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Abstract Data streams have arisen as a relevant topic

during the last few years as an efficient method for

extracting knowledge from big data. In the robust layered

ensemble model (RLEM) proposed in this paper for short-

term traffic flow forecasting, incoming traffic flow data of

all connected road links are organized in chunks corre-

sponding to an optimal time lag. The RLEM model is

composed of two layers. In the first layer, we cluster the

chunks by using the Graded Possibilistic c-Means method.

The second layer is made up by an ensemble of forecasters,

each of them trained for short-term traffic flow forecasting

on the chunks belonging to a specific cluster. In the oper-

ational phase, as a new chunk of traffic flow data presented

as input to the RLEM, its memberships to all clusters are

evaluated, and if it is not recognized as an outlier, the

outputs of all forecasters are combined in an ensemble,

obtaining in this a way a forecasting of traffic flow for a

short-term time horizon. The proposed RLEM model is

evaluated on a synthetic data set, on a traffic flow data

simulator and on two real-world traffic flow data sets. The

model gives an accurate forecasting of the traffic flow rates

with outlier detection and shows a good adaptation to non-

stationary traffic regimes. Given its characteristics of out-

lier detection, accuracy, and robustness, RLEM can be

fruitfully integrated in traffic flow management systems.

Keywords Traffic forecasting � Fuzzy clustering � Big
data � Ensemble model � Evolving data streams

1 Introduction

Data streams are ordered, potentially unbounded sequences

of observations (data elements) made available over time

[24, 43, 57, 58]. Data stream mining, the process of

extracting knowledge from them, has arisen as a relevant

topic in the machine learning field during the past decade

[3].

In many data stream mining applications where data

exhibit a time series nature, the goal is to predict infor-

mation about future instances in the data stream given

some knowledge about previous ones. This can be

approached either by modelling of the dynamics of the

system, or by autoregressive models. Within the field of

road traffic analysis and forecasting, the latter approach has

rapidly become widespread in recent years [48] due to the

increase in both availability of sensed data and processing

power to deal with them.

A common requirement in the task of mining data

streams is the ability to distinguish the useful information

from the useless ones. This may be required for limiting the

usage of resources, for instance transmission bandwidth or

storage memory; for summarization purposes; or even for

relieving the user from information overload. As an

example of this latter case, a sensor network may provide

just the information that requires attention by the human

supervisor, rather than transmitting all records. This task

goes by the name of anomaly or outlier detection [7, 11].

One common approach to anomaly detection makes use

of unsupervised learning: we learn a baseline model of the

phenomenon of interest, and then measure the discrepancy
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of subsequent data from the baseline. An anomalous

observation is the one that is not well explained by the

model.

When operating within non-stationary environments for

an extended time, the source of the stream may change

over time. We distinguish between two types of change: for

evolutionary, smooth changes, we use the term concept

drift, while a radical, sudden change is labelled concept

shift.

In this paper, we approach the problem of short-term

traffic forecasting by employing the autoregressive

approach, more suitable than a model-based one in the

short-term because it can exploit the local time informa-

tion, contained in recent observations and is computation-

ally less demanding.

To tackle the issues of anomalies and non-stationarity,

we employ an extension of the possibilistic clustering

approach [34, 35] named Graded Possibilistic c-Means

[15, 38] as a means to perform clustering of the non-sta-

tionary streaming data and employ the knowledge accu-

mulated into the clusters to build a robust, accurate short-

term traffic forecaster. Our proposed method has the ability

to prevent outliers in the data stream from having a strong

effect on the forecasting accuracy and is capable of both

learning the data stream and analysing its evolution for the

purpose of tracking it. To this end, an index to measure

data stream change is proposed, based solely on the

memberships to clusters, and not on additional measures.

We focus on the online approach to track and adapt to

concept drift and shift and on using this knowledge to

improve the ensemble forecasting model that was proposed

in [1] by making the model able to not only detect outliers,

but also track the changes in data streams.

An incremental retraining strategy is adopted, where the

amount of retraining, and therefore the required computa-

tional effort, is modulated by the proposed measure of

model change.

This paper is organized as follows. The next section

summarizes the state of the art in streaming data clustering

and traffic modelling, motivating the specific design choi-

ces of our proposal. Section 3 describes the proposed

methodology. Section 4.1 presents the experimental vali-

dation and the discussion of results. Conclusions are given

in Sect. 5.

