
Data Sci. Eng. (2016) 1(2):101–113
DOI 10.1007/s41019-016-0012-2

INVITED PAPER

UniClip: Leveraging Web Search for Universal Clipping
of Articles on Mobile

Ruihua Song1 · Kazutoshi Umemoto2 · Jian-Yun Nie3 · Xing Xie1 ·
Katsumi Tanaka2 · Yong Rui1

Received: 26 April 2016 / Accepted: 29 June 2016 / Published online: 18 July 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract In this paper we address the difficulty of clipping
articles from mobile apps. We propose a service called Uni-
Clip that allows a user to save the full content of an article
by snapping a screenshot part of it. UniClip leverages a huge
amount of indexed web data to mine the article by starting
with a snapped screenshot. We propose approaches to solve
three challenges: (1) how to represent a screenshot; (2) how
to formulate effective queries for retrieving a full article; and
(3) how to rank the best URL at the top from multiple search
result lists. Experimental results indicate that our approach is
effective in achieving as high an F1 measure as 0.905, which
outperforms the best of three baseline methods by 18 points.

Keywords Universal clipping · Search · Screenshots ·
Article clipping · Mobile apps

B Ruihua Song
rsong@microsoft.com

Kazutoshi Umemoto
umemoto@dl.kuis.kyoto-u.ac.jp

Jian-Yun Nie
nie@iro.umontreal.ca

Xing Xie
xingx@microsoft.com

Katsumi Tanaka
tanaka@dl.kuis.kyoto-u.ac.jp

Yong Rui
yongrui@microsoft.com

1 Microsoft Research Asia, Beijing, China

2 Kyoto University, Kyoto, Japan

3 University of Montreal, Montreal, Canada

1 Introduction

According to a report from the Internet Trends Conference
held in May 2014,1 the use of mobile devices (including
smartphones and tablets) has surpassed PCs since 2010 and
continues to grow (Meeker, 2014). In 2013, the number of
smartphones shipped was more than three times as many
as that of PCs. This report also shows that the fraction of
page views via mobile devices has been rapidly increas-
ing year by year (14% in 2013 to 25% in 2014). Different
from PCs, the primary method of reading on mobile devices
is not browser-centered, but application-driven. Informa-
tion providers develop their own applications or apps. Users
install apps for different purposes. It is common that a user
uses several apps to access information. However, what a
user reads or likes is likely to be scattered in different apps or
buried by never ending updating streams. There are increas-
ing demands for developing effective and user-friendly tools
to save articles in one place from different apps.

Some note-taking apps, like OneNote, EverNote, Pocket,
and EverClip2, have been developed to solve the problem.
These solutions are far from satisfactory for a number of
reasons. Note-taking apps usually depend on the “Share”,
“Copy”, or “Copy the link” interfaces to receive content
from other apps. However, the decisions on whether to sup-
port sharing with an app or what to share or copy are fully
controlled by app developers. It is difficult for note-taking
apps to facilitate partnerships with all reading related apps.
For example, Facebook Paper and Klout do not support any
note-taking apps. They prefer sharing articles with social net-
works.More issueswith the current systemswill be discussed
in Sect. 2.1.

1 http://www.kpcb.com/internet-trends.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-016-0012-2&domain=pdf
http://orcid.org/0000-0001-6036-9035
http://www.kpcb.com/internet-trends


102 R. Song et al.

In this paper, rather than getting support from all read-
ing apps, we propose taking a screenshot whenever a user
is interested in an article and leveraging search and the
huge amount of Web data available to discover the full
article from the Web. We call the framework UniClip (a
shorthand for Universal Clipping)2 as it is a universal way
compared to the existing note-taking apps (such as OneNote,
EverNote, and Pocket) that work with only partner reading
apps.

We propose approaches to solve three challenges in our
search by screenshots task: (1) how to represent a screenshot,
(2) how to formulate effective queries to retrieve the article,
and (3) how to aggregate search results of the queries. We
create benchmarks to evaluate the methods and baselines.
Experimental results indicate that our proposed methods are
effective in discovering the URL of full article. Our best
method achieves as high as 90.5% in terms of F1 measure
and outperforms baseline keyword extraction methods by
over 18 points. It is even better than competiting commercial
app Sight (launched in July 2014 after we implemented the
prototype of UniClip. It cannot be used now as the service
was shutdown in June 2015) by over 8% in precision and
14% in recall.

This paper has three main contributions:

– We formulate a new research problem of search by
screenshots for augmenting a part of articles on a screen-
shot by search, which can be used for universal clipping
from mobile apps;

– We propose a general framework to solve the problem.
Specifically, we propose methods to segment a screen-
shot into semantic blocks, labeling title and body blocks,
formulating effective queries, and aggregating search
results.

– We create benchmarks and choose measures to evaluate
effectiveness. Experimental results show that our pro-
posed methods are effective in discovering target URLs.
They achieve large improvements over our baselines and
the competitor.

The remaining parts of this paper are organized as follows:
we review existing related work in both industry and acad-
emia in Sect. 2. In Sect. 3, we first formulate the core problem
of UniClip and overview a general framework to solve the
problem. Then we describe our proposed approaches for
implementing the framework in Sect. 4. Section 5 reports
our built benchmarks and conducted experiments and results.
Finally, we conclude the paper in Sect. 6 and discuss future
work.

2 A demo can be visited at http://uniclip.azurewebsites.net/Uniclip.

2 Related Work

2.1 Related Work from Industry

There are many popular mobile apps that are related to read-
ing articles or taking notes. Popular reading apps include
Flipboard, Zite, Klout, Facebook Paper, and NYTimes, and
note-taking apps include OneNote, EverNote, Pocket, and
EverClip2. Based on our experience using these apps, we
summarize that the existing ways to save an article are as
follows:

(1) Sharing them to a note-taking app: Usually reading apps
provide sharing to social networks and/or supported apps.
For example, Zite is a popular personalized news reader.
When a user is reading an article in Zite, he/she can touch
the ”Share” button to share articles to Pocket, Evernote,
or others. The issue is that it is difficult to facilitate part-
nerships with all related apps. For example, Klout and
Facebook Paper do not support any note-taking apps.
They provide sharing only with social networks.

