
Reordering Transaction Execution to Boost High-Frequency
Trading Applications

Ningnan Zhou1,2 • Xuan Zhou3 • Xiao Zhang1,2 • Xiaoyong Du1,2 • Shan Wang1,2

Received: 25 August 2017 / Revised: 25 October 2017 / Accepted: 5 November 2017 / Published online: 15 November 2017

� The Author(s) 2017. This article is an open access publication

Abstract High-frequency trading (HFT) has always been

welcomed because it benefits not only personal benefits but

also the whole social welfare. While the recent advance of

portfolio selection in HFT market enables to bring about

more profit, it yields much contended OLTP workloads.

Featuring exploiting the abundant parallelism, transaction

pipeline, the state-of-the-art concurrency control (CC)

mechanism, however, suffers from limited concurrency

confronted with HFT workloads. Its variants that enable

more parallel execution by leveraging fine-grained con-

tention information also take little effect. To solve this

problem, we for the first time observe and formulate the

source of restricted concurrency as harmful ordering of

transaction statements. To resolve harmful ordering, we

propose PARE, a pipeline-aware reordered execution, to

improve application performance by rearranging statements

in order of their degrees of contention. In concrete, two

mechanisms are devised to ensure the correctness of state-

ment rearrangement and identify the degrees of contention of

statements, respectively. We also study the off-line

reordering problem. We prove that this problem is NP-hard

and present an off-line reordering approach to approximate

the optimal reordering strategy. Experiment results show

that PARE can improve transaction throughput and reduce

transaction latency on HFT applications by up to an order of

magnitude than the state-of-the-art CC mechanism.

Keywords Concurrency control � Reordered execution �
Online reordering � Off-line reordering

1 Introduction

The ever-increasing CPU core counts and memory volume

are witnessing a renaissance of concurrency control (CC)

mechanisms in exploiting the abundant parallelism [24].

Transaction pipeline, the state-of-the-art CC mechanism,

takes advantage over prior CC mechanisms, including two-

phase locking (2PL), optimistic concurrency control (OCC)

and multi-version concurrency control (MVCC), by

allowing more parallel execution among conflicting oper-

ations [16, 36]. However, it suffers from long-time delays

confronted with high-frequency trading (HFT)

applications.

HFT applications have been pervading the worldwide

market since the last decade [1], ranging from individual

investment, such as mutual fund management, to social

welfare, such as pension fund management [8]. The recent

advance in portfolio selection in HFT market encourages to

compose each trade of both strong and weak investment

signals in sake of risk management [35]. Because it is

easier to capture strong investment signals, such as new

production release, different portfolio selection algorithms

tend to receive the same strong investment signals while

differ at weak investment signals [12]. For example, List-

ing 1 describes the transactions produced by two portfolios

which reflect the same strong investment signals to buy

stocks from security Alphabet, Amazon and Twitter

while share no weak investment signal in common. As a

result, the HFT workloads interleave much contended

operations with rarely contended ones, which reflect strong

and weak investment signals, respectively.

& Xiao Zhang

zhangxiao@ruc.edu.cn

1 School of Information, Renmin University of China, Beijing,

China

2 MOE Key Laboratory of DEKE, Renmin University of

China, Beijing, China

3 School of Data Science and Engineering, East China Normal

University, Shanghai, China

123

Data Sci. Eng. (2017) 2:301–315

https://doi.org/10.1007/s41019-017-0054-0

http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-017-0054-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-017-0054-0&domain=pdf
https://doi.org/10.1007/s41019-017-0054-0

1 Transaction T1 Transaction T2

2 update("Alphabet", 30); update("Alphabet", 30);
3 update("Amazon", 30); update("Twitter", 30);
4 update("Cisco", 10); update("Facebook", 10);
5 update("Microsoft", 10); update("Macy’s", 10);
6 update("Tesla", 10); update("Oracle", 10);
7 update("Twitter", 30); update("Amazon", 30);

Listing 1: Two transactions generated by two portfolios, where the quantity 30 implies
a strong investment signal and 10 a weak investment signal. Here update("t", v)
represents that the transaction attempts to buy the security t with quantity v.

Figure 1a illustrates the execution of the two transac-

tions in Listing 1 under the state-of-the-art CC mechanism

transaction pipeline. The first conflicting operation, e.g.,

update on Alphabet, determines the serializable order

of the two transactions, i.e., T1 happens before T2. Then,

any operation in T2 must follow this order; otherwise, the

operation will be re-executed after a violation is detected.

As Fig. 1a illustrates, this is equivalent to delaying the

execution of any operation in T2 till the completion of its

corresponding conflicting operation in T1. On the one hand,

this allows T2 to perform update(Alphabet) before T1
completes. Thus, transaction pipeline indeed outperforms

all of 2PL, OCC and MVCC, which do not allow any

overlapping execution because otherwise deadlock (2PL)

or rollback (OCC and MVCC) will happen. On the other

hand, the second update in T2 on Twitter must be delayed

until the completion of T1. Compared to Fig. 1b, which

reorders the execution of T1 and T2 according to Listing 2,

we can see that the delay in Listing 1 unnecessarily com-

promises throughput and increases transaction latency.

Because delay is mainly caused by conflicting opera-

tions, much work focuses on extracting more fine-grained

contention information from transaction semantics to ben-

efit transaction pipeline [13, 36, 41, 42]. However, fine-

grained contention information reduces false contention,

while Fig. 1a indicates that HFT applications benefit little

from this kind of variants of transaction pipeline.

As a remedy, we present PARE, a pipeline-aware reor-

dered execution of transactions, in this paper. To the best of

our knowledge, it is the first time that reordering transac-

tion execution is considered to benefit the CC mechanism

of transaction pipeline. First, we observe and formulate

harmful ordering of statements in transaction code and

propose to eliminate harmful ordering by rearranging

statements in decreasing order of the degree of contention.

To this end, we devise two mechanisms. On the one hand,

to preserve serializability after reordering, we devise a

reordering block extraction algorithm. On the other hand,

to measure the degree of contention, we devise a physical

operator-based counter.

(a) Transaction Pipeline on the Original Transaction

Microso�CiscoAmazonAlphabet Tesla Twi�er

Macy'sFacebookTwi�erAlphabet Oracle AmazonT2

T1

(a)

CiscoTwi�erAmazonAlphabet Microso� Tesla

FacebookTwi�erAmazonAlphabet Macy's OracleT2

T1

(b)

Fig. 1 Comparison of delay

between original and reordered

transactions. a Transaction

pipeline on the original

transaction. b Transaction

pipeline on the reordered

transaction

1 Transaction T1 Transaction T2

2 update("Alphabet", 30); update("Alphabet", 30);
3 update("Amazon", 30); update("Amazon", 30);
4 update("Twitter", 30); update("Twitter", 30);
5 update("Cisco", 10); update("Facebook", 10);
6 update("Microsoft", 10); update("Macy’s", 10);
7 update("Tesla", 10); update("Oracle", 10);

Listing 2: Reorder Transactions from Listing 1.

302 N. Zhou et al.

123

When transaction requests are available in advance, we

propose an off-line reordering approach to optimize the

scheduling of transactions. We prove that this optimization

problem is NP-hard and proposes a heuristic approach to

approximate the optimal solution. We evaluate the per-

formance and practicality of PARE. The experiment results

show that PARE improves transaction throughout and

reduces transaction latency by up to an order of magnitude

than the state-of-the-art CC mechanisms. In addition, the

runtime overhead is limited.

