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Abstract
Fast reachability detection is one of the key problems in graph applications. Most of the existing works focus on creating an 
index and answering reachability based on that index. For these approaches, the index construction time and index size can 
become a concern for large graphs. More recently query-preserving graph compression has been proposed, and searching 
reachability over the compressed graph has been shown to be able to significantly improve query performance as well as 
reducing the index size. In this paper, we introduce a multilevel compression scheme for DAGs, which builds on existing 
compression schemes, but can further reduce the graph size for many real-world graphs. We propose an algorithm to answer 
reachability queries using the compressed graph. Extensive experiments with four existing state-of-the-art reachability algo-
rithms and 12 real-world datasets demonstrate that our approach outperforms the existing methods. Experiments with syn-
thetic datasets ensure the scalability of this approach. We also provide a discussion on possible compression for k-reachability.

Keywords  Modular decomposition · Graph compression · Reachability queries · Algorithms

1  Introduction

The reachability query, which asks whether there exists a 
path from one vertex to another in a directed graph, finds 
numerous applications in graph and network analysis. Such 
queries can be answered by graph traversal using either 
breadth-first or depth-first search in time O(|E| + |V|) with-
out preprocessing (where V and E are the vertex set and 
edge set, respectively), or in constant time if we pre-compute 
and store the transitive closure of each vertex, which takes 
O(|V||E|) time and O(|V|2) space. Unfortunately, neither of 
these approaches is feasible for applications that need to 
process large graphs with limited memory. Over the last dec-
ades, the problem has been extensively studied and many 
advanced algorithms have been proposed, with most of them 
relying on building smart indexes that can strike a balance 

between online query processing time and offline index con-
struction time (and index size).

More recently, researchers recognized that it is possible 
to reduce the graph size by graph compression without loos-
ing reachability information, and the compressed graph can 
help speedup query processing as well as reduce index size 
and index construction time. Specially, Fan et al. [7] define 
equivalence classes of vertices with respect to reachability 
queries, and compress a graph by merging all vertices in an 
equivalence class into a single vertex. However, finding all 
equivalence classes is very time-consuming. Zhou et al [22] 
propose an efficient algorithm to do a transitive reduction 
which turns a directed acyclic graph (DAG) into a DAG 
without redundant edges, after that the equivalence reduc-
tion of [7] can be done much more efficiently. The resulting 
graph G� after transitive reduction and equivalence reduction 
over the original graph G can be a much smaller graph that 
retains all reachability information, and it was experimen-
tally verified that for many real-world graphs, searching for 
reachability over G� can be much faster than searching over 
G using state-of-the-art algorithms.

This paper builds on the work of [22]. We observe that 
after the removal of redundant edges, many linear chains 
will be generated. Based on this, we propose a multilevel 
reachability—preserving compression method that can 
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further reduce the size of the graph obtained by the method 
in [22]. Our compression utilizes a slightly modified concept 
of module [14], and constructs a modular decomposition 
tree. We show how to use the decomposition tree to answer 
reachability queries over the original graph efficiently. Fur-
thermore, the decomposition tree usually takes very small 
space. We make the following contributions:

1.	 We define a new concept of module, based on which 
we propose a multilevel graph compression scheme that 
compresses graphs into a smaller graph Gc.

2.	 We organize the modules into a hierarchical structure 
called modular decomposition tree, and propose an effi-
cient algorithm to utilize the tree to answer reachability 
queries.

3.	 We conduct extensive experiments with real-world 
graphs as well as synthetic graphs that demonstrate the 
advantages of our proposed approach.

4.	 We provide a discussion on similar compression strate-
gies for k-reachability queries.

The remainder of this paper is organized as follows. We first 
discuss related works in Sect. 2 and present the preliminaries 
in Sect. 3. Then, we give an overview of our approach and 
provide the theoretical foundations in Sect. 4, followed by 
the detailed algorithms in Sect. 5. Our experimental results 
are given in Sect. 6. Section 7 discusses the possibility of 
similar compression on k-reachability queries. We conclude 
our paper in Sect. 8.

2 � Related Work

As briefly mentioned in Sect. 1, existing approaches for 
answering reachability queries can be classified into index-
based and compression-based approaches.

2.1 � Index‑Based Approach

The index-based algorithms create labels for the vertices, 
and such labels contain the reachability information. These 
algorithms can be divided into Label-only and Label+G 
methods [19]. The label-only [1, 3, 4, 8, 10–13, 20] meth-
ods use the labels of source and destination vertices only 
to answer reachability. Agrawal [1] proposed tree cover 
approach that creates an optimal spanning tree to create 
index. Here, an interval for each vertex is created. A reach-
ability query is answered as true if the interval of target is 
contained in the interval of source vertex. The index con-
struction time and index size both are high in this approach. 
A chain cover approach is first proposed in [8] where the 
entire graph is divided into a number of pairwise disjoint 
chains to create the index. The label of each vertex contains 

a minimal successor list containing their chain number and 
position in the chain. A vertex u will be reachable to v if 
label of u contains a pair (k, j) and v has an index pair (i, j) 
such that i ≥ k . This chain cover approach is later improved 
in [3]. Path tree [10] uses the similar concept of chain cover 
that uses paths to create index and has smaller index size 
than chain cover. The recent approaches DL [11], PLL [20] 
and TF [4] use the concept of two-hop labeling proposed in 
[6]. In two-hop labeling, a label is created for each vertex 
containing the subset of vertices that it can reach ( Lout ) as 
well as the subset of vertices that can reach it ( Lin ). Vertex 
u can reach vertex v if Lout(u) ∩ Lin(v) ≠ � . [12] uses the 
concept of chain cover to improve two-hop and proposes a 
three-hop labeling that creates a transitive closure contour 
(Con(G)) of graph G using chain decomposition, and then 
applies two-hop techniques. Path-hop [2] improves three-
hop by replacing the chain decomposition with a spanning 
tree. TF [4] proposes a topological folding approach for two-
hop labeling that can significantly reduce the index size as 
well as the query time.

The Label+G approaches include [15–19, 21] which 
require online searching of data graph G if the query cannot 
be answered from labels. Triβl and Leser [17] uses inter-
val labeling over a spanning tree and performs DFS online 
if needed. Grail [21] and Ferrari [15] use multiple interval 
instead of single interval label for each vertex over the span-
ning tree. Feline [18] creates coordinates i(u) = (Xu, Yu) for 
a vertex u and answers reachability from u to v as true if 
the area of i(v) is contained in that of i(u). Feline also uses 
interval labeling over spanning tree and compares topo-
logical levels of u and v as additional pruning strategy to 
reduce DFS search. IP [19] uses independent permutation 
numbering to label each vertex. Feline and IP show signifi-
cant improvement on query time and require less index con-
struction time and smaller index size. BFL [16] proposes 
a bloom-filter labeling to further improve the performance 
of IP.

