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Abstract
We introduce a novel interactive framework to handle both instance-level and temporal smoothness constraints for clustering 
large longitudinal data and for tracking the cluster evolutions over time. It consists of a constrained clustering algorithm, 
called CVQE+, which optimizes the clustering quality, constraint violation and the historical cost between consecutive data 
snapshots. At the center of our framework is a simple yet effective active learning technique, named Border, for iteratively 
selecting the most informative pairs of objects to query users about, and updating the clustering with new constraints. 
Those constraints are then propagated inside each data snapshot and between snapshots via two schemes, called constraint 
inheritance and constraint propagation, to further enhance the results. Moreover, a historical constraint is enforced between 
consecutive snapshots to ensure the consistency of results among them. Experiments show better or comparable cluster-
ing results than state-of-the-art techniques as well as high scalability for large datasets. Finally, we apply our algorithm for 
clustering phenotypes in patients with Obstructive Sleep Apnea as well as for tracking how these clusters evolve over time.

Keywords Semi-supervised clustering · Active learning · Interactive clustering · Incremental clustering · Temporal 
clustering · Obstructive Sleep Apnea

1 Introduction

In semi-supervised clustering, domain knowledge is typi-
cally encoded in the form of instance-level must-link and 
cannot-link constraints [11] for aiding the clustering process, 
thus enhancing the quality of results. Such constraints spec-
ify that two objects must be placed or must not be placed in 
the same clusters, respectively. Constraints have been suc-
cessfully applied to improve clustering quality in real-world 
applications, e.g., identifying people from surveillance cam-
eras [11] and aiding robot navigation [10]. However, current 
research on constrained clustering still faces several major 
issues described below.

Most existing approaches assume that we have a set of 
constraints beforehand, and an algorithm will use this set to 
produce clusters [3, 10]. Davidson et al. [8] show that the 
clustering quality varies significantly using different equi-
size sets of constraints. Moreover, annotating constraints 
requires human intervention, an expensive and time con-
suming task that should be minimized as much as possible 
given the same expected clustering quality. Therefore, how 
to choose a good and compact set of constraints rather than 
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randomly selecting them from the data has been the focus 
of many research efforts, e.g., [2, 32, 43].

Many approaches employ different active learning 
schemes to select the most meaningful pairs of objects and 
then query experts for constraint annotation [2, 32]. By 
allowing the algorithms to choose constraints themselves, 
we can avoid insignificant ones, and expect to have high 
quality and compact constraint sets compared to the ran-
domized scheme. These constraints are then used as input 
for constrained clustering algorithms to operate. However, 
if users are not satisfied with the results, they must provide 
another constraint set and then start the clustering again, 
which is obviously expensive.

Other algorithms follow a feedback schema which does 
not require a full set of constraints in the beginning [7]. They 
iteratively produce clusters with their available constraints, 
show results to users, and get feedback in the form of new 
constraints. By iteratively refining clusters according to user 
feedback, the acquired results fit users’ expectations bet-
ter [7]. Constraints are also easier to select with an underly-
ing cluster structure as a guideline, thus reducing the overall 
number of constraints and human annotation effort for the 
same quality level. However, exploring the whole data space 
for finding meaningful constraints is also a non-trivial task 
for users.

To reduce human effort, several methods incorporate 
active learning into the feedback process, e.g., [17, 18, 32, 
43]. At each iteration, the algorithm automatically chooses 
pairs of objects and queries users for their feedback in terms 
of must-link and cannot-link constraints instead of leaving 
the whole clustering results for users to examine. Though 
these techniques are proven to be very useful in real-world 
tasks such as document clustering [17], they suffer from very 
high runtime since they have to repeatedly perform cluster-
ing and explore all O(n2) pairs of objects to generate queries 
to users each time.

In this work, we develop an efficient framework to cope 
with the above problems following the iterative active learn-
ing approach as in [17, 43]. However, instead of examining 
all pairs of objects, our technique, called Border, selects a 
small set of objects around cluster borders and queries users 
about the most uncertain pairs of objects. We also intro-
duce a constraint inheritance approach based on the notion 
of �-nearest neighbors for inferring additional constraints, 
thus further boosting performance. Finally, we revisit our 
approach in the context of evolutionary clustering [6]. Evo-
lutionary clustering aims to produce high-quality clusters 
while ensuring that the clustering does not change dramati-
cally between consecutive timestamps. This scheme is very 
useful in many application scenarios. For example, doctors 
want to better describe trajectories of chronic diseases over 
time by identifying progressive aggregation of complica-
tions (comorbidities) [19]. It is a crucial issue to identify and 

ideally to anticipate the occurrence of multimorbidity (i.e., 
the association of more than 2 chronic diseases). They may 
expect that existing groups do not change so much over time 
if there are minor changes in the data. However, the cluster-
ing process should be able to reflect the changes if there 
are significant differences in the new data. Therefore, we 
propose to formulate a temporal (longitudinal) smoothness 
constraint into our framework and add a time-fading factor 
to our constraint propagation.

1.1  Contributions

Our contributions are summarized as follows:

– We introduce a new algorithm CVQE+ that extends 
CVQE [10] with weighted must-link and cannot-link 
constraints and a new object assignment scheme.

– We propose a new algorithm, Border, that relies on active 
clustering and constraint inheritance to choose a small 
number of objects to solicit user feedback for. Beside 
the active selection scheme for pairs of objects, Border 
employs a constraint inheritance method for inferring 
more constraints, thus further enhancing the perfor-
mance.

– We present an evolutionary clustering framework which 
incorporates instance-level and temporal smoothness 
constraints for temporal data. To the best of our knowl-
edge, our algorithm is the first framework that combines 
active learning, instance-level and temporal smoothness 
constraints.

– Experiments are conducted for six real datasets to dem-
onstrated the performance of our algorithms over state-
of-the-art ones.

1.2  Extensions

In this paper, we extend the work in [27] for investigating 
clinical clusters in a use case of patients with Obstructive 
Sleep Apnea (OSA) [22]. OSA is a common sleep disor-
der and a major medical concern corresponding to repeti-
tive upper airway collapse during sleep [22, 44]. OSA is 
known to be related to many serious health problems includ-
ing cardiovascular and metabolic morbidity and mortal-
ity [22, 25, 34]. Both symptoms and comorbidities vary 
significantly at diagnosis but data regarding longitudinal 
clustering are scarce [21]. Thus, identifying subgroups of 
patients that share the similar disease characteristics such 
as comorbidities, indices of OSA severity, and symptoms 
is an important step for personalizing OSA treatments [1]. 
Recent approaches employ automatic clustering methods to 
detect specific phenotypes, e.g., Hierarchical clustering [1] 
and Latent Class Analysis (LCA)  [44]. However, these 
techniques do not exploit domain knowledge to improve the 
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quality of results during the clustering process. Moreover, 
all existing techniques are based on static data such as the 
diagnosis visit data [1] or questionnaires [44], while patient 
responses are not static and change over the life span and 
particularly symptoms are hugely modified by available 
treatments, thus causing the changes in clusters. In other 
words, current available analysis were not designed to cap-
ture the evolvements of patients’ phenotypes over time, 
allowing to characterize response to treatments and occur-
rence of comorbidities. To the best of our knowledge, our 
algorithm Border is the first approach which can deal with 
these problems while analyzing OSA patients. To summary, 
we extend Border as follows:

– We extend the data model by assigning for each data 
object a patient identification (or process ID) as its 
owner. These IDs will be used for finding overlapped 
patient clusters at different time frames.

