
Formal Modelling of Data Integration Systems Security Policies

Fatimah Akeel1,2 • Asieh Salehi Fathabadi1 • Federica Paci1 • Andrew Gravell1 •

Gary Wills1

Received: 27 July 2016 / Revised: 3 August 2016 / Accepted: 5 August 2016 / Published online: 23 August 2016

� The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Data Integration Systems (DIS) are concerned

with integrating data from multiple data sources to resolve

user queries. Typically, organisations providing data

sources specify security policies that impose stringent

requirements on the collection, processing, and disclosure

of personal and sensitive data. If the security policies were

not correctly enforced by the integration component of

DIS, the data is exposed to data leakage threats, e.g.

unauthorised disclosure or secondary use of the data.

SecureDIS is a framework that helps system designers to

mitigate data leakage threats during the early phases of DIS

development. SecureDIS provides designers with a set of

informal guidelines written in natural language to specify

and enforce security policies that capture confidentiality,

privacy, and trust properties. In this paper, we apply a

formal approach to model a DIS with the SecureDIS

security policies and verify the correctness and consistency

of the model. The model can be used as a basis to perform

security policies analysis or automatically generate a Java

code to enforce those policies within DIS.

Keywords Security policy � Event-B � Formal method �
Privacy � Trust � Confidentiality � RBAC � Trust model �
Access control � Modelling

1 Introduction

With the advent of cloud computing and big data analysis,

Data Integration Systems (DIS) regained popularity. DIS

retrieve data from multiple sources to resolve consumer

queries [19]. The main architecture of a DIS consists of a

mediator [22] that provides an interface between data

consumers and a set of data sources. Data consumers place

queries that are resolved by the mediator by integrating

data from different data sources.

Organisations providing data sources specify the

security policies that impose stringent requirements on the

collection, processing, and disclosure of personal and

sensitive data. Integrating and enforcing these policies is

the responsibility of the mediator during the execution of

a query placed by a data consumer. However, if the

mediator does not correctly enforce the security policies,

this can result in serious data leakage and/or privacy

violations leading to significant legal and financial

consequences.

Data leakage can occur in a DIS by violating the con-

fidentiality of data provided by data sources. For example,

the queries executed by the mediator expose data to con-

sumers that were not allowed to access that data according

to the security policies of the data sources. Moreover, data

leakage can occur by violating the privacy of the data when

a query discloses the data to a consumer that has a purpose

different from the data sources allowed purposes. However,

even when the mediator enforces security policies on the

execution of a query that discloses data only to authorised

& Fatimah Akeel

fya1g12@ecs.soton.ac.uk

Asieh Salehi Fathabadi

asf08r@ecs.soton.ac.uk

Federica Paci

f.m.paci@ecs.soton.ac.uk

Andrew Gravell

amg@ecs.soton.ac.uk

Gary Wills

gbw@ecs.soton.ac.uk

1 University of Southampton, Southampton, UK

2 King Saud University, Riyadh, Saudi Arabia

123

Data Sci. Eng. (2016) 1(3):139–148

DOI 10.1007/s41019-016-0016-y

http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-016-0016-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-016-0016-y&domain=pdf

consumers and only if the purpose of the query matches the

purpose for which the data has been collected, data leakage

threats can still materialise in a DIS.

In fact, once the data has been disclosed to data con-

sumers, it is possible that the consumer does not process

the data according to the data sources’ security policies.

The consumer may share the data with unauthorised parties

or use the data for fraudulent purposes.

Therefore, to mitigate data leakage threats in DIS, it is

important to enforce security policies that not only specify

who is entitled to access the data and for which purposes,

but also take into account the risks of disclosing this data to

data consumers. The risks of consumers not behaving

according to a security policy are usually quantified by the

degree of trust [23] placed into the consumer.

SecureDIS [4] is a novel framework to design DIS

resilient to data leakage threats. In order to mitigate data

leakage threats, SecureDIS argues that it is very important

to enforce security policies that satisfy Confidentiality,

Privacy, and Trust (CPT) properties. In particular, Secur-

eDIS helps system designers in considering data leakage

threats into the early design phases of DIS by mapping data

leakage threats to the different components of a DIS

architecture [5] and by providing a set of informal guide-

lines, written in natural language, to implement security

policies that mitigate those risks.

In this paper, we provide a formal approach to model

SecureDIS security policies enforced on the execution of a

query. The approach consists of modelling the DIS and the

SecureDIS security policies, and verifying the consistency

and correctness of the model using Event-B formal method

[1] supported by Rodin toolset [2]. The generated model can

help designers to analyse the policies or to automatically

generate a Java code to enforce the policies within DIS.