(2) Copying and pasting: It is difficult if not impossible to
select the whole text of an article. An alternative way is to
“Copy” or “Copy the link”. Similar to sharing the article
to other apps, many apps provide “Copy” or “Copy the
link” options in the sharing menu. The issue is that what
content to be copied is fully controlled by app develop-
ers. For example, in Zite, clicking on the “Copy” button
does not copy an article, but the URL of the article. The
URL might expire when users would like to read it later.
EverClip2 can help get theweb page if the content in clip-
board is only a link. However, it cannot deal with cases
in which a bookmark of an article (including title, link,
image, etc.) is copied from some apps, such as TouTiao
(the most popular news aggregation app in China) does.

(3) Sharing them to an email: To alleviate the not-supported
issue, some note-taking apps provide a way to add notes
by sending an email. For example, OneNote provides
me@onenote.com. Users can share an article to the email
in an app. The OneNote server will identify a user’s
account by the email sender and add a note to the user’s
notebook. The method seems universal; however, the
apps control what content is sent. And thus the sent con-
tent is usually a link with a title and short description.
Again, the link may expire in the future. It also troubles
users in typing users’ account emails because the default
emailsmaybeApple accounts that are not users’ accounts
for OneNote or Pocket.

Compared to the above ways, our proposed UniClip service
has three advantages: (1) Straightforwardness: the screenshot
shows what a user reads and is interested in. (2) Effortless-
ness: it takes only one or two seconds to take a screenshot.

123

http://uniclip.azurewebsites.net/Uniclip


UniClip: Leveraging Web Search for Universal Clipping of Articles on Mobile 103

No further step is required. (3) Universality: apps can control
what to share but users can take a screenshot of whatever they
are reading anytime in any app.

Sight (sight.sc) is the most related app to UniClip. It was
launched in July 2014, when we implemented our ideas into
a demonstration system. Similar to our ideas, Sight allows
users to take a snap of what they are reading on a mobile
phone and then tries to automatically return an extracted arti-
cle. As it is a commercial app, no details are available on how
they mine the corresponding article. Therefore, to the best of
our knowledge, we are the first to discuss the problem of
search by screenshots in academia and propose solutions in
detail. We also compare our approaches with Sight on effec-
tiveness in Sect. 5.

2.2 Related Work from Academia

2.2.1 Text Reuse

Text reuse is defined as the activity whereby pre-existing
written material is reused during the creation of a new text,
either intentionally or un-intentionally. Not all text reuse is
deemed a cardinal sin. For example, it is perfectly acceptable
that texts from a news agency are re-used by journalists in the
creation of newspaper articles (see, e.g., [12]), as long as the
journalist or the organization they write for are subscribers
of the news agency. Actually in creating benchmarks and
labelingminedURLs for ourwork,we often find some copies
with exactly the same content but different titles, or some
articles having similar content but paraphrased or in different
length.

Plagiarism, as an example of text reuse, has receivedmuch
attention from both the academic and commercial commu-
nities [11]. Early research works (like [16,22,31,36])were
motivated to detect ”unusual” similarity between program-
ming assignments handed in by students. Later more studies
(like [5,9,27]) aimed to detect plagiarism between nat-
ural language texts, in particular verbatim cut-and-paste
from Web based sources and the same content but para-
phrased. Some services on plagiarism detection, such as
plagiarism.org, turnitin.com, and contentguard.com, are also
available online.

Near-duplicate detection is devoted to finding duplicate
pages or documents. Different from detecting plagiarism,
the technology is used to track web evolution or improve
search quality. The state-of-the-art solution is considered
as the shingling algorithm in [6] and the random pro-
jection based approach in [8]. Moreover, lots of adaptive
approaches were proposed to satisfy various requirements,
such as [9,10,15,20,26].

Our goal is different from plagiarism detection and near-
duplicate detection. We would like to find not similar or
relevant but exactly the same full article by a part of an arti-

cle shown in a screenshot. It is possible to use text similarity
measurements proposed in plagiarism detection and near-
duplicate detection to calculate the similarity between the
captured screenshot and the discovered document from the
web. However, we decide not to do that for performance con-
siderations. It takes time to download candidate documents
for calculating similarity. To be more efficient, we leverage
search and make use of voting from multiple search result
lists to rank the best matched URL at the top.

2.2.2 Long Queries

As the text on a screenshot is usually longer than an ordinary
query, our work is related to three areas of long queries.

First, some studies aim to better understand a natural lan-
guage long query, like the description of a query in TREC
datasets, because such a query is not effective or efficient
in search. Kumaran and Allan [23] use Mutual Information
(MI) to select ten sub-queries and present them to the user to
choose from. Bendersky and Croft [4] propose automatically
finding key concepts in long queries. Some other works study
query quality predictors and automatic selection of reduced
queries [2,3,24]. For example, Kumaran and Carvalho [24]
apply learning to rank framework in reducing long queries
using query quality predictors, such as Query Clarity [13]
and Query Scope [19].

Second, when a query is as long as a document, previ-
ous works define it as a separate problem called query by
document [35]. The goal is to retrieve similar documents
from a large-scale text corpus. Most existing indexing tech-
niques have difficulty dealing with the document query due
to high dimensionality and sparse representation of a doc-
ument query. Weng et al. [35] propose a two-level retrieval
solution. A document is decomposed to a compact vector and
a few document specific keywords by a dimension reduc-
tion approach. They adopt locality sensitive hashing (LSH)
to index the compact vectors for quickly finding a set of
related documents, and re-rank documents by document spe-
cific words.

Third, phrase extraction is used to extract some repre-
sentative phrases from a document, and then to find related
documents containing these representative phrases. Some
works [28,29] utilize statistical information to identify suit-
able phrases; someworks [18] also leverage the relationships
between phrases; some works [33,34] apply learning algo-
rithms in the extraction process. Mihalcea and Tarau [30]
propose TextRank, a graph-based ranking model, for text
processing such as keyword and sentence extraction. In key-
word extraction setting, this algorithm takes as input a graph
whose nodes correspond to words appearing in a target docu-
ment. When two words co-occur within a window of a given
widthW , an edge is added between the nodes of these words.
This algorithm then calculates PageRank scores of nodes

123



104 R. Song et al.

for this graph and outputs N nodes having high scores as
extracted keywords.

The objective of the above studies is to find similar or rel-
evant documents, and thus not all words in the long query
are required to appear in the target document. We are dif-
ferent because we aim to find exactly the same document
corresponding to the screenshot query. Therefore, any word
should appear in the document, including a stop-word, which
is usually filtered out in the approaches to long queries. In
this paper, we implement keyword extraction methods with
different term weights using TF-IDF [7], BM25 [32], and
TextRank[30] as our baselines. Experimental results confirm
that our proposed methods are much better.