2.2 � Compression‑Based Approach

Graph compression-based works include scarab [9], equiv-
alence reduction [7] and DAG reduction [22]. Scarab [9] 
compresses the original graph by creating a reachability 
backbone that carries the major reachability information. 
To find reachability from vertex u to vertex v, the algorithm 
needs access to a list of local outgoing backbone vertices of 
u and local incoming backbone vertices of v. The algorithm 
then performs a forward BFS for u and backward BFS for 
v on the original graph to answer reachability from u to v. 
If the answer is false, then it checks whether any outgo-
ing backbone vertex of u can reach any incoming backbone 
vertex of v in the reachability backbone; if yes, then u can 
reach v. Scarab requires large index size with high time 
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complexity. Equivalence reduction [7] reduces the graph by 
merging equivalent vertices into a single vertex. Two verti-
ces are equivalent if they have the same ancestors and same 
descendants. The algorithm requires high equivalence class 
construction time. DAG reduction [22] improves the con-
struction time of equivalence classes by doing a transitive 
reduction in graph first.

Our work is different from the previous works; in that, we 
not only consider equivalent classes, but also linear chains, 
when compressing the graph, and to the best of our knowl-
edge, none of the previous works uses multilevel compres-
sion and modular decomposition tree in reachability queries.

3 � Preliminaries

We consider directed graphs in this paper. For any directed 
graph G, we will use VG and EG to denote the vertex set and 
the edge set of G, respectively. Given two vertices u and v in 
G, if there is a path from u to v, we say v is reachable from 
u, or equivalently, u can reach v. We use u ⇝G v to denote 
u can reach v in graph G. Given directed graph G and ver-
tices u and v in G, a reachability query from u to v denoted 
?u ⇝G v , asks whether v is reachable from u in G.

A directed acyclic graph (DAG) is a directed graph with-
out cycles. In the literature, most works on reachability que-
ries assume the graph G is a DAG, because if it is not, it 
can be converted into a DAG by merging all vertices in a 
strongly connected component into a single vertex, and ver-
tices in a strongly connected component can all reach each 
other. In this work, we also assume the graph G is a DAG.

If (u, v) is an edge in DAG G, we say u is a parent of v, 
and v is a child of u. For any vertex u ∈ VG , we will use 
parent(u, G) and child(u, G), respectively, to denote the set 
of parents of u and the set of children of u in G. We will 
also use anc(u, G) and des(u, G) to denote the set of ances-
tors of u and the set of descendants of u in G, respectively. 
When G is clear from the context, we will use the abbrevia-
tions parent(u), child(u), anc(u), and des(u) for parent(u, G), 
child(u, G), anc(u, G), and des(u, G), respectively.

Let M be a subset of vertices in G. For any vertex u ∈ M 
and a parent vertex u′ of u, we say u′ is an external parent 
of u (with respect to M) if u� ∈ parent(u) −M . Similarly, 
we define an external child (resp. ancestor, descendent) 
of u with respect to M as a vertex in child(u) −M (resp. 
anc(u) −M , des(u) −M).

3.1 � Redundant Edges

Suppose (u, v) is an edge in G. If there is a path of length 
greater than 1 from u to v, then (u, v) is redundant for reach-
ability queries, that is, removing (u, v) from G will not affect 
the answer to any reachability queries.

The redundant edges can be efficiently identified and 
removed by a transitive reduction algorithm proposed in 
[22]. The following lemma is shown in [22]:

Lemma 1  Suppose G is a DAG without redundant edges, 
then for any two vertices u and v in G, parent(u) = parent(v) 
if and only if anc(u) = anc(v) ; child(u) = child(v) if and only 
if des(u) = des(v).

3.2 � Equivalence Class

Two vertices u and v are said to be equivalent if they have 
the same ancestors and the same descendants, that is, 
anc(u) = anc(v) , des(u) = des(v) [7]. Because of Lemma 1, if 
G does not have redundant edges, then u and v are equivalent 
if and only if they have the same parents and same children. 
The equivalent vertices form an equivalence class. It is easy 
to see that all vertices in the same equivalence class have the 
same reachability properties, that is, if u is in an equivalence 
class, then for any other vertex u′ , u can reach u′ (resp. u is 
reachable from u′ ) if and only if every vertex v in the same 
equivalence class can reach u′ (resp. is reachable from u′).

Also as observed in [22], if G has no redundant edges, 
then all vertices in an equivalence class form an independ-
ent set, that is, there are no edges between the vertices in the 
same equivalence class.

Lemma 2  Suppose G is a DAG without redundant edges, 
then every equivalent class is an independent set.

3.3 � Modular Decomposition

The modular decomposition [14] of a directed graph G par-
titions the vertex set into a hierarchy of modules, where a 
module is conventionally defined as follows.

Definition 1  Let M be a set of vertices in G. We call M a 
module of G if all vertices in M share the same external 
parents and the same external children. In other words, 
for any u, v ∈ M  , parent(u) −M = parent(v) −M  and 
child(u) −M = child(v) −M.

It is easy to see that a singleton set is a module and the 
set of all vertices in G is also a module. These modules 
are called trivial  modules. Let G be a DAG that has no 
redundant edges. By Lemma 1, an equivalent class is also a 
module, and by Lemma 2, such a module is an independent 
set. In the literature, modules that are independent sets are 
referred to as parallel modules.
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4 � Overview of Our Approach

The basic idea of our method is to compress the graph 
without loosing reachability information. We use modular 
decomposition; however, the definition of modules has been 
slightly modified from that found in the literature, in order 
to help with reachability queries.

Definition 2  A module in a DAG G is a set of vertices 
M ⊆ VG that have identical external ancestors and identi-
cal external descendants. In other words, for any two verti-
ces u, v ∈ M , anc(u) −M = anc(v) −M , and des(u) −M = 
des(v) −M.

Figure 1 shows an example DAG, where the vertices 
1, 2, 3, 4 have the same external ancestors and the same 
external descendants, but not the same external parents and 
same external children.

In this work, we are interested in two special types of 
modules, referred to as parallel modules and linear mod-
ules, respectively. A parallel module is a module that is an 
independent set, and a linear module is one that consists 
of a chain of vertices v1,… , vk such that there is an edge 
(vi, vi+1) for all i ∈ [1, k − 1] . These modules have the fol-
lowing properties.

Lemma 3  Suppose G is a DAG that does not have redun-
dant edges. (1) If M is a parallel module of G, then all ver-
tices in M have the same parents and same children. (2) If 
M is a linear module consisting of the chain v1,… , vk , then 
for each i ∈ [2, k] , vi−1 is the only parent of vi , and vi is the 
only child of vi−1.

Proof  (1) Let M be a parallel module. By definition, M is an 
independent set, and all the vertices have the same external 
ancestors and the same external descendants. Since M is an 
independent set, it is impossible for any vertex in M to have 
an ancestor or descendent in M; therefore, all the vertices 
have the same ancestors and the same descendants (both 
external and internal). By Lemma 1, all vertices in M have 
the same parents and the same children.