2 Previous Work in the Fields of Data Stream
Mining and Short-Term Traffic Forecasting

The subject of this work is traffic forecasting. This is one of

the most relevant problems related to data stream mining. It

can be cast either in the long term, where forecasts are used

to configure and validate road management plans, or in the

short term, for real-time decision-making. Short-term

forecasting is the subject of this work.

Forecasting can be done with a system identification

approach, often with macroscopic models [22]. Although it

gives the most reliable results in the long-term forecasting

problem, this approach is often not feasible for short-term

forecasting, due to the inherent complexity of an accurate,

first-principles model. The computation time required is

often not compatible with the response time required.

The usual practice in this case is to use methods that

forecast based on observations. This approach has devel-

oped out of the growing availability of data and, in parallel,

of methods from data science, machine learning and

computational intelligence [48].

Methods presented in the recent literature can be cate-

gorized into parametric models [16, 21, 46] and nonpara-

metric or hybrid models [44, 47, 56].

Many traffic forecasting approaches focus on the prob-

lem of freeway/motorway traffic forecasting in which the

state of the road traffic is quite stable. In contrast, traffic

forecasting in urban and network-scale areas is more

complex because of the rapid change of traffic behaviour

and of the limited availability of sensors that can cover the

whole network.

Many approaches based on nonparametric models to

tackle this problem have been proposed, such as multilayer

perceptron with a learning rule based on a Kalman filter

[49], wavelet-based neural network [18], fuzzy-neural

model [52], ARIMA models [23], graphical-lasso neural

network [20], multi-task neural network [19], multi-task

ensemble neural network [45], k-nearest neighbour non-

parametric regression [53].

Most of these approaches are not meant to track changes

in traffic behaviour [48]. This is the main motivation for

our proposal, which is described in the next section.

Since our method is centred around data stream clus-

tering, we also survey some related work on this topic.

Most algorithms in this area [2, 4, 5, 26] focus on two

aspects: detecting outliers without taking concept drift

tracking into consideration and clustering irregularly dis-

tributed data, which is a challenging direction of research

in the field.

Data stream clustering methods can be of the batch type,

collecting a number of instances and then performing

clustering on these accumulated data [31, 40]. Other

methods are single-pass, storing summaries of past data as

they are scanned [25]. The strategies of these algorithms

can be incremental [9] or divide-and-conquer [4]. Yet other

algorithms alter the structure of the data themselves so that

they can be more effectively accessed [55].

Some popular stream clustering methods are density-

based: they aim to find clusters of arbitrary shape by
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modelling them as dense regions separated by sparse

regions [6, 13].

While this class of algorithms is popular and effective,

they all produce only crisp partitions with no direct way to

evaluate the outlierness of incoming data. An alternative

strategy is to use fuzzy modelling for clustering.

Several incremental fuzzy clustering algorithms based

on fuzzy c-means (FCM) [8] to track non-stationarity in

data streams have been developed. Under the fuzzy mod-

elling paradigm, each data point belongs to a cluster to a

degree specified by a membership value. In general, as no

membership is exactly null, a data point belongs to all

clusters with different degrees.

Popular incremental fuzzy clustering algorithms for data

streams include single-pass FCM [27] and online FCM

(OFCM) [28]. Both process data chunk by chunk (by-pat-

tern) and estimate centroids for entire data set by extracting

summary information from each chunk, but the ways they

handle chunks are different.

In [36], two algorithms based on fuzzy c-medoids

(FCMD) [33], called online fuzzy c-medoids (OFCM) and

history-based online fuzzy c-medoids (HOFCMD), are

developed for clustering large relational data sets. In [39],

it is shown that one medoid may not be sufficient to capture

the underlying structure of a cluster. As a solution, in [50]

an incremental fuzzy clustering approach called incre-

mental multiple medoids-based fuzzy clustering (IMMFC)

was proposed, which is based on the idea of OFCM and

HOFCMD and includes a mechanism to select multiple

medoids instead of a single one to represent each of the

clusters in each chunk.

3 Methodology

Our choice has fallen on an autoregressive approach which

forecasts one step in future after observing a suitable in-

terval of past observations.