2.2.3 Search by a Photo

Image search has been widely researched. Lei and Yong con-
duct a great surveyon image search over the last 20years [40].
They divide the history into several stages: (1) Text-based
stage (1970–1990), (2) Content-based stage (1990–2000),
and (3) Web-based stage (2000–present). Our proposed
framework takes a screenshot image as an input, but wemake
use of text recognized from the image, rather than the image
itself, to compose queries. Moreover, different from image
search whose target is usually an image, our work targets a
web page containing the article.

Some works [17,37] are related to ours as they propose a
retrieval system that receives multimodal queries comprising
images and optional text (input by users) and returns images
similar to input queries. Yeh et al. [39] utilize images cap-
tured by users’ mobile devices to suggest location-oriented
information to them.Ourwork is different becauseweneither
use the image as a direct query nor search images as results.
We leverage OCR technologies to recognize text from the
image and automatically compose text queries to retrieve
documents in text.

The most relevant work to ours is done by Yeh et al.
[38].They develop a system called Sikuli that enables users
to search a large collection of online documentation about
GUI elements using screenshots. Sikuli has a database of
102 popular computer books that contain about 50k screen-
shots. Yeh et al. propose using visual features, surrounding
text, and embedded text by OCR for indexing screenshots
in the database. At the runtime, a user can specify an inter-
ested GUI element by dragging out a rectangle around it
and then search it in Sikuli. Their work is similar to ours
in using a screenshot for search, but they use the image
because users may not know the standard names of GUI
elements. Different form this purpose, we use the text on
a screenshot to save users efforts in copy-and-paste. Differ-
ent from our leveraged full text index, they index a small
domain of books as well as screenshots. Thus their pro-
posed visual based approaches are not applicable to our

addressed problem because users may search articles in any
domain.

3 System Overview

Our proposed UniClip framework allows users to save an
article fromany appwith only one action, i.e., taking a screen-
shot. How UniClip works to save the full article based on the
screenshot is shown in Fig. 1. First, a module called screen-
shot representation will process the input image to obtain
text and analyze where the title and body are, if any. Then,
a module called query formulation can intelligently com-
pose queries that can potentially identify the article from the
web and send the queries to a search engine. Next, a mod-
ule called result aggregation can discover a URL containing
the corresponding full article by aggregating the returned
search result lists. Finally, we apply an existing main arti-
cle extraction module [41] to extract the cleaned full article
from the URL and deliver the adaptively rendered article to
users.

The core problem with UniClip is search by screenshots.
We formulate input/output of the problem as follows:

Input: it is a screenshot of an article that a user is read-
ing via his/her mobile device, where an article is a written
work of a specific topic. It can be any part of the whole
article (e.g., the beginning part including the title or the
middle part containing a few paragraphs). Even a screen-
shot in which some (but not all) words are partly displayed
(because the lines are wider than the screen of device) is
also acceptable. A screenshot is regarded as invalid input if it
(a) consists of multiple articles (e.g., a screenshot of search
results) or (b) does not include any text useful for identify-
ing the article (e.g., a screenshot containing advertisements
only).

Output: Given an article’s screenshot as input, we aim
to output a URL of exactly the same article. Note that some
articles are specialized for onlymobile apps and are not avail-
able on the Web. In such cases, ideal output should be empty
since outputting false-positive URLs may frustrate users. As
the first work, we do not discuss how to decide not to return
any URL in this paper.

Our main work is done to solve three challenges of search
by screenshots: how to represent a screenshot, how to com-
pose effective queries, and how to discover the best matched
URL from search result lists.

4 Our Approach

In this section, we describe detailed approaches of the three
main modules.

123



UniClip: Leveraging Web Search for Universal Clipping of Articles on Mobile 105

Fig. 1 How UniClip works for users

4.1 Screenshot Segmentation

Given a screenshot, we first apply Optical Character Recog-
nition (OCR) technology [21] to identify text from the
screenshot. A recognition result returned by our OCR engine
consists of the detected language and a list of lines and their
bounding boxes; a line contains a list of words and their
bounding boxes; a word also has its bounding box and recog-
nition confidence ∈ [0, 1]. Note that our approach is also
applicable to other OCR engines if their recognition results
contain information about lines.

4.1.1 Block Segmentation

To better represent a screenshot, we propose merging lines
into blocks. One line can be a block, although the unit is too
small to compose discriminative (usually long) queries. Take
the screenshot shown in Fig. 1 as an example. The fifth line
of the article title contains only the words “Loop”, which is
too short to retrieve the article from theWeb. In the example,
we hope to merge lines of a title into one block. We pro-
pose a two-phase segmentation method, whose output for

Algorithm 1 BuildSegments(L)

Input: a sequence of lines L appearing in a recognition result
Output: a sequence of candidate segments Scand
1: Scand ← ()

2: Lcur ← pick the first element from L; S ← (Lcur)

3: for each line Lnew in L do
4: if Lcur and Lnew look similar and are located closely then
5: append Lnew to the end of S
6: else
7: append S to the end of Scand; S ← (Lnew)

8: Lcur ← Lnew
9: append Lnew to the end of S
10: return Scand

the example is shown in Fig. 1 (each block is marked by a
rectangle).

In the first phase, we first build candidate segments by iter-
ativelymerging adjacent similar lines. The detailed process is
shown inAlgorithm1.At the fourth line in this algorithm, two
lines are considered similar if they have similar heights, the
distance is less than a threshold, and they have the same align-
ment. Take the screenshot in Fig. 1 as an example. The fifth
line “Loop” is similar to the former line “Ferguson Reveals
a Twitter” because they have similar heights, are close to
each other and both are left aligned, so they are merged. The

123



106 R. Song et al.

Algorithm 2 RefineSegments(Scand)

Input: a sequence of candidate segments Scand built by Algorithm 1
Output: a sequence of refined segments S
1: S ← (); jfrom ← 0
2: while ifrom < Length(Scand) do
3: S ← ()

4: jto ← last index of segments similar to Scand[ jfrom]
5: for j = jfrom to jto do
6: append each of lines in Scand[ j] to the end of S
7: append S to the end of S
8: jfrom ← jto + 1
9: return S

sixth author line is smaller than the fifth line and they are far
from each other. Thus the sixth line will be added to a new
segment.