(2) Let M be a linear module consisting of the chain 
v1,… , vk . For any i ∈ [2, k] , if vi has a parent u that is not 
vi−1 , then there are two possible cases. The first case is that 
u is also in M, that is, u is one of vi+1,… , vk . This contra-
dicts the assumption that G is a DAG since there will be a 

cycle. The second case is that u is not in M. In this case, by 
the definition of a module, u must be an ancestor of v1 , that 
is, there will be a path from u to vi with length at least 2. 
Hence, the edge (u, vi) would be redundant, contradicting 
the assumption that there are no redundant edges in G. This 
proves vi−1 is the only parent of vi . Similarly, we can prove 
vi is the only child of vi−1 . 	� ◻

In Fig. 2a, the vertices v1, v2, v3 form a parallel module. In 
Fig. 2b, the vertices v1, v2, v3 form a linear module. Note, how-
ever, the set {v4, v1, v2, v3, v6} in Fig. 2b is not a linear module.

It is worth noting that each single vertex forms a paral-
lel module as well as a linear module. These modules are 
referred to as trivial modules, along with the module that 
consists of all of the vertices in G. According to Lemma 3, 
a parallel module is an equivalence class, if G is a DAG that 
has no redundant edges.

Note that if two vertices are in the same linear module, 
then their reachability depends on their relative positions in 
the chain. If they are in the same parallel module, then they 
cannot reach each other, as shown in the lemma below.

Lemma 4  Let G be a DAG without redundant edges, and 
u, v be vertices in the same parallel module of G, then u 
cannot reach v in G.

Proof  Let the parallel module that contains u and v be M. If 
the lemma is not true, there will be a path u, v1,… , vs, v from 
u to v. Since M is an independent set, v1 and vs cannot be in 
M. Hence, v1 is an external child of u, and vs is an external 
parent of v. By Lemma 3 and the definition of modules, v1 
must be a child of v and vs must be a parent of u. Therefore, 
there will be a cycle, contradicting the assumption that G is 
a DAG. Hence, the proof. 	� ◻

A set of vertices may be in multiple parallel (or linear) 
modules, e.g., in the graph shown in Fig. 2a, {v1, v2} and 
{v1, v2, v3} are both parallel modules. However, we are only 
interested in the maximal modules as defined below.

Definition 3  A parallel (resp. linear) module M is said to be 
maximal if there is no other parallel (resp. linear) module 
M′ such that M ⊂ M′.

Fig. 1   Example DAG 0
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3 4
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v4 v5

v6

v3v2v1

(a) {v1, v2, v3} is a
parallel module

v4 v5

v6

v3v2v1

v7

(b) {v1, v2, v3} is a
linear module

Fig. 2   Example of modules
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For example, {v1, v2, v3} is a maximal parallel module in 
Fig. 2a, and it is a maximal linear module in Fig. 2b.

Note that two different maximal parallel modules of G can-
not have overlaps, and two different maximal linear modules 
cannot have overlaps. Furthermore, there cannot exist a non-
trivial parallel module and a non-trivial linear module such 
that they have a common vertex. In other words, each vertex 
can belong to at most one non-trivial parallel or linear module.

4.1 � Multilevel Compression and Modular 
Decomposition Tree

To utilize parallel and linear modules in reachability search, 
we perform a multilevel compression of the original graph 
G. First, we identify the maximal linear modules and paral-
lel modules, and merge the vertices in each module into a 
single super vertex. We add an edge from super vertex s1 to 
super vertex s2 if and only if there exists u ∈ s1 , and v ∈ s2 
such that (u, v) is an edge in G. In this way, we obtain the 
first-level compressed graph G1 = Compress(G) . Clearly, G1 
is also a DAG without redundant edges. Then, we apply 
the same compression process to G1 to obtain the next-level 
compressed graph G2 = Compress(G1) , and this process is 
repeated until we obtain a graph Gc which can no longer be 
compressed, i.e., Gc does not have singleton set parallel or 
linear modules.

Example 1  Consider the DAG G in Fig. 3a, which consists 
of eleven vertices numbered 1 to 11. The graph is reduced 
to G̃ in Fig. 3b after transitive reduction. We will apply our 
compression to graph G̃.

There are no parallel modules in G̃ . However, vertices 2, 
3 and 4 can form a maximal linear module. Another maxi-
mal linear module exists in G̃ that consists of vertices 5, 6 
and 7. So, vertices 2, 3, 4 and vertices 5, 6, 7 are compressed 
into two single nodes, and they are reduced into nodes LS1 
and LS2, respectively, in graph G1 shown in Fig. 4a after 
the first-level compression. Then, G1 is compressed again 
to obtain G2 as shown in Fig. 4b, where the nodes LS1, LS2 
and 8 in G1 are merged as they form an equivalent set in G1 . 
The third-level compression creates graph G3 in Fig. 4c by 
merging nodes 1 and IS1 in G2 which form a linear module. 
The graph G3 does not contain any parallel or linear modules 
thus cannot be compressed further. So, G3 is the final com-
pressed graph of data graph G.

We organize the modules in all levels of the compressed 
graphs into a tree structure, called the modular decompo-
sition tree, or decomposition tree for brevity, as follows: 
The root of the tree is the final compressed graph Gc . Each 
module in the previous-level compressed graph Gc−1 is a 
child node of the root; Each child node of the root that cor-
responds to a non-trivial module of Gc−1 , in turn, has its 
own children, representing modules in the previous-level 
graph Gc−2 . This continues until we reach the nodes repre-
senting modules in the first-level compressed graph, where 
each non-trivial module points to their children, which are 
individual vertices in the original graph G. Note that the leaf 
nodes of the tree are individual vertices in the original graph 
G. Also, to help reachability detection, we keep a record of 
the vertex positions in the chain of each linear module in a 

Fig. 3   a A DAG G and b the 
DAG G̃ after transitive reduc-
tion
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compressed graph Gi , where if the starting vertex has posi-
tion 1, the next vertex will have position 2 and so on. We 
will use pos(v, LS) to denote the position of node v in the 
chain of LS. Obviously, for u, v ∈ LS , u ⇝Gi

v if and only if 
pos(u, LS) < pos(v,LS).

Figure 5 shows the modular decomposition tree, T, of 
graph G̃ in Fig. 3b. Let M be a non-leaf node in the decom-
position tree of G. By definition, M is either a parallel or 
linear module in some compressed graph Gi (i < c) , or it is 
the final compressed graph Gc . M can be regarded as a set of 
the original vertices of G in the obvious way. Put in another 
way, we say vertex v ∈ G belongs to (or is in) M if v is a 
descendant of M in the decomposition tree. For example, the 
vertices 2, 3, 4, 5, 6, 7, 8 belong to the module IS1 in Fig. 5.

