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Abstract
This paper presents a flexible framework that aims at estimating the risk of structural failure in sewer pipes by utilizing 
limited or imperfect data. To this end, classical risk analysis is enhanced by incorporating fuzzy logic and multi-criteria 
decision making. To account for the multi-dimensionality of collapse risk at the pipe level as a decision parameter, its distinct 
impacts on the environment, traffic and road condition, and quality of life are taken into account. The proposed method is 
applied to the sewer network of Tehran, the capital of Iran. Results show how the integration of different risk indexes can 
influence the criticality of pipelines for the selection of rehabilitation activities. While using the first individual risk index, 
only considering the risk posed to the natural environment by a collapsing pipe in terms of contamination, approximately 
half of the pipe lengths are classified as extremely critical by the clustering algorithm. However, when the integrated risk is 
calculated, this cluster encompasses only approximately 30% of the total pipe length. With a database that contains various 
levels of uncertainty (from 10 to 60%), the predictive reproducibility for the exact same risk cluster is above 20% and above 
50% for the same or only marginally better or worse. Furthermore, pipelines that are predicted to have a better risk class than 
the situation without considering uncertainty, thereby underestimating the likelihood of failures or consequences, are below 
15%, showing a measure of quite good robustness. Considering the budget constraints of utilities, the proposed method can 
be applied to any urban, aiding in the identification of high-risk sections. Nevertheless, incorporating physical validation 
might be beneficial for further improving the analysis.
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1  Introduction

Sewer pipes, which represent one of the most capital-intensive 
urban assets [1] and serve as the primary means of transport-
ing wastewater, require periodic inspection and rehabilitation. 
In times of limited budgets, asset management has become a 
focus over new designs and construction [2]. In this regard, 

decision-makers need to have access to well-structured models 
that enable them to prioritize their assets for inspection and 
rehabilitation activities in a proactive manner. The implemen-
tation of such a prioritization process allows utilities to effec-
tively allocate their limited budget towards critical assets. This 
results in more efficient utilization of resources and improves 
the management of infrastructure assets. Currently available 
frameworks, based on pipe failure prediction models [3, 4] 
or pipe deterioration models [5–8], offer valuable insights to 
wastewater utility managers regarding the probability of failure 
and allow a prediction of the condition of pipelines in their 
districts. However, relying solely on these models can lead to 
inappropriate management decisions, as they often assume all 
elements of the pipe network are of equal strategic importance, 
which is rarely the case [9]. Therefore, to prioritize network 
components in a more rational way, it is essential to consider 
the consequences of failure (CoF) in combination with a fail-
ure/deterioration prediction [10] in a risk-based approach. It is 
crucial to consider the consequences because failures in more 
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vulnerable parts of networks can result in significant and some-
times devastating outcomes, such as pathogen spill, pollution 
of groundwater and waterways, damaging critical buildings 
and roads, and disruption of other essential services. Conse-
quently, frameworks that incorporate risk assessment can help 
improve resource allocation and enhance the management of 
sewer pipes [11, 12].

Researchers have provided different definitions of risk. 
However, they all share certain common characteristics. 
Risk can be described as an unexpected future event char-
acterized by significant uncertainties that can have adverse 
effects on planned objectives [13]. That means that risk 
refers to the likelihood of an event causing undesirable con-
sequences [14]. Accordingly, in the context of sewer pipe 
asset risk assessment, there are two primary components 
[11]: (1) predicting the condition of pipes or, more broadly, 
assessing the likelihood of failure (LoF), and (2) identifying 
and estimating CoF. Various models have been developed 
to evaluate the risk of sewer pipes failure, employing tech-
niques such as Bayesian belief networks [15], regression 
and probability theory [16, 17], and fuzzy logic [18–20]. 
Nevertheless, previous studies have often overlooked the 
simultaneous consideration of the following points:

Shortcoming I: In-situ evaluations of conditions can 
often contain remarkable errors [21–23]. Consequently, 
the efficiency of condition prediction models, which rely 
on significant and precise data, as well as the efficiency of 
inspection plans, can be adversely affected [24, 25]. This 
situation worsens when the quality of available data is low, 
there is a high percentage of missing values, or the network 
has recently been put into operation, and there is no condi-
tion assessment data or only ones with the same condition 
class. Thus, a flexible framework is required to utilize the 
available limited or imperfect data from pipes for estimating 
their LoF.

Shortcoming II: Due to the challenges associated with 
obtaining sufficient historical data for probabilistic analysis, 
qualitative risk assessment methodologies that rely on expert 
judgment are gaining popularity [13]. However, human 
decision-making inherently involves ambiguity, making it 
unrealistic to express such decision variables with absolute 
numerical values. Besides, uncertainties are a non-separable 
part of any risk assessment process [26, 27], and disregard-
ing them can result in an inefficient assessment [13]. Previ-
ous research has not adequately addressed this aspect [e.g., 
[28, 29]], while it must be a crucial consideration in any 
proposed risk assessment framework.

Shortcoming III: Previous studies have often treated the 
CoF as crisp variables [9, 11], overlooking their intangible 
nature. Even in studies that considered their fuzzy nature 
[18], there was a limited exploration into the specific details 
and types of these consequences (e.g., environmental, social, 
or economic). Consequences were merely expressed as a 

single generalized value, and their criticality was described 
using a qualitative scale with nine grades, ranging from 
extremely low to extremely high. However, these studies 
did not provide further information regarding the evaluation 
process. Then, the development of a framework capable of 
independently considering each of the CoF, incorporating 
their inherent uncertainties, and providing an explicit evalu-
ation procedure is of utmost importance.

Shortcoming IV: Previous studies [9, 11] have utilized 
risk matrices to interpret the estimated risk by mapping the 
LoF and its associated consequences. Such matrices are 
often employed to simplify the process and make it easily 
understandable for the decision-maker. However, risk matri-
ces also have the following limitations [30]: poor resolution, 
potential errors in assigning rates, suboptimal allocation of 
resources, and the subjective interpretation required for both 
input and output. Accordingly, it is advisable to consider 
adopting a more suitable approach for classifying risk values 
(RVs).