The contributions of this paper are fivefold:

• We show the importance of reordering transaction

execution for the state-of-the-art CC mechanism trans-

action pipeline under HFT applications.

• We observe and formulate harmful ordering under

transaction pipeline and propose to rearrange state-

ments in decreasing order of contention to eliminate

harmful ordering.

• We propose two mechanisms to ensure the correctness

of rearrangement of transaction statements and measure

the degree of contention to enforce the elimination of

harmful ordering.

• We formulate the off-line reordering problem, prove it

is NP-hard and present an approach to approximate the

optimal reordering schedule.

• We conduct experiments to demonstrate the effective-

ness and practicality of PARE.

2 Preliminary and Related Works

In this section, we first introduce the CC mechanism of

transaction pipeline and then review the related work.

Readers familiarwith transaction pipeline can pass Sect. 2.1.

2.1 Transaction Pipeline

Transaction pipeline is the state-of-the-art CC mechanism,

and it exploits much more parallelism than other CC mecha-

nisms. To ensure serializability, prior CC mechanisms

including 2PL, OCC andMVCC restrict interleavings among

conflicting transactions [16]. In particular, if transaction T2
reads T1’s write to x, all 2PL, OCC and MVCC produce

schedules in which T2’s read always follows T1’s completion.

Under 2PL, each transaction holds long-duration locks on

records; any locks acquired by a transaction are only released

at the end of its execution [15].This longdiscipline constraints

the execution of conflicting reads and writes; if transaction T2
readsT1’swrite to record x, andT1 holds awrite lock on x until

it completes, T2’s read can only be processed after T1 com-

pletes. Under OCC, transactions perform writes in a local

buffer and only copy these writes to the active database after

validation [23]. Thus, a transaction’s writes are only made

visible at the very end of the transaction. Under MVCC, each

write is assigned with a write timestamp when the transaction

commits and each read is associated with a read timestamp

when the transaction begins. Any read can only read a record

whose write timestamp is less than the read timestamp [27].

Thus, MVCC similarly constrains conflicting transactions.

Applications including HFT applications call for more

aggressive concurrency. As a result, transaction pipeline

opens a new design choice of operating uncommitted data.

Two mechanisms are enforced to ensure the serializability.

First, because uncommitted data is read, a commit discipline is

enforced such that (1) if transaction T operates on uncom-

mitted data from T 0 and T 0 has not committed, T should not

commit; and (2) if T 0 aborts, T should also abort [16, 36].

Second, dependencies that arise as transactions make con-

flicting data accesses should be tracked and these dependen-

cies should be enforced by constraining a transaction’s

subsequent data access. Transaction pipeline combines run-

time techniques with a static analysis of the transaction

workloads. The static analysis is based on prior work on

transaction chopping [5, 34]. In particular, it constructs a static

conflict graph (SC-graph) inwhicha transaction is represented

as a series of atomic pieces, eachmaking one ormore database

access. Two pieces of different transactions are connected if

both access the same table and one of the accesses is awrite.A

cycle involving multiple pieces of some transaction (i.e., an

SC-cycle) indicates a potential violation of serializability.

Transaction pipeline uses its runtime to constrain the execu-

tion of the corresponding pieces. For example, the first timeT2
reads T1’s uncommitted write, it is determined that T2 should

happen after T1. Then, if T2 is about to write y, which T1 may

also access, T2’s access will be deferred until T1 terminates or

will not access y again.

2.2 Related Works

Our work is built on transaction pipeline, and it leverages

transaction code further than the original transaction pipeline.

Variants of transaction pipeline are attracting the most

attention in concurrency control research. These methods

feature assuming that the workloads are available before-

hand. In this way, they are able to chop transactions into

pieces such that once each piece of transaction code begins

to execute, it will not need to delay until the completion of

the whole transaction. In the original transaction pipeline

approach named IC3 [36], whether two pieces conflict

depends on whether they access the same table and one of

them contains write. Fine-grained variants are further

proposed by regarding two pieces as conflicting pieces if

they perform conflicting accesses at runtime [13, 16, 41]. In

particular, TheDB [41] captures the dependencies access

operations and partially update the membership of read/

Reordering Transaction Execution to Boost High-Frequency Trading Applications 303

123

write sets by uncommitted data from its dependent trans-

actions. Both IC3 and TheDB adopt an underlying single

version storage. MV3C [13] adopts a multi-version storage.

Because the only way to generate a conflict is that a

transaction reads some data objects from the database that

become stale by the time it tries to commit. In this way,

uncommitted write should be applied to these reads. To this

end, each read is associated with the blocks of code that

depend on them. In this way, the portion of a transaction

that should be re-executed in the case that uncommitted

data are applied to the read is identified quickly. PWV [16]

operates uncommitted data on deterministic database. It

decomposes transactions into a set of sub-transactions or

pieces such that each piece consists of one or more trans-

action statements. PWV makes a piece’s writes visible as

soon as its host transaction guarantees to commit, even if

there are still pieces of the same transaction not executed.

Among these methods, IC3 [36] and TheDB [41]

assume fixed workloads on simple Get/Put/Scan interfaces

and thus cannot be applied to dynamic HFT workloads,

which are expressed by SQL. MV3C [13] and PWV [16]

annotate transactions by hand, which is also impractical in

HFT applications. In contrast, our PARE operates on

dynamically generated SQLs automatically and thus can be

applied on fast changing transactions issued by HFT

applications. In addition, these methods do not consider

reordering transaction execution and thus suffer from

inferior performance under HFT workloads.

Program analysis is widely adopted to improve database

performance from the data application’s perspective. Both

variants of transaction pipeline and PARE are built upon

prior work on statically analyzing transactions to assist

runtime concurrency control. Conflict graphs have been

long used to analyze conflicting relationships among

transaction operations and preserve serializability by pre-

defining orders of transactions [6, 7]. However, early work

handles cyclic dependency by stopping all other transac-

tions in a cycle. Further work begins to decompose trans-

actions into pieces [5, 14, 18, 19, 34]. To preserve

serializability after chopping, it is first observed that if all

pieces of a decomposed transaction commute, it is safe to

interleave executions [17]. However, this is a strong con-

dition and many OLTP workloads do not suffice. Further, it

is shown that serializability can be preserved if there is no

SC-cycle in an SC-graph [5]. This theory is further

extended to distributed systems [9].

Program analysis is also exploited to extract semantics

to allow non-serializable interleavings of database opera-

tions. The demarcation protocol [4] allows asynchronous

execution of transactions in a replicated system by main-

taining an integrity constraint. The distributed divergence

control protocols [31, 40] allow some inconsistency but

bounds it to ensure that the produced schedules are within

epsilon of serializability [32]. More recently, a continuous

consistency model [43] is proposed for replicated services

which allows bounded inconsistency and uses anti-entropy

algorithms [28, 29] to keep it at an acceptable level. A

homeostasis protocol is recently proposed. It features

inferring the constraints to be maintained automatically

[33]. I-confluence [3] determines whether a conflicting

operation will preserve application invariants based on

application dependent correctness criterion. There is also

extensive research on identifying cases where transactions

or operations commute and allowing interleavings which

are non-serializable yet correct [2, 22, 25]. Different from

these works, PARE prohibits non-serializable execution

and thus can be applied without interference of human.

Program analysis is also used to speed up transactions.