We have the following observations about modules in the 
decomposition tree:

Lemma 5  The vertices of G that belong to each parallel or 
linear module M in Gi (i < c) form a module of G. In other 
words, all vertices in M have the same external ancestors, 
as well as the same external descendants in G.

The above lemma can be easily proved by induction on 
the compression level i. Using Lemma 5, we can easily see:

Lemma 6  Given two distinct nodes N1 and N2 in Gi (i ≤ c) , 
N1 ⇝Gi

N2 iff u ⇝G v for every pair of vertices u ∈ N1 , 
v ∈ N2.

4.2 � Answering Reachability Queries Using Modular 
Decomposition Tree

Suppose we have the decomposition tree T of G. For ease 
of presentation, let us use G0 to denote the graph G. For any 
pair of vertices u, v in the original graph G, we use LCA(u, v) 
to denote the lowest common ancestor of u and v in T. Note 
that LCA(u, v) corresponds either to a module in some com-
pressed graph Gi (i ∈ [1, c − 1]) , or to the final compressed 
graph Gc (i.e., the root of T). We have the following result.

Theorem  1  Given two vertices u, v ∈ VG , if LCA(u,  v) 
corresponds to a parallel module of some graph Gi 
(i ∈ [1, c − 1]) , then u cannot reach v in G.

Proof  If LCA(u, v) corresponds to a parallel module M of Gi , 
then suppose N1 and N2 are the two vertices of Gi that con-
tain u and v, respectively. By Lemma 4, we know N1 cannot 
reach N2 in Gi . Then by Lemma 6, we know u cannot reach 
v in G. 	�  ◻

With the above discussion, we are ready to present the 
method for answering reachability queries using the decom-
position tree and the final compressed graph Gc . Given two 
vertices u, v ∈ VG , to find whether u ⇝G v , we can find the 
lowest common ancestor LCA(u, v) of u and v, and check 
the following:

1.	 If LCA(u, v) is a parallel module, then u cannot reach v 
in G, by Theorem 1.

2.	 If LCA(u, v) is a linear module, say M, then we check 
the positions of N1 and N2 in the corresponding chain of 
vertices in M, where N1 is the child of LCA(u, v) in the 
decomposition tree that contains u, and N2 is the child of 
LCA(u, v) that contains v, and u can reach v in G if and 
only if pos(N1,M) < pos(N2,M).

3.	 If LCA(u, v) is the root of T, namely Gc , then suppose 
N1,N2 are the children of LCA(u, v) that contain u and 
v, respectively. Then, u ⇝G v if and only if N1 ⇝Gc

N2 . 
Thus, we only need to check whether N1 ⇝Gc

N2 . We 
can do it using any existing reachability algorithms. 
Since Gc is usually much smaller than G, checking 
N1 ⇝Gc

N2 in Gc is likely to be faster than checking 
u ⇝G v in G.

Example 2  Consider the decomposition tree T shown in 
Fig. 5.

(1)	 For the query ?2 ⇝G 6 , we find that lowest common 
ancestor of vertices 2 and 6 is a parallel module; there-
fore, we know vertex 2 cannot reach vertex 6.

(2)	 For the query ?2 ⇝G 4 , we find LCA(2, 4) is a linear 
module, and the position of vertex 2 is before that of 
vertex 4. Therefore, we conclude that 2 ⇝G 4.

(3)	 For the query ?2 ⇝G 9 , since 2 and 9 are in different 
children of the root, i.e., LS3 and 9, respectively, we 
only need to check whether LS3 ⇝G3

9.

5 � Algorithms

The previous section provides the main ideas of our 
approach. This section presents the detailed algorithms.

1 2

1 - 8

LS3

Root

2 - 8

2, 3, 4 5, 6, 7

109876543

IS1

LS1 LS2

Level 0

Level 1

Level 2

Level 3

11

Fig. 5   The modular decomposition tree T of graph G̃



199Modular Decomposition‑Based Graph Compression for Fast Reachability Detection﻿	

1 3

5.1 � Building Modular Decomposition Tree

Algorithm 1 shows the process of creating the modular 
decomposition tree along with the final compressed graph. 
The algorithm takes a DAG that has no redundant edges G 
as input and returns the modular decomposition tree and 
the final compressed graph. The algorithm first creates a 
tree with a root node r. Starting with a random vertex v, the 
algorithm first tries to find all other vertices that can form a 
linear module with v (Line 7). If no such module is found, 
then it will search for a maximal parallel module for v (Line 

14). If such a module cannot be found, then v will be added 
as a child of r (Line 21), otherwise the found module M will 
be added as child of r, and each vertex in the module will 
be added as a child of M (Lines 8–12, 16–19). We record all 
such modules in S (Lines 9,16), and use them to compress 
the graph into a new graph (Line 24). Then, we recursively 
call the algorithm to compress the new graph (Line 27). If 
no non-single-vertex module is found in the current graph, 
the current tree T will be returned, and the current graph will 
be returned as Gc.

Algorithm 1: BuildMDT(G)
Input: DAG G with no redundant edges
Output: Modular Decomposition Tree T and Gc

1 if T does not exist then
2 Create Tree T with root node r; i ← 0; Gi ← G

3 S ← ∅
4 for each v ∈ VGi

do
5 if v.isVisited is false then
6 v.isVisited ← true
7 M ← FindLinearModule(v,Gi)
8 if M �= null then
9 S ← S ∪ M

10 Add M as child of r
11 for each vertex u in M do
12 u.isVisited ← true; Add u as a child of M

13 else
14 M ← FindParallelModule(v,Gi)
15 if M �= null then
16 S ← S ∪ M
17 Add M as child of r
18 for each vertex u in M do
19 u.isVisited ← true; Add u as a child of M

20 else
21 Add v as a child of r

22 if S �= ∅ then
23 i++
24 Gi ← Compress(Gi−1, S)
25 BuildMDT(Gi)

26 else
27 r ← Gi

28 return T , Gi

Algorithm 2: FindParallelModule
Input: DAG G with no redundant edges, vertex v
Output: The maximal nontrivial parallel module that v is in, or null if such module

does not exist
1 Create module M = {v}
2 M.type = trivial
3 if |parent(v)| = 0 then
4 M1 ← {v′| |parent(v′)| = 0}
5 else
6 M1 ← {v′|v′ ∈

⋂
u∈parent(v) child(u), v

′ �= v and |parent(v)| = |parent(v′)|}

7 if |child(v)| = 0 then
8 M2 ← {v′| |child(v′)| = 0}
9 else

10 M2 ← {v′|v′ ∈
⋂

u∈child(v) parent(u), v
′ �= v and |child(v)| = |child(v′)|}

11 if M1 ∩M2 �= ∅ then
12 M.type ← Parallel M ← (M1 ∩M2) ∪M Return M

13 else
14 Return null



200	 S. Anirban et al.

1 3

The functions FindParallelModule() and FindLinearMod-
ule() used in Algorithm 1 are shown in Algorithm 2 and 
Algorithms 3, respectively. These algorithms try to find a 
relevant module based on Lemma 3.