3.1 Data Pre-processing

The observed data are samples of traffic flow on a road

network. At any given time, each arc of the network graph

contains a given number of vehicles. Flow is defined as the

number of vehicles per unit time. An arc is characterized

by a maximum number of vehicles, its capacity. When flow

approaches this value, the traffic slows down and enters a

stop-and-go regime. Once the capacity is reached, traffic is

entirely congested. We will be mainly concerned with

relative flow, the ratio of flow to the arc capacity. Flow is

sampled at discrete time intervals of the order of some

minutes.

As already mentioned, data are organized in chunks of

observations corresponding to a time lag vector. To fore-

cast f at , the traffic flow on arc a at time t, a vector of length

T (the lag period) is used to represent a given chunk:

x ¼ f at�T ; f
a
t�Tþ1; . . .; f

a
t�1

� �
: ð1Þ

The vector x thus obtained describes the pattern of

traffic flow variation over one past time interval of duration

T in a neighbourhood of size n of arc a. In the rest of this

paper, x will be the input to the method that is being

described.

3.2 Forecasting Model Issues

The design of autoregressive methods requires solving the

following issues.

Lag Period Proper selection of the lag period T, the size

of the chunks, is crucial because it affects the correct

representation of the data stream source. If the lag period is

chosen too small, then we will not be able to distinguish

between the time lag vectors in the vector space [10];

hence, the prediction process will be practically impossible

because data do not carry enough valuable information. If

the lag period is chosen too large, measurement will refer

to times which are too far to have a significant correlation

with the present, and therefore they will be irrelevant and

act as noise [30].

In this paper, we adopt the minimum of the time-delayed

mutual information as an estimation of the time lag [17]:

SðsÞ ¼ �
X

ij

pijðsÞ ln
pijðsÞ
pipj

ð2Þ

where for some partition of the real line into intervals:

• pi is the probability to find a time series value in the ith

interval,

• pijðsÞ is the joint probability that an observation at any

time t falls into the ith interval and the observation at

time t þ s falls into the jth one.

Unlike the autocorrelation function, the mutual infor-

mation takes into account also nonlinear correlations. If the

time-delayed mutual information exhibits a marked mini-

mum, then T ¼ argmins SðsÞ is a good candidate for a

suitable time delay. The obtained values are then confirmed

by checking them against domain knowledge.

Note that if the minimum is not sufficiently prominent,

then another method should be used. In the case of road

traffic, the ‘‘memory’’ of the system is limited and this

problem did not occur in our experiments.

Training Set Size This refers to the number of obser-

vation patterns that will be used to train the forecasters.

This is usually not under the control of the designer, but in
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the problem at hand the availability of data has been found

to be sufficient.

Outliers Handling Learning patterns with a different

behaviour using the same model tends to reduce the

model’s performance. This can occur for both diversity in

the operating conditions, in the presence of a stationary

source, and changes in the underlying source itself (concept

drift and shift), in the non-stationary case.

Accordingly, the proposed model focuses on two

strategies: learning an ensemble of locally specialized

models and explicitly measuring outlierness.

3.3 Robust Layered Ensemble Model

The proposed robust layered ensemble model (RLEM) for

short-term traffic forecasting consists of two layers as

shown in Fig. 1 and is able to track the changes in data

streams, such as traffic flows, and to use this information to

improve the forecasting accuracy.

The first layer of RLEM consists in a fuzzy clustering

process having as its goals to cluster traffic flow chunks

into c fuzzy clusters, where chunks with high membership

to the same cluster represent similar temporal patterns, and

at the same time to measure the outlierness degree of each

chunk and consequently to measure the density of outliers.

To this aim, we employ an incremental clustering pro-

cess based on the Graded Possibilistic c-Means (GPCM)

[38] that is able to adapt to the changes in the traffic flow,

by implementing a continuous learning that exploits the

input chunks as they arrive. Intrinsic to this clustering

method is a measure of outlierness that provides informa-

tion about the goodness of fit of each input chunk to the

clustering model.

In the second layer, an ensemble of a number of base

learners acting as forecasters equal to the number c of

clusters is used, each of them specialized on a homoge-

neous region of the data space. This approach follows the

mixture of local experts model proposed in [29].