The rest of the paper is organised as follows: Section 2

provides an overview on the SecureDIS framework and the

requirements to specify and enforce security policies that

mitigate data leakage threats. Section 3 explains the mod-

elling of the security policies in Event-B. Section 4 dis-

cusses the formal verification of the model. Section 5

reviews the related work, while Section 6 concludes and

discusses future research directions.

2 An Overview of the SecureDIS Framework

SecureDIS [4] is a design framework that assists system

designers in building DIS resilient to data leakage threats.

The framework consists of three main components: (a) a

reference architecture of the DIS; (b) a list of data leakage

threats mapped to DIS architectural components; and (c) a

set of guidelines to mitigate data leakage threats. The

components are described as follows:

(a) The reference architecture it consists of the follow-

ing components, as shown in Fig. 1:

1. Data and data sources is the core component of

the DIS representing the data sources integrated,

through their data items, to answer consumers’

queries.

2. The integration approach is the approach or

method used to integrate the data.

3. The integration location is the location where

the integration process takes place to answer

data consumers’ queries.

4. Security policies combine the security policies

from different data sources. It is enforced by the

integration location during the execution of the

queries.

5. Data consumers represent the client side of the

system, where data consumers request data by

queries and where the results are returned to

consumers.

(b) The data leakage threats SecureDIS considers

different types of data leakage threats, such as

inference attacks, unauthorised access, secondary

use of information, and non-compliance to policies

[5]. Each threat is mapped to one or more of the

architectural components of the DIS to understand

its consequences and the ways to mitigate it. For

example, unauthorised disclosure of sensitive data

within the integration location to an entity either

inside or outside the DIS is caused by the lack of

employing data protection techniques.

(c) The SecureDIS guidelines Each component of the

DIS architecture is associated with a set of data

leakage mitigation guidelines. These guidelines

represent the activities proposed to system designers,

such as the use of security policies, encryption, and

logging. Each guideline covers one or more of the

CPT properties and targets one or more data leakage

threats. For example, SecureDIS suggests logging

and analysing consumers’ queries at the data

consumers component in order to identify possible

secondary use threats.

2.1 SecureDIS Guidelines and Requirements

for Security Policies

In this work, we focus on the SecureDIS guidelines related

to the specification and enforcement of security policies

achieved at the integration location. SecureDIS argues that

in order to mitigate data leakage threats, it is crucial for

security policies to include the following CPT properties:

140 F. Akeel et al.

123

Confidentiality is defined as limiting access to autho-

rised entities [17]. Data leakage threats to confidentiality

materialise when the integration location returns data items

to a consumer who was not allowed to access those items

based on the data sources’ security policies. To avoid this

threat is important to implement a Role-Based Access

Control (RBAC) policy and configure it so that each con-

sumer can access only the pieces of data necessary to

answer the query [21].

Privacy is the right of the individual to decide what

information about himself/herself should be communicated

to others and under what circumstances [27]. Data leakage

threats to privacy are caused by: disclosing data for pur-

poses different from the one for which the data has been

collected [13], by revealing Personally Identifiable Infor-

mation (PII) intentionally or unintentionally, or by expos-

ing sensitive information protected by data protection laws

and regulations. Therefore, in order to prevent data leakage

threats to privacy, the security policy should include the

following two dimensions:

– Purpose determines the reasons for data to be collected

or used. The integration location should only grant the

execution of a query if the purpose of the query specified

by the data consumer matches one of the purposes for

which the data items have been collected [13].

– Data sensitivity quantifies who should have access to

data items and how much harm would be done if the

data was disclosed. In order to protect the disclosure of

sensitive data items, a security policy similar to the one

of the Bell–LaPadula mandatory access control model

[12] should be enforced by the data integration

location. The security policy should restrict access to

data items returned by a query based on the sensitivity

of the data items (represented by a label) and the

authorisation (represented by security level) of con-

sumers to access data items of such sensitivity.

Therefore, the integration location should only grant

the execution of a query if the security level assigned to

the data consumer is higher or equal to the sensitivity

label assigned to data items returned by that query.

Trust is defined as the belief that an entity will behave in a

predictable manner by following a security policy [24].

Therefore, trust is used to quantify the risk of data leakage

threats that materialise after the execution of queries is

granted to data consumers. Once the data is disclosed to

data consumers, they could misuse the data by sharing it

with unauthorised parties or use it for purposes other than

the data provider’s intended purposes. Therefore, the

security policy should grant the execution of a query only if

the trust level of the data consumer is equal or higher to the

one specified by the data sources’ security policies.

