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Abstract
Cross-section analysis is an important tool used to recover stresses and strains in a structure at specific cross-sections of 
arbitrary geometries, without the need for a full 3D model. This is particularly essential for large-scale structures such as 
aircrafts, wind turbine blades, etc. where making a full model can be computationally very expensive or impractical. The 
majority of currently available cross-section analysis frameworks are based on stepwise prismatic assumptions, which are 
hardly suited for the analysis of tapered beams. In fact, high-fidelity stress analysis obtained from analytical and full 3D 
models shows that predictions of stepwise prismatic approximations can significantly deviate from the correct solution of 
tapered beams. In this work, a prismatic 3D cross-section analysis method is extended to analyze a symmetrically tapered 
finite cross-section slice. In this study, the cross-section slice is discretized with 8-node and 20-node solid elements. The 
boundary conditions are applied as six constraint equations via the Lagrange multiplier method. The external nodal forces 
acting on the cross-section faces are obtained from the equivalent tractions induced by the cross-section forces. The devel-
oped numerical model is validated against the exact analytical solutions of a wedge as well as commercial finite element 
(FE) software COMSOL and it is shown that the numerically predicted displacement and stress fields agree well with those 
provided by the wedge’s analytical solution and the FE COMSOL results. This work contributes to the advancement of high-
fidelity numerical tapered cross-section analysis methods with an application for many engineering structures.
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u  Cross-section deformation vector (m)
ũ  Total cross-section displacement vector (m)
ux, uy, uz  Cross-section displacement components (m)
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H±  Height of the LHS and RHS cross-section 
plane (m)

I  Identity matrix ( 3 × 3 ) ( −)
I±
x

  Second moment of area of LHS and RHS 
cross section plane  (m4)

J  3D Jacobian matrix (3 × 3) (m)
JA±  2D Jacobian of negative and positive cross-

section plane (2 × 2) (m)
K  Global stiffness matrix 

(

3nn × 3nn
)

  (Nm−1)
Kij  Component of the single element stiffness 

matrix  (Nm−1)
L  Length of the analytical 2D wedge model (m)
Mx  External tip bending moment per unit width 

(Nm  m−1)
Mx,My,Mz  Internal cross-section bending moment com-

ponents (Nm)
Ni  Shape function for node i ( −)
N  Shape function matrix (3 × 60) ( −)
Pix,Piy,Piz  Nodal coordinates in global coordinate sys-

tem (m)
Q  Isotropic constitutive tensor (6 × 6)  (Pa−1)
Tx, Ty, Tz  Internal cross section force components (N)
Wint  Internal work of the cross-section slice (J)
+,−  Subscripts denoting the negative and positive 

cross section plane ( −)

1 Introduction

Non-prismatic beams find a wide field of application in 
engineering such as e.g. aircrafts, vessels, bridges, wide 
span space structures and wind turbine blades to name a 
few. Especially wind turbine rotor blades are strictly non-
prismatic as they exhibit Longitudinal Geometric Variations 
(LGVs) in the form of taper, twist and pre-curvature. The 
taper defined in this work refers to a continuous variation of 
the cross-section dimensions along the beam axis. Particu-
larly sectors working with large-scale structures, such as the 
wind industry, are currently facing great difficulties in accu-
rately predicting cross-section responses of tapered struc-
tures such as wind turbine rotor blades. It should be noted 
that full 3D models of such large structures are impracti-
cal for high fidelity time-domain fluid–structure interaction 
analyses. For instance, aeroelastic analysis of wind turbine 
blades involves several thousand time steps in each load case. 
Therefore, in general aeroelastic simulations are performed 
on beam element level for the entire wind turbine interact-
ing with the surrounding fluid and provide the cross-section 
force history in the beam element nodes. For this purpose, 
cross-section analysis is essential to provide the beam cross-
section stiffnesses—arising from complex geometries and 
anisotropic material properties—as input to the aeroelastic 
model. Moreover, the output of such aeroelastic simulations 

is the internal cross-sectional force history, which can hardly 
be used for accurate stress–strain recovery from a classic 3D 
finite element (FE) model. That is because the application of 
the six internal cross-section forces as external forces to 3D 
models locally disturbs the response due to improper force 
application conditions, eventually restraining or disturbing 
cross sectional warping displacements at the load application 
points. In order to avoid inaccurate cross-section warping 
displacement and stress/strain results, cross-section analysis 
tools are essential to accurately recover stresses and strains 
at specific cross-sections from internal cross-section forces 
without the need for a full 3D model, which can be impracti-
cal for large-scale structures.