To obtain the c homogeneous regions of the data space

needed for base learner training, we defuzzify the fuzzy

segmentation performed by the first layer by assigning each

chunk to the cluster where it has the highest membership

(nearest neighbour criterion). To implement the base

forecasters, we employ time-delayed neural networks

(TDNN) [14] trained with the error back-propagation

algorithm. Other choices may be implemented as well. The

TDNN model is simply a multilayer perceptron neural

network whose input is a time lag vector. In this work, one-

hidden-layer networks are used for this purpose. We will

indicate the network topology by specifying just the

number of input, hidden and output units as a triplet, ni-nh-

no, with the understanding that each layer is fully

connected to the following and that hidden units are sig-

moidal while output units are linear.

The measure of outlierness evaluated by the first layer is

used in the second layer to assess and improve the fore-

casting accuracy.

In the following, we describe the specific clustering

technique used.

3.4 The Graded Possibilistic c-Means

In central clustering, we have a training set of n instances

(random vectors) and c clusters represented by means of

their central points or centroids yj. Many central clustering

methods perform the minimization of a objective function

[8], that usually is the expectation of the distortion:

D ¼ 1

n

Xn

l¼1

Xc

j¼1

ulj dlj; ð3Þ

l ¼ 1; . . .; n;

j ¼ 1; . . .; c;

dlj ¼ kxl � yjk2
ð4Þ

optimized with respect to centroids yj and memberships ulj,

with some constraints placed on the total mass of mem-

bership to clusters

fl �
Xc

j¼1

ulj: ð5Þ

In Eqs. 3 and 5, n is the cardinality of the data set, c is

the number of clusters, while fl can be interpreted as the

total membership mass of observation xl. In the following

of this subsection, we outline some relevant fuzzy central

cluster models.

The first model we present is the maximum entropy

(ME) or deterministic annealing approach [42] that impo-

ses fl ¼ 1. In this case, we are in the probabilistic case,

where memberships are formally equivalent to

probabilities.

In addition to the expectation of the distortion (Eq. 3),

the objective function JME of ME includes the probabilistic

constraint. The necessary conditions for the minimum of

JME are rJME ¼ 0 that yields:

ulj ¼
e�dlj=b

fl
ð6Þ

and

yj ¼
Pn

l¼1 uljxlPn
l¼1 ulj

: ð7Þ

Equations 6 and 7 can be interpreted as the basis of a

Picard iteration that leads to the minimum of a free energy
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at different levels of temperature (or fuzziness) that is

regulated by the value of b (deterministic annealing pro-

cedure). When b is large, the free energy is equivalent to

the unconstrained optimization of the expectation of the

distortion (Eq. 3).

The objective function of ME is formally equivalent to

the one of fuzzy c-means [8], and both of them show the

problem of low outlier rejection: The memberships of

outliers can be very large, not different from those of

inliers.

In contrast to ME, the possibilistic c-means (PCM) [35]

does not impose any constraint on fl, so memberships are

not formally equivalent to probabilities but represent

degrees of typicality to clusters.

The objective of PCM, JPCM includes an individual

parameter bj for each cluster, and rJPCM ¼ 0 yields

ulj ¼ e�dlj=bj ð8Þ

for membership of instances to clusters and Eq. 7 for

cluster centres. Again, Eqs. 7 and 8 can be interpreted as

the basis of a Picard iteration for the minimization of JPCM.

As discussed in [35], while the PCM produces mem-

bership functions that can be interpreted as measures of

typicality of instances to clusters and shows a strong outlier

rejection, the Picard iterations may fail to converge due to

the lack of competitive terms in Eq. 8.

The graded possibilistic c-means (GPCM) clustering

model proposed by our group [38] exploits the similarities

of Eqs. 6 and 8 to obtain both the nice properties of

memberships with the meaning of typicality and strong

outlier rejection of the PCM and the convergence ability of

the ME.

In this paper, we present a new simpler version of the

GPCM. To this aim, we propose the following formula that

unifies the Eqs. 6 and 8:

ulj ¼
vlj

Zl
; ð9Þ

where

vlj � e�dlj=bj ð10Þ

is called the free membership and Zl is the generalized

partition function that is a function of the membership

mass fl.
This allows us to add a continuum of other, intermediate

cases to the two limit case models just described, respec-

tively, characterized by Zl ¼ fj (probabilistic) and Zl ¼ 1

(possibilistic). Here, we use the following formulation:

Zl � fal ¼
Xc

j¼1

vlj

 !a

; a 2 ½0; 1�; ð11Þ

where the parameter a controls the possibility level, from a

totally probabilistic (a ¼ 1) to a totally possibilistic (a ¼ 0)

model, with all intermediate cases for 0\a\1. The Picard

iteration implementing the GPCM iterates the membership

evaluation (Eq. 9), and the cluster centres evaluation

(Eq. 7) until convergence.

