i.e., check the 
compatibility {f1, f3} with sub-feature f5 . Since f5 is compatible 
with the elements of the kF = {f1, f3} set; hence, f5 is included 
in the kF set and the corresponding EkF value is calculated. The 
same process is carried out for the rest of the nodes (Fig. 2). 
Finally, identify the maximum EkF value (1.99) and the associ-
ated kF = {f1, f3, f5} set to get the k-most promising features.

k-MPF5 algorithm Now, we discuss iterative version of 
k-MPF (k-MPF5) algorithm with compatibility issue. In k-
MPF5, number of kF sets formation can be reduced more effi-
ciently. The algorithmic steps of the k-MPF5 are as follows:

Algorithm 5: The k- MPF5 algorithm
Input: PCFR Table, CMT Table, k;
Output: HF, LF, BF, EkF, kF;
1. for all the sub-features fi, 1 ≤ i ≤ d from F , calculate Pfi, Bfi and PEfi
and identify the HF, LF and BF; // same as Step 1 to 4 of Algorithm 1.
2. sort the sub-features fi in descending order of Pf where S[] stores the sorted
Pf values and I[] stores original index values of Pf ;
3. for (i = 1; i<=d-(k-1); i++){
4. for (j = i; j<=d; j++){
5. if (CMT[I[1,i],I[1,j]]) == 1 then AR[i,j] = -1; GR[i,j] =-1;
6. else then AR[i,j] = S[1,j]; GR[i,j] = I[1,j];
7. }}
8. EkF = 0; kF={}; Tag = 0;
9. for (i = 1; i < = d-(k-1); i++) {
10. tkF = i; tEkF =AR[i,i]; IND = i;
11. for (j = i + 1; j < = d; j++){
12. if(AR[i,j]> -1){
13. IND = union(IND,j); // insert j into IND
14. tEkF += AR[i,j];
15. tkF = union(tkF,GR[i,j]); //insert jth feature into tkF;
16. for (m = j+1; m<=d; j++){
17. if (AR[j,m] == -1) then AR[i,m] = -1;
18. }
19. if (EkF<tEkF){
20. EkF = tEkF;
21. kF = tkF;
22. }
23. if (k == |tkF|){
24. if((i*k+k*(k-1)/2) == sum(IND)) then Tag = 1;
25. break;
26. }
27. }
28. }if (Tag == 1) then break;
29. }
30. return HF, LF, BF, EkF, kF;
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Explanation of the k-MPF5 algorithm (Algorithm 5): 
In Line 1, k-MPF5 identifies HF, LF, and BF. Line 2, the 
sub-features f are sorted in descending order of Pf, where 
S[] stores the sorted Pf values and I[] stores sub-features 
number (or index of the sub-features) accordingly. Line 3 
to 7, two (two dimensional) arrays AR[] and GR[] (of size 
d − (k − 1) by d and upper-triangular) are constructed. In 
AR[], we store the sorted Pf values (from the S[], which 
contains the sorted Pf values) which are compatible with 
the ith row sub-feature, and in GR[] we store the associated 
index of the sub-features which are stored in AR[]. In both 
the arrays AR[i ,j] and GR[i, j], if the ith sub-feature is not 
compatible with the jth sub-feature then − 1 is inserted. Line 
8, the variables EkF = 0, kF = {}, and Tag = 0 are initial-
ized. Line 9, for-loop executes d − (k − 1) times. Line 10, 
the i value is inserted into tkF and IND sets. The tEkF is 
initialized with AR[i,i] value. Line 11, j varies from i + 1 to 
d. For every ith sub-feature, the compatibility (Line 12) is 
checked with other sub-features (j) and if they are compat-
ible with each other (sub-feature i with sub-feature j) then 
IND, tEkF, and tkF are updated. Line 16 to 18, after every 
inclusion of the jth sub-features, the AR[] table is updated 
(if needed). If any element in between (j + 1) to d column of 
the jth row is − 1 , then the ith row is updated accordingly. 
In other words, if AR[j, m] is − 1 , then AR[i, m] is also 
updated to − 1 . Line 19 to 22, maximum EkF value and asso-
ciated kF set are captured. Line 23, if k number of features 
are identified then next ith values are checked. Line 24, if 

index of all the k sub-features is adjacent then the algorithm 
immediately returns the output, since the possibility to get 
the better result is nil.

The time complexity of k-MPF5 algorithm is O(d3 − d2k) 
in the worst case situation and �(d2) in the best case situa-
tion, but note that in Line 2, the algorithm needs extra time 
(O(dlogd)) for sorting.