Sloth [11] and Pyxis [10] are tools that use program

analysis to reduce the network communication between the

application and DBMS. QURO [42] tracks dependencies

among transaction statements to reorder transaction exe-

cution for 2PL. DORA [30] also partitions transaction

codes to exploit intra-transaction parallelism provided by

multi-core server for 2PL. Majority of these techniques do

not consider reordering transaction execution and thus

cannot reduce delays for transaction pipeline. QURO

seems the most related approach to PARE since both of

them reorder transaction execution. However, two inap-

propriate design choices of QURO hinder transaction

pipeline from boosting HFT applications: (1) QURO

assumes fixed workloads and requires to sample the

degrees of contention for each statement in advance.

Unfortunately, workload sampling is prohibitive because

each transaction is dynamically generated according to the

timely business information in HFT market. (2) QURO

estimates the degree of contention at statement level and by

the delayed time. As discussed in Sect. 3.3, this underes-

timates the degree of contention and repeatedly obtains

inconsistent degree of contention. In contrast, PARE esti-

mates at physical operator level and counts the occurrence

frequency of contention.

3 Pipeline-Aware Reordered Execution

In this section, we first deduce the reordering strategy of

PARE and then present two mechanisms to enable this

strategy.

3.1 Reordering Strategy

We observe that there are two kinds of delays under transac-

tion pipeline, which are the only source of inferior perfor-

mance.Thefirst kindof delays comes from the first conflicting

operation, such as the update(Alphabet) of transaction

304 N. Zhou et al.

123

T2 in Fig. 1. Because it is undefined towrite to the same object

simultaneously, suchdelay is inevitable. Fortunately, this kind

ofdelays lasts for onlyoneoperation and thus canbeneglected

in transaction execution. The second kind of delays can last

indefinitely long time, such as the update(Twitter) of

transactionT2 inFig. 1a.Weobserve that suchdelay is formed

when non-conflicting operations are encompassed by con-

flicting operations and formulate this observation as harmful

ordering of conflict statements.

Definition 1 (Harmful Ordering of Conflict Statements)

Suppose that two transactions consisting of n and m

statements are denoted by T1 ¼ ½s1; s2; . . .; sn� and

T2 ¼ ½s01; s02; . . .; s0m�, a harmful ordering of conflict state-

ments exists if there exist 1� i\j� n and 1� p\q�m

such that the following three conditions hold:

1. si conflicts with s0p and sj conflicts with s0q
2. 8i\x\j; p\y\q, sx does not conflict with sy
3. j� i 6¼ q� p

For example, in Listing 1, where n ¼ m ¼ 6, a harmful

ordering of conflict statements exists by setting i ¼ 1; j ¼
2; p ¼ 1 and q ¼ 6. Condition 1 holds because up-

date(Alphabet) and update(Twitter) of T1 and

T2 are two conflicting operations. Condition 2 and condi-

tion 3 hold because there is no operations between up-

date(Alphabet) and update(Twitter) in T1,

while there are other operations between update(Al-

phabet) and update(Twitter) in T2.

Theorem 1 Any bubble in the transaction pipeline is

caused by harmful ordering of conflict statements.

Proof Assume that there is no harmful ordering, there are

three possibilities: (1) condition 1 does not hold. Then, there

is no conflicting operations or only one conflicting operation.

In the first case, transactions can execute without any delay.

In the second case, the transactions delay at the first con-

flicting operation. (2) condition 1 holds while condition 2 is

violated. In this case, 9i\x\j; p\y\q such that sx con-

flicts with s0y, we have x� i ¼ y� p. In this way, if si is first

executed, when T2 is about to execute s
0
y, sx must have been

completed and thus there is no delay. Otherwise if

x� i 6¼ y� p, we can construct another harmful ordering

which contradicts with our assumption. (3) Condition 1 and

condition 2 hold while condition 3 is violated. In this case, if

siðs0p) is first executed, when it is about to execute s0q(sj), sj(s0q)
will be placed exactly before s0q(sj) in the transaction pipeline

and thus there is no transaction bubble. In summary, if there

is no harmful ordering, no bubble will occur in the transac-

tion pipeline. h

Transaction pipelines without bubbles do not induce

execution without delay. This is because transactions in

different threads do not proceed with the same speed. For

example, Fig. 2 illustrates that although there is no bubble in

transaction pipeline, because the execution of the update on

Twitter tuple consumes a little more time, transactions are

delayed. Even though, suppose that the duration difference

of each operation is at most d, a transaction with n operations
will be delayed for at most nd time. So the average delay for

each operation is d, which is limited. For transaction pipeline

with bubble, there is no such guarantee. Thus, in this paper,

we aim to eliminate harmful ordering.

To eliminate harmful ordering, it works to rearrange

statements in increasing or decreasing order of contention.

In this way, the condition 2 in Definition 1 will not hold in

overall cases. In this paper, we make an arbitrary choice of

reordering in decreasing order of contention and experi-

ments show that these two strategies match each other.

Applying this strategy to Listing 1, we obtain the reordered

Listing 2 and Fig. 1b illustrates the execution and we can

see that there is no delay longer than one operation.

To enforce this strategy, there are two obstacles: (1)

reordering some statements may violate program semantics

and (2) the degree of contention is fast changing and cannot

be obtained in advance. Next, we show how to reorder

statements safely and dynamically estimate the degree of

contention.

3.2 Reordering Block Extraction

PARE manipulates on reordering blocks, which can be

rearranged arbitrarily and preserve transaction semantics at

the same time. These reordering blocks are extracted from

transaction code automatically by leveraging data

dependencies.

Definition 2 (Reordering Block) Given each transaction

in the form of a sequence of statements S ¼ ½s1; s2; . . .; sn�,
a reordering block B is a subsequence B ¼ ½si1 ; si2 ; . . .; sim �,
where 1� i1\i2\ � � �\im � n, such that every statement

sij in block B does not depend on any statement s0 in other

reordering blocks in terms of data flow. Formally,

8s0 2 S� B, 8sij 2 B, the three types of dependencies

should be eliminated:

Alphabet Amazon Twi�er Cisco Microso� Tesla

Alphabet Amazon Twi�er Facebook Macy's Oracle

T1

T2

Fig. 2 A delay in transaction

execution

Reordering Transaction Execution to Boost High-Frequency Trading Applications 305

123

1. readSetðsijÞ \ writeSetðs0Þ ¼ ; such that sij does

not depend on s0 in terms of read-after-write

dependency.

2. writeSetðsijÞ \ readSetðs0Þ ¼ ; such that sij does

not depend on s0 in terms of write-after-read

dependency.

3. writeSetðsijÞ \ writeSetðs0Þ ¼ ; such that s0 and sij
do not depend on each other in terms of write-

after-write dependency.

In brief, each reordering block collects the statements

that do not have the three types of dependencies with the

remaining statements. If we partition the statements of a

transaction into disjoint reordering blocks, it ensures seri-

alizability after arbitrary rearrangement without extra

handling.

Theorem 2 Given a transaction S and a set of reordering

blocks B ¼ fBg, where 8B;B0 2 B, B \ B0 ¼ ; and
S

B2B ¼ S, rearranging reordering blocks will not com-

promise serializability under serializable schedule.

Proof According to the definition of reordering blocks,

the reordering blocks do not conflict with each other.

Following the theory of Conflicting Serializability [37],

these reordering blocks can be rearranged arbitrarily such

that the behavior of the transaction will not be affected. h

The three types of dependencies should be tracked on

both program statements and SQL statements. To deal with

program statements, it is straightforward for us to adopt the

standard dataflow algorithm [26, 42]. For simplicity, in this

paper, we regard the if-statement and loop-statement as

a whole statement, although sophisticated techniques such

as loop fossil can make fine-grained dependency tracking

[39, 42]. As for SQL queries, we precisely model the

dependency relationships among the query input and

output:

1. Simple selection with no sub-queries: the read set

encompasses all predicates in the where clause.