The guidelines above are transformed into specific sys-

tem requirements shown in Table 1, where the property

column indicates the CPT property covered by the

requirement. These requirements are used to model the

security policies of the DIS.

3 Formal Modelling of Security Policies in
Event-B

This section starts by introducing the Event-B formal

method, followed by the process of modelling SecureDIS

security policies in Event-B.

3.1 Overview of the Event-B Formal Method

Formal methods have been widely used to specify systems

rigorously and to ensure the specification is correct and

consistent. In the area of computer security, formal meth-

ods provide a structured approach for modelling systems

using mathematical notations [7] that capture the security

policies, system properties, and underlying assumptions.

We propose using the Event-B formalism to capture

security policies of DIS.

Event-B is a formal method extended from B-Method

[1]. It is a state-based method that uses set theory as a main

distinctive attribute [6] to model systems for specification

and verification purposes. A system can be modelled

gradually to reflect its complexity by the use of abstraction

Fig. 1 SecureDIS architecture

Formal Modelling of Data Integration Systems Security Policies 141

123

and refinement techniques. Event-B uses mathematical

proofs to ensure the correctness of each level and the

consistency between refinement levels [6].

An Event-B model consists of two main components:

CONTEXT and MACHINE. The CONTEXT includes the

static part of the model that defines SETS, CONSTANTS,

and AXIOMS to add constraints on the sets. The

MACHINE contains the dynamic part of the model that

includes VARIABLES, INVARIANTS, and EVENTS. The

VARIABLES specify the states of the system and can be

modified by guarded EVENTS. The INVARIANTS specify

the constraints on variables, which need to be proved true

at any state of the system. The verification of the model

demonstrates consistency by ensuring the correctness

among all refinements.

The integrated toolsets used to model Event-B is Rodin

[2]. The verification process achieved by Rodin includes:

(1) model checking: by ProB [20] model checker integrated

in Rodin and (2) theorem proving: by generating and

proving proof obligations.

3.2 Modelling Security Policies

The security policies modelled in this case study are

derived from the aforementioned system requirements in

Table 1 that are focused on CPT properties. A security

policy consists of the following basic components: a sub-

ject, permission(s), and an object [8], and targets a specific

property.

The security policies that satisfy the requirements in

Table 1 are modelled through Event-B refinements. Three

levels of refinements are proposed (see Fig. 2), where each

level is represented by aCONTEXT, namelyC0, C1, andC2:

1. System abstraction it captures the process of data

consumers querying the data provided by different data

sources in addition to the security policy that grants the

execution of the query. The policy grants the execution

only if the consumer is assigned to a specific role that

provides the permission to execute the query.

2. The first refinement it extends the security policy with

the purpose for which data items can be accessed in

addition to the data sensitivity.

3. The second refinement it extends the security policy

with the trust levels that data sources should place into

data consumers for granting them the query execution.

Table 1 System requirements details

Req. no. System requirement Property Type

1 Each data consumer must be assigned to a role to access data sources items C Specification

2 Each data source specifies which roles are allowed to access the sources data items C Specification

3 A data consumer is granted access to data items returned by a query if the assigned role is an allowed role C Enforcement

4 Each data consumer specifies a purpose to access data items P Specification

5 Each data item is associated with a purpose for which it was collected P Specification

6 A data consumer is granted access to data items returned by a query, if the purpose of the query matches the

purpose for which the data items were collected

P Enforcement

7 Each data item is classified based on its sensitivity P Specification

8 Each data consumer is assigned to a security level that specifies the authorisation to access data of a certain

sensitivity

P Enforcement

9 A data consumer is granted access to data items returned by a query, if the security level of the consumer is

equal to the sensitivity level of the data items

P Enforcement

10 Each data consumer is assigned to a trust level T Specification

11 Data sources determine the acceptable data consumers trust levels T Specification

12 A data consumer is granted access to data items returned by a query, if the trust level of the consumer

matches the accepted trust level of data items

T Enforcement

Fig. 2 Security policy refinements

142 F. Akeel et al.

123

3.2.1 System Abstraction: Modelling Confidentiality

The first step is to model the data consumer queries to

different data sources and the RBAC policy governing

query execution granted to consumers. The system

abstraction includes four main sets: DATA_CONSUMER,

the set of data consumers; CONSUMER_ROLE, the set of

roles assigned to consumers; DATA_ITEM, the set of data

items associated with data sources and also returned by

queries; and DATA_SOURCE, the set of data sources

providing the data items to answer data consumers queries.