Example 11  (k-MPF5): The sub-features are arranged in 
descending order of the Pf values. The order is as follows: 
Pf5(1) , Pf3(2) , Pf4(3) , Pf1(4) , and Pf2(5) and the ordered Pfi val-
ues are (S[] =){1, 0.66, 0.5, 0.33, 0}, respectively (Line 2 
of Algorithm 5). Here, the meaning of Pfi(j) is the ith feature 
and the jth order. The I[] stores the original index of the sub-
features, i.e., I[] = {5, 3, 4, 1, 2}. Line 3 to 7, AR (Table 7) 
and GR (Table 8) are formed.

Line 8, EkF = 0, kF = {}, and Tag = 0 are initialized. 
Line 9, i varies from 1 to (5 − (3 − 1) =)3 . When i = 1 , (Line 
10) tkF is initialized with i (=1), tEkF is initialized with 
A[1, 1] (i.e., 1), and IND is initialized with i(= 1) . Line 11, 
j varies from 2 to 5. When j = 2 , (Line 12) AR[1, 2] is 0.66 
which is more than − 1 , hence, j(= 2) is included in IND , 
tEkF is (1 + 0.66 =)1.66 , tkF is {1, 2}. Line 16, variable m 
varies from 3 to 5, no value in 2nd row is − 1 hence, first 
row is not updated. Line 19 and 22, EkF and kF are updated. 
Line 23, the if condition is false, since present size of the tkF 
is 2 not 3 (k). Next, j = 3 (Line 11), AR [1, 3] is − 1 (Line 
12), the if condition is false. Next, j = 4 (Line 11), AR[1, 4] 
= 0.33, Line 12, the if condition is true. The IND = {1, 2, 
4}, the tEkF = 1.99, and tkF = {5, 3, 1} are updated. Line 

Fig. 2   The solution space of the 
K-MPF4 (Example 10)

Table 7   The initial AR table
f5 f3 f4 f1 f2

f5 1 0.66 − 1 0.33 − 1
f3 0 0.66 0.50 0.33 0
f4 0 0 0.50 0.33 0

Table 8   The GR table 1 2 3 4 5

1 5 3 − 1 1 − 1
2 0 3 4 1 2
3 0 0 4 1 2

Fig. 3   The solution space of the K-MPF5 (Example 11)
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16, m varies from 5 to 5, the AR[4, 5] is − 1 hence, AR[1, 
5] is updated to − 1 . Line 19 and 22, EkF = 1.99 and kF = 
{5, 3, 1} are updated (maximum EkF value and associated 
kF set are captured). Line 23, the if condition is true (since 
size of the tkF is 3(k)). Line 24, the if condition is false, 
since i ∗ k + k ∗ (k − 1)∕2 , i.e., 1 ∗ 3 + 3 ∗ (3 − 1)∕2 = 6 is 
not equal to sum of the content of IND, i.e., (1 + 2 + 4) = 7 
(Fig. 3).

Next i = 2 (Line 9), in Line 10, tkF = {3}, tEkF = 0.66, 
and IND = {2}. The j varies from 3 to 5 (Line 11). If j = 3 , 
AR[2, 3] is 0.5, the if condition is true (Line 12), hence IND 
= {2, 3}, tEkF = {1.1666}, and tkF = {3, 4} are updated. 
Line 16, m varies from 4 to 5, no elements of third row is 
− 1 , hence, second row is not updated. Line 19, the if condi-
tion is false (since 1.99 > 1.16). Line 23, the if condition is 
false (since |kF| = 2).

If j = 4 , AR[2, 4] is 0.33, the if condition is true, hence, 
IND = {2, 3, 4}, tEkF = {1.49}, and tkF = {3, 4, 1} are 
updated. Line 16, m varies from 5 to 5, AR[4, 5] is − 1 , 
hence, AR[2,5] is updated to − 1 . Line 19, the if condition 
is false (since, 1.99 > 1.49). Line 23, the if condition is 
true (since, |kF| = 3), Line 24, the if condition is true, since 
i ∗ k + k ∗ (k − 1)∕2 , i.e., 2 ∗ 3 + 3 ∗ (3 − 1)∕2 = 9 is equal 
to sum of the content of IND, i.e., (2 + 3 + 4) = 9 . Line 30, 
HF, LF, BF, EkF = 1.99 and kF = {5, 3, 1} are returned 
(Fig. 3).