In the GPCM model at each iteration of the Picard

procedure, bj is updated [35] according to:

bj ¼
PN

i¼1 uij dij

k
PN

i¼1 uij
; j ¼ 1; . . .; c ð12Þ

Note that in the GPCM after training fl 2 ð0; cÞ depends
on the value of a. More specifically:

Fig. 1 Diagram of the training

stage in the RLEM. See text for

details on the quantities and on

the operational blocks

mentioned in the diagram
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• values fl � 1 are typical of regions well covered by

centroids;

• but fl � 1 is very unlikely for good clustering

solutions, since it implies many overlapping clusters;

• finally, fl � 1 characterizes regions not covered by

centroids, and any observation occurring there is an

outlier.

In order to reject outliers, let us define the degree of

outlierness index X, corresponding to the concept of being

an outlier, as follows:

XðxlÞ ¼ max 1� fl; 0f g: ð13Þ

For each threshold on X we set, we obtain a region of

inlier in the data space and we define as outliers the data

outside this region.

Differently from other approaches based on analysing

instance-centroid distances [54], the GPCM provides a

direct measure of outlierness that is not referred to local

density or to individual clusters, but is defined with respect

to a whole clustering model.

Outlierness can be modulated by an appropriate choice

of a. Low values correspond to sharper outlier rejection,

while higher values imply wider cluster regions and

therefore lower rejection. For a ¼ 1, the GPCM becomes

probabilistic and loses its ability to identify or reject

outliers.

We can define the initial outlier density q0 2 ½0; 1Þ as

the average degree of outlierness:

q0 ¼
1

jW0j
X

l2W0

XðxlÞ; ð14Þ

where W0 is an initial window of data to ‘‘bootstrap’’

GPCM and provides an initial clustering.

The average density q0 accounts for both frequency and

intensity, or degree of anomaly, of outliers. This is a mean,

so quantity and intensity can compensate each other, so

that the effect of few strong outliers is the same as that of

many moderate outliers.

During execution, outlier intensity at step l[ jW0j is
computed as follows:

ql ¼ 0:01Xðxl�1Þ þ 0:99 ql�1; ð15Þ

where Xl is the measure of outlierness at step l. Note that

the density is a function of the past values, being a convex

combination of current outlierness and past density (ex-

ponentially weighted moving average). The exponential

time constant is � ln 100 � 4:6, similar to the typical lag

periods T used in this study.

The updating formula can also be rewritten as

ql ¼ ql�1 þ 0:01 Xðxl�1Þ � ql�1ð Þ ð16Þ

to make it evident that it is a Robbins–Monro-type [41]

formula for approximating X, with step size of 0.01 kept

fixed to enable continuous tracking, and with Xðxl�1Þ �
ql�1 acting as the stochastic gradient estimate at step t � 1.

The GPCM parameters are updated during the execution

as follows. To avoid premature convergence, the possibil-

ity degree a is made dependent on q, so as to increase

centroid coverage when outliers are detected:

al ¼ a0 þ qlð1� a0Þ ð17Þ

Note that al is a function of the current density and of a0,
its baseline value, so this formula is not a moving average.

The spread parameter for each centroid, bj, is similarly

updated during the execution as follows:

bj;lþ1 ¼ bj;l þ ql ðbj;0 � bj;lÞ; ð18Þ

which provides the ability to roll back closer to the initial

values of b when the model is not adequate any more, as

indicated by the value of q.

3.5 Ensemble Forecast Model

As shown in Fig. 1, for each cluster, a forecaster with

architecture shown in Table 1 is trained and fl is obtained,
which is quantity computed for each chunk in the training

data set.

After the training stage, we start the forecasting stage as

shown in Fig. 2 where chunks come as a stream. For each

upcoming input chunk i, fi is computed and compared to a

threshold. In the proposed model, the threshold is selected

as the minimum of fl observed on the training set:

H � min
l

fl: ð19Þ

However, other choices, more or less restrictive, are

possible based on the quantity and reliability of the training

data.