Empty where clause leads to a universal read set.

The write set is set to empty.

2. Other selection: the read set encompasses all predi-

cates occurred in all where clauses. If empty where

clause occurs in one of the sub-queries, the read set of

the query is also a universal set. The write set is set to

empty.

3. Simple update with no sub-queries: the read set is set

as ‘‘simple selection with no sub-queries’’ does. The

write set is the same as the read set.

4. Other update: the read set is set as ‘‘other selection’’

does. The write set is the same as the read set.

According to these rules, Algorithm 1 shows how to

transform transaction code into reordering blocks. We

iteratively check for each unused statement which state-

ments cannot reorder with it (Line 4–6). All statements that

cannot reorder each other will compose a reordering block

(Line 11). The concatenation preserves the original exe-

cution order for statements in any reordering block (Line 9,

where � denotes concatenation). After all statements are

assigned with certain reordering blocks, all reordering

blocks are found (Line 4,12). For example, for Transaction

T1 in Listing 1, all statements are simple updates and the

read set and write set of these statements are disjoint. In

this way, each statement creates a reordering block. In

other words, all updates can be reordered arbitrarily. In this

paper, we focus on reordering selection and update.

Dependency relationships of other SQL queries can be

defined accordingly.

Algorithm 1: Reordering Block Extraction
Input: A sequence of statements S = [s1, s2, ..., sn]
Output: A set of Reordering Blocks B

1 B = ∅
2 for each statement s ∈ S do
3 compute the readSet and writeSet of s
4 for S �= ∅ do
5 B = [S[0]]
6 for each s′ ∈ S, s′ /∈ B do
7 for each s ∈ B do
8 if readSet(s) ∩ writeSet(s′) �= ∅ or writeSet(s) ∩ readSet(s′) �= ∅

or writeSet(s) ∩ writeSet(s′) �= ∅ then
9 B = B ⊕ s′

10 S = S − B
11 B = B ∪ {B}
12 return B

306 N. Zhou et al.

123

3.3 Contention Estimation

In this section, we first show the design to measure the

degree of contention and then show a memory-compact

way to recycle counters.

To obtain the degree of contention of a reordering block,

we first estimate the degree of contention of each statement

thereof and use the maximum as the reordering block’s

degree of contention. In this way, we will not miss highly

contended operations enclosed by reordering blocks with

many less contended operations. Existing method uses

waiting time and its variation on each statement to estimate

the degree of contention [42]. This solution has two

shortcomings: (1) the counter set for each unique statement

underestimates the real degree of contention for the state-

ment. For HFT application, each statement usually contains

different parameters. For example, the SQL query for

update(Alphabet, 30) is usually instantiated as

update Stock set quantity -= 30, price = p

where sid = Alphabet, where p is the latest price

provided by user. Thus, many statements updating the

same quantity and price fields are counted in different

counters. (2) Estimating waiting time and its variance

suffers from thrashing. This is because properly reordered

highly contended operations will not wait for long time and

thus are always categorized as less contended operations.

Then, these operations will be placed to the end of the

transaction and be considered as heavily contended oper-

ations again. To address these two issues, we propose an

execution plan-based estimation which collects the occur-

rence of each object in a time sliding window.

We observe that although conflicting operations may be

represented in different SQLs, they must create the same

physical operator referring to the same attributes. For

example, although the update(Alphabet, 30) may

update different prices, its corresponding physical operator

will have the same type of update and indicate the same

fields of quantity and price. The only difference is

the parameters for the target values. Because contention

only occurs at the operator placed at the bottom level of the

execution plan in form of a tree structure, it is sufficient to

allocate a counter recording the occurrence frequency for

each physical operator at the bottom level of the execution

plan. Algorithm 2 details the counter implementation. The

time sliding window size WS is discretized into time slots

with granularity of g so that when the time flows, the time

slots are recycled to reflect the latest count. Once one

physical operator is created at the bottom level of the

execution plan, the Increment of the associated counter

is invoked. Once we extract all reordering blocks, we

invoke Get for each counter within each reordering block

and pick up the maximum count as the degree of contention

for each reordering block.

It may waste memory to allocate each physical operator

with a counter, especially under HFT workloads where

contended objects are fast changing so that the allocated

counter may no longer be used in the next time period. To

ease this concern, we maintain a counter pool and every

time we need to allocate a new counter, we recycle the

counter not used in the last time window.

Our counter mechanism has two parameters to set. From

the perspective of the precision of the degree of contention,

less g and moderate WS are welcomed. This is because

larger g and WS will lead to stale degree of contention and

the reordering will not eliminate harmful ordering. Too

small WS compared to g will lost much contention infor-

mation. From the perspective of memory overhead, large

WS is not expected. However, too small g is prohibited by

hardware. In this paper, experiments show that the setting

of WS ¼ 1 s and g ¼ 100 ms works well under HFT

workloads.

4 Off-line Reordering

So far, we have discussed a runtime reordering approach to

reorder transactions in batch. In practice, HFT applications

may submit their transaction programs before the stocking

market is open and would like to pay more for transactions

with priority. In this section, we can reorder transactions

off-line so that more important transactions can achieve

more concurrency at runtime.

4.1 Problem Formulation

The off-line reordering problem has two motivations. First,

it can arrange the transactions so that the same harmful

ordering from different transactions does not overlap. In

this way, although the harmful ordering still exists, they

will not block transactions. For example, Listing 3 shows

two types of transactions. We can see that transactions of

Algorithm 2: Time Sliding Window Counter
Input: Time Sliding Window size WS, Granularity g

1 Initialize C[0 : �WS/g] to [0, 0, ..., 0]
2 Function Increment(t) // t is the current timestamp
3 i = t % (�WS/g	 + 1);
4 C[i]+ = 1;
5 i = (t − �WS/g	 + 1) % (�WS/g	 + 1);
6 C[i] = 0;
7 return;
8 Function Get():
9 c = 0;

10 for i = 0 to �WS/g	 do
11 c = c+ C[i];
12 return c;

Reordering Transaction Execution to Boost High-Frequency Trading Applications 307

123

both Type I and II can only be executed serially. Rather,

suppose that there are four transactions T1, T2, T3 and T4
and T1 and T2 belong to Type I and T3 and T4 belong to

Type II. If we execute T1 and T3 concurrently and after

they complete we execute T3 and T4 concurrently, no

transaction will be blocked.

Second, if some transactions are regarded more impor-

tant, they can be scheduled to complete faster. Listing 4

describes this case. There are three types of transactions.

We can see that the first two types of transactions can be

executed simultaneously while the last two types of

transactions can only be executed serially. Given a fixed

time, if we want to maximize the throughput, we would

like to run transactions of Type I and II as many as possible

and then execute the transactions of Type III. However, if

the stock market platform knows that the requestors of the

last two types of transactions would like to pay more fees

for completing their transactions within one hour, the stock

market would like to run these two types of transactions in

the limited time.

To formulate these two goals, each schedule can be

formulated as a configuration on C timeline of size L. Here,

we use C to denote the number of processors and L the

length of the longest timeline. Each slot in the C � L

configuration indicates a statement from given transactions.

If each transaction statement is filled in the configuration

exactly once and it still preserves the semantics of any

serial order of the transactions, we have a valid configu-

ration. We formulate a configuration as follows.

Definition 3 A valid configuration is a matrix with

L rows and C column such that the slot at the l-th row and

c-th column indicates a unique statement from a transac-

tion, and it preserves the semantics of any serial order of

the transactions.