Algorithm 2 takes a vertex v and DAG G as input, and it 
finds the set of vertices, M, that share the same parents and 
same children with v. To do that, it first finds the set of ver-
tices, M1 that share the same parents with v, and then finds 
the set of vertices, M2 that share the same children with v. 
Then, M is the intersection of M1 and M2 . 

first vertex in the chain, one by one. In the process, it also 
provides a position number for each vertex found (line 10). 
Note that the position does not have to be a positive number, 
as long as it can provide an appropriate order of the vertices 
in the chain, it will be fine. Lines 13–26 work similarly.

5.1.1 � Complexity

Algorithm 3 takes L steps to find the linear module that 
contains v (checking the |parent(|v|) = 1 is just checking 

Algorithm 3: FindLinearModule
Input: DAG G with no redundant edges, vertex v ∈ VG

Output: The maximal nontrivial linear module that v is in, or null if such module does
not exist

1 Create module M = {}; M.type = trivial
2 if |parent(v)| =1 then
3 v′ ← unique parent of v
4 if |child(v′)| = 1 /* v′ and v are in the same linear module
5 then
6 add v, v′ to M ; M.type ←

Linear; pos(v,M) ← 1; pos(v′,M) ← pos(v,M) − 1
7 while |parent(v′)| = 1 do
8 u ← unique parent of v′

9 if |child(u)| = 1 then
10 add u to M ; pos(u,M) ← pos(v′,M) − 1; v′ ← u

11 else
12 break

13 if |child(v)| =1 then
14 v′ ← unique child of v
15 if |parent(v′)| = 1 then
16 if M.type = trivial then
17 add v, v′ to M ; M.type ← Linear

18 pos(v,M) ← 1; pos(v′,M) ← pos(v,M) + 1

19 else
20 add v′ to M ; pos(v′,M) ← pos(v,M) + 1

21 while |child(v′)| = 1 do
22 u ← unique child of v′

23 if |parent(u)| = 1 then
24 add u to M ; pos(u,M) ← pos(v′,M) + 1; v′ ← u

25 else
26 break

27 if M.type = trivial then
28 Return null

29 else
30 Return M

 Algorithms 3 takes a vertex v and DAG G as input, and 
it first searches for a possible chain of ancestors of v (lines 
2–12), and then searches for a chain of descendants of v 
(lines 13–26). Both parts are via an iterative process. Spe-
cifically, lines 2 and 4 check whether v has a sole parent v′ , 
and v′ has a sole child v, if so v′ is the parent of v in a linear 
module. After that, lines 7–12 try to find a parent of the 

the in-degree of v), where L is the size of the linear mod-
ule that contains v. Algorithm 2 takes Σu∈parent(v)|child(u)| + 
Σu∈child(v)|parent(u)| steps to find vertices that share the same 
parents and same children with v. If we use Imax and Omax to 
denote the maximum in-degree and maximum out-degree, 
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respectively, then Algorithm 2 takes O(Imax × Omax) time. In 
Algorithm 1, for the first-level compression, we visit each 
vertex in VG that has not been put in a module, and once the 
vertex is visited or put into a module, it will no longer be 
visited. In the worst case, no non-trivial module exists, so 
that every vertex will be visited. Therefore, the first-level 

is a parallel module, then that module will be a child of M. 
So, u and v will have the same position in M thus u cannot 
reach v. It is easy to see that the algorithm is equivalent to 
the process described in Sect. 4; hence, its correctness is 
guaranteed.

compression takes O(|V| × Imax × Omax) . Each next-level 
compression will take no more than that of the previous 
level. Therefore, Algorithm 1 takes O(|V| × Imax × Omax × h) , 
where h is the height of the decomposition tree. In practice, 
h is usually small. For instance, in our experiment with 12 
datasets, the highest decomposition tree has a height of 26 
only.

5.2 � Finding Reachability Using the Decomposition 
Tree

As discussed in the previous subsection, to answer reach-
ability query ?u ⇝G v using the decomposition tree, we only 
need to find LCA(u, v) and then take appropriate actions 
depending on the type of LCA(u, v). To save time for finding 
the LCA and storage space, we design a slightly modified 
algorithms as shown in Algorithm 4. Given vertices u and 
v, we first find the children of the root that u and v belong 
to, respectively; let us suppose u ∈ N1 , v ∈ N2 , if they are 
different (this is equivalent to say LCA(u, v) is the root), we 
will use some existing algorithm to check ?N1 ⇝Gc

N2 . Oth-
erwise we will find the lowest linear LCA of u, v (note that 
to do so we only need to record the linear module ancestors 
of the vertices), if no such LCA exists, then u cannot reach 
v. Otherwise, suppose the linear LCA is M, we will check 
the relative positions of u and v in M to determine whether 
u can reach v. Here, the position of u is defined to be same 
as the position of the child of M that contains u. If LCA(u, v) 

Algorithm 4: Find reachability from vertex u to vertex v
Input: Modular decomposition tree T , Compressed Graph Gc, vertex u, vertex v
Output: true if u is reachable to v, false otherwise

1 N1 ← Corresponding node of u in Gc

2 N2 ← Corresponding node of v in Gc

3 if N1 = N2 then
4 M ← FindLinearLCA(u, v)
5 if M exists then
6 if pos(u,M) < pos(v,M) then
7 return true

8 return false

9 else
10 return AlgoReachability(Gc, N1, N2)

5.2.1 � Size of the Decomposition Tree

To answer reachability queries in the original graph G, we 
only need the final compressed graph Gc and the decom-
position tree T. The total number of nodes in the tree is 
|V| + m + 1 , where m denotes the number of non-trivial 
modules. The number of edges in T is |V| + m . The tree T 
can be regarded as an additional index. As shown in Algo-
rithm 4, in implementation, we do not need to store the 
entire modular decomposition tree, instead, we only need to 
store the sequence of linear modules and the child module of 
the root (i.e., the node in Gc ) each vertex belongs to.

6 � Experiments

In this section, we present our experimental results. We com-
pare our compression scheme and DAG reduction [22] on 
the performance of four state-of-the-art reachability query 
algorithms: Grail [21], Feline [18], IP+ [19] and BFL+ [16], 
which include query time and index size/construction time. 
We also report the compression time of our approach.

6.1 � Experimental Setup

6.1.1 � Implementation and Running Environment

We obtained the source code of DAG reduction, Grail, IP+ , 
Feline and BFL+ from the authors which are all written in 
C++. We implemented our reachability query processing 



202	 S. Anirban et al.

1 3

algorithms connecting with Grail, IP+ , Feline and BFI+ in 
C++ using G++ 7.3.0 compiler. Our multilevel compression 
algorithm was implemented in C# using Visual Studio 2017. 
(since compression is done offline.) The experiments were 
run on a PC with Intel Core i7-7700 with 3.60 GHz CPU, 32 
GB memory and Windows 10 operating system.