After the training stage, we start the online forecasting

stage. When a new chunk is presented to RLEM, if f\H it

is considered an extreme outlier and will be dropped.

Table 1 RLEM model parameters used for the short-term traffic

forecasting for the three data sets

Data set PeMS UK Genoa

Observation period 5 min 15 min 5 min

Chunk size 7 95 4

TDNN architecture 7-10-1 95-10-1 12-10-1

Training set size 3 days 9 months 6 h

Test set size 7 days 3 months 3 h
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Technically, this is implemented as follows. We com-

pute the binarized membership mass of the input chunk,

defined as:

fB ¼
0 for f\H

1 otherwise

�
: ð20Þ

The upcoming chunk is considered as an extreme outlier

and is dropped (rejected) if fBi ¼ 0.

The drop rate of the input chunks depends on the value

of a which controls the sensitivity of the model to outliers.

A high value of a-means less sensitivity to outliers and a

lower drop rate.

For detecting concept shift in traffic flows, we use

average density q as an indicator of the reliability of the

forecasting model.

The final output of the RLEM is computed as a weighted

sum of the individual base learner forecasts [29], as

follows:

f ¼
Xc

j¼1

fjuj=f ð21Þ

In Eq. (21), we see that the output fj of each forecaster is

weighted by uj, which is the membership degree of each

chunk to each cluster, so that uj will have a high value for

the most suitable forecaster(s) and low to the others.

Note that, despite the possibilistic nature of the GPCM

method, this weighting is convex (
P

j uj=f ¼ 1) because of

the use of f as a partition function, since outliers and

concept drift/shift have been taken into account in the

previous layer.

3.6 Retraining

During operation, the system collects a sliding window of a

fixed number of past observations from the input stream.

When the outlier density q is over a certain threshold qt,
the model is considered inadequate and a retraining step is

triggered.

In the retraining step, the centroids and forecasters are

trained on the current data window, so as to make them up

to date.

4 Experiments and Results

The experimental validation of proposed robust layered

ensemble model included the test of the clustering proce-

dure based on the Graded Possibilistic c-Means on an

artificial data set with built-in concept drift and shift. Then,

we applied RLEM to the short-term forecasting of three

traffic flow data sets.

4.1 Data Sets

The data sets employed in our experimental analysis are:

• Gaussian data set that is a synthetic data set with four

evolving two-dimensional Gaussian distributions [12].

Along time, one new data point is added and one

removed randomly so that the total number stays

constant. However, the underlying data source (cen-

troid positions) is slowly changed, leading to concept

drift. Concept shift is obtained by removing a whole

segment of the sequence at time 4000 where the stream

changes abruptly. The data set was generated using the

Matlab program ConceptDriftData.m available at

https://github.com/gditzler/ConceptDriftData.

• PeMS that is a data set by the Caltrans Performance

Measurement System (PeMS) available at http://pems.

dot.ca.gov. The traffic flow data are collected every

30 s from over 15,000 detectors deployed across Cali-

fornia. The collected data are aggregated in 5-min

periods. In [37], a deep learning model was developed

using these data.

• UK road network that contains multiple data sets

obtained from different road links in the United

Kingdom (UK) available at http://www.highways.gov.

uk. This data series provides traffic flow information for

15-min periods since 2009 on most of road links in UK.

The data set obtained from the loop sensor id AL2989A

(TMU Site 30012533) containing traffic flow between

2009 and 2013 was used in [51] for the validation of

traffic forecasting approach.

• Genoa Data set containing traffic data of a town

obtained via simulation as follows as a part of our

contribution to the PLUG-IN project.1 An urban area of

the city of Genoa, a town in the north-west of Italy, was

mapped with the aid of Open Street Map data available

at https://www.openstreetmap.org. Traffic parameters

were obtained from actual observations and several

days of traffic were simulated by using the SUMO open

source traffic simulator [32]. Figure 5 shows the area of

interest and the graph used to model it which consists of

27 nodes, 74 links, 7 external points and 19 connec-

tions. The simulation yielded observations at time

intervals of 5 min obtained from a specific link and

from a fixed number of adjacent links to forecast the

traffic to a short-term timescale.