The system abstraction also includes the main VARI-

ABLES and EVENTS to capture the DIS environment, see

Fig. 3. The events are summarised as follows:

– AddDataSources to add data sources to the model.

– AddDataItemsToSources to create data items and

associate them to data sources.

– AddDataConsumers to add data consumers to themodel.

– AddRoles to add consumers’s roles to the model.

– AssignRolesToConsumers to assign consumer roles to

data consumers.

– AddConsumersQueries to create consumer queries

containing data items.

The variable belong_to is defined to associate data items

with their data sources, where multiple data items belong to

multiple data sources. The invariant that ensures this

relation is defined as follows:

inv1 : belong to 2 P1ðDATA ITEMÞ $ sources

Data consumers can access the data items coming from

data sources by creating a query. The variable query is

defined as the relationship between consumers and data

items. The following invariant shows that multiple con-

sumers can query multiple data items:

inv2 : query 2 consumers $ P1ðDATA ITEMÞ

However, the query has one main restriction that is

when a consumer (c) requests a set of data items (items),

these items need to belong to existing data sources (s). This

restriction is enforced by the following invariant:

inv3 : 8c; items:c 7! items 2 query

) ð9s:belong to
�
fitemsg

�
¼ sÞ

Thequery is created in theAddConsumersQueriesevent shown

below. The event contains a list of parameters (ANY), a col-

lection of guards (WHERE), and collection of actions (THEN).

An event can execute its action(s) only when its guard(s) are

true. In this case, the event needs to essentially check whether

data items map to sources in grd4 to satisfy inv3.

EventAddConsumersQueries

ANY

consumer; data items; source

WHERE

grd1 :consumer 2 consumers

grd2 :ðdata items 2 P1ðDATA ITEMÞÞ^
ðdata items 6¼ ;Þ
grd3 :ðsource 2 sourcesÞ
grd4 :data items 7! source 2 belong to

THEN

act1 :query :¼ query[
fconsumer 7! data itemsg

END

To specify the security policy that captures the confiden-

tiality property, we model the following components:

– The assigned invariant to denote that a data consumer

can be assigned to more than one role, which fulfils sys.

req. 1, and that a role can be assigned to one or more

consumers, as follows:

inv4 : assigned 2 consumers $ roles

– The allowed invariant to indicate the roles allowed to

access the data items. Also, allowed ensures that data

items are actually coming from existing data sources

(sys. req. 2). Both these aspects are modelled as follows:

inv5 : allowed 2 roles $ P1ðDATA ITEMÞ
inv6 : 8role; items:role 7! items 2 allowed)

ð9source:items 7! source 2 belong toÞ

– The event AddAuthorisation to add the RBAC policy

to the system by updating the variable allowed. To add

Fig. 3 System abstraction:

modelling data query and

confidentiality

Formal Modelling of Data Integration Systems Security Policies 143

123

the pair of a data item (i) and a role (r) to the allowed

access control list, the guard grd3 checks whether the

data item is associated with existing data sources, as

follows:

EventAddAuthorisation

ANY

r; i; s

WHERE

grd1 :i 2 P1ðDATA ITEMÞ
grd2 :ðs 2 sourcesÞ ^ ðsources 6¼ ;Þ
grd3 :i 7! s 2 belong to

grd4 :ðr 2 rolesÞ ^ ðroles 62 ;Þ
grd5 :r 7! i 62 allowed

THEN

act1 :allowed :¼ allowed [fr 7! ig
END

To model the enforcement of the security policy specified

earlier, we include the following:

– inv7 to model the actual access of consumers to data

items and inv8 to ensure the accessed items are

returned by a query:

inv7 : access 2 consumers $ P1ðDATA ITEMÞ
inv8 : 8c; items:c 7! items 2 access

) ðc 7! items 2 queryÞ

– The AccessData event checks whether the consumer

is assigned to a role (grd3), and the assigned role is

entitled to execute the query (grd4), to fulfil sys.

req. 3. It also ensures the data items accessed by the

consumer are returned as result of a query by the

same consumer (grd2). The event is modelled as

follows:

EventAccessData

ANY

consumer; data items;

consumer roles

WHERE

grd1 :consumer 2 consumers

grd2 :data items 2 query½fconsumerg�
grd3 :ðconsumer roles � rolesÞ^
ðassigned½fconsumerg� ¼ consumer rolesÞ
grd4 :9role:ðroles 2 consumer rolesÞ^
ðrole 7! data items 2 allowedÞ
grd5 :ðconsumer 7! data itemsÞ 62 access

THEN

act1 :access :¼ access [fconsumer 7! data itemsg
END

3.2.2 First Refinement: Modelling Privacy

The system abstraction in Sect. 3.2.1 models who can have

access to the data items returned by a query. This refine-

ment extends the previous level by adding the purpose and

data sensitivity privacy dimensions to the security policy as

discussed in Sect. 2.1.