6.1.2 � Datasets and Queries

We tested our approach with 12 real datasets and eight syn-
thetic datasets. For each dataset, we first applied the transi-
tive reduction in [22] to find G̃ , which is a DAG without 
redundant edges. Then, we applied our multilevel compres-
sion algorithm to get Gc , and used DAG reduction to gen-
erate G� . We used Grail, IP+ , Feline and BFL+ to process 
reachability queries over Gc and over G� . We randomly 

generated 100,000 reachability queries for each data graph, 
and each query was run ten times using our compression 
schema and that of [22], and the average time is recorded.

6.2 � Experiments on Real Datasets

6.2.1 � Datasets

We used 12 real datasets Kegg1 , arXiv1 , XMark1 , PubMed1 , 
Patent1 , Citeseerx,1 soc-Epinions2 , Web,2 LJ,2 05Patent3 , 
05Citeseerx3 and DBpedia.4 Among these datasets, Kegg 
and XMark are very small graphs. Datasets arXiv, PubMed, 
soc-Epinions, Web and LJ are of medium size, whereas the 
other five graphs can be considered as large graphs. Here, 
Kegg is a metabolic network, and XMark is an XML docu-
ment. Datasets soc-Epinions and LJ are the online social 
networks. Web is the web graph from Google. arXiv, Pub-
Med, Patent, 05Patent, 05Citeseerx and Citeseerx are all 
citation networks, and DBpedia is a knowledge graph. The 
statistics of these datasets are shown in the first two columns 
of Table 1.

6.2.2 � Compression Ratio

The compression ratios of transitive reduction, DAG reduc-
tion (i.e., transitive reduction and equivalence reduction) and 
our multilevel compression are shown in Table 1. From the 
table, we can see that our approach has more compression 

Table 1   Real-world datasets 
and their compression ratio after 
DAG reduction and multilevel 
compression

r
n
(r

e
) is the ratio of the number of vertices (edges) in G̃ , G� and G

c

Dataset G G̃ G
�

G
c

|V| |E| r
e
% r

n
% r

e
% r

n
% r

e
%

Kegg 3617 3908 93.8 37.6 35.7 9.7 9.3
arXiv 6000 66,707 20 97.9 19.7 93.3 19.3
XMark 6080 7025 99 55.8 57 25.7 31
PubMed 9000 40,028 67.5 76.7 62 76.2 61.9
soc-Epinions 42,176 43,797 96.6 19.9 19.3 13 12.7
Web 371,764 517,805 79.8 30.5 24.9 16.6 14.6
LJ 971,232 1,024,140 95.1 11.1 10.8 7.9 7.6
Patent 3,774,768 16,518,947 71.6 91.2 68.9 90.5 68.7
05Patent 1,671,488 3,303,789 90.1 80.3 78.9 78.8 78.2
05Citeseerx 1,457,057 3,002,252 81 37.9 50 37.4 49.7
Citeseerx 6,540,401 15,011,260 74.4 39.7 46.4 38.9 46.1
DBpedia 3,365,623 7,989,191 59.2 50.5 31.7 43.9 28.9

Table 2   Graph size before and after compression

Dataset G G
�

G
c

|V| + |E| |V
G� | + |E

G� | r
G�% |V

G
c
| + |E

G
c
| r

G
c
%

Kegg 7825 2756 35.2 720 9.2
arXiv 72,707 19,046 26.2 18,481 25.4
XMark 13,105 7394 56.4 3732 28.5
PubMed 49,028 31,730 64.7 31,632 64.5
soc-Epinions 85,973 16,846 19.6 11,016 12.8
Web 889,569 242,305 27.2 137,110 15.4
LJ 1,995,372 218,608 10.9 153,860 7.7
Patent 20,293,715 14,827,554 73.1 14,779,167 72.8
05Patent 4,975,277 3,949,609 79.4 3,901,493 78.4
05Citeseerx 4,459,309 2,052,235 46 2,037,926 45.7
Citeseerx 21,551,661 9,562,970 44.4 9,458,669 43.9
DBpedia 11,354,814 4,233,784 37.3 3,787,744 33.4

1  https​://code.googl​e.com/archi​ve/p/grail​/downl​oads.
2  http://snap.stanf​ord.edu/data/index​.html.
3  http://pan.baidu​.com/s/1bpHk​FJx.
4  http://pan.baidu​.com/s/1c00J​q5E.

https://code.google.com/archive/p/grail/downloads
http://snap.stanford.edu/data/index.html
http://pan.baidu.com/s/1bpHkFJx
http://pan.baidu.com/s/1c00Jq5E
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for every graph than DAG reduction. The dataset XMark has 
the best result with 30.1% more compression of vertex and 
26% more compression of edges than DAG reduction. For 
larger graphs, DBpedia shows best compression with 6.6% 
more compression of nodes and 2.8% more compression of 
edges. On the other hand, our compression scheme is only 
slightly better than DAG reduction over the Citeseerx and 
the Patent datasets. This could be because these datasets do 
not contain many linear modules. Generally, the reduction 
ratio depends on the structure of the graph. However, a small 
percentage of compression for a large graph can also have 
great impact on query processing since even a small percent-
age of compression means reduction in lots of vertices and 
edges in large graphs (see the Patent dataset in Table 7 for 
example).

Table 2 shows the size of G, G� and Gc . Here, we cal-
culated the size of the graph as the sum of the number of 
vertices and the number of edges.

The second column of Table 3 shows the number of nodes 
in the modular decomposition tree for each of the data graph, 
which is calculated as |V| + |m| + 1 where |V| is the number 
of vertices in the data graph which represents the leaf nodes 
in the tree and m is the number of non-trivial modules in 
the tree. The number of edges is |V| + |m| . As discussed in 
Sect. 5.2, we do not need to store the entire decomposition 
tree, we only need to store, for each vertex, its linear module 
ancestors and corresponding node in Gc . The required stor-
age space is shown in the third column. For DAG reduction, 
it also needs to store the equivalence classes each vertex is 
in. The storage size is shown in the fourth column. As can 
be seen, our approach needs more storage space, but the 
difference is small. If we add this space and index size (see 
Table 6) together, our approach needs less overall space.

Table 4 shows the time required for building the decom-
position tree using our algorithms which are implemented 
in C#, where the dataset DBpedia has taken the most time. 
As the indexing is done offline, we consider these times as 
viable in practice.

6.2.3 � Index Construction Time

Table 5 shows the comparison of index construction time for 
Grail, IP+ , Feline and BFL+ algorithms over G� and Gc . The 
better results are highlighted in bold font in the table. Here, 
multilevel compression requires less index construction 
time for every graph for creating index for IP+ and BFL+ . 
For Feline, we also have better result for each graph except 
05Patent. Grail performs better in multilevel compression for 
every graph except 05Citeseerx and Citeseerx.