4 � Experiments

The experiments were conducted on a PC with an Intel(R) 
Core(TM), i5-4570 processor, (3.20 GHz), and 8 GB RAM 
running the Windows 10 operating system. All the algo-
rithms have been coded in Octave-3.2.4. GNU Octave 
(http://www.gnu.org/softw​are/octav​e) is a high-level inter-
preted programming language for numerical computation. 
Using k = d� number of sub-features, we can develop a 
new product. To show the effectiveness of the new prod-
uct, we use the performance parameter as follows: a prod-
uct must contain minimum number (say, d� ) of features to 
manufacture. Hence, we may select d� sub-features (with 
compatibility) to generate a synthetic product. Intuitively, 
in present time, the generated synthetic product may ful-
fill as many customers (higher PNPn value) desire as pos-
sible. For the jth existing product, we calculate number of 
preference matching (i.e., matching 1’s) nomij with all the 
existing customers i, 1 ≤ i ≤ nc . The performance of jth 
existing product is PEPj =

∑nc

i=1
nomij

nc
 . Next, we calculate 

mPEP = max1≤j≤nep PEPj . The mPEP value of an existing 
product exhibits the maximum number of customers which 
are satisfied with the (existing) product. For the new product, 
we calculate performance of new product PNPn =

∑nc

i=1
nominew

nc
 . 

We compare PNPn with mPEP. If PNPn > mPEP , then the 
new (synthetic) product can be the best alternative than the 
existing products (since, the new product may fulfill the cur-
rent demand of the customers), but if PNPn ≤ mPEP , then 
there is no need to develop a new product, since the best 
product is already present in the market.

An existing technique ConsumeAttrCumul-SOC-CB-QL 
of Miah et al. [6] (k-MPFsoc) has been executed to select the 
k sub-features from the customer queries and existing prod-
ucts information. For large dataset, the suggested technique 
(ConsumeAttrCumul-SOC-CB-QL) by the authors Miah 
et al. [6] works well, but they did not consider the compat-
ibility issue. Hence, for comparison purpose, we have incor-
porated the compatibility issue in their ConsumeAttrCumul-
SOC-CB-QL technique. Moreover, we have implemented 
K-MPF5 with the Bayes’ theorem [7] (k-MPFb) for compari-
son purpose. For every sub-feature fi, 1 ≤ i ≤ d , we calcu-
late, P(fi�1) =

P(fi)P(1�fi)∑d

i=1
P(fi)P(1�fi)

 (posterior probability), where, 

P(fi) =
1

d
 (prior probabilities), P(1|fi) =

NO1i

|nc+nep| (conditional 
probabilities), NO1i is the number of 1 present in fi sub-
feature. It is expected that if a sub-feature fi is highly promis-
ing, its P(fi|1) is also high. To implement the k-MPFsoc and 
the k-MPFb, we inverted the content of the EP and merge 
with CQ to construct PCFR. For comparison purpose, we 
have calculated EkF values on both the techniques k-MPFb 
and k-MPFsoc separately.

We have executed seven programs which are as follows: 
(a) Without considering the compatibility issue: (i) k-MPF1 
(exhaustive), (ii) k-MPF2 (proposed 1), (b) Considering the 
compatibility issue (i) k-MPF3 (exhaustive), (ii) k-MPF4 
(proposed 2) (iii) k-MPF5 (proposed 3), (c) k-MPFb (using 
Bayes’ Theorem with k-MPF5), (d) k-MPFsoc (using [6]). 
For each experiment, three runs have been executed and the 
minimum execution time has been reported.

4.1 � Datasets

To show the effectiveness of our proposed algorithms, we 
have used two real datasets auto data and car data from the 
UCI machine learning repository: (http://archi​ve.ics.uci.edu/
ml/).

Auto data The total number of data is 398. After removing 
the data with missing values, the number of data is 392. 
The number of features is 9. The features are as follows: 
(i) mpg (continuous), (ii) cylinders (multi-valued discrete), 
(iii) displacement (continuous), (iv) horsepower (continu-
ous), (v) weight (continuous), (vi) acceleration (continu-
ous), (vii) model year (multi-valued discrete), (viii) origin 
(multi-valued discrete), (ix) car name (string (unique for 
each instance)). For our experiment, we have selected first 
six features. First feature mpg, which is a continuous type, 

http://www.gnu.org/software/octave
http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/
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the minimum value is 9 and the maximum value is 46.60. 
We have divided this feature �1 into two sub-features as fol-
lows: f1 is the first sub-feature for the range (9–25] and f2 is 
the 2nd sub-feature for the range (25–50].

The second feature is cylinders �2 of type multi-valued 
discrete (ordinal), the minimum value is 3 and the maximum 
value is 8. We have divided this feature �2 into three sub-
features as follows: f3 is the third sub-feature and the range 
is [3, 4], f4 is the fourth sub-feature and the range is [5, 6], 
and f5 is the fifth sub-feature and the range is [8, 9].