– We revise the historical cost of the temporal smoothness 
scheme by considering all overlapped clusters from pre-
vious snapshots.

– We introduce a temporal evolution graph to capture the 
evolvements of patient clusters at different visit times.

1.3  Outline

The rest of the paper is organized as follows. We formu-
late the problem in Sect. 2. Our framework is described 
in Sect. 3. Experiments are presented in Sect. 4. Section 5 
discusses related works. In Sect. 6, we present an applica-
tion of our algorithm to track the evolution of groups of 
patients with sleep disorder symptoms. Section 8 concludes 
the paper.

2  Problem Formulation

Let D = {(d, t, id(d))} be a set of |D| vectors (objects) d ∈ ℝ
p 

observed at time t associated with a process ID pid(d) that 
generates d. Note that two objects u and v in D may be gener-
ated by the same process, i.e., pid(u) = pid(v).

Let S = {(Ss,Ds, tss, tes)} be a set of preselected |S| 
data snapshots. Each Ss starts at time tss , ends at time 
tes and contains a set of objects Ds = {(d, t, pid(d))

∈ D | tss ≤ t < tes ∧ ∀u, v ∈ Ds ∶ pid(u) ≠ pid(v)}  .  I n 
other words, all objects in Ds must be generated by different 
processes during the time frame [tss, tes) . Two snapshots Ss 
and Ss+1 may overlap but must satisfy the time order, i.e., 
tss ≤ tss+1 and tes ≤ tes+1.

For each snapshot Ss , let MLs = {(x, y,wxy)|(x, y) ∈ D2
s
} 

and CLs = {(x, y,wxy)|(x, y) ∈ D2
s
} be the set of must-link 

and cannot-link constraints of Ss with a degree of belief of 
wxy ∈ [0, 1] . MLs and CLs can be empty.

2.1  Algorithms

In this paper, we focus on the problem of grouping objects 
in all snapshots into clusters in an active interactive feed-
back scheme as described in Sect. 1. To summary, our goals 
are (1) reduce the number of constraints thus reducing the 
constraint annotation costs (2) make the algorithm scale 
well with large datasets and (3) smooth the gap between 
clustering results of two consecutive snapshots, i.e., ensure 
temporal smoothness. The technical details of our methods 
will be described in Sect. 3.

2.2  Applications

We apply our algorithms for investigating the clinical groups 
of patients with Obstructive Sleep Apnea (OSAS) based on 
their medical visit records over time. The detailed study will 
be presented in Sect. 6.

3  Our Proposed Framework

Figure 1 illustrates our framework which relies on two algo-
rithms, Border and CVQE+. Our framework starts with a 
small (or empty) set of constraints in each snapshot. Then, 
it iteratively produces clustering results and receives refined 
constraints from users in the next iterations. This process 
is akin to feedback-driven algorithms for enhancing clus-
tering quality and reducing human annotation effort [7]. 
However, instead of passively waiting for user feedback as 
in [7], our algorithm, Border, actively examines the current 
cluster structure, selects � pairs of objects whose clustering 
labels are the least certain, and asks users for their feedback 
in terms of instance-level constraints. Examining all possi-
ble pairs of objects to select queries is time consuming due 
the quadratic number of candidates. To ensure scalability, 
Border limits its selection to a small set of most promising 
objects. When there are new constraints, instead of reclus-
tering from scratch as in [17, 43], our algorithm, CVQE+, 
incrementally updates the cluster structures for saving 
computation times. We also aim to ensure a smooth transi-
tion between consecutive clusterings [6]. We additionally 
introduce two novel concepts: (1) the constraint inheritance 
scheme for automatically inferring more constraints inside 
each snapshot and (2) the constraint propagation scheme 
for propagating constraints between different snapshots. 
These schemes help significantly reduce the number of con-
straints that users must enter into the systems for acquiring 
a desired level of clustering quality by automatically adding 
more constrained based on the annotated ones. To the best 
of our knowledge, Border is the first framework that com-
bines active learning, instance-level and temporal smooth-
ness constraints.
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3.1  Constrained Clustering Algorithm

For each snapshot Ss , we use constrained kmeans for group-
ing objects. Generally, any existing techniques such as 
MPCK-means [3], CVQE [10] or LCVQE [36] can be used. 
Here we introduce CVQE+, an extension of CVQE [10] to 
cope with weighted constraints, to do the task.

3.1.1  The New Algorithm CVQE+

Let C = {Ci} be a set of clusters. The cost of Ci is defined as 
its vector quantization cost VQEi and the constraint violation 
costs MLi and CLi (where MLi ⊆ ML and CLi ⊆ CL are the 
sets of must-link and cannot-link constraints related to Ci ) as 
follows. Note that our MLi cost is symmetric compared to [10].

where vl(a, b) is true for (a, b) that violates must-link or 
cannot-link constraints, ci is the center of cluster Ci , �(a, b, i) 
returns the center of clusters of a or b (not including cluster 
Ci ), and �(i) returns the nearest cluster center of Ci . Note that 
CostMLi

 is symmetric compared to [10].
Taking the derivative of CostCi

 , the new center of Ci is 
updated as:

(1)CostCi
= CostVQEi

+ CostMLi
+ CostCLi

CostVQEi
=
∑

x∈Ci

(ci − x)2

CostMLi
=

∑

(a,b)∈MLi∧vl(a,b)

wij(ci − c�(a,b,i))
2

CostCLi =
∑

(a,b)∈CLi∧vl(a,b)

wij(ci − c�(i))
2

(2)

dCostCi

dci

=
dCostVQEi

dci

+
dCostMLi

dci

+
dCostCLi

dci

ci =

∑

x∈Ci

x +
∑

(a,b)∈MLi∧vl(a,b)
wijc�(a,b,i) +

∑

(a,b)∈CLi∧vl(a,b)
wijc�(i)

|Ci| +
∑

(a,b)∈MLi∧vl(a,b)
wij +

∑

(a,b)∈CLi∧vl(a,b)
wij

For each constraint (a, b), CVQE+ assigns objects to clus-
ters by examining all k2 cluster combinations for a and b 
like CVQE. The major difference is that when we calculate 
the violation cost, we consider all constraints starting and 
ending at a and b instead of only the constraint (a, b) as in 
CVQE [9] or LCVQE [9], which is very sensitive to the 
cost change when some constraints share the same objects 
(changing these objects affects all their constraints) as illus-
trated in Fig. 2. The assigning cost for (a, b) will include 
the violation costs for (a, x), (a, y) and (b, z) as well. Thus, 
this scheme is expected to improve the clustering quality of 
CVQE+ compared to CVQE and LCVQE.