To model the purpose, we have introduced the following

components:

– A set DATA_USE_PURPOSE is defined in the context

(C1) to include the possible data use purposes assigned

to data consumers or data items:

axm1 : partitionðDATA USE PURPOSE;fresearchg;
fcommercialg;fpersonalg;fpublicgÞ

– The variable item_purpose is defined to represent the

relationship between the P1 (DATA_ITEM) and

DATA_USE_PURPOSE:

inv9 : item purpose 2 P1ðDATA ITEMÞ
$ DATA USE PURPOSE

– The variable query_purpose is defined to represent the

relationship between the consumers and DATA_USE_

PURPOSE:

inv10 : query purpose 2 consumers

! DATA USE PURPOSE

– A new event, AddItemsPurposes, to assign several

purposes to data items (sys. req. 5). The guards and

actions of the event AddItemsPurposes are as follows:

grd1 : purpose2DATA USE PURPOSE

grd2 : i 2P1ðDATA ITEMÞ
act1 : item purpose :¼ item purpose[fi 7!purposeg

– The event AddConsumersQueries is refined to assign a

purpose to each consumer request to query the system

(sys. req. 4) by adding the following:

grd1 : purpose 2 DATA USE PURPOSE

grd2 : c 2 consumers

act1 : query purpose :¼ query purpose [fc 7! purposeg

To model the data classification, we include the following:

• A set named CLASSIFICATION is defined in the

context(C1) to contain the possible levels that can be

144 F. Akeel et al.

123

assigned to data items and data consumers. The set

includes the following labels:

– Regulated data items that are protected by data

protection regulations. For example, the items that

contain the PII, such as names, SSN, and credit card

numbers. If these items were disclosed, harm is

caused to the reputation of the data sources and may

lead to financial losses.

– Confidential data items that include sensitive infor-

mation that when disclosed, it can result in a

medium level of harm and financial losses.

– Public data items that can be disclosed to the

general public that when disclosed, it results in a

low risk to privacy and reputation.

axm2 : partitionðCLASSIFICATION;fRegulatedg;
fConfidentialg;fPublicgÞ

• A variable classified is defined to link each data item

with a CLASSIFICATION (sys. req. 7) as follows:

inv11 : classified 2 P1ðDATA ITEMÞ
9CLASSIFICATION

• The event AddDataItemsToSource is refined to classify

each data item by updating the variable classified as

follows:

grd1 : i 2 P1ðDATA ITEMÞ
grd2 : j 2 CLASSIFICATION

grd3 : i 62 domðclassifiedÞ
act1 : classified :¼ classified [fi 7! jg

• A variable security_clearance to associate a consumer

with the security clearance. It is defined as follows:

inv12 : security clearance 2 consumers

! CLASSIFICATION

• The event AddDataConsumers is refined to assign each

new data consumer an appropriate security clearance

(sys. req. 8):

grd1 : sc 2 CLASSIFICATION

grd2 : c 2 consumers

grd3 : c 7! sc 62 security clearance

act1 : security clearance :

¼ security clearance [fc 7! scg

To enforce the extended security policy, we refined the

AccessData event by including the following guards:

• A guard to enforce accessing data when the data

consumer’s purpose, during query creation, matches

one of the data item purposes (sys. req. 6):

grd6 : item purpose½fdata itemsg�
¼ query purpose½fconsumerg�

• A guard to ensure that the classification of the data

items requested for access matches the consumer’s

security clearance (sys. req. 9):

grd7 : security clearance½fconsumerg�
¼ classified½fdata itemsg�

3.2.3 Second Refinement: Modelling Trust

The second refinement extends the first to capture the trust

property. Trust is introduced into the security policy to

minimise threats that are related to secondary disclosure of

information caused by data consumers abuse of privileges.