The optimal configuration is thus defined as follows:

Definition 4 Given a set of transactions T and the fee ft
associated with each transaction t 2 T , find a configuration

c with size of T with respect to T such that the aggregated

fees are maximized:

argmaxc
X

t

ft

In this way, off-line reordering aims to find an optimal

configuration for the given set of transactions to maximize

the profit that the stock market platform can make. This

optimization problem is NP-hard.

Theorem 3 The problem of off-line reordering is NP-

hard.

Proof We first introduce the 0–1 knapsack problem. In 0–

1 knapsack problem, there are n items and each item i has

size si and cost ci. The decision version of the 0–1 knap-

sack problem decides whether a subset of the items can be

selected with size equal or greater than S with maximum

cost M.

Given an instance of the 0–1 knapsack problem, we

construct an off-line reordering instance as follows. Each

item i corresponds to a transaction t. The transaction t is

composed of si updates on si distinct records that are

different from other transactions. The requestor if the

transaction would like to pay ci if the transaction is

completed within the time M/C.

The two instances are equivalent. If the 0-1 knapsack

problem can pick up a qualified subset of items, the

transactions corresponding to these items can be finished

within time C at one processor and weight at least S. In this

way, we can divide the timeline into C parts evenly. These

parts must partition transactions by the boundary of their

updates. In this way, each processor can execute the

1 Transaction Type I Transaction Type II
2 update("x"); update("a");
3 update("y=x"); update("b=a");
4 update("x=y+1"); update("a=b+1");

Listing 3: An Example of Two Types of Transactions. Transactions belonging to the
same transaction type can only be executed serially.

1 IIIepyTIIepyTIepyTnoitcasnarT
2 update("x"); update("a"); update("b");
3 update("y"); update("b"); update("a");

Listing 4: An Example of Three Types of Transactions.

308 N. Zhou et al.

123

operations in each part with time M/C. If our problem can

find a schedule, we can trivially merge the operations into

one sequence and that corresponds to a subset of items.

In this way, we reduce the 0/1 knapsack problem to the

off-line reordering problem. Because the 0/1 knapsack

problem is NP-hard [20], our off-line reordering problem is

also NP-hard. h

4.2 GA-Based Approach

Initially, we propose a genetic algorithm to solve the off-

line reordering problem. Genetic algorithm is a well-known

meta-heuristic to solve hard optimization problems [38].

Given a computation budget for each iteration, a number of

iterative procedures will be executed. The idea is to set an

initial individuals and mimic the evolution of individuals to

find the most fit individual. In the first iteration, a number

of individuals are picked up. In each further iteration, the

individuals are evaluated and the best ones will be selected

to evolve. The evolution is performed by a crossover pro-

cedure. In each crossover, selected individuals exchange

some different parts so that the new individual, regarded as

their offspring, would like to be evaluated better than its

parents. Each iteration takes some budget, and after the

budget is exhausted, the remaining individual is returned.

In the GA-based off-line reordering algorithm, each

configuration is defined as an individual. The fitness

function is its totally delayed time. In the first iteration, we

randomly generate m individual. For each individual, the

transactions are partitioned into C disjoint sets randomly

and evenly. Then, for each partition, the transactions in

each of the C sets are randomly sorted into a sequence. In

this way, we obtain m valid configurations. In each itera-

tion, all obtained configurations from the last iteration are

evaluated. We select k top-fittest ones for the next iteration.

Each two configurations of the k configurations are used to

crossover to produce an offspring. In particular, a processor

is first randomly selected and two operations are randomly

selected. If the two operations belong to different

reordering units, they will be swapped. Correspondingly,

their reordering block and transaction order may be vio-

lated. As a remedy, if one operation is in the middle of a

reordering block, its previous operations in the reordering

block will be put ahead of the new place of the operation.

Further, if the transaction order is violated, the other

operations from affected transactions will be put ahead

accordingly. Note that this may be achieved in an iterative

way, because moving other operations ahead may violate

transaction order also. We set m to memory capacity and

k to ensure their generated offspring can still hold in

memory.

However, the GA-based solution quickly got trapped in

a local minimum. Experiments in Sect. 5.3 validate this

argument.

4.3 SA-Based Approach

As a remedy, we propose a probabilistic algorithm called

SOR (simulated annealing-based off-line reordering

algorithm) to solve the off-line reordering problem. As

shown in Algorithm 3, SOR leverages basic properties of

simulated annealing [21] to solve the problem and gen-

erates an approximation of the optimal off-line

reordering.

In SOR, each valid configuration corresponds to a state

of the algorithm. Intuitively, a ‘‘good’’ configuration S is

similar to another better configuration S0. Such a heuristic

greatly reduces the search space without searching all

possible states. In SOR, the energy of a state is measured

by its consumed time. Different from other simple

heuristic algorithms, SOR makes decisions between

accepting or rejecting the neighbor state probabilistically.

In concrete, given a configuration, we also define its

neighboring state as randomly swapping two operations in

a randomly chosen processor and then adjusting the

operations in the corresponding reordering blocks and

affected transactions. The distribution of the acceptance

probability is determined by the annealing schedule. This

ensures that SOR is unlikely to be trapped into an

undesirable local minimum.

Given transactions and an initial configuration S0, SOR

returns a preferable configuration S, so that the consumed

time of the transactions is significantly reduced. In Algo-

rithm 3, the main loop shows the iterative search process

based on an annealing schedule proposed in [21]. The

temperature function is the core function of the annealing

schedule. In this algorithm, the temperature shrinks at a

rate of (1 - cooling_rate). Function Neighbor(S) generates

another configuration which swaps two random reordering

blocks of the configuration of S.

SOR has three important parameters: the initial tem-

perature t0, the cooling_rate and the maximum number of

iterations max. These parameters are set following the best

practices of simulated annealing. Parameters t0 and cool-

ing_rate have been studied in the literature [21] and as

suggested, we set t0 to be slightly larger than the consumed

time of the initial S. The parameter max controls the

number of iterations executed in the main loop of Algo-

rithm 3. The final temperature at the end of algorithm

execution is t0 � ð1� cooling rateÞmax. In this paper, we

set max so that the final temperature is close to 0, i.e.,

0.01% of the initial t0.

Reordering Transaction Execution to Boost High-Frequency Trading Applications 309

123

5 Experiment

In this section, we report experiment results on both

workloads of HFT applications and typical OLTP work-

loads. We demonstrate the effectiveness and practicality of

PARE.

5.1 Experimental Setting

In the experiments, we compare PARE against the original

transaction pipeline implementation and a well-adopted

popular CC mechanism MVCC. The evaluation is per-

formed on contended workloads representing the HFT

application and a widely adopted OLTP benchmark TPC-

C. The HFT workload runs on a simplified stock exchange

market based on a single table: Stock(SecurityName, Price,

Time, Quantity). Each item in the stock table represents a

security in the market with its name, latest price, latest

trading time and the accumulated trading quantity. The

HFT workload runs a unique type of transaction parame-

terized by a vector of security names. The n security names

are selected by a portfolio selection algorithm. This design

is motivated by the typical OLTP workload TPC-E, except

that it allows various degrees of contention. In every

f seconds, 5 out of n random securities are selected as

strong investment signals. We mimic the dynamic nature

and different degrees of contention of HFT applications by

adjusting f and n, respectively.