The third feature is displacement �3 of type continuous, 
the minimum value is 68 and the maximum value is 455. We 
have divided this feature �3 into two sub-features as follows: 
the f6 is (68–200], the f7 is (200–455]. The fourth feature 
is horsepower �4 of type continuous, the minimum value 
is 46 and the maximum value is 230. We have divided this 
feature into three sub-features as follows: the f8 is (46–100], 
the f9 is (100–199], and the f10 is (199–230]. The fifth fea-
ture is weight �5 of continuous type, the minimum weight 
is 1613 and maximum weight is 5140. The divisions of the 
feature �5 are as follows: the f11 is (1613–3000], the f12 is 
(3000–5140].

The sixth feature is acceleration �6 of type continuous, 
the minimum value is 8 and the maximum value is 24. 
We have divided this feature �6 into three sub-features as 
follows: the f13 is (0–10], the f14 is (10–20], and the f15 
is (20–30]. From the auto data, we have selected the data 
iteratively and the values are compared with sub-features 
range and the PCFR table of auto data is filled with 0 and 1. 
For example, the first data (or row) of auto data are {18.0, 8, 
307.0, 130.0, 3504.0, 12.0} of features { �1 , �2 , �3 , �4 , �5 , 
�6 }, respectively. Therefore, the first row of the PCFR table 
is {1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0} of sub-features 
{ f1 , f2 , f3 , f4 , f5 , f6 , f7 , f8 , f9 , f10 , f11 , f12 , f13 , f14 , f15 }, 
respectively.

Similarly, the tenth data are {15.0, 8, 390.0, 190.0, 
3850.0, 8.5} and hence the tenth row of the PCFR table is 
{1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0}. Number of rows and 
columns of the PCFR table of auto data are 392 and 15 (sub-
features), respectively. We have constructed a CMT table 

which is a square matrix of order 15. Under the first feature 
�1 , two sub-features f1 , and f2 are non-compatible with each 
other. Similarly, under the second feature �2 , three sub-fea-
tures f3 , f4 , and f5 are non-compatible with each other. But 
f1 with { f3 , or f4 , or f5 } and f2 with { f3 , or f4 , or f5 } are 
compatible with each other.

Car data The total number of data is 1728, and the num-
ber of features is 6. The features are as follows: (i) buying 
(very-high, high, med, low), (ii) maintenance (very-high, 
high, med, low), (iii) doors (2, 3, 4, 5 or more), (iv) persons, 
(2, 4, more), (v) luggage-boot (small, med, big), and (vi) 
safety (low, med, high). All the features are ordinal types. 
From first feature buying �1 , we have constructed four sub-
features f1 , f2 , f3 , and f4 for (buying price) very-high, high, 
med, low, respectively. From the second feature mainte-
nance �2 , we have constructed sub-features f5 , f6 , f7 , and 
f8 , for (maintenance) very-high, high, medium, and low, 
respectively.

In this way, we have constructed the PCFR table for the 
car data using all the sub-features. Number of rows and col-
umns of the PCFR table of car data are 1728 and 21 (sub-
features), respectively. From car data, we have selected the 
data iteratively and compared with sub-feature values and 
the PCFR table is filled with 0 and 1. For example, the first 
data is {vhigh, vhigh, 2, 2, small, low}. Therefore, the first 
row of the PCFR table is {0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 
0, 0, 1, 0, 0, 1, 0, 0}.

For all the data, from PCFR table, we have selected first 
thirty percent data as existing products (EP) and remaining 
seventy percent data as customer queries (CQ).

Synthetic data We have used two synthetic data [21] 
(SYN1 (correlated) and SYN2 (uncorrelated)) to construct 
the PCFR table. The number of data are 1000, and 2000, 
dimensions (sub-features) are 20 and 40, features are 7 and 
11, respectively. Moreover, we have generated two CMT 
tables which are the square matrix of order 20 and 40, 
respectively. Moreover, to show the scalability of our pro-
posed algorithms, we have generated synthetic data (The 
PCFR table) of different sizes. We have executed all the 
algorithms on different (i) dimensions (d): here, number of 

Table 9   The Pf, Bf, and PEf values of the auto data

f1 f2 f3 f4 f5 f6 f7 f8

Pf 0.2393 0.6044 0.5078 0.2278 0.1419 0.5758 0.2587 0.5666
Bf 0.3054 0.6945 0.5854 0.2436 0.1709 0.6763 0.3236 0.6800
PEf 0.6495 0.3504 0.3589 0.1623 0.4786 0.4102 0.5897 0.4701

f9 f10 f11 f12 f13 f14 f15

Pf 0.2699 0 0.5290 0.3000 0 0.6700 0.0645
Bf 0.3200 0 0.6291 0.3709 0 0.9345 0.0654
PEf 0.4358 0.0941 0.4444 0.5555 0.0854 0.8803 0.0341
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rows is 100 and k is 3 for all the cases, (ii) sizes ( nep + nc ): 
here, the number of sub-features (columns) is 10 (d) and the 
k value is 3 for all the cases, and (iii) k: for all the different 

k values, the number of rows is 5000 and the number of 
sub-features is 20. Moreover, to execute all the k-MPF algo-
rithms, we have generated CMT tables randomly using 
Octave programming. Note that for synthetic data [21], we 
have directly generated (using 1’s and 0’s) the PCFR and the 
CMT tables through programming.