3.1.2  Complexity Analysis

Let n be the number of objects, m be the number of 
constraints, k be the number of clusters. CVQE+ has 
time complexity O(rkn + rk2m2) which is higher than 
O(rkn + rk2m) of CVQE due to the fact that all related 

Fig. 1  Our active temporal 
clustering framework
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Constrained 
Clustering CVQE+
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(with Border)Border

x
a b

y

z
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Fig. 2  Assigning a pair of constrained object (a,  b) to clusters in 
CVQE+. All constraints starting and ending at a and b will be con-
sidered
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constraints must be examined while assigning a constraint, 
where r is the number of iterations of the algorithm. Since 
k and m are constants, CVQE+ is thus has linear time com-
plexity to the number of objects n. It also requires O(n) 
space for storing objects and constraints.

3.2  Active Constraint Selection

We introduce an active learning method called Border for 
selecting pairs of objects and query users for constraint 
types. The general idea is examining objects lying around 
borders of clusters since they are the most uncertain ones 
and choosing a block of � pairs of objects to query users 
until the query budget � is reached. Here, � and � are pre-
defined constants.

3.2.1  Active Learning with Border

To avoid examining all pairs of objects, Border chooses a 
subset of m = min(O(

√
n),M) objects located at the bound-

ary of the clusters as the main targets since they are the 
most uncertain ones, where M is a predefined constant 
(default as 100). This bound limits the number of pairs as 
a constant, thus reducing the number of pairs needed for 
examining in the subsequence steps. For each object a in 
cluster Ci , the border score of a is defined as:

where ml(a) and cl(a) are the sums of weights of must and 
cannot-link constraints of a. Here, we favor objects that 
have fewer constraints for increasing constraint diversity. 
This also fits well with our constraint inheritance scheme. 
Moreover, by considering the distance to the second nearest 
cluster center c�(i) , we focus more on objects that are close 
to the boundaries of two clusters rather than ones that are far 
away from other clusters, which may not bring much benefit 
to clarify the groups. For each cluster Ci , we select m|Ci|∕n 
top objects based on their border score distribution in Ci . 
This can be done by building a histogram with O(

√
�Ci�) 

bins (a well-known rule of thumb for the optimal histogram 
bin) [4]. Then, objects are taken sequentially from the outer-
most bins. This scheme ensures that all clusters are consid-
ered based on their current sizes. Bigger clusters contribute 
more objects than smaller ones since their changes will more 
likely affect the final clustering result. Moreover, by using 
histogram bins, we give equal changes to objects within a 
bin since these objects might have the same importances for 
clarifying the clusters.

For each selected object a, we estimate the uncertainty 
of a w.r.t. the current clustering result as:

(3)bor(a) =
(a − ci)

2

(a − c�(i))
2(1 + ml(a))(1 + cl(a))

where ent(�nn(a)) is the entropy of class labels of � near-
est neighbors of a and vl(ml(a)) and vl(cl(a)) are the sums 
of violated must-link and cannot-link constraints of a. A 
high score(a) means that a is in high uncertain areas with 
different mixed class labels and a high number of constraint 
violations. And thus, it should be focused on.

We divide m2 = O(n) pairs of selected objects into two sets: 
the set of inside cluster pairs X and between cluster pairs Y, 
i.e., for all (x, y) ∈ X ∶ label(x) = label(y) and for all 
(x, y) ∈ Y ∶ label(x) ≠ label(y) . For a pair (x, y) ∈ X , it is 
sorted by val(x, y) = (x−y)2(1+sco(x))(1+sco(y))

(1+ml(x)+cl(x))(1+ml(y)+cl(y))
 . For (x, y) ∈ Y , 

val(x, y) =
(x−y)2(1+ml(x)+cl(x))(1+ml(y)+cl(y))

(1+sco(x))(1+sco(y))
 . The larger val is, the 

more likely x and y belong to different clusters and vice versa. 
Moreover, in Y, we tend to select pairs with more related con-
straints to strengthen the current clusters, while we try to sepa-
rate clusters in X by considering pairs with fewer related con-
straints. We choose top �∕2 non-overlapped largest val pairs 
of X and top �∕2 non-overlapped smallest pairs of Y in order 
to maximize the changes in clustering results (inside and 
between clusters). To be concrete, if a pair (a, b) was chosen, 
all pairs starting and ending with a or b will not be considered 
for enhancing the constraint diversity, which can help to bring 
up better performance. If all pairs are excluded, we select the 
remainder randomly.

We show � pairs to users to ask for the constraint type and 
add their feedback to the constraints set and update clusters 
until the total number of queries exceeds a predefined budget 
� as illustrated in Fig. 1.

3.2.2  Constraint Inheritance in Border

For further reducing the number of queries to users, the gen-
eral idea is to infer new constraints automatically based on 
annotated ones. Our inheritance scheme is based on the con-
cept of � nearest neighbors below.

Let h be the distance between an object p and its � near-
est neighbors. The influence of p on its neighbor x is formu-
lated by a triangular kernel function �h(p, x) centered at p as 
in Fig. 3. Given a constraint (p, q,wpq) , for all a ∈ �nn(p) and 
b ∈ �nn(q) , we add (a, b,wab) to the constraints set, where wab 
is defined as:

The general intuition is that the label of an object a tends to 
be consistent with its closest neighbors (which is commonly 
used in data classification such as the nearest neighbor clas-
sification [15]). This scheme is expected to increase the 
clustering quality, especially when combined with the active 
learning approach of the algorithm Border described above.

(4)sco(a) = ent(�nn(a)) +
vl(ml(a)) + vl(cl(a))

ml(a) + cl(a) + 1

(5)wab = wpq�h(p, a)�h(q, b)



364 S. T. Mai et al.

1 3

During the inheritance scheme, if a pair of objects (a, b) is 
inherited from two constraints (c, d) and (e, f) with inherited 
weights w1 and w2 , respectively, its weight and type are deter-
mined as follows:

where type(c, d) is the constraint type of (c, d) (either 
must-link or cannot-link). And type(a, b) is determined by 
type(c, d) if w1 > w2 and vice versa. The general idea here is 
that if (a, b) is influenced by two constraints with different 
kinds, it will follow the one with the highest influence. Note 
that if (a, b) belongs to the main constraint set, we exclude it 
from the constraint inheritance scheme since it is annotated 
by users and thus it is confident.

3.2.3  Updating Clusters

At each iteration, instead of performing clustering again for 
producing the clustering result with the new set of constraints, 
we propose to update it incrementally for saving runtime. To 
do so, we only need to take the old cluster centers and update 
them following Eq. 1 with the updated constraints set. The 
intuition behind this is that new constraints are more likely to 
change clusters locally. Hence, starting from the current state 
might make the algorithm to converge faster, thus saving runt-
imes. In Sect. 4, we show that this updating scheme acquires 
the same quality but converges much faster than reclustering 
from scratch.

3.2.4  Complexity Analysis

Similarly to CVQE+, Border has O(n) time and space com-
plexity at each iteration and thus has O(�n∕�) time complexity 
overall, where � is the budget limitation and � is the number of 
selected objects at each iteration described above.