It should be highlighted that previous research [18, 31] 
has often overlooked the potential benefits of incorporat-
ing a Geographical Information System (GIS) into the risk 
assessment process. In some cases, GIS was only partially 
implemented, such as utilizing proximity tools [32]. While 
by leveraging GIS and including a broader range of informa-
tion, such as environmental characteristics like soil type, the 
precision, and comprehensiveness of risk assessments can 
be significantly enhanced. It is worth noting that combining 
multicriteria decision analysis with GIS not only serves as 
an effective tool for making critical decisions is designing, 
evaluating, and prioritizing possible alternative courses of 
action [33–35], but also, in the context of buried infrastruc-
tures, incorporating GIS can assist companies in the devel-
opment of integrated multi-infrastructure asset management. 
This enables utilities to cost-effectively manage public assets 
[36].

This paper aims to accomplish the following main objec-
tives: (1) introduce a flexible framework that utilizes the lim-
ited/imperfect available data to estimate the risk of structural 
failure in sewer pipes by estimating its components (namely 
LoF and CoF); (2) address the uncertainties inherent in the 
recorded/registered data as well as in the decision-making 
process; (3) analyze various aspects connected to the risk of 
structural failure in sewer pipes by categorizing the conse-
quences into different groups. To achieve this, we propose 
a hierarchical risk assessment model based on fuzzy logic, 
inspired by the work of Le Gauffre and Cherqui [37]. This 
model prioritizes pipes for inspection and rehabilitation 
based on their risk values. It leverages GIS and incorpo-
rates uncertainties in the input data and expert opinions to 
estimate the LoF and CoF using Fuzzy membership func-
tions (FMFs). A detailed description of the risk assessment 
method is provided in the subsequent section, followed by 
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its application to a comprehensive case study conducted in 
Tehran, Iran. Results demonstrate the benefits of adopting 
the proposed framework in prioritizing infrastructure assets 
for inspection/rehabilitation activities. Furthermore, the 
framework exhibits stability even in the presence of uncer-
tain data, as evidenced by the case study conducted.

2 � Material and Methods

Figure 1 illustrates the comprehensive flowchart of the pro-
posed risk assessment method. The method consists of four 
key phases: (1) data collection, (2) identification of effective 
factors on risk components and estimation of their relative 
importance, (3) calculation of risk at the pipe level based 
on the pre-defined FMFs, and (4) clustering of sewer pipes 
based on their defuzzified values and creating risk maps. 
These four phases are described in detail in the subsequent 
sub-section. The description of the step-by-step approach 
includes justifications for their necessity, which are linked to 
the shortcomings identified in the introduction. Furthermore, 

references to relevant research are provided when appropri-
ate to support the methodology.

Step 1—Phase 1 (addressing shortcoming V): Data 
should be collected from various sources, including waste-
water utility pipeline mapping system, municipality land use 
maps, and maps of major surface and groundwater resources 
provided by the regional water company. This data collection 
process should encompass both the characteristics of the 
pipes (such as age, length, diameter, and material) and the 
surrounding environment (including road types, soil classi-
fication, groundwater levels, and proximity to critical build-
ings). Here, the data collection phase is based on the GIS, 
which is an ideal tool for gathering and organizing diverse 
spatial information data.

Step 2—Phase 2 (addressing shortcoming III): The fac-
tors that influence LoF and CoF are derived from the data 
collected in Phase 1, utilizing a hierarchical structure as 
depicted in Fig. 2. The estimation of LoF is based on the 
most common and well-repeated affecting factors extracted 
from a deep analysis of the existing literature (including ref-
erences [38–44]). These factors are categorized according 
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Fig. 1   Flowchart of the proposed risk-based prioritization method and implemented tools. CR is the consistency ratio of the pairwise comparison 
matrix and S is the short form of Step 
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to suggestions proposed by Davies et al. [5], as illustrated in 
Fig. 2 at level 1. Besides, since expressing the CoF in mon-
etary terms can often be challenging, municipalities may 
find it beneficial to develop quantitative indices for measur-
ing the consequences of failure. These indices can facilitate 
comparisons and help identify areas that are most suscepti-
ble to potential failures.

Accordingly, in the proposed method, environmental and 
socio-economic impacts were categorized into three distinct 
classes, namely ‘Environmental impact’, ‘Traffic and road’, 
and ‘Life quality and public/private property’, as illustrated 
in Fig. 2 at level 2. Given the limited availability of informa-
tion on the consequences of pipe failure [45], well-known 
components of CoF were identified through an extensive 
review of previous research [11, 15, 31, 45, 46]. It is impor-
tant to emphasize that the proposed hierarchical structure 
allows for the incorporation of any relevant factors collected 
by utilities, without limitations. It enables the inclusion of 
additional factors that can contribute to a more comprehen-
sive assessment of risk.

Step 3—Phase 2 (addressing shortcomings I and III): Each 
effective factor needs to be evaluated at the pipe level. In gen-
eral, many wastewater utilities face challenges in accessing 
precise and high-quality data, and some essential data, such 
as environmental and socio-economic consequences, can be 
intangible in nature. To address these limitations, a fuzzy 

approach was adopted in this study. The concept of fuzzy 
theory, initially introduced by Zadeh [47], allows for objects 
to have membership values between 0 and 1, representing 
the degree of membership. A value of 0 indicates that the 
object is not a member of the fuzzy set, while a value of 1 
indicates full membership. Intermediate values lie between 
these extremes. This method can effectively handle vague, 
imprecise, and ambiguous input information [48, 49].