In the second phase, we refine the previous segmentation
by merging adjacent candidate segments that share similar
structures. This phrase is required because a paragraph is
sometimes over-segmented into several candidate segments
in thefirst phase due to the difference in height of the two lines
on the boundary. We address this issue by considering fea-
tures about the whole segment, e.g., font-size approximated
by the average height of lines,whenfinding two segments that
should be merged. Algorithm 2 shows the detailed process
of the second phase. At the fourth line in this algorithm, two
candidate segments are considered similar if (1) they share
the same alignment, (2) they have similar font-size, or (3) the
space between them is less than a threshold.

4.1.2 Block Attribute Prediction

Not all blocks are equally important in retrieving the full
article. Article title block and body blocks are important as
they are parts of the article. Some other blocks, such as ads
or toolbars, are useless or even harmful for later modules. In
this paper, we apply the Conditional Random Field (CRF)
[25] method to label three block attributes, i.e., title, body,
and others.

We extract nine features for each line as shown in Table 1.
Three features are related to title, e.g., the font size (esti-
mated by the height of bounding box) of a line as a title is
usually in a larger font than body paragraphs. Three features
are related to body, e.g., the presence of punctuations. The
other three features are related to consistency between two
adjacent lines as the lines in similar styles are likely to have
the same attribute label. We discretize feature values using
certain thresholds as was done in [1], which makes the fea-
tures more tractable by CRF. All bins for discretization are
also shown in Table 1.

Once all lines in a block are labeled by our CRF model,
we determine the attribute of the block by majority voting.
If more than one attribute gets the most votes, we use the
attribute that appears earlier as the block attribute. An exam-

Algorithm 3 GenerateQueries(B, nmin, nmax)

Input: a block B from which queries are generated
min. nmin and max. nmax length of generated queries in words

Output: a sequence of phrase queries Q
1: Q ← (); t ← cleaned text in B
2: while Length(t) > 0 do
3: s ← select at most nmax words from t
4: t ← t[Length(s),Length(t) − 1]
5: if Length(s) ≥ nmin then
6: append Quote(s) to the end of Q
7: return Q

ple of an attribute prediction result is shown in Fig. 1. The
rectangles mark blocks. Article title and two paragraphs are
correctly predicted. The caption of article image is predicted
as “Body”. It is acceptable as it is a part of the article. Other
blocks are correctly predicted as “Other” attributes.

4.2 Query Formulation

A straightforward idea for query formulation may be extract-
ing keywords from the screenshot text; however, given that
our objective is to retrieve exactly the same article, useful
information will be lost even if some words are removed or
sequence information is ignored. Thus, we propose formu-
lating phrase queries from blocks as a simple method and an
advanced method that applies different strategies based on
block attributes.

4.2.1 Simple Method

We propose using quoted phrase queries, i.e., enclosed
continuously occurred terms with double quotation marks
around them. Search engines perform the exact-match algo-
rithm for such queries. Thus the queries can make use of
all words (including stop words) in an article as well as
other contextual information like term order and proximity.
In experiments, we find that a query is not discriminative
enough if it is too short. For example, a single word query
most likely cannot represent the article and retrieve noisy
documents. Thus, we restrict the minimum length of for-
mulated queries to be σqmin. We also restrict the length of
formulated queries not to be more than σqmax because search
engines have their internal limitations on query length due to
efficiency and do not perform the exact-match for queries that
are too long. How to generate a simple query is described in
Algorithm 3. As Fig. 2b shows, simple queries are composed
within each block of the example screenshot.

We investigate the effect of quoted phrase queries in dif-
ferent lengths on Bing Search and empirically set the optimal
values as σqmax = 14 and σqmin = 4. Take the screenshot in
Fig. 1 as an example. From the title block, the simple query
“Ferguson Reveals a Twitter Loop” is formulated. From the

123



UniClip: Leveraging Web Search for Universal Clipping of Articles on Mobile 107

Table 1 List of features used
for estimating attribute of a
given line

Group Name Description Bins

Title FontSize Font size of a line approximated by
the mean height of words in the
line

Small, medium,
large

Confidence Recognition confidence averaged
by words in a line

Low, middle,
high

VerticalPosition Vertical appearance position of a
line

Beginning,
middle, ending

Body WordCount Number of words appearing in a
line

Below, 2, 3, 4, 5,
above 5

Punctuation Presence of punctuations in a line
(for each punctuation including
“,”, “.”, “?”, and all of them)

True, false

LetterCase Presence of a certain letter case in
line (for each style such as lower/
upper-case and only-number)

True, false

Consistency Alignment Coherence of (any of left-, right-,
and center-) alignment of
successive two lines

N/A, mismatch,
match

Distance Distance of the top position of the
current line from the bottom
position of the previous line

N/A, close, near,
far

Height Difference of the height of
successive two lines

N/A, similar,
different

Fig. 2 Contrast of two query
formulation methods. Given a
segmentation result shown in the
left, the Simple method
formulates simple queries from
each segment while the Hybrid
method employs hybrid query
formulation strategies in
accordance with the segment
attribute. a Attribute blocks, b
Simple method, c Hybrid
method

(a) (b) (c)

last body block, two simple queries are formulated because
the number of words in this block is larger than σqmax. The
first query contains the first 14 words, whereas the second
query contains the remaining nine words. No simple query
is generated from the block of “Top Stories” because the
number of words is less than σqmin.

4.2.2 Hybrid Method

Simple queries from body blocks sometimes are not so dis-
criminative. For example, in Fig. 3a, the first long paragraph
quotes a review fromHollywood Report and the second long

paragraph quotes a review from The Wrap. The queries that
come from such a paragraph will retrieve the original reports
or some other articles that use the quote too. Fortunately
we find that it is less likely that two paragraphs from two
different articles are all the same. Thus, we propose compos-
ing Compound queries rather than Simple queries for body
blocks.