(6)wab =

{
max(w1,w2) if type(c, d) = type(e, f )

|w1 − w2| otherwise

3.3  Temporal Smoothness Constraints

The general idea of temporal smoothness [6] is that clusters 
not only have high quality in each snapshot but also do not 
change much between sequential time frames. It is useful in 
many applications where the transition between different snap-
shots is smoothed for consistency.

3.3.1  Temporal Smoothness

To ensure the smoothness, we re-define the cost of cluster 
Ci of snapshot Ss in Eq. 1 by enforcing a historical cost from 
its previous snapshot as follows:

where Hist(Ci, Ss−1) is the historical cost of cluster Ci 
between two snapshots Ss and Ss−1 and � is a regulation fac-
tor to balance the current clustering quality and the histori-
cal cost. This cost keeps the new clusters do not deviate too 
much from ones from previous snapshot while performing 
clustering. We define the historical cost as follows:

where �(Ci,Cj) =
|Ci∩Cj|

|Ci|
 is the percentage of objects of Cj in 

Ci , ci is the center of cluster Ci , n and k are the number of 
objects and number of clusters, respectively. The general 
idea is that if a cluster Ci consists of objects from several 
other clusters in Si−1 , its center will be moved toward these 
clusters according to their membership contributions in Ci 
and the distances between their centers to the center of Ci . 
Obviously if two clustering results are too different, indi-
cated by high historical cost, the penalty will be higher thus 
forcing the algorithm to lower down the overall cost by cre-
ating clusters closer to those of the previous snapshot. The 
major difference between this scheme and the nearest centers 

(7)TCostVQEi
= (1 − �)CostVQEi

+ �Hist(Ci, Ss−1)

(8)Hist(Ci, Ss−1) =
n

k

∑

Cj∈Ss−1

�(Ci,Cj)(ci − cj)
2

Fig. 3  a Constraint inherit-
ance from (p, q) to (a, b). b 
The effect of the object b on its 
neighbors x

y
p

(A) (B)

h=µnn(p)

h

1

px y

φ h(p, x)
φ h(p, y)

z
µ = 5z

a
b

wpq

wab

q

φ h(p, a)

φ h(q, b)
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proposed in our previous works [27] is that each object 
inside a snapshot is assigned a unique Id. Two objects in two 
different snapshots may have the same Id as described in 
Sect. 2. These Ids can be used to check the overlap between 
two clusters in two snapshots. Thus, this scheme provides a 
better way to capture the smoothness between two clustering 
results since the nearest cluster Cj of Ci may actually contain 
only a few or no objects in Ci . Hence, moving Ci toward Cj 
as in [27] makes no sense anymore.

Taking the derivation of Eq. (7) as in Eq. (1), we can 
update the cluster centers as follows:

where A and B are, respectively, the numerator and the 
denominator given in Eq. 2 for updating clusters,

and

3.3.2  Constraint Propagation

Whenever we have a new constraint (x, y,wxy) in snap-
shot Ss , we propagate it to snapshots Ss′ where s′ > s if 
pid(x), pid(y) ∈ S� . The intuition is that if x and y are linked 
(either by must or cannot-link) in Ss , they are more likely 
to be linked in Ss′ . Thus we add the constraint (x, y,w�

xy
) to 

Ss′ where:

where (tes − tss� )∕(tes� − tss) is a time-fading factor. This 
scheme helps to increase the clustering quality by putting 
more constraints into the clustering algorithm like the inher-
itance scheme. Since propagated constraints are not con-
sidered as user annotated ones, we treat it as non-confident 
constraints in our model and will not build offspring for 
them like those in the main constraint set described in the 
inheritance scheme above.

3.4  Temporal Evolutionary Graph

We propose to build a graph G = (V ,E) , called the temporal 
evolutionary graph, to keep track of the relationships among 
clusters. In G, each node v is a cluster and each edge (u, v) 
represents the similarity between two clusters u and v that 
belong to two consecutive snapshots.

Given two clusters Ci ∈ Ss and Cj ∈ Ss+1 , we define the 
similarity between Ci and Cj as follows:

(9)ci =
(1 − �)A + �E

(1 − �)B + �F

(10)E =
n

k

∑

Cj∈Ss−1

�(Ci,Cj)cj

(11)F =
n

k

∑

Cj∈Ss−1

�(Ci,Cj)

(12)w�
xy
= wxy

tes − tss�

tes� − tss

where sim(Ci,Cj) = 1 if Ci and Cj are identical and 0 if Ci and 
Cj are completely different. If sim(Ci,Cj) > 0 , we put an edge 
(Ci,Cj) that connects Ci and Cj into G, indicating that they 
are related to each other.

Given a cluster Ci ∈ Ss , a cluster Cj ∈ Si+1 is the closest 
one of Ci , denoted as �(Ci, Ss+1) if Cj = maxCj∈Ss+1

sim(Ci,Cj) , 

i.e., Cj is the one with highest cluster similarity to Ci.
Figure 4 illustrates a temporal evolution graph G with 

three snapshots. We have sim(C11,C21) = 4∕5 = 0.8 . There 
is no edge between C12 and C21 since they share nothing. 
And, C22 is the closest cluster of C12 (indicated by red edge). 
By following edges of G, we can keep track of the way clus-
ters evolve over time. For example, from snapshot S1 to 
S2 , object 4 has changed its membership to an other differ-
ent cluster. This scheme will be useful for us to study how 
cohorts (groups) of patients change over time and identify 
factors that cause these changes in our application scenario 
described in Sect. 6.

4  Experiments

Experiments are conducted on a workstation with 4.0Ghz 
CPU and 32GB RAM using Java. We use 6 datasets Iris, 
Ecoli, Seeds, Libras, Optdigits, and Wdbc acquired from 
the UCI archives.1 The numbers of clusters k are acquired 
from the ground truths. Constraint queries are also simulated 
from the ground truths by adding a must-link if two objects 
have the same labels or a cannot-link if they have different 
labels. We use Normalized Mutual Information (NMI) [33] 

(13)sim(Ci,Cj) =
|Ci ∩ Cj|

|Ci ∩ Cj|

1
2

3

4
5

6
7

89

1
1

2

23
3

4 4

5

6
6

5

7 7

8 8

9

9

S1 S2 S3

0.8

0.125

0.8 0.8

0.8

0.111

C22

C11

C12

C21

C32

C31

Fig. 4  The temporal evolutionary graph. The weight of each edge 
shows the overlap between two clusters. The red edge indicates two 
closest clusters between two snapshots

1 http://archi ve.ics.uci.edu/ml/.

http://archive.ics.uci.edu/ml/
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for assessing the clustering quality. NMI score is in [0,1] 
where 1 means a perfect clustering result compared to the 
ground truth and vice versa. All results are averaged over 
10 runs.

4.1  Constrained Clustering

We study the performance of our constrained clustering 
method CVQE+ in comparisons with kmeans and state-of-
the-art constrained clustering techniques such as MPCK-
means [3], CVQE [10] and LCVQE [36].