Giavotto et al. (1983) were among the first to formulate 
a general cross-section analysis framework for arbitrary 
cross-section geometries and anisotropic material behav-
iour. The theory of Giavotto et al. has been implemented 
in the commercially available software packages Blasques 
(2012). Another commercially available cross-section 
analysis tool—Cesnik (1997)—draws from Hodges’ theory 
(Hodges 2006)that was further extended by Yu et al. (2012).

Although the available cross-section analysis tools are 
based on different formulations, they predominantly share 
one common assumption—the stepwise prismatic approxi-
mation. Figure 1a depicts the stepwise prismatic approach 
for cross section analysis of tapered beams.

Literature provides an abundance of theoretical work ded-
icated to tapered beams among which the pioneering works 
of Carothers (1914), Bleich (1932) and Boley (1963) show 
that prismatic formulations do not hold in case of tapered 
beams. More recently, the analytical solutions of Bennati 
et al. (2016), and Bertolini et al. (2019a, b, 2020) showed 
that the stress fields in tapered beams can be strongly at vari-
ance with prismatic beams. A numerical study on tapered 
beams (Bertolini et al. 2019a, b) comparing the predictions 
of BECAS with that of an equivalent 3D finite element shell 
model shows that even perceivably small taper gradients 
induce shear-extension and shear-bending coupling effects 
that cannot be predicted by prismatic beam theories. Moreo-
ver, the study (Bertolini et al. 2019a, b) showed that the 
magnitude of the deviation of stepwise prismatic approaches 
is a strong function of the taper angle. Bertolini et al. (2020) 
investigated a finite element method to analyze a tapered 
cross-section slice. Despite its success, the presented method 
was not able to provide a consistent prediction accuracy for 
all cross-section stress components. Moreover, the results 
exhibited a pronounced thickness dependency. It is worth 
mentioning two different studies on tapered beams by 
Hodges et al. (2008a, b) based on the variational asymptotic 
method—the underlying theory of VABS. The importance 
of a taper-correction factor for stress recovery and cross-
section stiffness prediction is emphasized in (Ho et al. 2010). 
Later, a full theory for cross-section analysis of tapered 
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beams was presented by Rajagopal (2014) but according 
to the best knowledge of the authors, a validation against 
analytical or numerical models is currently not available.

Migliaccio (2023) derived closed form solutions for the 
shear flow in tapered beams with rectangular and circular 
cross-sections. Balduzzi et al. (2017) compared the most 
common stress-recovery procedures with proposed new non-
prismatic planar beam model by example of an I-cantilever 
beam. Mercuri et al. (2020) derived an analytical model for 
a non-uniformly tapered 2D planar cantilever beam. Vilar 
et al. (2021) and Ojo and Weaver (2021) proposed a method 
for the stress analysis of non-prismatic beams. They formu-
lated a strong anisoparametric unified formulation (SUF) by 
combining a beam element with solid elements. The method 
was successfully applied to cantilever beams with various 
forms of taper.

Later Vilar et al. (2022) developed an analytical method 
to recover stresses in cantilever beams with lengthwise 
variation subject to cross section forces and distributed 
surface loads. Their method was able to predict the trans-
verse stresses more accurately than state-of-the-art models. 
Chockalingam (2020) derived an analytical expression for 
the shear stress in doubly tapered bi-symmetric I-beams with 
excellent accuracy. Chockalingam (2021) derived an ana-
lytical Timoshenko beam formulation providing the finite 
element stiffness matrix of an I-beam with constant taper. 
Murakami et al. (1996) and Karttunen et al. (2016) devel-
oped analytical solutions for anisotropic beams.