To formulate compound queries, we first formulate half-
length simple queries by Algorithm 3, whose length is
between σqmax/2 and σqmin/2, from each body block Bi as
their component query set Ci . For example, from the second
body block in Fig. 1, two component queries are generated:

123



108 R. Song et al.

Fig. 3 Examples of
screenshots. a On hybrid
method, b On query weighting

“It was the best of Twitter It” and “was the worst of Twitter”
given σqmax = 14 and σqmin = 4. We then formulate com-
pound queries by (1) selecting two body blocks containing
anyunused component query and (2) combining a component
query in the first block with a space character and another
component query from the second one. For example, in the
case shown in Fig. 1, two component queries, “JAMES C
BEST JR THE NEW YORK TIMES” from the first body
block and “It was the best of Twitter It” from the second, are
combined into one compound query, i.e., “JAMES C BEST
JR THE NEW YORK TIMES” “It was the best of Twitter It”.
When there remains no component query in one of the two
body blocks, we select another body block according to the
occurring order. Note that if only some component queries
from one body block are left, we combine component queries
from the single block

Overall, we adopt a hybrid approachwhere different query
formulation strategies are used depending on the attributes
of blocks. As shown in Fig. 2c, for body blocks, we use
compound queries, whereas, for title and other blocks, we
still use simple queries. The reason is that it is risky to com-
bine a high quality block with a low quality block. A title
block usually generates high quality queries, which are usu-
ally discriminative enough to identify the article, whereas
most “others” blocks generate low quality queries. But we
may lose useful queries if ignoring “others” blocks because

some of them, such as a body block misclassified as others,
are useful. Therefore, we apply the simple query formulation
for title and others.

4.3 Result Aggregation

Once queries Q are formulated, we retrieve the top-K search
results by issuing each query to a Web search engine. In our
experiments, we use Bing and set K as 8. We observe that
good queries often return overlapped results and the target
URL can be ranked high. Bad queries return diverse search
results. Thus it is promising to useBordaCount [14] to aggre-
gate the lists and rank the target URL at the top:

Evidence (q, k) = 1√
k
, (1)

where k ∈ [1, K ] is the rank of a retrieved result for a query
q.

Furthermore, if attributes are available, queries composed
from title or body blocks are more likely to be good queries
than those from other blocks. For example, in Fig. 3b, only
the line “Single ?MeetNYC’s 22HottestBachelors” is useful
while others are irrelevant to our seeking article. Therefore,
we integrate query weights into the Borda Count formula as
follows:

123



UniClip: Leveraging Web Search for Universal Clipping of Articles on Mobile 109

Table 2 Comparison of
methods on attribute prediction

Method Title Boby

Precision/recall F1 Precision/recall F1

Heuristic (micro) 0.199/0.784 0.317 0.830/0.726 0.775

CRF (micro) 0.830/0.803 0.816 0.982/0.914 0.947

Heuristic (macro) 0.340/0.912 0.327 0.754/0.780 0.702

CRF (macro) 0.928/0.919 0.868 0.967/0.880 0.893

The bold is used to highlight better results in terms of different measures. For example, in terms of micro-F1
on title field, CRF performs better than Heuristic. In terms of macro-F1 on title field, CRF also outperforms
Heuristic.

Evidence(q, k) = w(q)√
k

, (2)

where w(q) is the weight for the attribute block from which
the query q is formulated. To distinguish from the Borda
Count aggregation, we call it weighted Borda Count aggre-
gation. We use the maximum likelihood estimator for each
attribute using a training dataset. The weights of title, body,
and others are set as 0.852, 0.778, and 0.252 in our experi-
ments.

5 Experiments

5.1 Experimental Setup

We create two datasets. One is for training our CRF model
and tuning parameters and the other is for testing. We collect
100 screenshots for training inMay2014 and 200 screenshots
for testing inAugust 2014. The screenshots are captured from
different mobile apps (including news apps like NYTimes,
aggregated news apps like Facebook Paper, and other popu-
lar apps like Etsy) and mobile Web browsers. As the Web is
changing, the corresponding pages of some screenshots had
expired when we were conducting experiments in November
2014. As a result of filtering out those screenshots, 98 screen-
shots remain in the training dataset and 189 screenshots in
the testing dataset.

The screenshots in our testing dataset are taken in different
conditions to evaluate how well our approach can deal with
a wide range of real situations. 36.5% of the screenshots are
captured from the beginning of articles, 58.7% captured in
the middle, and 4.8% captured from the end. Only 36.5%
of them contain a complete title, while 15.3% have part of
a title. 48.1% of the screenshots contain at least one image,
6.9% contains at least one video, and 25.4% contain adver-
tisements. Images, videos, or advertisements occupy space
but provide less useful information in searching articles by
text. Sometimes advertisements even provide noise text. It is
more challengingbut natural to include such cases in datasets.

We hire annotators to manually search on the Web and
identify the best URLs. They assign one of the following

five categories to each of their found pages: “perfect”, “same
content but different source”, “same content but different
title”, “related topic”, and “totally different”. In our evalua-
tion, we regard the pages belonging to one of the first three
categories as correct answers. We use Google in this step to
prevent their search/click behavior from influencing ranking
algorithms of Bing, which is used in our automatic approach.

5.2 Experiments on Screenshot Representation

We conduct experiments to compare the prediction perfor-
mance of our CRF-based method (denoted by CRF) with
a heuristic method (denoted by Heuristic). The Heuristic
method regards a block that has the largest font-size and
contains more than one word (because the site name is often
bigger than a title) as a title. The method takes into account
whether a block contains punctuations and its text is long
enough in predicting a body block.

We manually label attributes for each OCR line over both
the training set and the test set. We train our CRF model and
tune parameters of the Heuristic method using the training
set. Then, we evaluate the two methods over the test set. We
use precision, recall, and F1 measure for each class. Both
Macro and Micro measures are calculated. We show Macro
measures in Table 2 and observe similar trends in terms of
micro measures.

Overall, the CRF method is much better than heuristic
rules in labeling blocks. Table 2 shows that the Heuristic
method performs badly on title prediction in terms of pre-
cision (only 0.34). It is partially because about a half of
screenshots do not contain a title, but the Heuristic method
selects one anyway. Such a decision somehowhurts the recall
of body blocks. Thus it is not surprising that the Heuristic
method performs worse than the CRF method in terms of
recall for body blocks. The Heuristic method is also worse
than the CRF method by 21 points in terms of precision for
bodies. This is strong evidence that the Heuristic method
is not effective in distinguishing a body block from other
blocks, whereas, the CRF method achieves precision as high
as 0.967. The CRF method is also effective in identifying a

123



110 R. Song et al.

Table 3 Contribution of
segmentation and attribute
prediction in terms of final
effectiveness

Method Precision/recall F1 #Queries

Simple w/o block 0.849/0.831 0.840 (−2.6%) 11.6

Simple 0.862/0.862 0.862 7.3

Simple w/ block 0.905/0.905 0.905 (+5.0%) 7.3

title block while rejecting others as it achieves 0.928 preci-
sion for titles.