4.1.1  Performance of CVQE+

Figure 5 shows comparisons among CVQE+ and exist-
ing techniques including kmeans, MPCK-means  [3], 
CVQE [10] and LCVQE [36] over different sets of ran-
domly selected constraints. CVQE+ consistently outper-
forms or acquires comparable results to CVQE and others 
for most datasets (except the Libras dataset where it is 
outperformed by LCVQE), especially when the num-
ber of constraints is large. This can be explained by the 
way CVQE+ assigns objects to clusters. By considering 
all related constraints while assigning cluster labels for 
objects, it can better optimize the overall cost function, 
thus leading to better clustering quality. Compared to its 
predecessor algorithm CVQE or LCVQE, it deals well 

with constraint overlap (constraints that share the same 
objects), which increases with the number of constraints. 
Note that when the constraint set is empty, CVQE+ pro-
duces clustering in the similar way with k-means. Thus, 
the clustering quality does not start from 0.

4.1.2  Noise Robustness

For studying the effect of noisy constraints on CVQE+, we 
randomly choose some constraints and change them from 
must-link to cannot-link and vice versa. Figure 6 shows 
the clustering quality of different algorithms w.r.t. the per-
centages of noisy constraints from 2 to 8% for real data-
sets. As we can see, for all algorithms, when the number of 
noisy constraints increases, the clustering quality decreases 
accordingly. However, CVQE+ tends to be more affected 
by noise than its related techniques CVQE and LCVQE. 
Though its point assignment scheme helps to increase the 
clustering quality as discussed above, it makes CVQE+ 
more sensitive to noise since one noisy constraint will affect 
the assignment cost for all of its related constraints. Nev-
ertheless, in our experimented data, CVQE+ still acquires 
better (or equivalent) clustering results than CVQE and 
LCVQE under the same noisy conditions in most cases as 
seen in Fig. 6. However, developing a more effective algo-
rithm to cope with noisy constraints is still an interesting 
target to pursue.
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4.1.3  Effect of Constraint Types

Figure 7 shows the performance of CVQE+ and its related 
techniques CVQE and LCVQE when the number of 

must-link constraints increases from 20 to 80% of the con-
straint sets. The clustering quality of CVQE+ and CVQE 
increases with the number of must-link constraints, while 
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that of LCVQE decreases. This can be explained by the ways 
they calculate the constraint violation costs for the must-link 
and especially the cannot-link constraints. LCVQE treats 
violated cannot-link constraints more properly than CVQE 
and CVQE+. Thus, it deals well with higher number of 
those constraints.

4.2  Active Constraint Selection

We study the performance of Border in comparison with 
other state-of-the-art active learning techniques. Unless oth-
erwise stated, the budget limitation � is set to 200, the query 
size � = 10 and the neighborhood size � = 4.

4.2.1  Active Constraint Selection

Figure 8 shows comparisons between Border, NPU [43], 
Huang [43] (a modified version of [17] for working with 
non-document data), min–max  [32], Explorer-consoli-
date [2], and a randomized method (Huang and Consolidate 
are removed from Fig. 8 for readability). Border acquires 
better results than others on Libras, Wdbc and Optdigits, 
comparable results on Iris and Ecoli. For the Seeds data-
set, it is outperformed by NPU. The difference is because 
Border tends to strengthen existing clusters by fortifying 
both the cluster borders and inter connectivity for groups 
of objects rather than connecting a single object to existing 

components like NPU and Huang. Moreover, since it itera-
tively studies the clustering results for selecting constraints, 
it has better performance than non-iterative methods like 
Consolidate and min–max.

4.2.2  Runtime Comparison

For studying the runtime of Border on large-scale datasets, 
we create five synthetics datasets of sizes 2000–10,000 
consisting of 5 Gaussian clusters and measure the time 
for acquiring 100 constraints. The results are shown in 
Fig. 9. Border is orders of magnitude faster than other 
methods in selecting pairs to query. For 1000 objects, it 
takes Border 0.1 s while NPU and min–max need 439.4 
and 3.0 s, which is 4394 and 30 times slower than Border. 
For 10,000 objects, Border, NPU and min–max consumes 
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0.18, 5216.3 and 18.2 s, respectively. It is due to the fact 
that Border does not evaluate all pairs of objects at each 
iteration. Thus, it does much less works than others and 
faster. Besides, NPU and min–max are implemented in 
MATLAB which is slower than Border in Java. Neverthe-
less, the higher the number of objects and constraints, the 
higher the runtime differences. For 10,000 objects, Border 
is around 28,979.4 and 101.1 times faster than NPU and 
min–max, respectively. Hence, its runtime performance 
makes Border an effective technique to cope with very 
large datasets.

4.2.3  Cluster Update

Figure 10 shows the NMI and the number of iterations of 
our algorithm for the Ecoli dataset. The NMI scores are 
comparable, while it takes fewer iterations for our algo-
rithm to converge in its update mode.

4.2.4  Effect of the Block Size ˇ

Figure 11 shows the performance of Border when the query 
block size � varies from 10 to 30. As we can see, the smaller 
the value of � is, the better the performance of Border since 
the cluster structure is assessed more frequently, thus leading 
to better constraints to be selected at each iteration.

4.2.5  Effect of the Constraint Inheritance Scheme

Figure 12 shows the effect of the parameter � on our algo-
rithm Border via the inheritance scheme. Typically, its per-
formance will increase with � until it reaches the peak and 
then decreases as shown for the dataset Iris. This can be 
explained by the neighborhood influence scheme of Bor-
der. When � is large enough, the number of wrong con-
straints will be increased, thus lower down the performance 
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of Border. However, the peak value of � is actually dataset 
dependence and thus is very hard to predict. Taking the data-
set Optdigits as an example, the performance of Border still 
increases when � = 5 . However, with � = 3 , Border starts 
perform worse on the dataset Seeds. Unfortunately, the value 
of � is highly data dependent and is hard to select. In our 
experiments, we observe that the value of � around 2–4 is 
overall good for most datasets. Thus, we choose � = 4 as a 
default value.

4.3  Temporal Clustering

We extends kmeans and constrained clustering CVQE+ 
algorithms to cope with the temporal smoothness constraint 
as described in Sect. 3.3.

4.3.1  Clustering Quality

We divide the datasets into different snapshots and measur-
ing the clustering quality using the ground truths of the full 
datasets.

Figure 13 shows the active temporal clustering results for 
three snapshots of the Optdigits dataset (with � = 0.2 ). As 

we see, our active learning scheme can help to boost clus-
tering quality inside each snapshot compared to kmeans or 
CVQE+. With the constraint propagation scheme (Border), 
the clustering results are further boosted. For example, in 
Snapshot 2 and 3, Border performs much better than Bor-
der without the constraint propagation scheme. Since we 
only consider forward propagation, the clustering result in 
Snapshot 3 will be more affected than Snapshot 2 and Snap-
shot 1. For example, in Snapshot 3 the difference between 
Border and Border without Propagation is much higher than 
in Snapshot 2. In case of interest, we can easily extend the 
algorithm for a backward propagation scheme.