The current paper utilized the triangular fuzzy number 
(TFN) for this purpose due to its simplicity and familiar-
ity [13]. Figure 3 provides a visual representation of the 
suggested TFNs for “Pipe depth” and “Traffic density”. It 
should be mentioned that the classification of parameter 
values is based on suggestions from previous studies. For 
example, Sousa et al. [50] classified pipe depths between 2 
and 5 m as medium depth, which has the lowest impact on 
sewer pipe structural failure compared to higher and lower 
depth values. Similarly, Salman and Salem [9] proposed that 
local roads should be considered low-traffic roads, which 
also have a lower impact on sewer pipe structural failure 
compared to heavily trafficked roads such as highways. 
Hence, these defined classes were mapped to the lowest 
defined fuzzy number in the present study, represented as 
(0, 0, 3). The fuzzy classifications for all parameters are 
presented in Table S1 and Table S2 (Supplemental Materi-
als A). It should be noted that the sum of memberships does 
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not necessarily have to add up to 1. Moreover, while fuzzi-
ness is an objective aspect in simulation, the presentation of 
FMFs is subjective, there is no unique rule for determining 
suitable FMFs.

Step 4—Phase 2 (addressing shortcoming II): Accord-
ing to Figs. 1 and 2, estimating individual risks requires 
considering the influence of each effective factor on the 
LoF and CoF. Therefore, it is necessary to determine the 
relative importance of each parameter in the hierarchical 
structure. One of the multi-criteria decision analysis meth-
ods successfully used in different decision-making problems 
and has been increasingly used in the last two decades is 
the Analytic Hierarchy Process (AHP) [51, 52]. However, 
some critics raised concerns regarding AHP’s inability to 
deal with the inherent uncertainties and imprecision in trans-
lating a decision-maker’s perception into precise numerical 
values [53]: Inaccurate perception of relative importance by 
an expert can easily impact the assigned weights [54]. To 
address these concerns and enhance result accuracy, AHP 

can be integrated with fuzzy logic. The Fuzzy Analytic Hier-
archy Process (FAHP) combines the advantages of conven-
tional AHP, such as handling a combination of qualitative 
and quantitative data, providing a hierarchical structure, 
uncomplicated decomposition, and enabling pairwise com-
parison, with the ability to handle approximate information 
and uncertainty inherent in human thinking [55]. Besides, 
by incorporating linguistic variables and fuzziness, FAHP 
ensures a more realistic evaluation [56]. Therefore, FAHP 
was adopted here to estimate the relative importance of 
parameters. In this regard, the fuzzy relative weight of ele-
ments (Ws) in each level (as shown in Fig. 2) is calculated 
through the following steps [53]:

Pairwise comparison matrices are established for each 
group of factors in the hierarchy structure (Eq. 1). In this 
step, experts are requested to conduct pairwise comparisons 
and indicate which of the two elements is more important, 
based on the proposed scale in Fig. 4.
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Fig. 3   Suggested fuzzy membership function for a Pipe depth; b 
Traffic density (Note: the y-axis is the membership value, and the 
x-axis is the performance value adopted in this study and for all of 
the factors is divided between 0 and 10 and it is dimensionless; Please 

see Supplemental Materials A. As these parameters were classified 
very differently in previous studies, authors consider some level of 
uncertainty while defining fuzzy sets for them.)
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where ãij : denotes the fuzzy relative weight of element i 
compared to element j, and n: is the total number of elements 
in each comparison set. To ensure the overall coherence of 
the experts’ judgments, the consistency ratio (CR) of the 
pairwise comparison matrix needs to be assessed before pro-
ceeding to the next step [57].

Calculate the fuzzy geometric mean and fuzzy weight of 
each element through Eqs. 2 and 3, respectively [53, 57]:

where ãin : denotes the fuzzy relative weight of element i 
in comparison to element n, r̃i : is the geometric mean of 
the fuzzy comparison values for element i compared to 
each of the other elements, and W̃i : is the normalized fuzzy 
weight of ith element, which can be represented by a TFN: 
W̃i = (LWi,MWi,UWi) , where LWi , MWi , and UWi : show 
the lower, middle, and upper values of the fuzzy weight 
number, respectively. In the equations above, the symbol 
⊗ denotes the multiplication of fuzzy numbers. It is worth 
mentioning that the process of determining weights can be 
continued until defuzzified weight numbers are obtained 
(as suggested by Chen et al. [53]). However, in the present 
study, since we are working with fuzzy weights, this process 
is stopped at this point and no further steps are taken.

Standard fuzzy arithmetic and Vertex methods are the two 
most important computational solutions for implementing 
the fuzzy extension principle [58, 59]. However, standard 
fuzzy arithmetic has a main drawback in that it accumulates 

(1)Ã =

⎡⎢⎢⎢⎣

1̃ ã12 ⋯ ã1n
ã21 1̃ ⋯ ã2n
⋮ ⋮ ⋱ ⋮

ãn1 ãn2 ⋯ 1̃

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

1̃ ã12 ⋯ ã1n
1∕̃a21 1̃ ⋯ ã2n
⋮ ⋮ ⋱ ⋮

1∕̃an1
1∕̃an2 ⋯ 1̃

⎤⎥⎥⎥⎦

(2)r̃i =
(
ãi1 ⊗ ãi2 ⊗…⊗ ãin

)
(
1∕n

)

(3)�Wi = �ri ⊗
(
�r1 ⊗�r2 ⊗⋯⊗�rn

)−1

input uncertainties, resulting in large and unrealistic uncer-
tainty bounds in fuzzy outputs [60]. To elaborate, after mul-
tiple system simulation steps, the fuzziness of the results 
tends to produce unrealistically large values. On the other 
hand, the Vertex method also has inherent disadvantages, 
such as complex calculation [61]. To overcome these limi-
tations, Nasseri et al. [60] incorporated fuzzy approximate 
reasoning into their proposed approach, achieving a reason-
able level of uncertainty propagation from model param-
eters to outputs [60]. Moreover, the efficiency of this method 
surpasses that of the Vertex method. Therefore, the novel 
fuzzy arithmetic method proposed by Nasseri et al. [60] was 
adopted in the present study. The key components of this 
method are explained below.