The experiments were carried out on HP workstation

equipped with 4 Intel Xeon E7-4830 CPUs (with 32 cores

and 64 physical threads in total) and a 256GB RAM. The

operating system was 64-bit Ubuntu 12.04. During the

experiments, all databases were stored in an in-memory file

system (tmpfs) instead of the hard disk, so that we could

exclude the influence of I/O and focus on the efficiency of

concurrency control.

5.2 Performance Comparison

In this section, we first compare the performance under

HFT workloads to demonstrate the effectiveness of PARE.

We present the results under three settings of extremely,

highly and moderately contended workloads. Then, we

compare the performance under typical OLTP workload,

TPC-C, to demonstrate the broad scope of application of

PARE.

Under extremely contended workloads, every transac-

tion only contains the five conflicting operations (n ¼ 5).

As Fig. 3a illustrates, we can see that only PARE scales to

32 working threads and other methods crumble. What is

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 1 2 4 8 16 32

Th
ro

ug
hp

ut
 (

K
TP

S)

number of workers

PARE
original

MVCC

(a)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 1 2 4 8 16 32

Av
g.

 R
es

p.
 T

im
e(

m
s)

number of workers

PARE
original

MVCC

(b)

Fig. 3 Performance comparison

under extremely contended HFT

workloads. a Throughput, b
average response time

Algorithm 3: SOR
Input: A set of transactions and their reordering blocks
Output: A configuration of reordering blocks on C processors

1 set S a configuration that arrange the reordering blocks of each transaction in
round robin way to the C processors

2 set t0 to the consumed time of S
3 for k = 1 to max do
4 t = Temperature(t, cooling rate)
5 S’ = Neighbor(S)
6 e = Cost(S)
7 e’ = Cost(S’)
8 if (e′ < e) or exp((e − e′)/t) > random(0, 1) then
9 S’ = S

10 return S

310 N. Zhou et al.

123

more, Fig. 3b shows that PARE scales well without sac-

rificing transaction latency. On the other hand, the

throughput of transaction pipeline increases by 25% from 1

worker to 32 workers and MVCC does not scale at all. This

is because transaction pipeline always needs to delay due to

harmful ordering. As for MVCC, every transaction will

abort if its update operation is not the first to issue after the

last transaction commits.

Under highly contended workloads, the five conflicting

operations are interleaved with five non-conflicting opera-

tions (n ¼ 10). As Fig. 4a illustrates, PARE still outper-

forms the others. It is not surprising to observe PARE

achieves only roughly half the throughput of that achieved

under extremely contended HFT workloads. This time each

transaction contains 10 updates, which doubles the work-

load than the extremely contended workload. Transaction

pipeline this time boosts 66% from 1 worker to 32 workers

and From Fig. 4b, we can also see that given less than 8

workers, transaction pipeline scales better than MVCC,

compared to Fig. 3b. This is because the execution on non-

conflicting operations makes use of the delay.

Under moderately contended workloads, the five con-

flicting operations are interleaved with forty five non-

conflicting operations (n ¼ 50). In this way, each transac-

tion is ten times and five times heavier than that under

extremely and highly contended workloads. As Fig. 5a

illustrates, PARE still outperforms other methods signifi-

cantly and it can be more obviously observed that trans-

action pipeline outperforms MVCC. In detail, transaction

pipeline speeds up 4.8x from 1 worker to 32 workers. This

is also because given more non-conflicting operations,

there are more opportunity for non-conflicting operations

to use the delayed time that is wasted under previous

workloads.

In addition to the HFT workloads, we also compare the

performance on the original TPC-C benchmark, the widely

adopted OLTP workload. We populate the database with

10 warehouses. In Fig. 6a, we can see that the performance

of PARE and the original transaction pipeline matches and

outperforms MVCC by up to 50%. Specifically, more

workers result in larger performance gap between trans-

action pipeline and MVCC. This is because transaction

under MVCC will abort due to the contended operations,

i.e., update district table in new-order transaction and

consecutive updates on warehouse and district tables in

payment transaction. Rather, transaction pipeline and

PARE are able to schedule the later update after the former

update once the former update completes. This demon-

strates that transaction pipeline indeed exploits more par-

allelism than MVCC. This also shows that the performance

of transaction pipeline is not sensitive to single highly

contended operation and two consecutive highly contended

operations, which supports our defined ‘‘harmful ordering’’

because one contended operation and two consecutive

contended operations do not form harmful ordering.

Because there is no harmful ordering in TPC-C,1 the little

performance margin between PARE and original

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 2 4 8 16 32

Th
ro

ug
hp

ut
 (

K
TP

S)

number of workers

PARE
original

MVCC

(a)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 1 2 4 8 16 32

Av
g.

 R
es

p.
 T

im
e(

m
s)

number of workers

PARE
original

MVCC

(b)

Fig. 4 Performance comparison

under highly contended HFT

workloads. a Throughput, b
average response time

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 1 2 4 8 16 32

Th
ro

ug
hp

ut
 (

K
TP

S)

number of workers

PARE
original

MVCC

(a)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 1 2 4 8 16 32

Av
g.

 R
es

p.
 T

im
e(

m
s)

number of workers

PARE
original

MVCC

(b)

Fig. 5 Performance comparison

under moderately contended

HFT workloads. a Throughput,

b average response time

1 The stock-level update routine in new-order transaction exhibits a

harmful ordering, but the conflicting operations are rarely contended

due to the large item table.

Reordering Transaction Execution to Boost High-Frequency Trading Applications 311

123

transaction pipeline comes from the runtime overhead of

PARE. We measure that the combination of extracting

reordering blocks for each issued transaction and con-

tention detection makes PARE less than 5% slower than

the original transaction pipeline. This shows the PARE can

also be applied to general workloads where harmful

ordering may not exist.

So far, we have evaluated the runtime reordering

approach. Then, we evaluate the off-line reordering on the

both microbenchmark for HFT applications and TPC-C

benchmark where our runtime reordering does not perform

significantly faster than non-reordered approach.

Figure 7 shows the results on microbenchmark for HFT

applications. In this set of experiments, there are two types

of transactions. The first type of transactions updates

update 10 tuples a½0�; a½1�; . . .; a½9� such that a½i� ¼ a½i�
1� þ 1 (1� i� 9). The second type of transactions update

the 10 tuples a½9�; a½8�; . . .; a½0� such that a½i� ¼ a½iþ 1� þ 1

(8� i� 0). In this way, there is only one reordering unit so

that reordering does not take effect. As we can see, it is

thus not surprising that our approach has the similar per-

formance with the original transaction pipeline approach.

In contrast, we adopt off-line reordering; the two types of

transactions are arranged such that all transactions of the

same type are executed simultaneously. In this way, there

is no transaction bubble and thus our off-line reordering

scheme outperforms existing approaches up to two or three

magnitudes.

Figure 8 shows the performance after transactions are

arranged by off-line reordering. We can see that our

approach significantly outperforms the state-of-the-art

approach, i.e., transaction pipeline, and the popular CC

mechanism MVCC. This is because under 10 warehouses,

transactions, especially the new-order and payment trans-

actions under TPC-C benchmark, suffer from data con-

tention. Rather, by reordering transactions in advance,

transactions that access different tuples are executed

simultaneously. In this way, transactions are executed as

they are serially executed.

In summary, PARE receives huge performance benefit

under HFT applications when other concurrency control

mechanisms plummet under such workloads. In addition,

under rarely contended workloads such as TPC-C, PARE

matches the performance of transaction pipeline due to its

low runtime overhead.

5.3 Detailed Performance

In this section, we further demonstrate the practicality of

PARE by evaluating the overhead of PARE in terms of

reordering block extraction, contention identification and

memory consumption.