Therefore, in this refinement we introduce the trust model

proposed in [3]. This trust model labels an entity with any

of the following levels: very good, good, neutral, bad, and

very bad, based on calculations conducted on that entity to

assess its risks. This trust model is included in the second

refinement by adding the following components:

– A set TRUST_LEVEL containing all possible trust

levels in the trust model:

axm3 : partitionðTRUST LEVEL; fvery goodg;
fgoodg; fneutralg; fbadg; fvery badgÞ

– A variable consumer_tlevel to associate each data

consumer with its trust level:

inv13 :
consumer tlevel 2 consumers ! TRUST LEVEL

– A variable item_tlevel to associate data items with their

acceptable trust levels:

inv14 :
item tlevel 2 P1ðDATA ITEMÞ $ TRUST LEVEL

– The event AddConsumers is refined to associate a data

consumer with its trust level during the addition of the

consumer to the system (sys. req. 10):

grd5 : c 2 consumers

grd6 : t 2 TRUST LEVEL

act3 : consumer tlevel ¼ consumer tlevel [fc 7! tg

– The event AddDataItemsToSources is refined to asso-

ciate data items with acceptable trust levels (sys. 487

req. 11):

Formal Modelling of Data Integration Systems Security Policies 145

123

grd5 : i 2 P1ðDATA ITEMÞ
grd6 : t 2 TRUST LEVEL

act3 : item tlevel ¼ item tlevel [fi 7! tg

To enforce the security policy related to the trust property,

we refined the AccessData event to check whether the

consumer’s trust level matches the expected trust level

associated with the data items returned by a query (sys.

req. 12). The following guard is included:

grd8 : item tlevel½fdata itemsg�
¼ consumer tlevel½fconsumerg�

4 Formal Verification of the Model

The Rodin toolset provides an environment for both modelling

and proving by theorem proving and model checking. In

addition to formal modelling, we also prove that the proposed

Event-B model is correct and consistent. Table 2 presents an

overview of the proof efforts provided by Rodin. These statis-

tics measure the proof obligations (PO) generated and dis-

charged by the Rodin prover and the POs that are interactively

proved. The complete development of theDIS security policies

results in38POs, inwhich (100 %)areprovedautomaticallyby

Rodin. The number of POs in the system abstraction that cap-

tures the confidentiality property is larger than other refine-

ments. This is due to establishing the main components of the

security policies (the subject, the permission(s), and the object),

and therefore many invariants are introduced in that layer to

guarantee the correctness of these components.

4.1 Theorem Proving

There are different POs generated by Rodin during the

development of a system [14]. As an example of a PO, we

demonstrate an ‘‘Invariant Preservation’’ PO here. The INV

PO ensures that each invariant is preserved by each event.

To prove that inv 6 , below, is preserved by AddAuthori-

sation event, ‘‘AddAuthorisation/inv6/INV’’ PO is gener-

ated and proved by Rodin.

inv6 : 8role; items:role 7! items 2 allowed)
ð9source:items 7! source 2 belong toÞ

To prove this PO, guard grd3 below is added to the

AddAuthorisation event to ensure that each role is linked to

a data item that actually belongs to a data source.

grd3 : i 7! s 2 belong to

4.2 Model Checking

ProB is an animator and model checker for Event-B. ProB

allows fully automatic exploration of Event-B models and

can be used to systematically check a specification for a

range of errors. We analysed our model using ProB to

ensure that the model is deadlock free. For each new event

added in the refinements, we have verified that it would not

introduce a deadlock using ProB.

5 Related Work

The work presented in this paper is related to two main

areas of research: security and privacy engineering and

formal analysis of security policies.

5.1 Security and Privacy Engineering

This area of research focuses on considering security and

privacy threats in the early phases of the software devel-

opment lifecycle. Two of the popular techniques that help

system designers in identifying security and privacy threats

are Microsoft’s STRIDE [25] and LINDDUN [9]. STRIDE

provides a taxonomy of the type of threats. It is the acro-

nym of: Spoofing, Tampering, Repudiation, Information

Disclosure, Denial of Service, and Elevation of Privilege.

Each of these categories of threats negates a security

property, namely confidentiality, integrity, availability,

authentication, authorisation, and non-repudiation.

STRIDE guides the system designers on the identification

of security threats through a systematic process. First, a

model of the system is created and the system components

are mapped to the six threat categories. Then, a catalogue

of threat tree patterns is used to identify specific instances

of threat categories, where the level of risk of each threat is

determined. Finally, the risk of the threat is reduced or

eliminated by introducing proper countermeasures and

defences.

LINDDUN follows a process similar to STRIDE to help

system designers in identifying privacy rather than security

threats. Similar to STRIDE, LINDDUN provides a taxon-

omy of privacy threats that violate specific privacy prop-

erties. It includes an extensive catalogue of specific threats.

For each category of threats, a list of privacy-enhancing

technologies that mitigate privacy threats are provided.