We also evaluate how block segmentation and attribute
prediction contribute to our Simple method in terms of
the effectiveness of discovering the best URLs. Results are
shown in Table 3. The method of Simple w/o Block means
that we regard each OCR line as a unit to generate simple
queries. Compared to the Simple method that regards our
segmented block as a unit, the Simple w/o Block method is
worse by 2.6% in terms of F1 measure and has to submit 4
more queries on average. This indicates that merging lines
into semantic blocks does help for both effectiveness and effi-
ciency. When we weight queries by the predicted attributes,
the Simple w/ Block method further improves the Simple
method by 5.0% in terms of F1 measure without increas-
ing the number of issued queries. This indicates that block
attribute prediction is useful to enhance the effectiveness.

5.3 Experiments on Query Formulation

We evaluate the retrieval performance of different query
formulation methods. We compare our Simple and Hybrid
methodswith three baselinemethods, i.e., TF-IDF [7], BM25
[32], and TextRank [30], all of which extract keywords from
the whole text of a screenshot and use them to formulate
queries, whose word length ranges in [4,14] too. We do not
use quotation marks around the keywords in a query because
they are not required to be adjacent. Quoting the extracted
keywords may lead to zero search results. All methods use
the Borda Count in the aggregation phrase.

As each method may submit multiple queries and aggre-
gate the result lists, the bottleneck of efficiency is calling
search engines. It would be better if fewer queries are used
in search and aggregation while keeping good effectiveness.
Therefore, we draw a curve containing 11 points for each
method. The first ten points correspond to the conditionwhen
the method submits one through ten queries and aggregates
different number of search result lists accordingly. The 11th
point corresponds to the condition when there is no limita-
tion of submitted queries and thus the method can submit all
queries they generated and aggregate search result lists.

Figure 4 shows the curves in terms of F1 measure on
the testing set. It indicates that our proposed two methods
outperform the TextRank method, which achieves the best
performance among all baselines, for all conditions. When

Fig. 4 Comparing of query formulation methods with different query
budgets

issuing one or two queries, the baseline methods are similar
to the Simple method, but are much worse than the Hybrid
method. This indicates that although keyword extraction is
useful in selecting important words, the other words, such
as stop words, are useful if considering their ordering in our
task.

The Hybrid method, which utilizes different query for-
mulation strategies for title, body and others, dramatically
improves the Simple method. It improves the F1 measure
from0.862 to 0.905when all queries are used.More improve-
ments are gained when the budget of queries is small. For
example, if only one query is given as a budget, the Hybrid
method improves the Simple method by 48.4% (from 0.536
to 0.803) in F1. If the budget is two, the Hybrid method
improves the Simplemethod by 40.7%. If the budget is three,
the Hybrid method improves the Simple method by 16.7%.
This indicates that the Hybrid method is the best among all
methods in both effectiveness and efficiency.

5.4 Experiments on Result Aggregation

We conduct experiments to compare two aggregation meth-
ods, i.e., the Borda Count and the weighted Borda Count. We
evalaute four methods: the first two are the Simple method
with or without the weighted aggregation (denoted as Sim-
ple and Simple+Weight), and the other two are the Hybrid

123



UniClip: Leveraging Web Search for Universal Clipping of Articles on Mobile 111

Table 4 Comparison of methods in the effectiveness and efficiency of
discovering the best URLs

Rank Method Precision/recall F1 #Queries

1 Hybrid+weighted 0.905/0.905 0.905 6.9

1 Hybrid 0.905/0.905 0.905 6.9

3 Simple+weighted 0.905/0.905 0.905 7.3

4 Simple 0.862/0.862 0.862 7.3

5 Sight 0.838/0.794 0.815 Unknown

6 TextRank 0.725/0.725 0.725 3.7

7 BM25 0.619/0.619 0.613 4.7

8 TF-IDF 0.613/0.613 0.613 5.5

Fig. 5 Comparing of methods on query weighting with different query
budgets

methodwith orwithout theweighted aggregation (denoted as
Hybrid and Hybrid+Weight). Results are shown in Table 4,
together with the performance of the competitor commercial
app called Sight, without limitations of query budget.

The table indicates that the Simple+Weightedmethod dra-
matically improves the Simple method from 0.862 to 0.905.
This indicates that the weighted Borda Count aggregation
is effective to improve the Simple method. However, we
could not observe any further improvement when applying
the weighted aggregation to the Hybrid method. It can be
explained by the Hybrid method well utilizing the attribute
information in formulating queries with different strategies
and in ordering those queries from title, body, and others.
Thus, it has less room to improve compared to the Simple
method.

Whenwe plot the performance curveswith different query
budgets for the four methods (see Fig. 5), we find that
there is almost no difference between the Hybrid and the
Hybrid+Weighted curves, whereas, the Hybrid curve is still
above the Simple+Weighted curve until they meet when all

queries are used. This indicates that the Hybrid method is
so far the best way to utilize our screenshot representation
and query formulation methods. As Table 4 shows, it also
outperforms the commercial app Sight by 8% in precision
and 14% in recall.

6 Conclusions and Future Work

In this paper, we propose a UniClip service that allows users
to clip an article just by taking its screenshot. Given an arti-
cle’s screenshot, UniClip tries to discover the exact same
article from the Web and save the full article for users.
Compared to existing solutions in industry, UniClip has
advantages of taking notes effortlessly and independently
from other apps. Experimental results showed that our pro-
posedmethods achieved 0.905 in terms of F1measure, which
outperforms the baseline methods.

In the future, we plan to expand from screenshot to photos.
For example, a user takes a photo of a page from a magazine
and tries to find the full article from the Web. We are also
interested in designing new interaction ways to allow users
to specify an area they are interested in within the photo.
For example, a user can take a photo of some app icons and
specify one with their finger. We will then try to search the
app and the links to download it.