4.3.2  Temporal Smoothness

Given the cluster evolution graph G acquired after the tem-
poral clustering process as described in Sect. 3.4. We define 
the similarity of two snapshots Ss and Ss+1 as follows:

(14)sim(Ss, Ss+1) =
∑

Ci∈Ss

sim(Ci, �(Ci, Si+1))
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where �(Ci, Ss+1) = maxCj∈Ss+1
sim(Ci,Cj) is the closest clus-

ter Cj ∈ Si+1 of Ci . By summing up all the similarities 
between two consecutive snapshots, we can measure how 
smooth the whole clustering results is. Obviously, higher 
sum means the more consistent the clustering results across 
snapshots are.

Figure 14 shows the overall smoothness of the clustering 
results of kmeans, CVQE+, and Border wrt. different values 
of � from 0 to 1 on the dataset Optdigits with three snap-
shots. The linear best fit lines (dotted) indicate that when 
the value of � increases, the overall smoothness among 
snapshots increases, i.e., the more consistent the clustering 
results between two consecutive snapshots. However, the 
trend is much clearer for kmeans compared to CVQE+ and 
especially Border. The reason is that in CVQE+ and Border 
we must trade-off the historical costs and constraint violation 
costs instead of only the historical costs as in kmeans. Thus, 
the historical aspect is more likely to be violated in CVQE+ 
and Border compared to kmeans. For Border, constraints are 
selected around the border of clusters, which are more likely 
to be violated than the randomly selected ones of CVQE+. 
Thus, the historical part of Border is more affected. As a 
result, the clustering results of Border are less smooth than 
those of kmeans and CVQE+.

5  Related Work

5.1  Constraint Clustering

There are many proposed constrained clustering algorithms 
such as MPC-kmeans [3], CVQE [10] and LCVQE [36]. 
These techniques optimize an objective function consisting 
of the clustering quality and the constraint violation cost 
like our algorithm CVQE+. CVQE+ is an extension of 
CVQE [10], where we extend the cost model to deal with 
weighted constraints, make the must-link violation cost sym-
metric and change the way each constraint is assigned to 
clusters by considering all of its related constraints. This 
makes cluster assignment more stable, thus enhancing the 
clustering quality. Interested readers are referred to [9] for 
a comprehensive survey on constrained clustering methods.

5.2  Active Learning

Active learning [37] are widely used in many different fields 
such as data clustering and pattern recognition [26, 28–31, 
37, 38, 40, 42, 45].

For constrained clustering, most existing techniques 
employ active learning for acquiring a desired constraints 
set before or during clustering. In [2], the authors introduce 
the Explorer-Consolidating algorithm to select constraints 

by exploiting the connected components of must-link ones. 
Min–max [32] extends the consolidation phase of [2] by 
querying most uncertain objects rather than randomly select-
ing them. These techniques produce constraints sets before 
clustering. Thus, they cannot exploit the cluster labels for 
further enhancing performance. Huang et al. [17] introduce a 
framework that iteratively generates constraints and updates 
clustering results until a query budget is reached. However, 
it is limited to a probabilistic document clustering algorithm. 
NPU [43] also uses connected-components of must-link con-
straints as a guideline for finding most uncertain objects. 
Constraints are then collected by querying these objects 
again existing connected components like the Consolidate 
phase of [2]. Though more effective than pre-selection ones, 
these techniques typically have a quadratic runtime which 
makes them infeasible to cope with large datasets like Bor-
der. Moreover, Border relies on border objects around clus-
ters to build constraints rather than must-link graphs [2, 43]. 
The inheritance approach is closely related to the constraint 
propagation in the multi-view clustering algorithm [13, 14] 
for transferring constraints among different views. The major 
difference is that we use the �-nearest neighbors rather than 
the �-neighborhoods which is limited to Gaussian clusters 
and can lead to an excessive number of constraints.

5.3  Temporal Clustering

Temporal smoothness has been introduced in the evolution 
framework [6] for making clustering results stable w.r.t. the 
time. We significantly extend this framework by incorporat-
ing instance-level constraints, active query selections and 
constraint propagation for further improving clustering qual-
ity while minimizing constraint annotation effort.

6  Application

Obstructive Sleep Apnea (OSA) is a major sleep disorder 
causing by the repetitive collapses of upper airway dur-
ing sleep. OSA is associated with many health problems 
such as cardiovascular and metabolic diseases [22] includ-
ing diabetes [35], coronary heart diseases [16], cancer [5] 
with finally an increased risk of mortality [5]. It is also 
known a heterogeneous disease with different symptoms 
and comorbidities for patients exhibiting the same level of 
OSA severity [21]. Thus, recent studies aim at better allo-
cate patients into well-defined subgroups (i.e., phenotypes) 
based on clinical information such as symptoms, comor-
bidities, and demographics using clustering methods [20, 
39, 41]. This can help to improve the clinical management 
and to define personalized treatments at time of diagnosis. 
For example, in [44], a Latent Class Analysis (LCA) is used 
to identify groups of patients in the Icelandic Sleep Apnea 
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Cohort including 822 patients with moderate-to-severe OSA. 
A similar strategy is employed for 922 patients recruited 
from the Sleep Apnea Global Interdisciplinary Consortium 
(SAGIC) [21]. Hierarchical clustering is employed in [1] for 
analyzing diagnosis data of 18,263 OSA patients. In [23], a 
relationship graph is built upon 198 patients collected from 
the Sleep Centre at the University of Foggia from 2012 to 
2014 and patients are grouped using community detection 
algorithms. All of these approaches, however, do not incor-
porate domain knowledge into the clustering processes to 
improve the clustering quality. Moreover, they are only able 
to process static data, e.g., questionnaires [44] or a diagnosis 
visit data [1]. However, patients’ responses to treatments 
and associated compilations are not static and change during 
clinical courses. Tracking these changes will provide more 
insights into disease progression and prognosis [1]. How-
ever, all existing techniques are not specifically designed to 
capture the evolution of patient cohorts over time.

In this section, we apply the algorithm Border to group 
patients into clinical meaningful clusters as well as to track 
how these clusters evolve over time. To the best of our 
knowledge, it is the first attempt that incorporates domain 
knowledge and tracks the cohort evolution for analyzing 
OSA syndromes.

6.1  OSFP Data

Our OSFP dataset is acquired from the French national 
registry of sleep apnea (OSFP).2 It consists of longitudinal 
clinical information of many patients suffering from OSA 
collected from private practices, general hospitals, and uni-
versity hospitals in France. At each medical visit, data are 
recorded such as demographic characteristics, comorbidities, 
and OSA symptoms as well as some environmental risk fac-
tors such as smoke, alcohol, and sedentary.

In our study, all patients that are over 18 years old and 
has medium to severe OSA symptoms [characterized by 
Apnea/Hypopnea Index (AHI) > 15 events/h or Oxygen 

Desaturation Index (ODI) > 15  events/h] are included. 
Moreover, patients with incomplete or aberrant data are 
excluded. At the end, we have 22,568 patients for analyze.