Assume the symbolic operator “Θ” denotes one of the 
four arithmetic operations (addition, subtraction, multipli-
cation, or division). Also, let Ã , B̃ , and C̃ be three fuzzy 
numbers with crisp values a, b, and c, respectively. In this 
context, C̃ = ÃΘB̃ is defined as Eq. 4:

where the expression 
[
aΘ�B(x)

]
 : demonstrates the impact 

of the crisp value a on the fuzzy number B̃ and “V”: means 
“OR” fuzzy operator, which functions similarly to the 
“OR” operator in Mamdani fuzzy inference [60]. Here, it 
is assumed that the fuzziness of C̃ is equal to the maximum 
fuzziness of the input numbers Ã and B̃.

Step 5—Phase 3 (addressing shortcoming III): Once the 
relative fuzzy weights (Wj and Wji) were obtained, the fuzzy 
value of each CoF and LoF group (Fig. 2, level 2) is calcu-
lated using Eqs. 5 and 6:

(4)�C(x) =
[
aΘ�B(x)

]
∨
[
bΘ�A(x)

]

(5)ÃFj =

n∑
i=1

(W̃ji × Ṽji) for j = 1, 2,… ,m
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Fig. 4   Weighting scale for the FAHP method considering triangular fuzzy membership functions
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where ÃFj : is the fuzzy aggregated factor for jth effective 
group in each of the risk components (likelihood or conse-
quence), W̃ji and Ṽji : are the fuzzy weight and fuzzy value 
of the ith factor in the jth effective group, respectively. In the 
following equation, C̃Rk : is the kth fuzzy component of the 
risk and W̃j : is the fuzzy weight of the jth fuzzy aggregated 
factor. For example, in the present study based on Fig. 2, 
j = 1 for each consequence group, but j = 3 for LoF. It is note-
worthy that in the proposed method of this study if some of 
the effective factors related to the pipe’s failure (or its con-
sequences) are missing for a group of pipes, LoF and CoF 
can still be estimated for them by considering other available 
effective factors.

Step 6—Phase 3: Subsequently, to calculate fuzzy 
individual risks, LoF and CoF should be multiplied [31]. 
Accordingly, the individual risks for each pipe are calcu-
lated by multiplying the risk components (likelihood and 
consequences) employing Eq. 4 (Fig. 2, Level 3).

Step 7—Phase 3 (addressing shortcoming II): To deter-
mine the fuzzy combined risk (Fig. 2, Level 4), the relative 
importance of individual risks needs to be estimated. Two 
different approaches were adopted and compared here: in 
the first method, individual risks are compared by defining 
management criteria and using FAHP. The fuzzy compari-
son matrix is created by gathering expert opinions (similar 
to Eq. 1). Then, fuzzy relative weights of individual risks 
are calculated based on Eq. 3. In the second approach, 
different individual risks receive dynamic fuzzy weights 
that reflect the impact of each RV. This means that for 
each pipe, the minimum weight (from a user-defined set of 
weights) is assigned to a risk evaluated as non-critical, and 
the maximum weight is assigned to an extremely critical 
risk. Accordingly, the middle classes are assigned weights 
that lie between these two extremes. This concept, first 
suggested by Elsawah et al. [31], implies that the higher 
RVs tend to deteriorate to the next level more rapidly. 
Afterward, the fuzzy-weighted individual risks are inte-
grated, and the fuzzy combined risk is calculated at the 
pipe level using Eq. 7.

(6)C̃Rk =

m∑
j=1

(W̃j × ÃFj) for k = 1, 2

where R̃ : is the fuzzy combined risk, R̃iandW̃i : are fuzzy 
individual risks and their corresponding fuzzy relative 
weights, respectively.

Step 8—Phase 4: The fuzzy combined risk is then defuzz-
ified. Various defuzzification methods have been proposed, 
including the centroid, bisector, middle of maximum, etc. 
[62]. In the present study, the centroid method, which is the 
most used defuzzification approach [63], was employed to 
calculate the crisp combined RV (Eq. 8).

where RVcrisp : is the crisp value of combined risk, and f(x): 
is the area under the fuzzy membership curve. It should be 
emphasized that the centroid technique considers both the 
shape and distribution of the fuzzy set. On the other hand, 
other approaches such as the middle of maximum approach 
ignore the distribution and importance of other components 
in favor of concentrating just on the peak values of the mem-
bership function.

Step 9—Phase 4 (addressing shortcomings IV and V): 
Finally, to enhance the comprehensibility of the com-
bined RVs for decision-makers, they are clustered using 
the K-means algorithm, considering classes proposed in 
Table 1, and then mapped in GIS. The main advantage of 
cluster analysis is grouping similar data. As a result, reveal-
ing patterns that may not have been apparent previously and 
facilitating decision-making. In the following section, a real 
case study is investigated to illustrate the application of the 
proposed method. It should be emphasized that this study 
solely focuses on the assessment of pipe collapse risk.

3 � Case Study

To evaluate the practicality of the proposed fuzzy risk 
assessment method, real data from the second sub-district 
of District 2 of Tehran Water and Wastewater Company (as 
shown in Fig. 5) were used to estimate the risk of failure for 

(7)R̃ =

∑n

i=1
(R̃1 × W̃1 + R̃2 × W̃2 +⋯ + R̃n × W̃n)∑n

i=1
W̃i

(8)RVcrisp =
∫ 1

0
xf (x)dx

∫ 1

0
f (x)dx

Table 1   Risk clusters and their definition

Cluster Level of risk Required action

1 Not critical Risk can be accepted, and no action is required
2 Moderately critical Pipe should be scheduled for inspection to assess the probability and/or impact of a failure with higher certainty
3 Extremely critical Pipe must be prioritized for immediate inspection/rehabilitation activities to improve the current situation and 

reduce the risk to an acceptable level
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each sewer pipe section and classify them for inspection and 
replacement (as depicted in Fig. 1, phase 1).