4.2 � Results and Analysis

Now, we discuss the analysis of the different outcomes of all 
the algorithms as follows

Auto data: The Pf, Bf, and PEf values of the Auto data are 
given in Table 9. The Pf value of 10th and 13th sub-features 
is 0, and hence, we can say that the f10 and the f13 sub-
features are the least promising features and the Pf value of 
the 14th feature is 0.67 which is the maximum and hence 
we can conclude that sub-feature f14 is the highly promis-
ing feature. We have applied k-MPF1, k-MPF2, k-MPF3, 

Table 10   The Pf, Bf, and PEf values of the car data

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11

Pf 0.3570 0.3570 0.2669 0 0.2458 0.2458 0.2458 0.1695 0.2208 0.2208 0.2208
Bf 0.3570 0.3571 0.2859 0 0.2677 0.2677 0.2677 0.1966 0.2454 0.2454 0.2454
PEf 0 0 0.1660 0.8339 0.2084 0.2084 0.2084 0.3745 0.2606 0.2604 0.2606

f12 f13 f14 f15 f16 f17 f18 f19 f20 f21

Pf 0.2411 0.2886 0.2932 0.2932 0.2904 0.2914 0.2932 0.2914 0.2914 0.2923
Bf 0.2636 0.3305 0.3347 0.3347 0.3322 0.3331 0.3347 0.3332 0.3335 0.3338
PEf 0.2181 0.3397 0.3301 0.3301 0.3359 0.3339 0.3301 0.3339 0.3339 0.3320

Table 11   Results of k-MPF1 and k-MPF2 on different k of the auto 
data

No. k EkF T (k-MPF1) T (k-MPF2) kF (sub-features)

1 2 1.2843 0.1934 0.1124 2, 14
2 3 1.8602 0.2969 0.1875 2, 6, 14
3 4 2.4268 0.4218 0.2281 2, 6, 8, 14
4 5 2.595 0.8125 0.2593 2, 6, 8, 11, 14
5 6 3.4638 1.0937 0.2906 2, 3, 6, 8, 11, 14
6 7 3.7638 1.5157 0.3562 2, 3, 6, 8, 11, 12, 14
7 8 4.0337 1.7188 0.4160 2, 3, 6, 7, 8, 11, 12, 14
8 9 4.2924 1.8123 0.4375 2, 3, 6, 7, 8, 9, 11, 

12, 14
9 10 4.5318 1.9314 0.4531 1, 2, 3, 6, 7, 8, 9, 11, 

12, 14

Table 12   Results of k-MPF3, k-
MPF4, and k-MPF5 on different 
k of the auto data

No. k EkF T (k-MPF3) T (k-MPF4) T (k-MPF5) kF (sub-features)

1 2 1.2843 0.3335 0.2543 0.2804 2,14
2 3 1.8602 0.4500 0.3125 0.3010 2, 6, 14
3 4 2.4268 0.9350 0.7501 0.4724 2, 6, 8, 14
4 5 2.9559 3.5470 1.7032 0.4930 2, 6, 8, 11, 14
5 6 3.4638 8.1450 3.2545 0.9702 2, 3, 6, 8, 11, 14

Table 13   Results of k-MPF1 
and k-MPF2 on different k of 
the car data

No. k EkF T (k-MPF1) T (k-MPF2) kF (sub-features)

1 2 0.7140 1.2032 0.9111 1, 2
2 3 1.0073 1.2032 1.0111 1, 2, 14
3 4 1.3006 1.8423 1.2502 1, 2, 14, 15
4 5 1.5938 3.8751 1.2800 1, 2, 14, 15, 18
5 6 1.8862 8.9594 1.2903 1, 2, 14, 15, 18, 21
6 7 2.1776 20.5187 1.3216 1, 2, 14, 15, 17, 18, 21
7 8 2.4690 34.2543 1.4821 1, 2, 14, 15, 17, 18, 19, 21
8 9 2.7604 44.5521 1.4922 1, 2, 14, 15, 17, 18, 19, 20, 21
9 10 3.0508 71.6663 1.5232 1, 2, 14, 15,16, 17, 18, 19, 20, 21
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Table 14   Results of k-MPF3, k-
MPF4, and k-MPF5 on different 
k of the car data