6.2  Snapshots

In our OSFP data, each patient data consist of information 
at different hospital visits as demonstrated in Fig. 15. For 
example, patients p1 , p2 , and p3 have visited 5 times each. 
However, the visit times of patients vary significantly. For 
example, all p1 visits are from 2009 to 2012, while all p2 
visits are from 2013 to 2016. Thus, it will not be reasonable 
if we create snapshots by using the exact visit times since 
patients with the same OSA symptoms and severities may 
be referred at different times and different follow-up points. 
Hence, our medical expert suggests to use the relative visit 
times. Concretely, we treat the first visit of a patient as time 
0 (time of diagnosis) and calculate the next visits by the 
time difference in months to the first one. By this way, we 
can capture the disease evolvements. Following the relative 
visit times, we create different snapshots after a specific time 
frame of visits. For example, in Fig. 15, we use 4 differ-
ent snapshots after 0, 12, 24, and 36 months. Note that if a 
patient has several visits at a specific snapshot, we use the 
last visit to present the patient status at that snapshot.

We use age, gender, Body Mass Index (BMI), environ-
mental risk factors, comorbidities, and OSAS symptoms to 
group patients due to the heterogeneity of the OSA [1, 21, 
44]. We divide our data into different snapshots with a time 
difference of 12 months, which is long enough to capture 
the disease changes. We set the number of clusters to 6 as 
suggested by [1].

6.3  Clusters at Snapshot 1 (Time 0)

Figure 16 shows the cluster centers of snapshot 1 (at time 
0). Overall we have 6 clusters mainly discriminated by age, 
comorbidities, and symptoms as follows:

– Group A Youngest, very few comorbidities, and highest 
OSA severity (Cluster 6 in Fig. 16 with 4535 patients): 
this cluster is the middle group in terms of BMI (average 
BMI = 32.03) and the youngest group (average age = 
49.99). Patients in this group consume less alcohol than 
those from other groups but smoke the most. They also 
among groups with lowest numbers of comorbidities. 
However, they suffer from the highest numbers of OSAS 
symptoms. For example, 25.7% people in this group has 
high blood pressure while 83.5% and 96.9% of them 
experience morning headache and fatigue, respectively. 
They also have the highest functional scales with median 
scales of Epworth, Pichot and Depression as 12.09, 16.1, 
and 4.92, respectively.

TimesTime 0

S1 S2 S3 S4

P1

P2

P3

Visit 0

Visit 1 Visit 2 Visit 3
Visit 4

12 24 36

Fig. 15  The relative visit times for three patients p
1

 , p
2

 , and p
3

 for 
snapshots S

1

 to S
4

 based on these visit times

2 http://www.osfp.fr.

http://www.osfp.fr
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– Group B Oldest, poorest life style, highest comorbidi-
ties, and medium OSA severity (Cluster 2 in Fig. 16 
with 1498 patients): this cluster consists of oldest people 
(median age = 68.08) who consume more alcohol than 
other groups and has the poorest life style. They have an 
average BMI = 32.5 and the highest number of comor-
bidities, e.g., 83.85% with high blood pressure. However, 
they show average OSA symptoms compared to other 
clusters.

– Group C Average age, best life style, few comorbidities, 
and lowest OSA severity (Cluster 5 in Fig. 16 with 3063 
patients): this group has an average age of 59.48 and is 
among the lowest BMI groups (average BMI = 31.50). 
They have a particular good life style and consume less 
alcohols than others. They have few comorbidities. How-
ever, they suffer from the lowest numbers of OSA symp-
toms. Their functional scales are the lowest with medians 
of Epworth, Pichot, and Depression as 7.61, 7.16 and 
2.35, respectively.

– Group D Average age, poor life style, high comorbidities, 
and high OSA severity (Cluster 4 in Fig. 16 with 3809 
patients): people in this group have median age of 61.54, 
poor life styles, medium comorbidities, and suffer from 
high OSA severity. They also belong to the most obese 
group with average BMI of 33.10. Moreover, their medi-
ans of AHI (44.7 events/h) and ODI (36.03 events/h) are 
the highest among groups.

– Group E Second oldest group, few comorbidities, and 
medium OSA severity (Cluster 3 in Fig. 16 with 3925 
patients): the medians age and BMI of this group are 

65.47 and 32.10, respectively. The numbers of comor-
bidities are high. And people have medium OSA severity.

– Group F Second youngest group, very few comorbidi-
ties, and medium OSA severity (Cluster 1 in Fig. 16 with 
5738 patients): the averaged AHI and ODI of this groups 
are 40.98 and 30.68 events/h, respectively, and are the 
lowest of all groups. The average age is 53.82. This group 
is the least obese one with averaged BMI of 31.35. It has 
few comorbidities and medium OSA symptoms.

6.4  Clusters at Other Snapshots

Figure 17 shows the cluster centers for Snapshot 2 (top 
left) to Snapshot 5 (bottom right). The acquired clusters 
match quite well with those found in Snapshot 1. Let us 
denote Cij as the cluster j at snapshot i. We can see that 
Group A, for an example, appears in other snapshots such as 
C26 , C33 , C43 , and C52 . The similar observations can be seen 
for other groups B to F as well. Here the temporal smooth-
ness constraint described in Sect. 3.3 keeps clusters in two 
consecutive snapshots from deviating too much from each 
other. Thus, it makes the clustering results in all snapshots 
consistent.

6.5  Evolution Graph

To keep track of the relationship between groups of 
patients over time, we build the evolutionary graph G as 
shown in Fig. 18 (left). If two clusters in two consecutive 
snapshots share some patients, we put a weighted edge 
between them indicating how many patients they share. 
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However, since a borderline patient p may be assigned 
to two different clusters during the clustering process, 
some edges with small weights may be presented in G 
but without any significant meaning. Thus, we propose 
to use a predefined threshold � in [0,1] to filter out those 
insignificant ones if their weights are below the threshold. 

The acquired graph is shown in Fig. 18 (right). This sim-
plified graph shows major transitions among clusters and 
snapshots. Thus, it captures many useful information on 
evolvement of the whole patient trajectories over time 
such as: (1) how a particular group of patients evolve over 
time? (2) analyzing sets of patients with particular group 
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Fig. 17  The centers of clusters of Snapshot 2–5 (top left to bottom right). The y-coord shows the percentage of patients in a group with a specific 
symptom or comorbidity, except for gender (percentage of female), BMI and age (normalized into [0,1]) (best view in colors)
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changes; or (3) analyzing sets of patients with a particular 
disease evolvement path over time.

6.6  Tracking the Group Changes

The graph G can be used to track the group changes of a 
set of patients. For example, we can see that there is a set P 
of 1415 patients that changes from the group A (Cluster 6 
in Fig. 16 with 4535 patients) in Snapshot 1 into the group 
C (Cluster 5 in Fig. 17 with 9459 patients) in Snapshot 2. 
The question is how it happens?