Table 2 The statistics of the model

Element name Total Auto Manual

Model 38 38 0

Confidentiality 25 25 0

Privacy 9 9 0

Trust 4 4 0

146 F. Akeel et al.

123

Similar to STRIDE and LINDDUN, SecureDIS frame-

work aims to help designer in identifying threats early in

the software development lifecycle. However, SecureDIS

focuses only on a specific category of threats, namely data

leakage threats, and a specific type of systems, namely DIS.

5.2 Formal Analysis of Security Policies

This area of research focuses on automated methods and

tools to detect and correct errors in policy specifications

before they are deployed. Several approaches have been

proposed to analyse security policies, which mainly differ

in the formalism and tools used to model and analyse the

policies. These approaches pursue different techniques,

ranging from SMT formulae to Multi-Terminal Binary

Decision Diagrams (MTBDD) and different kinds of

logics.

Margrave [11] uses MTBDDs as the underlying repre-

sentation of XACML policies. It supports two main types

of policy analysis: policy querying, which analyses access

requests evaluated to a certain decision, and change-impact

analysis, which is used to compare policies. However,

BDD-based approaches allow the analysis of policies only

against a limited range of properties.

Alternative approaches encode policies and properties as

propositional formulas and analyse them using SAT solvers

[16]. However, SAT solvers cannot handle Boolean vari-

ables and therefore are limited in the type of access control

policies that can be modelled and analysed.

Other formalisms have also been used for the analysis of

access control policies. Description logic (DL) [18] is used

to formalise access control policies and employs off-the-

shelf DL reasoners for policy analysis. The use of DL

reasoners allows modelling more expressive access control

policies, but it suffers from scalability issues.

Answer Set Programming (ASP) [10] has also being

used to model and analyse access control policies, but it

also has some limitations. ASP does not support quantifiers

and does not easily allow the expression of constraints,

such as Linear Arithmetic.

More recent approaches to policy analysis are based on

SMT [26]. The use of SMT does not only enable wider

coverage of access control policies compared to the anal-

ysis tools mentioned above but also improves the

performance.

Similar to our work, other works have applied Event-B

to model and analyse access control policies [6, 15]. One of

the main advantages of using Event-B to model and anal-

yse security policies is that it is possible to model not only

the access control policies but also the system where the

policies are going to be deployed. Another advantage is the

expressiveness of the Event-B formalism that allows

modelling fine-grained policies. Last, but not least, the

Rodin tool that supports the Event-B formalism allows

Java code generation from the formal model of the system

and its policies.

6 Conclusion and Future Work

SecureDIS is a framework that helps system designers to

mitigate data leakage threats during the early phases of the

DIS development. SecureDIS provides designers with a set

of informal guidelines written in natural language to

specify and enforce security policies that capture Confi-

dentiality, Privacy, and Trust (CPT) properties.

In this paper, we applied a formal approach to model the

SecureDIS system and its security policies and verify the

correctness and consistency of the model. We used Event-

B formal method to formalise the requirements on the

specific policy elements that satisfy the CPT properties.

These elements were gradually built throughout the model

by utilising Event-B abstraction and refinements.

Modelling security policies that capture the SecureDIS

main properties is useful to demonstrate how access to data

can be controlled by several conditions, as explained in

Sect. 3: the allowed role specified as invariant 5 and 6, the

allowed purpose specified as guard 6 of the AccessData

Event, and the allowed trust level specified as guard 7 of the

AccessData Event. This helps in mitigating the threats of

data leakage by minimising data exposure due to the incor-

rect specification of the security policies, such as unautho-

rised access, non-compliance to security policy, and the

misuse of data by authorised consumers.

We are planning to extend this work in several directions.

A first direction is to model an instance of a real DIS along

with its security policies and check the correctness of those

policies before deployment. Another direction is to use the

correct model of the security policies to automatically gen-

erate the code for their enforcement using the Rodin tool.

Acknowledgments The work reported in this paper is funded by

King Saud University, Riyadh, Saudi Arabia.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creative

commons.org/licenses/by/4.0/), which permits unrestricted use, distri-

bution, and reproduction in anymedium, provided you give appropriate

credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.