6.2.4 � Index Size

The index size of Grail, IP+ , Feline and BFL+ for G� and Gc 
are shown in Table 6. From the table, we can see that the 
index sizes of Gc are smaller for almost every graph than G� 
for all of the four algorithms, although for the arXiv, Pub-
Med, Citeseerx and Patent datasets the difference is very 
small and for PubMed the index size of Feline is smaller in 
G� than in Gc as well. This is not surprising because the sizes 
of Gc and G� are very close for these datasets.

6.2.5 � Query Performance

Table 7 shows the comparison of the query time for Grail, 
IP

+ , Feline and BFL+ . We run each query ten times and the 
time shown is the average of the 10 runs. We can see that our 
compression outperforms DAG reduction in query process-
ing for almost every graph. Surprisingly IP+ is lower using 
our approach than using DAG reduction in Kegg dataset; 
Feline is lower in LJ and BFL+ is lower in patent. For all 

Table 3   Size and storage space for decomposition tree

Dataset Tree size 
(|V| + |m| + 1)

Space (MB) for 
decomposition 
tree

Space (MB) for 
equivalence class

Kegg 4238 0.009 0.006
arXiv 6352 0.01 0.01
XMark 8631 0.02 0.01
PubMed 9385 0.02 0.02
soc-Epinions 44,590 0.09 0.08
Web 427,907 0.9 0.7
LJ 997,681 1.93 1.85
Patent 3,981,729 7.3 7.2
05Patent 1,856,796 3.31 3.19
05Citeseerx 1,592,636 2.86 2.78
Citeseerx 7,139,965 12.99 12.47
DBpedia 3,804,103 7.49 6.41

Table 4   Compression time (s) Dataset Time (s)

Kegg 0.057
arXiv 0.16
XMark 0.16
PubMed 0.49
soc-Epinions 4.49
Web 286.67
LJ 3073
Patent 389.23
05Patent 71.65
05Citeseerx 175.69
Citeseerx 8772.81
DBpedia 89,764.32
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Table 5   Index construction time 
(ms)

Dataset Grail IP
+ Feline BFL

+

G
�

G
c

G
�

G
c

G
�

G
c

G
�

G
c

Kegg 1.01 0.64 0 0 0.47 0.25 0.07 0.02
arXiv 4.03 5.34 0.015 0 2.03 1.96 0.66 0.55
XMark 2.03 1.04 0.02 0 1.5 0.7 0.14 0.07
PubMed 6.12 5.05 0.02 0.01 2.49 2.25 0.84 0.75
soc-Epinions 4.75 3.13 0.04 0.01 2.39 1.02 0.49 0.24
Web 71.39 43.24 0.04 0.03 46.21 27.77 9.52 5.81
LJ 64.59 48.58 0.06 0.03 39.08 27.58 7.52 4.52
Patent 5367.76 5283.97 5.6 5.06 3496.5 3477.12 1169.05 1161.4
05Patent 1407.6 1408.6 1.42 1.25 950.03 959.18 306.06 301.48
05Citeseerx 516.78 519.09 0.53 0.51 315.52 314.87 104.22 102.61
Citeseerx 2697.92 2711.95 3.26 2.53 1634.8 1629.01 757.73 738.46
DBpedia 1478.23 1221.09 1.23 1.07 937.71 834.48 256.32 237.09

Table 6   Index size (MB) Dataset Grail IP
+ Feline BFL

+

G
�

G
c

G
�

G
c

G
�

G
c

G
�

G
c

Kegg 0.005 0.001 0.04 0.008 0.03 0.008 0.05 0.01
arXiv 0.02 0.02 0.21 0.2 0.13 0.12 0.24 0.23
XMark 0.01 0.006 0.12 0.05 0.08 0.03 0.14 0.06
PubMed 0.03 0.02 0.19 0.19 0.03 0.15 0.22 0.2
soc-Epinions 0.03 0.02 0.21 0.12 0.19 0.12 0.27 0.16
Web 0.43 0.23 3.25 1.62 2.59 1.41 4.04 2.01
LJ 0.41 0.29 2.71 1.72 2.47 1.75 3.39 2.16
Patent 13.12 13.03 67.91 66.84 78.76 78.22 123.65 122.6
05Patent 5.12 5.02 18.35 17.79 30.71 30.16 42.43 41.39
05Citeseerx 2.1 2.07 12.64 12.47 12.63 12.47 17.08 16.77
Citeseerx 9.91 9.71 67.91 66.84 59.46 58.27 76.06 73.7
DBpedia 6.48 5.64 45.35 38.54 38.87 33.84 56.45 47.62

Table 7   Query time (ms) Dataset Grail IP
+ Feline BFL

+

G
�

G
c

G
�

G
c

G
�

G
c

G
�

G
c

Kegg 22.97 19.89 26.96 32.7 22.43 18.11 32.38 25.49
arXiv 123.68 94.42 82.25 76.36 96.07 94.14 61.95 57.57
XMark 25.86 22.9 32.39 30.95 29.29 23.93 33.78 31
PubMed 53.22 50.15 39.56 37.92 43.39 40.73 47.8 42.74
soc-Epinions 40.29 35.5 50.85 45.26 35.04 28.13 47.94 45.54
Web 96.93 82.37 145.6 132.89 75.14 66.05 117.86 99.88
LJ 120.41 93.93 144.27 120.55 92.79 95.45 161.85 127.46
Patent 831.7 688.4 375.74 361.91 592.53 484.85 193.18 199.2
05Patent 197.17 159.57 145.28 139.81 148.81 146.47 146.25 143.71
05Citeseerx 169.84 166.59 152.91 140.41 156.76 152.27 148.68 145.53
Citeseerx 208.44 206.52 223.37 191.43 200.95 196.69 232.57 206.14
DBpedia 216.21 215 221.47 206.32 206.32 200.32 215.62 186.22
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other datasets, the performance of multilevel compression 
is much better than DAG reduction.

6.3 � Experiments on Synthetic Datasets

We generated eight random graphs where the smallest graph 
have one thousand vertices with two thousands edges, and 
the largest graph have ten millions vertices with 15 millions 
edges. The other graphs have number of vertices and edges 
in between these two graphs.

Table 8 shows the graph profiles and their compression 
ratio for DAG reduction and multilevel compression. The 
table also shows the time required for compression of each 
of the graphs using multilevel compression. Multilevel com-
pression can process the largest graph with ten millions ver-
tices and 15 millions edges within few hours which ensures 
the scalability of this method.

6.3.1 � Compression Ratio

Figure  6 shows the comparison of compression ratio 
between DAG reduction and multilevel compression. We 
can see from figure that our method do more than 15% more 
compression on vertex and more than 10% more compres-
sion on edges for each of the graph except Data1 and Data3. 
The compression ratio of Data1 and Data3 is also better in 
multilevel compression.