No. k EkF T (k-MPF3) T (k-MPF4) T (k-MPF5) kF (sub-features)

1 2 0.6502 0.3200 0.3200 0.2980 1, 14
2 3 0.9435 0.4000 0.3700 0.3001 1, 14, 18
3 4 1.2359 0.8910 0.7039 0.8765 1, 14, 18, 21
4 5 1.4817 3.1320 2.2300 2.9110 1, 5, 14, 18, 21
5 6 1.7228 10.440 7.4450 7.0900 1, 5, 12, 14, 18, 21

Table 15   Results of k-MPF1 
and k-MPF2 on different k of 
the SYN1 data

No. k EkF T (k-MPF1) T (k-MPF2) kF (sub-features)

1 2 0.8902 3.8564 1.0011 4, 16
2 3 1.3222 4.8767 1.2311 4, 8, 16
3 4 1.7538 5.8773 1.2222 4, 6, 8, 16
4 5 2.1854 6.8751 1.9876 4, 6, 8, 11, 16
5 6 2.6158 7.0023 2.1903 4, 6, 7, 8, 11, 16
6 7 3.0424 7.5187 2.3216 4, 6, 7, 8, 11, 12, 16
7 8 3.4675 9.2543 3.4821 3, 4, 6, 7, 8, 11, 12, 16
8 9 3.8917 12.5521 3.4922 3, 4, 6, 7, 8, 11, 12, 16, 18
9 10 4.3103 17.6663 3.5232 3, 4, 6, 7, 8, 11, 12, 13, 16, 18

Table 16   Results of k-MPF3, k-
MPF4, and k-MPF5 on different 
k of the SYN1

No. k EkF T (k-MPF3) T (k-MPF4) T (k-MPF5) kF (sub-features)

1 2 0.8902 0.8912 0.3200 0.7302 4, 16
2 3 1.3219 2.8010 2.7700 1.8956 4, 6, 16
3 4 1.7535 3.0510 4.7039 2.2544 4, 6, 11, 16
4 5 2.1720 6.1020 5.8300 5.0010 4, 6, 11, 13, 16
5 6 2.5710 7.5930 8.445 8.1991 2, 4, 6, 11, 13, 16

Table 17   Results of k-MPF1 
and k-MPF2 on different k of 
the SYN2 data

No. k EkF T (k-MPF1) T (k-MPF2) kF (sub-features)

1 2 0.8813 14.0234 10.1127 17, 21
2 3 1.3081 14.2032 10.1910 17, 21, 39
3 4 1.7327 15.9103 10.3502 3, 17, 21, 39
4 5 2.1522 16.9911 10.9090 3, 17, 21, 27, 39
5 6 2.5709 17.0001 11.0001 3, 17, 21, 25, 27, 39
6 7 2.9892 17.8187 11.2212 3, 9, 17, 21, 25, 27, 39
7 8 3.4075 18.9054 11.9987 3, 8, 9, 17, 21, 25, 27, 39
8 9 3.8251 22.2227 12.0212 3, 8, 9, 11, 17, 21, 25, 27, 39
9 10 4.2402 29.0098 12.2211 3, 6, 8, 9, 11, 17, 21, 25, 27, 39

Table 18   Results of k-MPF3, k-
MPF4 and k-MPF5 on different 
k of the SYN2

No. k EkF T (k-MPF3) T (k-MPF4) T (k-MPF5) kF (sub-features)

1 2 0.8694 10.9880 0.3200 2.7302 3, 21
2 3 1.2890 11.3440 2.7700 2.8956 3, 21, 27
3 4 1.7072 16.3530 4.7039 3.2544 3, 9, 21, 27
4 5 2.1224 68.8930 5.8300 5.3410 3, 6, 9, 21, 27
5 6 2.5366 490.705 10.4450 9.1431 3, 6, 9, 20, 21, 27
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k-MPF4, and k-MPF5 algorithms on auto data on different 
k-values (Tables 11, 12).

Car data: The Pf, Bf, and PEf values of the Car data are 
given in Table 10. Here, the fourth sub-feature is the least 
promising feature and first and second sub-features are the 
highly promising features. We have applied all the algo-
rithms on car data for different k-values. Tables 13 and 14 
demonstrate the results.