The case study encompasses a network with a total length 
of over 45 km, with the majority of the sewer pipes being 
constructed within the last 15 years. It represents a relatively 
new section of Tehran’s sewer network, representative of 
many other parts of the city. Therefore, limited data was 
available concerning the condition of the pipes, as no visual 
inspection survey had been conducted. This poses challenges 
for the utility when it comes to prioritizing inspection and 
rehabilitation efforts. Throughout the course of this research, 
the absence of decision-support tools resulted in the random 
selection of sections for maintenance activities, often lead-
ing to unnecessary actions being undertaken. It should be 
emphasized that the focus of the present study was on pipes 
with a diameter higher than 400 mm. However, to demon-
strate the versatility of the proposed method, a portion of the 
network (referred to as NW in Fig. 5) with smaller diameters 
was also examined.

To form the first level of hierarchy (as illustrated in 
Fig. 2), pipe information was extracted from an existing cap-
ital asset inventory maintained within ESRI ArcGIS (Fig. 1, 
phase 2). Some examples of this information are presented 
in Fig. 6. It is worth mentioning that the contractor’s grade 
was taken into consideration as an indicator of the pipeline 
installation quality. Data regarding the pipes’ environment 
was obtained from other available datasets, such as Teh-
ran municipality’s land use information layers and layers of 
major surface and groundwater resources information pro-
vided by Tehran regional water company. These data were 
carefully reviewed for consistency, and whenever possible, 
incomplete data were either completed by referring to other 
accessible resources or estimated based on the information 
available for adjacent pipes. For instance, if the soil type 

data was missing for a particular pipe, it was assumed to 
be the same as that of the nearest pipe. This procedure was 
carried out by the authors through a case-by-case analysis to 
address each instance of missing data. In addition, to calcu-
late distance-related parameters, the Euclidean distance and 
zonal statistics tools of ESRI’s Arc toolbox were employed 
(e.g., distance to critical buildings).

4 � Results

To commence the fuzzy risk assessment, the physical and 
environmental characteristics of the pipes were fuzzified 
using the suggested FMFs (refer to Supplemental Mate-
rials A). It is worth mentioning that using crisp values to 
evaluate the attributes of the pipes, as adapted in Baah et al. 
[11], could lead to inaccurate assessment, as the hard cut of 
the data can result in an abrupt classification of the objects 
[65]. Based on the suggestion of Biswas and Zaman [13], 
incorporating the knowledge of experts with diverse back-
grounds and disciplines in similar projects is crucial for the 
risk assessment process. Therefore, a questionnaire (see 
Supplemental Materials B) was prepared and distributed 
among university professors, consultants, and contractors 
working in the wastewater industry in Tehran. They were 
asked to make pairwise comparisons to determine the rela-
tive importance (weights) of different factors based on their 
expertise and the suggested values in Fig. 4. Eventually, 32 
questionnaires were received, with university professors 
accounting for 25%, consultants and contractors for 35%, 
and personnel of the wastewater department of Tehran for 
40% of the respondents. In the present study, weights were 
assigned to experts based on their experience, knowledge, 
and expertise to aggregate their judgments. For example, 

Fig. 5   Studied area (Blue, green, and orange lines specify sub-districts number 1, 2, and 3, respectively; NW: Region with smaller diameters 
than 400 mm) [64]
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university professors and experts with more than 15 years 
of related field work received a weight of 0.5; while experts 
with 5 to 15 years of experience and those with less than 
five years of experience were assigned weights of 0.33 and 
0.17, respectively. According to FAHP results, the criteria 
of wastewater type, pipe depth, and road type were identified 
as the most influential factors affecting the LoF. It should 
be noted that CR values of all comparisons were checked 
and found to be less than 0.1, ensuring the coherence of the 
expert judgments.

Concerning the CoF, the evaluation identified soil con-
tamination, service interruption of critical buildings, and a 
drop in people’s work efficiency and comfort as the three 
most significant consequences. Subsequently, using the 
collected information, the overall fuzzy Lof and CoF for 

each pipe were calculated using Eqs. 5 and 6 (refer to Fig. 1 
and Phase 3). It is worth noting that in cases where there is 
sufficient recorded data available regarding past structural 
failures of sewer pipes in the network (which is typically 
applicable to older networks), probabilistic methods can 
be utilized as an alternative approach to estimate the LoF 
(please refer to Anbari et al. [15] for further details).

Utility managers usually base their decisions on the com-
bined RV. However, examining the criticality of pipes under 
individual risks can provide them with a more transparent per-
spective. Therefore, it is necessary to understand the criticality 
of pipe states for each risk before calculating the combined 
risk. To accomplish this, the values of individual risks were 
defuzzified and clustered using the K-means algorithm, as 
described in Table 1. Figures 7a–c present a snapshot of the 
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pipe network based on different individual risk indices in GIS. 
Regarding these figures, pipes tend to show higher criticality 
under the first individual risk index: Risk of environmental 
contamination induced by the collapse of a pipe. Approxi-
mately 50% of the total pipe length clustered in risk group 
number 3, extremely critical (Fig. 8). One main reason for this 
is the coarse-grained soil type in this region, which allows pol-
luted wastewater to spread easily in the event of pipe collapse 
giving a high CoF value. Based on Fig. 7a, a significant portion 
of the primary transmission pipes, which have larger diam-
eters, fall under this category. This is because these pipes carry 
a substantial amount of sewage, and in the event of a structural 
failure, can swiftly contaminate the surrounding areas. On the 
contrary, when only considering the risk of annoyance of life 
quality and increased public expenditure induced by the col-
lapse of a pipe, nearly 60% of pipes were classified in cluster 
number 1 (Fig. 8). In this case, the ending and main collective 

branches generally have higher RV because if they collapse, 
nearly all customers would face wastewater drainage problems 
(Fig. 7c). Less than 30% of pipes were grouped as extremely 
critical when subjected to the evaluation of traffic disturbance 
and road damage (Figs. 7b and 8). In this case, the risk of pipe-
line failure affecting local streets was relatively low due to the 
limited traffic volume. Conversely, most of the main streets fall 
under the moderately/extremely critical categories.