References

1. Abrial JR (2010) Modeling in Event-B: system and software

engineering. Cambridge University Press, Cambridge

2. Abrial JR, Butler M, Hallerstede S, Voisin L (2006) An open

extensible tool environment for Event-B. Formal methods and

software engineering. Lect Notes Comput Sci 4260:588–605

Formal Modelling of Data Integration Systems Security Policies 147

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

3. Agudo I, Fernandez-Gago C, Lopez J (2010) A scale based trust

model for multi-context environments. Comput Math Appl

60(2):209–216

4. Akeel F, Wills G, Gravell A (2013) SecureDIS: a framework for

secure data integration systems. In: The 8th international con-

ference for internet technology and secured transactions,

pp 588–593

5. Akeel FY, Wills GB, Gravell AM (2014) Exposing data leakage

in Data Integration Systems. In: 9th International conference for

internet technology and secured transactions, ICITST 2014,

pp 420–425

6. Butler M (2013) Mastering system analysis and design through

abstraction and refinement. In: Broy M, Peled D, Kalus G (eds)

Engineering dependable software systems. IOS Press, pp 49–78

7. Butler MJ, Leuschel M, Presti SL, Turner P (2004) The use of

formal methods in the analysis of trust (position paper). Trust

Manag Lect Notes Comput Sci 2995:333–339

8. Crampton J, Huth M (2010) Towards an access-control frame-

work for countering insider threats. Adv Inf Secur 49:173–195

9. Deng M, Wuyts K, Scandariato R, Preneel B, Joosen W (2011) A

privacy threat analysis framework: supporting the elicitation and

fulfillment of privacy requirements. Requir Eng 16(1):3–32

10. Ramli CDPK, Nielson HR, Nielson F (2013) XACML 3.0 in

Answer Set Programming. In: Logic-based program synthesis and

transformation. Springer, Berlin, pp 89–105

11. Fisler K, Krishnamurthi S, Meyerovich LA, Tschantz MC (2005)

Verification and change-impact analysis of access-control poli-

cies. In: Proceedings of the 27th international conference on

software engineering, pp 196–205

12. Gollmann D (1999) Computer security. Wiley, New York

13. Guarda P, Zannone N (2009) Towards the development of pri-

vacy-aware systems. Inf Softw Technol 51(2):337–350

14. Hallerstede S (2011) On the purpose of Event-B proof obliga-

tions. Form Asp Comput 23(1):133–150

15. Hoang TS, Basin D, Abrial JR (2009) Specifying access control

in Event-B. Technical report, vol 624

16. Hughes G, Bultan T (2008) Automated verification of access

control policies using a SAT solver. Int J Softw Tools Technol

Transf 10(6):503–520

17. ISO: ISO/IEC27000 (2014) Information technology: security

techniques: information security management systems: overview

and vocabulary

18. Kolovski V, Hendler J, Parsia B (2007) Analyzing web access

control policies. In: Proceedings of the 16th international con-

ference on World Wide Web—WWW ’07, p 677

19. Lenzerini M (2002) Data integration: a theoretical perspective.

In: Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART

symposium on principles of database systems. Madison, Wis-

consin, USA, pp 233–246

20. Leuschel M, Butler M (2003) The ProB animator and model

checker for B - A tool description. Int Symp Form Methods Eur

2805:855–874

21. McCallister E, Grance T, Scarfone K (2010) Guide to protect the

confidentiality of personal identifiable information (PII). NIST

Special Publication (800-122), p 59

22. Nachouki G, Quafafou M (2011) MashUp web data sources and

services based on semantic queries. Inf Syst 36(2):151–173

23. Paci F, Fernandez-Gago C, Moyano F (2013) Detecting insider

threats: a trust-aware framework. In: 2013 Eighth international

conference on availability, reliability and security (ARES),

pp 121–130

24. Ross R, Oren JC, Mcevilley M (2014) Systems security engi-

neering an integrated approach to building trustworthy resilient

systems. NIST Special Publication (800-160), p 121

25. Torr P (2005) Demystifying the threat modeling process. IEEE

Secur Priv 3(5):66–70

26. Turkmen F, Den Hartog J, Ranise S, Zannone N (2015) Analysis

of XACML policies with SMT. Lecture notes in computer sci-

ence (including subseries lecture notes in artificial intelligence

and lecture notes in bioinformatics), vol 9036, pp 115–134

27. Westin A (1970) Privacy and freedom. Bodley Head, London

148 F. Akeel et al.

123

	Formal Modelling of Data Integration Systems Security Policies
	Abstract
	Introduction
	An Overview of the SecureDIS Framework
	SecureDIS Guidelines and Requirements for Security Policies

	Formal Modelling of Security Policies in Event-B
	Overview of the Event-B Formal Method
	Modelling Security Policies
	System Abstraction: Modelling Confidentiality
	First Refinement: Modelling Privacy
	Second Refinement: Modelling Trust

	Formal Verification of the Model
	Theorem Proving
	Model Checking

	Related Work
	Security and Privacy Engineering
	Formal Analysis of Security Policies

	Conclusion and Future Work
	Acknowledgments
	References