Table 11 (Auto Data) and Table 13 (Car Data) demon-
strate the execution time differences between k-MPF1 and 
k-MPF2 algorithms. The results show that the proposed k-
MPF2 outperformed on all the cases. Similarly, Table 12 
(Auto Data) and Table 14 (Car Data) show the execution 

time difference between k-MPF3, k-MPF4, and k-MPF5 
algorithms and the results show that our proposed algorithm 
(k-MPF5) is the best in almost all the cases (except when k is 
2, of Table 12 and when k is 5 of Table 14). The last column 
of all the tables (Tables 11, 12, 13, 14) displays the kF set for 
different k values with maximum EkF value [third column 
of all the tables (Tables 11, 12, 13, 14)].

Experiments on synthetic data: Tables 15, 16, 17 and 
18 show the results of SYN1 and SYN2 data using all the 
algorithms. Our proposed algorithms (k-MPF2, k-MPF4, 
and k-MPF5) show the effectiveness in all the cases. Next, 
we discuss the scalability of all the algorithms on (a) vary-
ing dimensions (d-sub-features): Fig. 4 demonstrates the 

Table 19   Comparison of k-
MPF5, k-MPFb, and k-MPFsoc 
on auto and car datasets with 
different k values

k Method Auto Car

Time EkF kF Time EkF kF

2 k-MPF5 0.2804 1.2843 2, 14 0.298 0.6502 1, 14
k-MPFb 0.6364 1.2843 2, 14 10.3147 0.9436 2, 18
k-MPFsoc 0.5625 1.2843 2, 14 10.1075 0.6029 1, 15

3 k-MPF5 0.3010 1.8602 2, 6, 14 0.3001 0.9435 1, 14, 18
k-MPFb 0.9362 1.8602 2, 6, 14 10.6392 0.9436 2, 15, 18
k-MPFsoc 0.5630 1.8602 2, 6, 14 10.1223 0.8440 1, 5, 12

4 k-MPF5 0.4724 2.4268 2, 6, 8, 14 0.8965 1.2359 1, 14, 18, 21
k-MPFb 1.2211 2.4268 2, 6, 8, 14 11.923 1.2359 2, 15, 18, 21
k-MPFsoc 0.5635 2.3892 2, 6, 11, 14 10.1678 1.1326 1, 5, 12, 13

5 k-MPF5 0.4930 2.9559 2, 6, 8, 11, 14 2.9111 1.4817 1, 5, 14, 18, 21
k-MPFb 1.3269 2.9559 2, 6, 8, 11, 14 12.629 1.4817 2, 7, 15, 18, 21
k-MPFsoc 0.5644 2.8971 2, 3, 6, 11, 14 10.175 1.4230 1, 5, 12, 13, 16

6 k-MPF5 0.9702 3.4638 2, 3, 6, 8, 11, 14 7.09 1.7228 1, 5, 12, 14, 18, 21
k-MPFb 1.4932 3.4638 2, 3, 6, 8, 11, 14 12.936 1.7228 2, 7, 12, 15, 18, 21
k-MPFsoc 1.2238 3.4638 2, 3, 6, 8, 11, 14 10.6432 1.7114 1, 5, 12, 13, 16, 19

Table 20   Comparison of k-
MPF5, k-MPFb, and k-MPFsoc 
on SYN1 and SYN2 datasets 
with different k values

k Method SYN1 SYN2

Time EkF kF Time EkF kF

2 k-MPF5 0.7302 0.8902 4, 16 2.7302 0.8694 3, 21
k-MPFb 3.597 0.8809 4, 6 10.212 0.8694 3, 21
k-MPFsoc 3.0596 0.8809 4, 6 12.0946 0.8594 4, 21

3 k-MPF5 1.8956 1.3219 4, 6, 16 2.8956 1.2890 3, 21, 27
k-MPFb 3.893 1.3061 3, 4, 6 10.923 1.2890 3, 21, 27
k-MPFsoc 3.4706 1.2821 4, 6, 19 13.7337 1.2777 9, 14, 21

4 k-MPF5 2.2544 1.7535 4, 6, 11, 16 3.2544 1.7072 3, 9, 21, 27
k-MPFb 3.969 1.7377 3, 4, 6, 11 11.031 1.7072 3, 9, 21, 27
k-MPFsoc 3.4918 1.6751 4, 6, 9, 19 13.8538 1.7022 3, 9, 14, 21

5 k-MPF5 5.001 2.1720 4, 6, 11, 13, 16 5.341 2.1224 3, 6, 9, 21, 27
k-MPFb 4.023 2.1619 3, 4, 6, 11, 16 12.321 2.1184 3, 9, 21, 22, 27
k-MPFsoc 3.566 2.0742 2, 4, 6, 9, 19 13.900 2.1003 3, 9, 14, 18, 21