Carrera (2011) has developed a unified formulation—
CUF—based on the Taylor expansion of generic func-
tion describing the beam displacement field. The method 
employs higher order terms to describe nonlinear in and 
out-of-plane cross-section warping. The method is based 
on a prismatic cross-section formulation assuming that the 
cross-section surface geometry is not a function of the beam 

axis coordinate. This makes the application of the CUF to 
tapered beams challenging as the limits of the integral of 
the strain energy density are a function of the beam axis. 
Balduzzi et al. (2016) and Auricchio et al. (2015) solved the 
2D tapered cantilever beam problem by applying discrete 
boundary conditions. In (Auricchio et al. 2015) Timoshenko 
kinematics are used to obtain the stress distributions in the 
beam. Good agreement was obtained for the axial and trans-
verse stress components, but deviations of the shear stress 
distribution became apparent when they compared the pre-
dicted shear stress with 2D finite element analysis. The rea-
son for the deviation was independently investigated and 
discussed by Taglialegne (2018). Assuming Timoshenko 
kinematics prevents the accurate prediction of the non-linear 
warping displacements which were obtained by the exact 
analytical solution of Taglialegne (2018). The method is not 
lending itself to cross-section analysis since the imposition 
of discrete boundary conditions at the cross-section faces 
would prevent the cross-section from warping.

Building on the valuable findings and insights provided 
by the literature, this work attempts a feasibility study of 
an extension of the numerical stepwise prismatic approach 
toward a stepwise tapered cross-section slice approximation 
(c.f. Fig. 1). The study is based on a symmetrically tapered 
beam. Figure  1b depicts the principle of the proposed 
approach in which a beam with non-constant taper is approx-
imated with a series of finite cross-section slices exhibiting 
a piecewise constant taper. The work builds on two existing 
approaches: Ghiringhelli and Montegazza (1994) derived a 
method along the lines of (Giavotto et al. 1983) to predict 
the cross-section stiffness matrix of a prismatic untwisted 
beam using a finite cross-section slice discretized with 3D 
solid elements with one element layer in the slice thickness 
direction. In their formulation, a constant interpolation was 
assumed in the slice thickness direction. More recently, 

Fig. 1  Generic beam length with a continuous non-constant taper 
with a stepwise prismatic cross-section approximation with a differ-
ential slice thickness dz and b piecewise linearly tapered cross-sec-

tion approximation with a finite slice thickness Δz and c detail of the 
piecewise linear approximation of the continuous taper by the local 
tangent
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Couturier and Krenk (2016) suggested a similar method but 
using solid elements with Hermitian type shape functions. 
They obtain the prismatic cross-section stiffness matrix by 
imposing the six 3D deformation modes that correspond to 
extension, bending, shear and torsion.

To the best knowledge of the authors, no such method 
is currently available in the open literature and currently, 
no commercial cross-section analysis tool can make such 
predictions. Our method is a 3D model with no plane stress 
assumption (3D elements are used) and is indeed applicable 
to general cross-sections beyond the availability of analytical 
solutions. A plane stress wedge example whose analytical 
solution was available in the literature was used solely for 
the purpose of validating the proposed numerical 3D model. 
For the torsion load case and composite tapered slices under 
axial and bending load cases, the predicted stress compo-
nents were validated against their correspondings predicted 
by commercial FE software COMSOL.

This work demonstrates that stepwise prismatic 3D cross-
section analysis approaches can indeed be extended into 
piecewise tapered formulations. The proposed approach pro-
vides accurate predictions of the stress field in a 3D tapered 
cross-section, which currently available stepwise prismatic 
approaches fail to provide. The predictive accuracy of such a 
formulation is validated against closed form analytical solu-
tions and the effect of cross-section slice thickness and taper 
angle on the field variables is investigated. Cross-section 
analysis of tapered beams is a highly active research area 
in the analysis of large-scale structures—predominantly 
for dynamic time domain analysis. The findings presented 
serve the need of many different industry sectors dealing 
with tapered structures such as wind, aeronautic, space and 
marine.

The remainder of this article is structured in the follow-
ing fashion: Sect. 2.1 provides the theoretical framework of 
the proposed approach and contrasts its differences with the 
classic cross-section analysis approach. Section 2.2 presents 
the implementation of the approach into a 3D Finite Ele-
ment framework. Section 3 compares the numerically pre-
dicted field variables with a wedge example whose analytical 
solution was available in the literature as well as COMSOL 
FE results. The implications of the results are discussed in 
Sect. 4 and the major findings are compiled in Sect. 5.