Acknowledgments We thank our colleagues Qiang Huo, Ivan Sto-
jiljkovic, Magdalena Vukosavljevic and Momcilo Vasilijevic for their
help in OCR engines.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Ageev M, Guo Q, Lagun D, Agichtein E (2011) Find it if you
can: a game for modeling different types of web search success
using interaction data. In: Proceedings of the 34th international
ACM SIGIR conference on research and development in informa-
tion retrieval, SIGIR’11. ACM, New York, pp 345–354. doi:10.
1145/2009916.2009965

2. Balasubramanian N, Kumaran G, Carvalho VR (2010) Exploring
reductions for long web queries. In: Proceedings of the 33rd Inter-
national ACM SIGIR conference on research and development in
information retrieval, SIGIR ’10. ACM, New York, pp 571–578.
doi:10.1145/1835449.1835545

3. Balasubramanian N, Kumaran G, Carvalho VR (2010) Predicting
query performance on the web. In: Proceedings of the 33rd inter-
national ACM SIGIR conference on research and development in
information retrieval, SIGIR ’10. ACM, New York, pp 785–786.
doi:10.1145/1835449.1835615

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1145/2009916.2009965
http://dx.doi.org/10.1145/2009916.2009965
http://dx.doi.org/10.1145/1835449.1835545
http://dx.doi.org/10.1145/1835449.1835615


112 R. Song et al.

4. Bendersky M, Croft WB (2008) Discovering key concepts in ver-
bose queries. In: Proceedings of the 31st annual international ACM
SIGIR conference on research and development in information
retrieval, SIGIR ’08. ACM, New York, pp 491–498. doi:10.1145/
1390334.1390419

5. Brin S, Davis J, García-Molina H (1995) Copy detection mecha-
nisms for digital documents. SIGMODRec 24(2):398–409. doi:10.
1145/568271.223855

6. Broder AZ, Glassman SC, Manasse MS, Zweig G (1997) Syn-
tactic clustering of the web. In: Selected papers from the sixth
international conference on world wide web. Elsevier Science Pub-
lishers Ltd., Essex, pp 1157–1166. http://dl.acm.org/citation.cfm?
id=283554.283370

7. Büttcher S, Clarke C, Cormack G (2010) Information retrieval:
implementing and evaluating search engines. MIT Press, Cam-
bridge

8. Charikar MS (2002) Similarity estimation techniques from round-
ing algorithms. In: Proceedings of the thiry-fourth annual ACM
symposium on theory of computing, STOC ’02. ACM, New York,
pp 380–388. doi:10.1145/509907.509965

9. Cho J, Shivakumar N, Garcia-Molina H (2000) Finding replicated
web collections. In: Proceedings of the 2000 ACMSIGMOD inter-
national conference on management of data, SIGMOD ’00. ACM,
New York, pp 355–366. doi:10.1145/342009.335429

10. Chowdhury A, Frieder O, Grossman D, McCabe MC (2002) Col-
lection statistics for fast duplicate document detection. ACMTrans
Inf Syst 20(2):171–191. doi:10.1145/506309.506311

11. Clough P (2003) Measuring text reuse. In: PhD thesis, University
of Sheffield

12. Clough P, Gaizauskas R, Piao SSL, Wilks Y (2002) Meter: mea-
suring text reuse. In: Proceedings of the 40th annual meeting on
association for computational linguistics, ACL ’02. Association
for Computational Linguistics, Stroudsburg, pp 152–159. doi:10.
3115/1073083.1073110

13. Cronen-Townsend S, Zhou Y, Croft WB (2002) Predicting query
performance. In: Proceedings of the 25th annual internationalACM
SIGIR conference on research and development in information
retrieval, SIGIR ’02. ACM, New York, pp 299–306. doi:10.1145/
564376.564429

14. de Borda JC (1781) Mémoire sur les élections au scrution. Histoire
de l’Académie Royal des Sciences, Paris, pp 657–665

15. Deng F, Rafiei D (2006) Approximately detecting duplicates for
streaming data using stable bloom filters. In: Proceedings of the
2006 ACM SIGMOD international conference on management
of data, SIGMOD ’06. ACM, New York, pp 25–36. doi:10.1145/
1142473.1142477

16. Faidhi JAW, Robinson SK (1987) An empirical approach for
detecting program similarity and plagiarism within a university
programming environment. Comput Educ 11(1):11–19. doi:10.
1016/0360-1315(87)90042-X

17. Fan X, Xie X, Li Z, Li M, Ma WY (2005) Photo-to-search: using
multimodal queries to search the web from mobile devices. In:
Proceedings of the 7th ACM SIGMM international workshop on
multimedia information retrieval, MIR ’05. ACM, New York, pp
143–150. doi:10.1145/1101826.1101851

18. FrantziKT (1997) Incorporating context information for the extrac-
tion of terms. In: Proceedings of the 35th annual meeting of
the association for computational linguistics and eighth confer-
ence of the european chapter of the association for computational
linguistics, ACL ’98. Association for Computational Linguistics,
Stroudsburg, pp 501–503. doi:10.3115/976909.979682

19. He B, Ounis I (2006) Query performance prediction. Inf Syst
31(7):585–594. doi:10.1016/j.is.2005.11.003

20. Henzinger M (2006) Finding near-duplicate web pages: a large-
scale evaluation of algorithms. In: Proceedings of the 29th annual
internationalACMSIGIR conference on research and development

in information retrieval, SIGIR ’06. ACM, NewYork, pp 284–291.
doi:10.1145/1148170.1148222

21. Huo Q, Feng ZD (2003) Improving chinese/english ocr perfor-
mance by using mce-based character-pair modeling and negative
training. In: Proceedings of the seventh international conference
on document analysis and recognition, 2003, vol 1, pp 364–368.
doi:10.1109/ICDAR.2003.1227690

22. JoyM,LuckM(1999)Plagiarism inprogrammingassignments, vol
22. IEEE Press, Piscataway, pp 129–133. doi:10.1109/13.762946

23. Kumaran G, Allan J (2007) A case for shorter queries, and helping
users create them. In: In HLT-NAACL conference. HLT, pp 220–
227

24. Kumaran G, Carvalho VR (2009) Reducing long queries using
query quality predictors. In: Proceedings of the 32nd international
ACM SIGIR conference on research and development in informa-
tion retrieval, SIGIR ’09. ACM, New York, pp 564–571. doi:10.
1145/1571941.1572038

25. Lafferty JD,McCallumA, Pereira FCN (2001)Conditional random
fields: probabilistic models for segmenting and labeling sequence
data. In: Proceedings of the eighteenth international conference
on machine learning, ICML ’01. Morgan Kaufmann Publishers
Inc., San Francisco, pp 282–289. http://dl.acm.org/citation.cfm?
id=645530.655813

26. Lopresti D (1999) Models and algorithms for duplicate document
detection. In: Proceedings of the fifth international conference on
document analysis and recognition, 1999. ICDAR ’99, pp 297–300.
doi:10.1109/ICDAR.1999.791783

27. Lyon C, Malcolm J, Dickerson B (2001) Detecting short passages
of similar text in large document collections. In: Proceedings of the
2001 conference on empiricalmethods in natural language process-
ing, pp 118–125