It may be worried that extracting reordering blocks from

each issued transaction program is time-consuming, espe-

cially when harmful ordering cannot be guaranteed to

appear in all workloads. To ease such concern, Tables 1

and 2 profile the amount of time spent on extracting

reordering blocks and transaction execution under single

thread, respectively. We can see that for both typical OLTP

workloads TPC-C and TPC-E, the overhead for the

 0
 20
 40
 60
 80

 100
 120
 140

 1 2 4 8 16 32

Th
ro

ug
hp

ut
 (

K
TP

M
-C

)

number of workers

PARE
original

MVCC

(a)

 6
 8

 10
 12
 14
 16
 18
 20
 22

 1 2 4 8 16 32

Av
g.

 R
es

p.
 T

im
e(

m
s)

number of workers

PARE
original

MVCC

(b)

Fig. 6 Performance comparison

under TPC-C. a Throughput, b
average response time

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 1 2 4 8 16 32

Th
ro

ug
hp

ut
 (

K
TP

S)

number of workers

offline
runtime
original

MVCC

(a)

 0
 1
 2
 3
 4
 5
 6
 7
 8

 1 2 4 8 16 32

Av
g.

 R
es

p.
 T

im
e(

m
s)

number of workers

offline
runtime
original

MVCC

(b)

Fig. 7 Performance comparison

under HFT workloads with off-

line reordering. a Throughput,

b average response time

312 N. Zhou et al.

123

additional dependency analysis is very limited. This is due

to our simple but efficient modeling of readSet and

writeSet for SQL queries. Except for the Market-Feed

transaction, which occupies 1% in TPC-E workload, the

extraction of reordering blocks consumes less than 5% of

the execution time. This demonstrates that the overhead of

reordering block execution is limited and PARE is practical

to typical OLTP workloads.

It is performance-critical for PARE to update the degree

of contention of different objects timely. Figure 9a com-

pares the real-time throughput between g ¼ 100 ms and

g ¼ 500 ms with WS fixed to 1 s. It is not surprising to

observe a performance trough per second when the highly

contended object changes once per second. This is because

when stale contended objects and latest contended objects

are weighted equally in counters, reordering will mix the

current highly contended objects with non-conflicting

objects and thus reordering will not take effect. Before the

performance trough, it is expected that the performance is

not sensitive to the misjudgment of highly contended

objects. This is because at this time, statements are some-

what reordered in increasing rather than the desired

decreasing order of degree of contention and thus still

eliminates harmful ordering. This validates our argument

that arbitrary choice of increasing or decreasing order of

contention does not matter. Figure 9b compares the

throughput among different settings of WS with g fixed to

100 ms. We can see that WS ¼ 200ms and WS ¼ 2 s

perform inferior to WS ¼ 1 s. On the one hand, too short

window size loses much contention information and

harmful ordering occurs. On the other hand, too large

window size covering many contention change will mix

highly contended objects with lowly contended objects

many times and thus harmful ordering occurs many times.

(a) (b)

Fig. 8 Performance comparison

under TPC-C with off-line

reordering on 10 warehouse. a
Throughput, b average response

time

Table 1 Execution time (ms)

spent on reordering block

extraction on TPC-C benchmark

Transaction type Extraction time (ms) Execution time (ms) Ratio (%)

New-order 0.28 7.1 3.9

Payment 0.26 8.4 3.1

Order-status 0.12 7.6 1.6

Delivery 0.07 6.2 1.1

Stock-level 0.02 12 0.2

Table 2 Execution time (ms)

spent on reordering block

extraction on TPC-E benchmark

Transaction type Extraction time (ms) Execution time (ms) Ratio (%)

Broker-volume 0.01 4.3 0.2

Market-feed 0.21 3.8 5.5

Security-detail 0.08 2.6 3.1

Trade-order 0.36 7.4 4.8

Trade-status 0.03 7.7 0.4

Customer-position 0.05 4.9 1.0

Market-watch 0.17 9.6 1.8

Trade-lookup 0.07 9.4 0.7

Trade-result 0.41 8.3 4.9

Trade-update 0.15 13.9 1.1

Bold represents the onlytransaction type Market-Feed on which the extraction time occupies more than 5%

of the executiontime

Reordering Transaction Execution to Boost High-Frequency Trading Applications 313

123

Then, we evaluate the memory consumption of PARE.

Figure 10a shows that without recycling strategy, the

memory overhead will continuously increase because more

and more objects will be accessed. Figure 10b shows that

less window size can save more memory because it saves

the occupied memory of each counter and recycles coun-

ters more frequently.

These sets of experiments demonstrate the robustness

and practicality of our runtime reordering approach. Next,

we evaluate our off-line reordering approach.

Figure 11 validates our choice of SA-based off-line

reordering approach. We can see that the GA-based

approach gets trapped into local minimum faster than SA-

based approach.

6 Conclusion

This paper novelly proposes PARE to reorder transaction

execution to improve the performance of the state-of-the-art

concurrency control mechanism, transaction pipeline, under

HFT applications. We for the first time observe and formu-

late the harmful ordering, which is brought with transaction

pipeline and hidden under other concurrency control mech-

anisms. We deduce to reorder transaction execution in order

of contention and further propose twomechanisms to extract

reordering blocks and identify the degree of contention of

objects. We also propose and formulate the problem of off-

line reordering. We prove this is an NP-hard problem and

present an off-line reordering approach to approximate the

optimal reordering strategy. Experiments demonstrate that

PARE outperforms the state-of-the-art concurrency control

mechanism significantly on HFT applications in terms of

both transaction throughput and latency, and the overhead is

limited on typical OLTP benchmarks.

Acknowledgements This work is supported by Nature Science

foundation of China Key Project No. 61432006 and The National Key

Research and Development Program of China, No.

2016YFB1000702.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
(K

 T
PS

)

Elapsed Time (s)

g=100ms g=500ms

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
(K

 T
PS

)

Elapsed Time (s)

WS=1s WS=200ms WS=2s

(a) (b)

Fig. 9 Effect of counter setting.

a Effect of granularity. b Effect

of window size

 0

 500

 1000

 1500

 2000

 2500

 0 1 2 3 4 5 6 7 8 9 10

M
em

or
y

O
ve

rh
ea

d(
KB

)

Elapsed Time (s)

recycle enabled
recycle disabled

(a)

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 1 2 3 4 5 6 7 8 9 10

M
em

or
y

O
ve

rh
ea

d(
KB

)

Elapsed Time (s)

WS=1s
WS=2s

(b)

Fig. 10 Overhead of memory

consumption. a Effect of

counter recycling, b Effect of

window size

Fig. 11 Performance comparison: GA-based approach versus SA-

based approach

314 N. Zhou et al.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

References

1. http://www.investopedia.com/articles/investing/091615/world-

high-frequency-algorithmic-trading.asp (2015)

2. Alvaro P, Conway N, Hellerstein JM, Marczak WR (2011)

Consistency analysis in bloom: a calm and collected approach.

Fifth biennial conference on innovative data systems research.