6 k-MPF5 8.1991 2.5710 2, 4, 6, 11, 13, 16 9.1431 2.5366 3, 6, 9, 20, 21, 27
k-MPFb 4.932 2.5804 3, 4, 6, 11, 17, 18 13.936 2.5335 3, 6, 9, 21, 22, 27
k-MPFsoc 3.999 2.4859 2, 4, 6, 9, 17, 19 14.1617 2.4972 3, 9, 14, 18, 21, 34
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execution time of all the algorithms of varying number 
of dimensions (d sub-features). The results show that the 
execution time of our proposed k-MPF2 and k-MPF5 algo-
rithms appears nearly flat when the number of sub-features 
(d) increases. But, the time complexities of the k-MPF3 
and k-MPFsoc are not linear. (b) Execution time on varying 
k-values: The execution time of all the algorithms by vary-
ing the number of k on fixed data size is shown in Fig. 5. 
The graph indicates that the execution times of the proposed 
algorithms (k-MPF2, k-MPF4 and k-MPF5) are nearly flat 
when the number of k values increases. It is clear that the 

value of k has little effect on the execution time of our pro-
posed algorithms. But it is not true for exhaustive versions of 
the k-MPF algorithms (k-MPF1 and k-MPF3). Here, execu-
tion efficiencies are not linear. (c) Execution time on varying 
row ( nep + nc ) size: Fig. 6 displays the execution time of the 
algorithms on different number of rows, i.e., nep + nc (with 
fixed number of k and sub-features d). The results show that 
the execution time of exhaustive versions of the algorithms 
and existing algorithms take much time as compared to our 
proposed algorithms, when number of rows increases.

Comparison with existing techniques: Table 19 shows the 
comparison of k-MPF5, k-MPFb, and k-MPFsoc techniques 
using Auto and Car datasets with different k values. The 
results show that in most of the cases k-MPF5 needs the 
least time with respect to other two (k-MPFb and k-MPFsoc) 
techniques. The EkF values of k-MPF5 are the highest in all 
the time. Similarly, in Table 20, using two synthetic datasets 
(SYN1 and SYN2), the comparative study of the k-MPF5, 
k-MPFb, and k-MPFsoc techniques is presented. For SYN1 
data, k-MPFsoc needs the least time for all the k values, 
but the EkF values of the k-MPF5 are the highest in all the 
cases. In SYN2, the k-MPF5 needs the least time and the 
EkF values are the highest for all the k values.

Effectiveness of the k-MPF algorithms: Table 21 exhibits 
the effectiveness of the k-MPF5, k-MPFb, and k-MPFsoc 
algorithms on different datasets and k values. It is observed 

Table 21   Comparison between 
mPEP and PNPn values to show 
the effectiveness of k-MPF

Auto (k = 6) Car (k = 6) SYN1 (k = 7) SYN2 (k = 11)

mPEP PNPn mPEP PNPn mPEP PNPn mPEP PNPn

k-MPF5 11.400 15 12.486 17.000 10.222 11 20.187 21.000
Time: 0.9702 Time: 7.09 Time: 8.1991 Time: 12.23

k-MPFb 11.400 15 12.486 10.917 10.222 11 20.187 19.991
Time: 1.4932 Time: 12.936 Time: 9.83 Time: 24.00

k-MPFsoc 11.400 15 12.486 15.000 10.222 11 20.187 20.000
Time: 1.2238 Time: 10.6432 Time: 8.5423 Time: 23.9761

Fig. 4   Execution time on varying d 

Fig. 5   Execution time on varying k 

Fig. 6   Execution time on varying ( nep + nc)
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that k-MPF5 is better than k-MPFb, and k-MPFsoc in terms 
of time and PNPn in almost all the cases.

5 � Conclusion

In this paper, we formulated k-most promising features 
(k-MPF) with compatibility and non-compatibility issues. 
Three algorithms k-MPF2, k-MPF4, and k-MPF5 are pro-
posed to identify the kF features to develop new competitive 
products efficiently to set the blue ocean strategy. We have 
compared our proposed algorithms with exhaustive versions 
of the algorithms and existing algorithm using real and syn-
thetic datasets, and the results demonstrate that the proposed 
algorithm is the best in all most all the cases. We can use 
our proposed algorithms in business decision to set the blue 
ocean strategy. The proposed algorithms can identify the 
k-most promising features along with the highly promising, 
least promising, and basic features.

Finally, in this paper, the issues we have handled are 
novel and important to the area of a business decision, and 
we observed that our evaluation parameters have little evi-
dence that these synthetically generated “new” products 
would be truly popular in the market and we do not attempt 
to exhibit the practical application value, hence overcoming 
such limitation of the paper is subject to future work.
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