28. Manning CD, Schütze H (1999) Foundations of statistical natural
language processing. MIT Press, Cambridge

29. Medelyan O, Witten IH (2006) Thesaurus based automatic
keyphrase indexing. In: Proceedings of the 6th ACM/IEEE-CS
joint conference on digital libraries, JCDL ’06. ACM, New York,
pp 296–297. doi:10.1145/1141753.1141819

30. Mihalcea R, Tarau P (2004) Textrank: bringing order into texts. In:
LinD,WuD (eds) Proceedings of the 2004 conference on empirical
methods in natural language processing, EMNLP ’04. Association
for Computational Linguistics, Barcelona, pp 404–411

31. Parker A, Hamblen J (1989) Computer algorithms for plagiarism
detection. IEEE Trans Educ 32(2):94–99. doi:10.1109/13.28038

32. Robertson S, Walker S, Jones S, Hancock-Beaulieu M, Gatford M
(1994) Okapi at trec-3. In: The third text retrieval conference, pp
109–126. Gaithersburg

33. Tomokiyo T, Hurst, M (2003) A language model approach to
keyphrase extraction. In: Proceedings of the ACL 2003 workshop
on multiword expressions: analysis, acquisition and treatment—
volume 18, MWE ’03. Association for Computational Linguistics,
Stroudsburg, pp 33–40. doi:10.3115/1119282.1119287

34. Turney PD (2000) Learning algorithms for keyphrase extraction.
Inf Retr 2(4):303–336. doi:10.1023/A:1009976227802

35. Weng L, Li Z, Cai R, Zhang Y, Zhou Y, Yang LT, Zhang L (2011)
Query by document via a decomposition-based two-level retrieval
approach. In: Proceedings of the 34th international ACM SIGIR
conference on research and development in information retrieval,
SIGIR ’11. ACM, New York, pp 505–514. doi:10.1145/2009916.
2009985

36. Wise M (1993) Running Karp–Rabin matching and greedy string
tiling. Technical report. Basser Department of Computer Sci-
ence, University of Sydney. http://books.google.com.hk/books?
id=9OtpAAAACAAJ

37. Xie X, Lu L, Jia M, Li H, Seide F, Ma W (2008) Mobile search
with multimodal queries. In: Proceedings of the IEEE, 2008, vol
96, pp 589–601. doi:10.1109/JPROC.2008.916351

123

http://dx.doi.org/10.1145/1390334.1390419
http://dx.doi.org/10.1145/1390334.1390419
http://dx.doi.org/10.1145/568271.223855
http://dx.doi.org/10.1145/568271.223855
http://dl.acm.org/citation.cfm?id=283554.283370
http://dl.acm.org/citation.cfm?id=283554.283370
http://dx.doi.org/10.1145/509907.509965
http://dx.doi.org/10.1145/342009.335429
http://dx.doi.org/10.1145/506309.506311
http://dx.doi.org/10.3115/1073083.1073110
http://dx.doi.org/10.3115/1073083.1073110
http://dx.doi.org/10.1145/564376.564429
http://dx.doi.org/10.1145/564376.564429
http://dx.doi.org/10.1145/1142473.1142477
http://dx.doi.org/10.1145/1142473.1142477
http://dx.doi.org/10.1016/0360-1315(87)90042-X
http://dx.doi.org/10.1016/0360-1315(87)90042-X
http://dx.doi.org/10.1145/1101826.1101851
http://dx.doi.org/10.3115/976909.979682
http://dx.doi.org/10.1016/j.is.2005.11.003
http://dx.doi.org/10.1145/1148170.1148222
http://dx.doi.org/10.1109/ICDAR.2003.1227690
http://dx.doi.org/10.1109/13.762946
http://dx.doi.org/10.1145/1571941.1572038
http://dx.doi.org/10.1145/1571941.1572038
http://dl.acm.org/citation.cfm?id=645530.655813
http://dl.acm.org/citation.cfm?id=645530.655813
http://dx.doi.org/10.1109/ICDAR.1999.791783
http://dx.doi.org/10.1145/1141753.1141819
http://dx.doi.org/10.1109/13.28038
http://dx.doi.org/10.3115/1119282.1119287
http://dx.doi.org/10.1023/A:1009976227802
http://dx.doi.org/10.1145/2009916.2009985
http://dx.doi.org/10.1145/2009916.2009985
http://books.google.com.hk/books?id=9OtpAAAACAAJ
http://books.google.com.hk/books?id=9OtpAAAACAAJ
http://dx.doi.org/10.1109/JPROC.2008.916351


UniClip: Leveraging Web Search for Universal Clipping of Articles on Mobile 113

38. Yeh T, Chang TH, Miller RC (2009) Sikuli: using GUI screenshots
for search and automation. In: Proceedings of the 22nd annualACM
symposium on user interface software and technology, UIST ’09.
ACM, New York, pp 183–192. doi:10.1145/1622176.1622213

39. Yeh T, Tollmar K, Darrell T (2004) Searching the web with mobile
images for location recognition. In: The 2004 IEEEComputer Soci-
ety conference on computer vision and pattern recognition. IEEE
Computer Society, Washington, DC

40. Zhang L, Rui Y (2013) Image search—from thousands to bil-
lions in 20 years. ACM Trans Multimed Comput Commun Appl
9(1s):36:1–36:20. doi:10.1145/2490823

41. ZhengS, SongR,Wen J (2007)Template-independent news extrac-
tion based on visual consistency. In: The 22nd national conference
on artificial intelligence, vol 2. AAAI Press, pp 1507–1512

123

http://dx.doi.org/10.1145/1622176.1622213
http://dx.doi.org/10.1145/2490823

	UniClip: Leveraging Web Search for Universal Clipping  of Articles on Mobile
	Abstract
	1 Introduction
	2 Related Work
	2.1 Related Work from Industry
	2.2 Related Work from Academia
	2.2.1 Text Reuse
	2.2.2 Long Queries
	2.2.3 Search by a Photo


	3 System Overview
	4 Our Approach
	4.1 Screenshot Segmentation
	4.1.1 Block Segmentation
	4.1.2 Block Attribute Prediction

	4.2 Query Formulation
	4.2.1 Simple Method
	4.2.2 Hybrid Method

	4.3 Result Aggregation

	5 Experiments
	5.1 Experimental Setup
	5.2 Experiments on Screenshot Representation
	5.3 Experiments on Query Formulation
	5.4 Experiments on Result Aggregation

	6 Conclusions and Future Work
	Acknowledgments
	References