Online proceedings, CIDR 2011. Asilomar, CA, USA, 9–12

January 2011, pp 249–260

3. Bailis P, Fekete A, Franklin MJ, Ghodsi A, Hellerstein JM, Stoica

I (2014) Coordination avoidance in database systems. PVLDB

8(3):185–196

4. Barbará-Millá D, Garcia-Molina H (1994) The demarcation

protocol: A technique for maintaining constraints in distributed

database systems. VLDB J 3(3):325–353

5. Bernstein AJ, Gerstl DS, Lewis PM (1999) Concurrency control

for step-decomposed transactions. Inf Syst 24(9):673–698

6. Bernstein PA, Shipman DW (1980) The correctness of concur-

rency control mechanisms in a system for distributed databases

(sdd-1). ACM Trans Database Syst 5(1):52–68

7. Bernstein PA, Shipman DW, Rothnie JB Jr (1980) Concurrency

control in a system for distributed databases (sdd-1). ACM Trans

Database Syst 5(1):18–51

8. Brandt MW (2010) Chapter 5—portfolio choice problems. In:

Handbook of Financial Econometrics: Tools and Techniques vol

1, pp 269–336

9. Cheung A, Arden O, Madden S, Solar-Lezama A, Myers AC

(2014) Using program analysis to improve database applications.

EEE Data Eng Bull 37:186–213

10. Cheung A, Madden S, Arden O, Myers AC (2012) Automatic

partitioning of database applications. PVLDB 5(11):1471–1482

11. Cheung A, Madden S, Solar-Lezama A (2014) Sloth: being lazy

is a virtue (when issuing database queries). In: SIGMOD’14,

pp 931–942

12. Creamer GG, Freund Y (2013) Automated trading with boosting

and expert weighting. Quant Finance 4(10):401–420

13. Dashti M, John SB, Shaikhha A, Koch C (2016) Repairing con-

flicts among MVCC transactions. CoRR. arXiv:1603.00542

14. Davies CT (1978) Data processing spheres of control. IBM Syst J

17(2):179–198

15. Eswaran KP, Gray JN, Lorie RA, Traiger IL (1976) The notions

of consistency and predicate locks in a database system. Commun

ACM 19(11):624–633

16. Faleiro JM, Abadi D, Hellerstein JM (2017) High performance

transactions via early write visibility. PVLDB 10(5):613–624

17. Garcia-Molina H (1983) Using semantic knowledge for transac-

tion processing in a distributed database. ACM Trans Database

Syst 8(2):186–213

18. Garcia-Molina H, Salem K (1987) Sagas. SIGMOD Rec

16(3):249–259

19. Garcia-Molina H, Salem K (1987) Sagas. In: Proceedings of the

1987 ACM SIGMOD international conference on management of

data, SIGMOD’87, New York. ACM, pp 249–259

20. Garey MR, Johnson DS (1990) Computers and intractability; a

guide to the theory of NP-completeness. W. H. Freeman & Co.,

New York

21. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by

simulated annealing. Science 220(4598):671–680

22. Kumar A, Stonebraker M (1988) Semantics based transaction

management techniques for replicated data. In: Proceedings

of the 1988 ACM SIGMOD international conference on

management of data, SIGMOD’88, New York. ACM,

pp 117–125

23. Kung HT, Robinson JT (1981) On optimistic methods for con-

currency control. ACM Trans Database Syst 6(2):213–226

24. Larson P-A, Blanas S, Diaconu C, Freedman C, Patel JM,

Zwilling M (2011) High-performance concurrency control

mechanisms for main-memory databases. PVLDB 5(4):298–309

25. Li C, Porto D, Clement A, Gehrke J, Preguiça N, Rodrigues R

(2012) Making geo-replicated systems fast as possible, consistent

when necessary. In: Proceedings of the 10th USENIX conference

on operating systems design and implementation, OSDI’12.

USENIX Association, Berkeley, pp 265–278

26. Marlowe TJ, Ryder BG (1990) Properties of data flow frame-

works: a unified model. Acta Inf 28(2):121–163

27. Neumann T, Mühlbauer T, Kemper A. Fast serializable multi-

version concurrency control for main-memory database systems.

SIGMOD’15, pp 677–689

28. Olston C, Loo BT, Widom J (2001) Adaptive precision setting for

cached approximate values. In: Proceedings of the 2001 ACM

SIGMOD international conference on management of data,

SIGMOD’01. ACM, New York, pp 355–366

29. Olston C, Widom J (2000) Offering a precision-performance

tradeoff for aggregation queries over replicated data. In: Pro-

ceedings of the 26th international conference on very large data

bases, VLDB’00. Morgan Kaufmann Publishers Inc, San Fran-

cisco, pp 144–155

30. Pandis I, Johnson R, Hardavellas N, Ailamaki A (2010) Data-

oriented transaction execution. PVLDB 3(1–2):928–939

31. Pu C, Leff A (1991) Replica control in distributed systems: as

asynchronous approach. In: Proceedings of the 1991 ACM SIG-

MOD international conference on management of data, SIG-

MOD’91. ACM, New York, pp 377–386

32. Ramamritham K, Pu C (1995) A formal characterization of epsilon

serializability. IEEE Trans Knowl Data Eng 7(6):997–1007

33. Roy S, Kot L, Bender G, Ding B, Hojjat H, Koch C, Foster N,

Gehrke J (2015) The homeostasis protocol: avoiding transaction

coordination through program analysis. In: Proceedings of the

2015 ACM SIGMOD international conference on management of

data, SIGMOD’15. ACM, New York, pp 1311–1326

34. Shasha D, Llirbat F, Simon E, Valduriez P (1995) Transaction

chopping: algorithms and performance studies. ACM Trans

Database Syst 20(3):325–363

35. Shen W, Wang J, Jiang Y-G, Zha H. Portfolio choices with

orthogonal bandit learning. In: IJCAI’15, pp 974–980

36. Wang Z, Mu S, Cui Y, Yi H, Chen H, Li J (2016) Scaling

multicore databases via constrained parallel execution. In: Pro-

ceedings of the 2016 international conference on management of

data, SIGMOD’16, pp 1643–1658

37. Weikum G, Vossen G (2001) Transactional information systems:

theory, algorithms, and the practice of concurrency control and

recovery. Elsevier, Amsterdam

38. Whitley D (1994) A genetic algorithm tutorial. Stat Comput

4(2):65–85

39. Wolfe MJ, Shanklin S, Ortega L (1995) High performance

compilers for parallel computing. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA

40. Wu K-L, Yu PS, Pu C (1992) Divergence control for epsilon-

serializability. In: Proceedings of the 8th international conference

on data engineering. IEEE Computer Society, pp 506–515,

Washington

41. Wu Y, Chan C-Y, Tan K-L (2016) Transaction healing: scaling

optimistic concurrency control on multicores. In: SIGMOD’16,

pp 1689–1704

42. Yan C, Cheung A (2016) Leveraging lock contention to improve

oltp application performance. PVLDB 9(5):444–455

43. Yu H, Vahdat A (2000) Design and evaluation of a continuous

consistency model for replicated services. In: Proceedings of the

4th conference on symposium on operating system design &

implementation, vol 4, OSDI’00. USENIX Association, Berkeley

Reordering Transaction Execution to Boost High-Frequency Trading Applications 315

123

http://www.investopedia.com/articles/investing/091615/world-high-frequency-algorithmic-trading.asp
http://www.investopedia.com/articles/investing/091615/world-high-frequency-algorithmic-trading.asp
http://arxiv.org/abs/1603.00542

	Reordering Transaction Execution to Boost High-Frequency Trading Applications
	Abstract
	Introduction
	Preliminary and Related Works
	Transaction Pipeline
	Related Works

	Pipeline-Aware Reordered Execution
	Reordering Strategy
	Reordering Block Extraction
	Contention Estimation

	Off-line Reordering
	Problem Formulation
	GA-Based Approach
	SA-Based Approach

	Experiment
	Experimental Setting
	Performance Comparison
	Detailed Performance

	Conclusion
	Acknowledgements
	References