2  Methodology

2.1  Theoretical Background

It is well-known that in stepwise prismatic formulations, 
neither the material properties nor the geometry vary along 
the differential cross section element dz . In cross-section 
analysis, this allows the internal work to be calculated as 

the area integral of the strain energy density (Giavotto et al. 
1983; Blasques 2012) according to Eq. (1).

In stepwise prismatic formulations with a differential 
slice thickness, the internal energy is therefore, defined in 
energy per unit length. However, in tapered slices the cross-
section dimensions are a function of the beam axis direction, 
which compels the integration of the strain energy density 
over the cross-section volume according to Eq. (2).

This detail has in fact considerable implications since a 
tapered cross section analysis can no longer be treated as a 
quasi-planar 2D problem but needs to be formulated as a 
3D problem. In its weak formulation, this means that the 
cross-section can no-longer be discretized with plane strain 
elements but needs to be discretized with solid elements 
(see Sect. 2.2). On the other hand, for the purpose of cross-
section analysis it is desired to make the 3D formulation 
adhere to the particular or central solution of the governing 
second order ODE as originally defined by Giavotto et al. 
(1983) in a sense that (i) it provides the 6 × 6 cross-section 
stiffness matrix and (ii) it recovers stress and strain fields 
from internal cross section forces. The remainder of this 
section is concerned with providing a framework that makes 
tapered 3D cross sectional analysis compliant with the clas-
sic beam theory.

This can be done by accepting the transition from a dif-
ferential slice formulation to a finite slice thickness formula-
tion dz → Δz . Figure 1a shows that the cross-section will be 
treated as tapered cross-section slice with a finite thickness 
Δz possessing two initially parallel cross section planes that 
are perpendicular to the beam axis. The cross-section plane 
in the negative and positive z-direction are denoted with 
the subscript − and + respectively. The slice thickness is 
assumed small relative to the characteristic in-plane cross 
section dimensions i.e. Δz ≪ h where h could be the cross-
section height.

Figure 2a and b show the kinematics of a tapered finite 
cross-section slice when undergoing an arbitrary deformation. 
Figure 2b shows that the total cross section plane deformation 
comprises of two parts namely a rigid body motion (RBM) and 
the warping deformation as coined by Giavotto et al. (1983). 
The RBM itself consists of three rigid body translations � 
and three rigid body rotations � , where the dashed polygon in 
Fig. 2b represents the deformation of the slice associated with 
the RBM of the two cross section planes. The dashed polygon 
would represent the deformation resulting from the assump-
tion that cross-sectional planes remain plane. The warping 

(1)�W int∕�z = ∫ A

�ij�ijdA

(2)Wint = ∫ V

�ij�ijdV
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deformation is consequently defined as the portion that distorts 
the cross section in the out-of-plane and in-plane directions.

In cross section analysis only the cross section deformation 
or the relative displacements are meaningful which is exempli-
fied by the red cross section fibre depicted in Fig. 2a and b. The 
change in length of the cross sectional fibre due to deformation 
is given by the difference of the position vectors in the initial 
configuration and the primed configuration: ���������⃗A+À+ −

���������⃗
A−À− . 

Figure 2c shows that the RBM is hence redundant when deter-
mining this change in fibre length, which is only a function 
of the relative displacement. Figure 2c depicts the so called 
central solution representing a cross-section slice located in the 
far field of a beam undisturbed by boundary effects. In other 
words, the RBMs depend on the beam boundary conditions 
that must remain unknown in cross-section analysis. Hence, 
in order to remove the RBM we demand that the weighted 
integral of the translations and rotations of all material points 
pertaining to the cross section slice are null. Defining the 
cross-section displacement vector as u =

(

ux uy uz
)T , the 

three translation and three rotation restraint equations can be 
written in continuous form as follows:

(3)∫
[

InT
]T
udV = 0

Equation 3 can be seen as a set of non-discrete boundary 
conditions enforcing that the average translations and rota-
tions of all material points are cancelling one another. Refer-
ring to Fig. 2c this means that both the net translation with 
respect to the y-axis and that the net rotation with respect to 
the x-axis of the two cross-section planes are zero. Figure 3a, 
b shows the six cross section forces and the associated gen-
eralised cross-section strains and curvatures as stipulated 
in this work.