To obtain the fuzzy combined risk, the fuzzy individ-
ual risk indices need to be integrated. As discussed in the 
methodology section, two different approaches were used 
for this purpose. In the first approach, experts compared 
individual risks based on three predefined risk manage-
ment criteria (Table 2) to estimate their relative severity 
(relative weights) from different managerial perspectives. 
Here, 3 management criteria were introduced: The spe-
cific risk in question presents a significant threat, with the 
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collapse risks 
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Maps of 

combined

collapse risks
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Fig. 7   Risk maps of sewer pipe collapse in GIS a Risk of environ-
mental contamination induced by the collapse of a pipe; b Risk of 
traffic disturbance and road damage induced by the collapse of a pipe; 
c Risk of annoyance of life quality and increased public expenditure 
induced by the collapse of a pipe; d Combined risk under Scenario 1 

(with 3 clusters); e Combined risk under Scenario 2 (with 3 clusters); 
f Combined risk under Scenario 3 (with 3 clusters); g Combined risk 
under Scenario 4 (with 3 clusters). Some of the differences between 
Figs. d–g were encircled
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potential for severe consequences and detrimental impacts 
on various aspects of the affected area or system (Scenario 
1), minimizing the risk necessitates significant financial 
investments to cover the required costs associated with 
mitigation measures, preventive actions, and necessary 
infrastructure upgrades (Scenario 2)”, and utilities face 
various challenges and obstacles in effectively managing 
the associated risk, including limited resources, complex 
regulatory frameworks, technological limitations, etc. 
(Scenario 3)”. Table 2 presents the details of the obtained 
fuzzy weights under each scenario by analyzing the col-
lected questionnaires. Based on this table, for instance, 
from the point of the jeopardy of the risk, the collapse 
of the pipe will have the biggest impact on traffic distur-
bances and road, according to experts; therefore, it has the 

greatest influence on the calculated combined risk under 
this scenario.

Considering the weights provided in Table 2 and cal-
culating the weighted sum of individual risks under each 
scenario, the fuzzy combined risk for each pipe asset was 
calculated, defuzzified, and subsequently mapped in GIS 
(Fig. 7d–f). Based on these figures and Fig. 8, the aggre-
gation of individual risk indices under the three scenarios 
yielded almost identical results: about 30% of pipes’ length 
classified as extremely critical. The minor differences are 
encircled (Fig. 7d–f). According to the results, based on the 
weights obtained in Table 2, changing the scenario does not 
significantly affect the risk cluster for most of the pipes. 
However, integrating the risk indices resulted in a differ-
ent distribution of clusters compared to the individual risk 
indices. For instance, when considering the first individual 
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Table 2   Aggregated fuzzy relative weights of individual risks assigned by experts under Scenario 1–3 (Comparing individual risks based on 
predefined management criteria)

Individual risks Aggregated fuzzy weights under scenarios 1–3

The specific risk in question 
poses significant harm (Scenario 
1)

Required costs to 
minimize the risk 
(Scenario 2)

Challenges and obstacles for utilities 
to manage the related risk effectively 
(Scenario 3)

Risk of environmental contamination 
induced by the collapse of a pipe

(0.068, 0.109, 0.228) (0.151, 0.303, 0.651) (0.168, 0.379, 0.908)

Risk of traffic disturbance and road damage 
induced by the collapse of a pipe

(0.289, 0.639, 1.381) (0.159, 0.325, 0.734) (0.146, 0.334, 0.779)

Risk of annoyance of life quality and 
increased public expenditure induced by 
the collapse of a pipe

(0.109, 0.252, 0.535) (0.156, 0.372, 0.759) (0.123, 0.287, 0.602)
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risk index (Risk of environmental contamination induced 
by the collapse of a pipe), approximately half of the pipe 
lengths were classified as extremely critical. However, after 
calculating the integrated risk, the percentage reduced to 
approximately 30% of the pipe lengths falling into this clus-
ter. Another example is the decrease in the percentage of the 
pipes classified as non-critical, which decreased from ~ 60% 
(under the third individual risk index) to approximately 40% 
after integrating the individual risks.

In the second approach (which will be referred to as sce-
nario 4 from here on), the weights assigned to each risk were 
pre-defined and had a fuzzy value ranging from (1, 1, 3) to 
(7, 9, 11) (similar to Fig. 4). These weights are assigned 
based on individual risk values to reflect their impact/impor-
tance when calculating the combined risk. This means that 
a minimum weight of (1, 1, 3) was assigned to low indi-
vidual risk values (not critical), while a maximum weight 
of (7, 9, 11) was assigned to very high individual risk values 
(extremely critical). The results obtained in scenario 4 were 
close to those of the earlier three scenarios mentioned above 
(Fig. 7d–f), with a slight difference: it tended to classify 
approximately 15% more pipe lengths in cluster 3, which 
represents the extremely critical (Figs. 7g and 8). This indi-
cates that assets with higher risk values are more likely to 
degenerate to the next level compared to those with lower 
risk values. Therefore, it can be inferred that the clusters 
presented in this method have the potential to provide a more 
realistic representation and a more accurate reflection of the 
actual risk levels.

One of the main reasons for this resemblance could be 
the low number of clusters. To test this hypothesis, the inte-
grated risks were classified into 5 clusters. It should be noted 
that here 2 intermediate classes were added to the categories 
of Table 1; Partially critical: If there is a budget available, 

risk should be monitored to identify any changes or devel-
opments; and High critical: Risk requires high attention, 
although immediate inspection/rehabilitation activities may 
not be necessary. By comparing Figs. 8 and 9, the results of 
increasing the number of clusters are revealed. According 
to Fig. 9, for instance, in Scenario 3, roughly 55% of pipes 
fall into the non-critical category (cluster no.1), which is 
4, 2, and 2 times greater than the corresponding values in 
Scenarios 1, 2, and 4, respectively. Likewise, the length of 
pipes in the fifth cluster (extremely critical) in Scenario 1 
is very close to Scenario 2, but 1.5 and 3 times higher than 
Scenarios 3 and 4, respectively. Similar comparisons can be 
made for other clusters.