6.3.2 � Index Construction Time

We tested index construction time for the three reachabil-
ity algorithms IP+ , Feline, and BFL+ . For Grail, we experi-
enced errors; therefore, we omit it here. Figure 7 shows the 
index construction time for each of the algorithm for both G� 
and Gc . For index constructions that cannot be completed, 
we omit them from the figure. We can see from figure that 
the index construction time is much better for multilevel 
compression for each of the three algorithm and all datasets 
except Data5 for Feline algorithm.

6.3.3 � Index Size

Figure 8 shows index size comparison for IP+ , Feline and 
BFL

+ . The index size is much smaller for Gc than G� for each 
graph in all three algorithms. It is obvious as Gc is smaller 
than G�.

Table 8   Datasets and their 
compression ratio after ER 
reduction and multilevel 
compression along with the 
compression time for multilevel 
compression for synthetic 
datasets

Dataset |V| |E| r
n
 (%) r

e
 (%) Compression time (s)

G
�

G
c

G
�

G
c

G
c

Data1 1000 2000 99.4 90.3 82.95 78.4 0.02
Data2 5000 8000 98.46 82.26 75.05 64.93 0.09
Data3 10,000 25,000 99.78 95.31 90.63 88.84 0.21
Data4 50,000 75,000 98.26 80.32 74.53 62.57 1.10
Data5 100,000 150,000 98.18 80.2 74.8 62.82 2.68
Data6 1,000,000 1,500,000 98.18 80.24 74.44 62.49 40.01
Data7 5,000,000 7,500,000 98.2 80.32 74.48 62.56 433.98
Data8 10,000,000 15,000,000 98.2 80.32 74.49 62.57 12,626.34

Fig. 6   Vertex and edge compression for G� and G
c

Fig. 7   Index construction time (ms) comparison for IP+ , Feline and 
BFL

+
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6.3.4 � Query Time

Table 9 shows the query time comparison where the query 
set contains 100,000 random queries for each of the dataset. 
We represented “–” in the table for which dataset the algo-
rithm goes out of memory. From the table, only IP+ became 
able to process all of the datasets, whereas Feline and BFL+ 
can process up to Data5 for G� and up to Data6 for Gc . We 
can see Gc shows significantly better performance than G� in 
Feline, whereas surprisingly only for Data4 G� is better than 
Gc . This could be happened because of graph structure and 
query set. The query time is much smaller in Gc than G� in 
all of the datasets for both IP+ and BFL+.

7 � Discussion on k‑Hop Reachability

Given two vertices v1 and v2 in a directed graph G and an 
integer k, the k-hop reachability asks whether v1 can reach 
v2 in k-hops, that is, whether there is a path from v1 to v2 
that is of length k or less [5]. Due to the restriction on the 
length of the path, it is generally not beneficial to convert G 
into a DAG by merging the vertices in strongly connected 
components. Furthermore, an edge from v1 to v2 is no longer 

redundant even if there is a path from v1 to v2 of length 2 or 
more. Therefore, two vertices that share the same ancestors 
(resp. descendants) do not necessarily share the same par-
ents (resp. children). Thus, it appears that neither the DAG 
reduction [22] nor the compression scheme in Sect. 5 can be 
applied to k-hop reachability.

However, in the real world, some graphs are naturally 
DAGs. For example, a paper citation network should have 
no cycles (for instance, two papers cannot cite each other). 
Moreover, linear chains and vertices that share the same 
parents and same children may naturally exist. Therefore, 
we can still use the compression scheme describe in Sect. 5 
to compress the graph. In order to make the compression 
useful for k-hop queries, for each linear chain, we need to 
record the length of the chain as well as the position of the 
vertices in the chain. Given a k-hop reachability query, we 
can answer it using the a slightly modified algorithm from 
Algorithm 5.

1.	 If LCA(u, v) is an independent set, then u cannot reach 
v, let alone reach v in k-hops.

2.	 If LCA(u, v) is a linear module M, and N1 is the child 
of LCA(u, v) that contains u, and N2 be the child of 
LCA(u, v) that contains v, and pos(N1,M) < pos(N2,M) , 
then u can reach v, but we need to calculate the number 
of hops from u to v. To do that, we need to find all the 
linear modules on the path from the u to M in the decom-
position tree, and find all the linear modules on the path 
from the v to M, and use the position number of the 
nodes u and v are in to compute the number of hops. For 
example, consider the decomposition tree in Fig. 5, and 
the two-hop reachability query from vertex 1 to vertex 
7. We find the LCA of the two vertices to be LS3, which 
is a linear module. The two children of LS3 that contain 
vertices 1 and 7 are the leaf node 1 and IS1, and from 
the leaf noded 7 to LS3, there is a another linear module 
LS2, and the position of 7 in LS2 is 2. Therefore, we 
know the length of the chain from the first vertex to 
vertex 7 is 2. Since vertex 1 to IS1 have positions 0 and 
1 in LS3, respectively, we know 1 can reach IS1 in one 

Fig. 8   Index size (MB) comparison for IP+ , Feline and BFL+

Table 9   Query time (ms) for 
synthetic datasets

Dataset IP
+ Feline BFL

+

G
�

G
c

G
�

G
c

G
�

G
c

Data1 23.35 21.77 286.04 124.523 25.03 22.99
Data2 31.71 29.06 1593.85 914 35.47 34.22
Data3 37.66 34.02 1988.83 375.01 41.61 40.53
Data4 66.17 52.21 2069.84 2484.5 58.26 51.31
Data5 76.42 66.08 58,884.8 37,781.2 82.11 76.85
Data6 79.52 69.29 – 41,254.4 – 91.52
Data7 82.3 71.98 – – – –
Data8 89.02 73.7 – – – –
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hop; therefore, the path from vertex 1 to 7 has a length 
of 3. Hence, 1 cannot reach 7 in two hops. We may use 
straightforward pruning rules to prune paths longer than 
k rather than actually computing the length of the path 
in this step.

3.	 If LCA(u, v) is the root of the decomposition tree, we 
can use a existing algorithm to find whether there is 
path from N1 to N2 of length no larger than k, and use a 
similar method to the above step to find whether there 
is a path from u to v of length ≤ k.

It is obvious that k-reachability is more complicated, and 
the compression ratio may not be as big as for plain reach-
ability queries. Whether the above approach is helpful for 
real graphs needs to be verified using experiments, and we 
leave it as our future work.

8 � Conclusion

We presented a method to compress a DAG that has no 
redundant edges, using two types of modules, to obtain a 
decomposition tree. We showed how to use the decompo-
sition tree to answer reachability queries over the original 
graph. Experiments show that for many real-world graphs 
and also for synthetic graphs, our method can compress the 
graph to much smaller graphs than DAG reduction, and 
reachability queries can be answered faster, and the index 
size can be smaller as well.
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