The generalized beam cross-section strains and curvatures 
(Bathe 1982; Blasques 2012) are in the case of a tapered 
finite cross-section slice the finite differences of the rigid 
body translations and rotations given by Eq. (5), which con-
cludes the kinematics of the tapered cross-section slice.

The coupling of the cross section force vector 
[

T M
]T

=
[

Tx Ty Tz Mx My Mz

]T with the cross-section 
slice is established via the tractions p =

[

𝜎zz 𝜎yz 𝜎xz
]T
�⃗e 

using the beam equilibrium conditions that can be written 
for the finite cross-section slice as follows:

(4)n =

⎡

⎢

⎢

⎣

0 −z y

z 0 −x

−y x 0

⎤

⎥

⎥

⎦

(5)

�0x =
�+x−�−x

Δz
−

(

�+y+�−y

2

)

�0y =
�+y−�−y

Δz
+

(

�+x+�−x

2

)

�0z =
�+z−�−z

Δz

�x =
Δ�x

Δz
�y =

Δ�y

Δz
�z =

Δ�z

Δz

Fig. 2  a Linearly tapered beam 
with a finite beam slice Δz in 
the undeformed state with a 
cross-section fibre (red line) and 
b the beam slice in an arbitrar-
ily deformed configuration 
with total displacement and 
rigid body translation vector � 
and rigid body rotation � and 
c cross-section deformation of 
the beam slice without the rigid 
body motions representing the 
result of the cross-sectional 
analysis method
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The issue with Eqs. (6) and (7) is that the tractions on 
the two cross-section planes for a tapered slice with arbi-
trary geometry and anisotropic material behaviour are 
unknown beforehand, which prevents the calculation of 
the external work done by the cross-section forces. Gia-
votto et al. (1983) have resolved this problem by separat-
ing the total cross-section deformation into a so-called 
rigid body displacement and a warping displacement. By 
coupling the cross-section forces with the rigid body dis-
placements, it is possible to formulate the work equations 
in such a way that the tractions do not appear explicitly, 
which resolves the problem. In the current formulation 
presented in this work the total cross-section deforma-
tions cannot be separated into a rigid body and a warping 
displacement. For this reason, in the present study the 
tractions acting on the two cross section planes need to 
be assumed to be known.

(6)

[

T−

M−

]

= ∫
A−

[

InT
−

]T
p−dA

(7)

[

T+

M+

]

= ∫
A+

[

InT
+

]T
p+dA

It has been demonstrated by Bertolini et al. (2019a, b, 
2020) and Taglialegne (2018) through comparison with 3D 
finite element models, that accurate approximate predictions 
of the stresses in homogeneous isotropic linearly tapered 
beams are possible with the assumptions that Navier’s equa-
tion holds, under the proviso that the taper angle is small. 
That is to say, it has been shown that the axial stress distri-
butions in moderately tapered beams can be well approxi-
mated by the prismatic solution, where the remaining stress 
components can accurately be obtained from the axial stress 
distribution using the Cauchy equilibrium conditions. In 
this work, the same approach is utilised inasmuch the nodal 
forces acting on the cross-section slice planes are obtained 
with the prismatic formulations as will be explicated in 
detail in Sect. 2.2.

The numerical predictions obtained by the proposed 
method are validated against the exact analytical solution of 
a symmetrical 2D wedge depicted in Fig. 4. The geometrical 
parameters L = H∕���� and H0 = 2H defining the wedge are 
chosen in such a way, that the cross-section slice geometry 
located at mid-span corresponds to the finite element model 
in order to allow direct comparison.

Taglialegne (2018) derived the three Cauchy stress com-
ponents for the plane stress wedge using Carothers equilib-
rium conditions and proper transformation from Cartesian 
to polar coordinate system (CSYS)which are reproduced 
by Eq. (8) through (10) as a function of the three external 
wedge tip loads (c.f. Fig. 4).