4.1 � Impact of Uncertain Data

To validate the assertion that the proposed method can deal 
with uncertain data, the values in the existing database were 
assumed to be certain. Subsequently, to generate a database 
with x% uncertainty, the value of x% of all effective fac-
tors on LoF and its consequences (Fig. 2, level 1) were ran-
domly misplaced into other available categories (according 
to Table S1 and Table S2), where they did not belong. The 
changing procedure was continued until the cumulative 
number of selected factors exceeded the target percentage 
(x%). As it is out of the scope of the present study, to read 
more in detail about this procedure, please refer to Roghani 
et al. [25]. In the current study, x% varies from 10 to 60% at 
10% intervals. This range was selected to cover networks of 
different ages, including newer networks with the possibil-
ity of accessing more accurate data and older networks with 
low-quality data. It should be emphasized that to obtain the 
combined RV at the pipe level, the steps were the same as 
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those mentioned in the methodology section, using the same 
weights for the factors as before.

Moreover, to integrate individual risks and calculate com-
bined RV, scenario 4 (dynamic weights) was adopted here 
as a more realistic approach. The defuzzified combined RV 
was clustered into 5 classes to provide a more transparent 
ranking. Figure 10 provides a comprehensive comparison of 
the reproducibility of the defuzzified RV cluster numbers. 
According to this figure, the assigned cluster for each pipe 
can be categorized into one of the following 4 categories in 
comparison to its original cluster:

1-	 If a cluster is precisely predicted→Predicted accurately
2-	 If a cluster is predicted with a difference of 1 cluster 

(higher or lower) → Predicted marginally inaccurately
3-	 If it is predicted with a difference of 2 clusters higher 

(lower) compared to its original risk cluster → Predicted 
slightly inaccurately

4-	 If it is predicted with a difference of 3 or 4 clusters 
higher (lower) compared to its original risk cluster → 
Predicted inaccurately

Based on this figure, as the percentage of the uncertainty 
of input data increases, the percentage of accurate risk clus-
ter prediction decreases to some extent (from 32 to 22%). It 
should be noted that even in the worst case where all input 
data have 60% uncertainty, the risk cluster was accurately 
predicted for 22% of the pipes. The introduction of uncer-
tainty in the input data also led to overestimation errors in 
risk clustering. In other words, the risk status of some pipes 
was estimated to be worse compared to their original risk 
value, resulting in their placement in higher-numbered clus-
ters: blue segments in Fig. 10). In the present case study, 
this error is in the range of 27–40%. It should be noted that 
this type of error impedes the reproducibility level of cluster 

prediction but does not pose any hazard in the district. How-
ever, it can result in increased operational expenditures for 
inspection and/or maintenance tasks. The segments on the 
far right of Fig. 10, which are anticipated to be worse than 
the situation without uncertainty, however, may result in an 
emergence of more unneeded expenses in comparison to the 
other two segments. On the other hand, pipes whose risk 
cluster has been underestimated (meaning their risk clus-
ter is predicted to be lower than their original risk cluster) 
may increase the potential for failure and consequences in 
the region if they are ignored during maintenance activities. 
According to Fig. 10, this error (represented by a combina-
tion of yellow, orange, and red segments) increases with 
the level of uncertainty, ranging from 35 to 46%, and then 
reduced to 39% for 50% and 60% uncertainty levels. In gen-
eral, the occurrence of this type of error in predicting the 
risk class in the presence of uncertainty is higher compared 
to the previous error when applying the method proposed in 
this study. However, pipes in the far-left segments in Fig. 10, 
whose risk class is predicted to be better than the condition 
without uncertainty, and have a higher potential for failures 
or consequences if ignored, account for less than 15% in 
most cases.

In reality, the quality of each effective parameter varies, 
and each parameter may have different levels of uncertainty. 
Therefore, another uncertainty scenario was examined, 
where there was 75% uncertainty in intangible parameters 
(e.g., Drop in people’s work efficiency and comfort due to 
delays, odor, and noise), and 25% uncertainty in the rest. It 
can be seen that the risk cluster is accurately predicted for 
21% of the pipes, similar to the cases with 50% and 60% 
uncertainty in all parameters. However, compared to the 
aforementioned instances, the percentage of pipes with an 
underestimated risk cluster has increased (similar to the case 
of 20% uncertainty in all parameters), while there are fewer 
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pipes with an overestimated risk cluster in this case, provid-
ing a sufficient measure of robustness in the prioritization 
process.

5 � Discussions

Risk and uncertainty are often not considered in the deci-
sion-making on sewer rehabilitation [32], which can lead to 
inefficient planning. Besides, because of the limited avail-
able data, water and wastewater utilities must often com-
bine experts’ opinions and available data with a suitable risk 
assessment method. In the present study, employing fuzzy 
logic and multi-criteria decision-making, the effectiveness of 
a classical risk analysis approach was enhanced. The method 
improves upon existing methods in several ways. First, it 
offers a more pragmatic way to prioritize sewer assets for 
maintenance activities, especially for the utilities that suffer 
from a limited amount of available data and is not enough to 
build deterioration models, identify main explanatory fac-
tors, etc. As a potential solution, in assessing the likelihood 
of failure, the presented method uses information commonly 
available to municipalities (e.g., age, pipe length, burial 
depth, etc.). In addition, it provides an easy way to assess 
and incorporate the consequences of failure in the decision-
making framework for sewer network maintenance.

The use of fuzzy logic in this study was important because 
of the taking epistemic uncertainty of the risk assessment 
process into account. In fact, this method addresses uncer-
tainties in the risk assessment process by (a) using FMFs 
to evaluate effective risk factors and (b) using TFNs to 
compare elements in the hierarchical structure to determine 
their relative weights. Any attempts which adjust uncertainty 
in decision-making models improve the results’ accuracy. 
Moreover, the GIS, as a useful auxiliary geospatial tool that 
accepts various types of data, was integrated into the method 
to provide classified risks’ visual representation. Accord-
ingly, decision-makers can easily compare the risk of failure 
index for the different sections, visually identify sewer-pipe 
assets in immediate need of attention and track the results 
of changes in the values of the parameters.