1 Piattaforma per la mobilità Urbana con Gestione delle INfor-

mazioni da sorgenti eterogenee (http://www.siitscpa.it/index.php/

progetti/2011-09-24-14-26-55/plug-in).
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4.2 Implemented Models

The learning task associated with the Gaussian data set is

non-stationary data streaming tracking and outlier detect-

ing. We approach this problem using the GPCM clustering

model.

Table 1 shows the values of parameters of the RLEM

implementations for the short-term traffic forecasting for

PeMS, UK and Genoa data sets. Each data corresponds to

the average traffic flow measured in the observation period.

The size of the data chunk is the time lag estimated as

the minimum of the time-delayed mutual information, as

noted in Sect. 3.2. The estimated time lags for PeMS, UK

and Genoa data sets correspond, respectively, to 35 min,

one day and 20 min.

For the first stage of RLEM that implements a GPCM

model for chunk clustering, we set five clusters for all data

sets.

The base learners of the second layer of the RLEM are

time-delayed neural networks (TDNN) using multilayer

perceptrons with three layers. The dimension of the input

layer of multilayer perceptrons is identical to the size of the

chunk and the hidden layers are set to 10 units for the three

cases, while the output is unidimensional and corresponds

to estimation of the traffic flow.

4.3 Choice of Parameters

As most adaptive methods, the RLEM model includes three

types of parameters: Model parameters, optimization

parameters, and evaluation parameters.

Model parameters directly influence the operation of the

system in the inference (forecasting) phase. Although the

model just described includes several parameters, the only

actual, user-selected model parameters are the number of

forecasters c and the topology of the individual forecasters.

When the number of forecasters is increased, it has been

observed that the performance of the system increases

accordingly, although not proportionally. Additional model

parameters influencing the trade-off between stability and

reactivity of the system are the adaptation gain for the

moving-average update of q and the lag period T. For both

the user can choose an arbitrary value, but reasonable,

objective selection criteria have been previously discussed

[Eqs. (16), (2)]. The membership threshold H should

operate on extreme observations. Even if criteria other than

Eq. (19) are employed to set its value, it should not impact

normal operation.

Most parameters described are optimization parameters.

These have an indirect influence on the system’s behaviour,

being related to the evolution of the system in time. These

Fig. 2 Diagram of the forecasting stage in the RLEM. See text for details on the quantities and on the operational blocks mentioned in the

diagram
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include initial values for a and b, the size of the initial

window W0, and the optimization parameters for the indi-

vidual forecasters which depend on the training strategy

adopted (in this study, we used the error back-propagation

algorithm) but do not have a strong influence on the result

due to the use of an ensemble. As for the actual numerical

values of these parameters, a has an absolute interpretation

and values in [0.85, 1) can be used. However, b strongly

depends on the magnitude, distribution and dimensionality

of the data and on the location of clusters, so a general

indication cannot be given, although empirical methods

like analysing the histogram of pairwise distances between

samples can be attempted.

Fig. 3 The five snapshots taken

during the clustering process of

the Gaussian data set (see

Fig. 4). In each snapshot, red

stars are centroids. Dots are the

100 previous data points, with

the 30 most recent in darker

colour
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Finally, evaluation parameters include the metrics

employed to measure performance and the relative size of

training set and test set. These do not have a strong influ-

ence on the results provided that the metrics are reasonably

related to actual performance on the field, that they are

used consistently in comparisons and that the absolute size

of training and test set are sufficient. Repeated experiments

have shown that this latter point was not an issue with the

data sets used in this study.

4.4 Experimental Results and Discussion

4.4.1 Gaussian Data Set

Figure 4 shows the outlierness index q (Eq. 14) during the

tracking of the Gaussian data set. Five snapshots, taken at

different times, are shown in Fig. 3 and labelled with

numbers corresponding to those in Fig. 4. Dots represent

the 100 most recent data points of the evolving data set.

Stars are the current centroids.

The outlierness index is high when the clustering model

does not fit well the data, indicating an inadequacy situa-

tion. Observing the snapshots in Fig. 3 and referring to the

outlierness indicator in Fig. 4 show that the model can

quickly adapt to the novelty:

Fig. 4 Degree of outlierness during the tracking of the Gaussian data

set. The numbers under the curve correspond to the five snapshots in

Fig. 3

Fig. 5 The road network for the short-term traffic forecasting study and the corresponding graph
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1. After recovering from a moderate drift with respect to

initial configuration.