Figure 19 shows the medians of the set of patients P in 
S1 and S2 (denoted as P1 and P2 ) together with the medi-
ans of groups A in S1 ( C16 ) and C in S2 ( C25 ). In S1 , P has 
slightly lower OSA severity compared to the whole group 
A. However, after 12 months, all OSA symptoms have 
reduced significantly. For example, only 7.70% patients in 
P snore compared to 99.08% one year before. The average 
AHI and ODI also drop from 42.56 and 34.48 to 8.62 and 
5.02, respectively. The Epworth, Pichot, and Depression 
scales also decrease significantly. As a consequence, P is 
moved from the most OSA severity group to the lowest 
OSA severity group. Now, what causes these changes? To 
answer that, we examine all treatments applied for those 
patients. It turns out that 66.64% and 90.88% of patients 
in P were treated by lifestyle interventions (lifestyle) and 
Continuous positive airway pressure (CPAP), respectively, 
compared to the average values of the whole group A 
(63.99% and 87.71%). This implies that P responses bet-
ter to lifestyle and CPAP than others in A. Overall, P is an 

interesting group and should be taken out for further medi-
cal analyses. On the other hand, all of patients in C16⧵C25 
do not change group, indicating that they are not response 
well to treatments. Thus, they will be another important 
group to further study.

6.7  How a Specific Group of Patients Evolve Over 
Time?

Following the most closest groups across snapshots (the 
red edges in Fig. 18), we can track the evolution of a spe-
cific group over time. Let take the group B (oldest, highest 
comorbidities, and medium OSA severe) shown in Fig. 20 as 
an example. From S1 to S2 , the average number of comorbidi-
ties and OSA symptoms per patients decrease considerably. 
The main reason is that 594 patients with high comorbidi-
ties in the group E ( C3 ) of S1 but lower comorbidities and 
symptoms than B has moved to C2 of S2 as shown in Fig. 18. 
From S2 to S5 , there are not many patients moving in and out 
of the group while the average numbers of comorbidities and 
symptoms, AHI, ODI, and Functional scales change very 
slightly. This implies that patients in this group B do not 
response well to current treatments (mainly by lifestyle and 
CPAP). Their diseases even increase in most cases (perhaps 
due to the old age consequences). Thus, alternative treat-
ments should be considered.
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6.8  Tracking Patients with a Specific Path

From the graph G, we can easily track the information of 
a set of patients whose diseases evolve by a specific path. 
Figure 21 shows the set P of 48 patients who has OSA sever-
ity changes from very low to high following the path C15 , 
C25 , C36 , C45 , and C54 in Fig. 18. As we can see, from S1 to 
S5 , the average number of symptoms per patients increases 
considerably from 2.29 to 3.16 while the average number of 

comorbidities stands still. Some specific symptoms such as 
Morning fatigue, Nocturia, and Snoring increase over time. 
However, the changes in AHI and ODI are not clear from S2 
to S5 . However, they are still over 15, indicating a medium 
to severe OSA level. The rates of Oxygen therapy, RLS drug 
treatments, and ventilation are also higher than other groups, 
while CPAP and lifestyle are less used. Thus, increasing 
CPAP and lifestyle treatments for this group may be helpful.
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Fig. 20  The change of the group B (oldest, highest comorbidities, and medium OSA severe) from Snapshot 1 to 5

G
en

de
r 

[M
al

e,
 F

em
al

e]
B

M
I [

14
.0

2,
 6

9.
20

]
A

ge
 [1

8.
00

, 1
11

.8
6]

A
lc

oh
ol

S
ed

en
ta

ry
C

ur
re

nt
 s

m
ok

in
g

F
or

m
er

 s
m

ok
in

g
H

yp
er

te
ns

io
n

M
yo

ca
rd

ia
l i

nf
ar

ct
C

or
on

ar
y 

he
ar

t d
is

ea
se

A
rr

hy
th

m
ia

s
S

tr
ok

e
H

ea
rt

 fa
il

A
rt

er
io

pa
th

y
D

ia
be

te
s

H
yp

er
ch

ol
es

te
ro

le
m

ia
H

yp
er

tr
ig

ly
ce

rid
em

ia
C

O
P

D
A

st
hm

a
R

es
pi

ra
to

ry
 fa

il
D

ep
re

ss
io

n
S

no
rin

g
D

iu
rn

al
 s

om
no

le
nc

e
D

riv
in

g 
dr

ow
si

ne
ss

M
or

ni
ng

 fa
tig

ue
M

or
ni

ng
 h

ea
da

ch
e

M
em

or
y 

pr
ob

le
m

S
el

f-
re

po
rt

ed
 a

pn
ea

s
S

ho
rt

ne
ss

 o
f b

re
at

h
N

oc
tu

ria
D

ro
w

si
ne

ss
 a

cc
id

en
t

N
ea

r 
m

is
s 

ac
ci

de
nt

0

0.2

0.4

0.6

0.8

1
Cluster centers at different snapshots for P

P1
P2
P3
P4
P5

W
ai

st
 c

irc
um

fe
re

nc
e

S
ys

to
lic

 B
lo

od
 p

re
ss

ur
e

D
ia

st
ol

ic
 B

lo
od

 p
re

ss
ur

e

A
pn

ea
/H

yp
op

ne
a 

In
de

x

O
xy

ge
n 

D
es

at
ur

at
io

n 
In

de
x

E
P

w
or

th
 s

ca
le

 P
ic

ho
t s

ca
le

D
ep

re
ss

io
n 

sc
al

e0

20

40

60

80

100

120

140
Other information for P

P1
P2
P3
P4
P5

S1 S2 S3 S4 S5
2.2

2.4

2.6

2.8

3

3.2
Avg # symptoms per patients

Fig. 21  The set P of 48 patients who start from the group C in S
1

 with a low OSA severity but end up in the group F in S
5

 with a medium OSA 
severity



377Evolutionary Active Constrained Clustering for Obstructive Sleep Apnea Analysis  

1 3

7  Discussion

Throughout this section, we present how our algorithm 
Border can be used for finding or tracking the evolution of 
clinical meaningful groups of patients. Currently, our study 
is done on the largest and generalized collection of patients 
in the field with wide range of attributes. However, there are 
still some limitations and potential future works that we are 
aiming at. First, while we use the whole dataset for studying 
the heterogeneity of OSA patients, examining more specific 
patient cohorts may help to reveal more interesting infor-
mation, e.g., patients with Oxygen therapy or patients with 
hypertension and nocturia [12]. Second, other environmental 
factors such as air pollutions is known to be related to OSA, 
especially for children [24]. Studying how the disease evolve 
over time wrt. the air pollution level at some specific loca-
tions will be a very interesting direction to pursue.

8  Conclusion

We introduce a scalable novel framework which incorpo-
rates an iterative active learning scheme, instance-level and 
temporal smoothness constraints for coping with large tem-
poral data. Experiments show that our constrained clustering 
algorithm, CVQE+, performs better than existing techniques 
such as CVQE [10], LCVQE [36] and MPC-kmeans [2]. By 
exploring border objects and propagating constraints via 
nearest neighbors, our active learning algorithm, Border, 
results in good clustering results with much smaller con-
straint sets compared to other methods such as NPU [43] and 
min–max [32]. Moreover, it is orders of magnitude faster 
making it possible to cope with large datasets. Finally, we 
revisit our approach in the context of evolutionary clustering 
adding a temporal smoothness constraint and a time-fading 
factor to our constraint propagation among different data 
snapshots. Our future work aims at providing more expres-
sive support for user feedback as well as improving the per-
formance of CVQE+ on noisy constraints. We are currently 
using our framework to track group evolution of our patient 
data with sleeping disorder symptoms.
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