The proposed approach was implemented and tested in 
a full-case study: the second sub-district of District 2 of 
Tehran Water and Wastewater Company. To estimate the 
likelihood and the consequences of failure, the most impor-
tant 20 effective factors were extracted, and the hierarchical 
structure for risk assessment was formed. Then, the relative 
importance of each extracted factor on the LoF and CoF 
was obtained through the FAHP method and by distribut-
ing a questionnaire among the experts. In the next step, to 
investigate more comprehensively the overall risk of col-
lapse at the pipe level, three distinct individual risks were 
defined: (1) Risk of environmental contamination induced 

by the collapse of a pipe; (2) Risk of traffic disturbance and 
road damage induced by the collapse of a pipe; (3) Risk of 
annoyance of life quality and increased public expenditure 
induced by the collapse of a pipe. Results indicated that 
nearly 50% of the whole pipes’ length clustered as critical 
under the first individual risk index: Risk of environmen-
tal contamination induced by the collapse of a pipe. The 
coarse-grained soil type prevalent in the region could be a 
leading cause for concern, as a collapsed pipe can quickly 
disperse and contaminate the surrounding environment. This 
is especially worrisome for the primary transmission pipes 
with larger diameters, which carry a substantial amount of 
sewage and can lead to swift contamination in case of struc-
tural failure. Nevertheless, the conditions surrounding the 
pipes in various networks can vary, resulting in different 
levels of individual risk and criticality levels compared to 
other networks (for example, please see the results of [15]). 
It should be highlighted that the availability and inclusion 
of at least some data would significantly help this numerical 
investigation. If such data are accessible, they are of great 
importance in improving how the situation is understood and 
enabling a more thorough and trustworthy analysis.

Then, to aggregate individual risk indices and obtain 
the fuzzy combined risk, two different weighting scenarios 
were set: (1) Comparing individual risks based on prede-
fined management criteria; (2) Utilizing dynamic fuzzy 
weights. The integration of risk indices led to a different 
cluster distribution than individual risk indices, which could 
be considered the actual reporting of the asset priority since 
this composite index provides an overview of all individual 
indices. However, regardless of the scenarios, the outcome 
of this aggregation was almost the same. The insufficient 
number of clusters could contribute to this problem as it may 
result in the need to force disconnected data groups to con-
form to a single, larger cluster. Therefore, to see the effect 
of the number of clusters in improving the resolution of risk 
groups, combined RVs were clustered into 5 groups. Results 
revealed that increasing clusters led to a more transparent 
sewer pipe assets ranking in the studied area. Notably, adopt-
ing clustering methods to classify pipe failure’s risk instead 
of other common approaches (like risk matrix) gives more 
reassurance to decision-makers about the correctness of their 
decisions. As the former partitions a data set into subsets 
(called clusters) so that data within the same cluster are as 
similar as possible and data within different clusters are as 
different as possible [66]. Whereas the risk matrix is static 
and provides the decision-maker with a non-meticulous 
classification: the probability, consequences, and risk level 
classes are independent of the studied data characteristics 
(read more on this topic in [67]). It should be highlighted 
that automatic decisions for the optimal number of clusters 
can be a promising solution to avoid misinterpretation of the 
clustering results. As this topic is out of the scope of this 
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article, readers are encouraged to refer to related publica-
tions (e.g., [68]).

In addition, to investigate the effect of various levels of 
data uncertainty on the final outputs, the value of the effec-
tive factor on LoF and its consequences were intentionally 
misplaced randomly into the categories where they did not 
belong (for specified percentages of them). This analysis 
proved that the risk cluster was correctly predicted for more 
than 20% of the pipes, even in the worst case. Furthermore, 
pipelines whose risk class is predicted better than the situ-
ation in which there is no uncertainty and whose potential 
for failures or consequences might be greater in them in the 
case of ignorance, are mostly below 15%. On the other hand, 
given various levels of uncertainty, the proportion of pipes 
that are predicted to be in a worse risk condition than the 
situation without uncertainty (predicted with 3 or 4 clusters 
higher) is around 10%. This might lead to an increase in 
unnecessary inspection and/or maintenance costs. Moreover, 
by examining a scenario with 75% uncertainty in param-
eters that are intangible and 25% uncertainty in the rest (as 
a more realistic case), the risk cluster is correctly predicted 
for 20% of the pipes, which is comparable to the situations 
when there is 50% or 60% uncertainty in all factors. Here, 
the number of pipes with an underestimated risk cluster 
has increased compared to the aforementioned cases, while 
the number of pipes with an overestimated risk cluster has 
decreased.

6 � Conclusion

•	 Given the challenges of accessing buried infrastructure, 
the high cost of CCTV inspections, and the potentially 
severe consequences of sewer pipeline failure, it is cru-
cial to develop methods for assessing the risk of failure 
in sewer pipelines and prioritizing their inspection and/
or rehabilitation.

•	 The proposed method in this study is expected to assist 
managers and decision-makers in picking out critical 
sewer segments and prioritizing them for inspection/
rehabilitation activities, considering uncertainties in 
the risk assessment process, especially when there is a 
lack of data to build a deterioration model, identify main 
explanatory factors, etc.

•	 Although it may not be the best framework from the point 
of precision due to the problem of incomplete datasets 
in wastewater collection networks, the combination of 
incomplete data and expert opinions remains one of the 
only options for proactive maintenance.

•	 For future studies, as failure mechanisms are assumed to 
be the same everywhere in this study, they are suggested 
to be included in the framework. Accordingly, the mod-

ule for selecting the best rehabilitation method should be 
added to the method structure.

•	 An evaluation of the other infrastructures is also sug-
gested to be added to the proposed framework (e.g., water 
and road networks sharing the same corridor as sewer 
pipes) to create a integrated multi-asset management. 
With this objective in mind, it is highly recommended to 
include at least a couple of cases in which utilities record 
the risk of accidents after their occurrence. This would 
enable the validation process through measurement of the 
proximity between the results obtained from the present 
method and the actual reality.
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