2. After some outliers have appeared (note the fast

recovery of the outlierness indicator in Fig. 4).

3. Clusters are changing their relative position but the

data support stays approximately the same. Outlierness

slightly increased.

4. Concept shift. The data support changes abruptly from

the south-west to the north-east part of the graph.

Outlierness peaks.

5. Recovery from concept shift. Incoming data points are

no longer considered as outliers (Fig. 5).

Table 2 Performance

comparison on PeMS data set
Methods Index

RMSE Drop rate

SAE 50.0 0

BP-NN 90.2 0

RBF-NN 56.1 0

RLEM 20.8 .0044

Fig. 6 PeMS data set: forecasting results of RLEM (measured values

are in blue; forecasted values are in red)

Fig. 7 RLEM model accuracy w.r.t a in UK for 3 months

Fig. 8 Results of the two forecasting problems. a Scatter plot

between the target and the output (UK data set), b forecast output and

the target (Genoa data set). The regression curves are in blue
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4.4.2 PeMS

In Fig. 6, a forecasting experiment on the traffic flow data

that were used in [37] for comparing the forecasting

capabilities of the stacked autoencoder (SAE), the back-

propagation neural network (BP-NN) and the radial basis

function neural network (RBF-NN) using three days data

for training and the upcoming seven days data for testing.

The figure shows the forecasting results obtained by the

RLEM using the same training and test sets.

In Table 2, we compare forecasting performances of the

models studied in [37] with the RLEM. The performance

indexes used in the table are:

• The mean squared error (MSE) measuring the average

error of the forecasting results:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

ðti � t̂iÞ2
vuut ; i ¼ 1; . . .;N; ð22Þ

where ti is the observed traffic value, t̂i is its forecasted

value and N is the size of the test set.

• The drop rate (DR) is defined as follows:

DR ¼ 1�
Pi¼N

i¼1 fBi
N

ð23Þ

With a drop of 9 outliers corresponding to a

DR ¼ .0044, the RLEM shows the best root mean squared

error.

4.4.3 UK and Genoa Data Sets

Figure 7 shows the effect of a on the accuracy (mean

square error) of the RLEM model for the UK road network

data set. The selected range of a values are :93	 a	 1. An

appropriate value of a allows us to control the degree of

outlierness, drop unwanted outliers and improve the

accuracy rate. The values of the RMS are very small, but

this magnitude depends on the range of the data. What

carries useful information is actually the change in these

values, i.e. the relative differences between values.

Figure 8 shows the scatter plots of the traffic flow

forecasting using the UK road network data set (a), and the

one for Genoa data set (b), both with zero drop rate. The

correlation coefficients are, respectively, .98 and .99. Fig-

ure 9 shows data from the UK data set as a continuous line,

with forecast output superimposed as round dots, with a

similar representation as in Fig. 6.

Figure 10 shows the binarized mass of membership fBi
for the chunks of the test set. Where the value of fBi drops

the forecasting performance decreases, because the data are

not well explained by the model. This makes fBi a good

indicator of model reliability and forecasting performance

even during the inference phase, i.e. when targets are not

available.

5 Conclusions

In this paper, we have proposed the RLEM model for short-

term traffic flow forecasting. The model combines the

graded possibilistic c-means clustering and ensembles of

time-delayed neural networks and uses an outlierness

density index to measure the reliability of the forecaster

model.

We evaluated the performance of clustering model on

synthetic data set, for which the ground truth is available,

and then we evaluated the performance of RLEM model on

three data sets. For the PeMS data set, we compared our

results with SAE, BP NN and RBF NN models, and the

results show that the proposed method gives an accurate

forecasting of the traffic flow rates with outlier detection

and shows a good adaptation to non-stationary traffic

regimes. For the UK data sets, we show that the proper

selection of a improves the forecasting accuracy.

Fig. 9 Forecasted output and the target on the UK data set with 0

drop rate

Fig. 10 Binarized sum of membership of each chunk to all clusters

during a run on the UK data set
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Given its characteristics of outlier detection, accuracy

and robustness, RLEM can be fruitfully integrated into

real-time traffic flow management systems.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,
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