(8)�zz =
1

�

y2 + (L − z)2
�2

⎛

⎜

⎜

⎜

⎝

Fz(L − z)3

� + sin�cos�
−

Fyy(L − z)2

� − sin�cos�
+

4Mxy(L − z)
�

y2 − (L − z)2 −
�

y2 + (L − z)2
�

(sin�)2
�

(2�cos2� − sin2�)
�

y2 +
�

L0 − z
�2
�

⎞

⎟

⎟

⎟

⎠

Fig. 3  Beam coordinate system 
on positive cross-section surface 
with a cross-section forces T  
and moments M and b the asso-
ciated generalized cross-section 
strains �0 and �
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The total deformations of the wedge were obtained from 
the Cauchy stress components using constitutive relations 
and subsequent integration of the strain components (Tagli-
alegne 2018). In order to shed light on the range of validity 
for a taper angle small enough to comply with the Navier 
traction assumption, it is useful to inspect the non-dimen-
sionalisation of the solution for �zz (Eq. 8). Using the natural 
coordinates −1 ≤ � ≤ 1 (corresponding to the y-direction) 
and 0 ≤ � ≤ 1 (corresponding to the z-direction), Tagli-
alegne (2018) derived the following non-dimensionalised 
expression for pure axial loading:

Linearisation of Eq.  (11) with sin� ≅ tan� ≅ � and 
cos� ≅ 1 the following expression is obtained:

Equation 12 shows that the constant stress distribution 
(i.e. no variation along � ) is obtained for taper angles 
approaching zero such that lim

�→0
�zz = Fz∕(1 − � )2H0B . It is 

(9)�yy =
1

�

y2 + (L − z)2
�2

⎛

⎜

⎜

⎜

⎝

Fzy
2(L − z)

� + sin�cos�
−

Fyy
3

� − sin�cos�
+

4Mxy(L − z)
�

y2 − (L − z)2 +
�

y2 + (L − z)2
�

(cos�)2
�

(2�cos2� − sin2�)
�

y2 +
�

L0 − z
�2
�

⎞

⎟

⎟

⎟

⎠

(10)�yz =
1

(

y2 + (L − z)2
)2

⎛

⎜

⎜

⎜

⎝

−Fzy(L − z)2

� + sin�cos�
+

Fyy2(L − z)
� − sin�cos�

+
2Mx

((

(

L0 − z
)4 − y4

)

cos�2 −
(

L0 − z
)2
(

(

L0 − z
)2 − 3y2

))

(2�cos2� − sin2�)
(

y2 +
(

L0 − z
)2
)

⎞

⎟

⎟

⎟

⎠

(11)�zz =
2tan�

(� + sin�cos�)(1 − �)
(

1 + �2(tan�)2
)2

Fz

2H0B

(12)�zz ≈
1

(1 − �)
(

1 + �2�2
)2

Fz

2H0B

Fig. 4  a Geometry and coordinate system of the symmetric plane 
stress wedge with constant taper angle � showing the cross-section 
slice with the dashed control section at mid-span and external uni-

axial tip load triple Fx,Fy,Mx defined in force per unit width and b 
rectangular cross-section at mid-span of width B used to validate the 
proposed numerical method

Fig. 5  a 3D cross section slice of a symmetrically tapered pla-
nar wedge with global CSYS, main dimensions B,H,Δz and taper 
angle � discretized with n elements along the y-direction and with 
one element along the z-direction and b orientation of the 20-noded 
isoparametric solid element with natural CSYS aligned with the 
global CSYS. The same orientation of the CSYS is considered for the 
8-node element
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now possible to define a small taper angle to satisfy the con-
dition 𝛼2 ≪ 𝛼 ⇒ 𝛼 ≪ 1.

2.2  Numerical Implementation

In this section, the numerical implementation of the pro-
posed method is presented and explicated in detail. The 
following underlying assumptions have been made for the 
implementation of the method:

• Isotropic homogeneous linear elastic material
• Small strain theory (linearized Green–Lagrange strain 

tensor)
• The taper angle is small i.e. 𝛼 ≪ 1

Figure 5 shows the geometry of the tapered wedge slice 
with a symmetric constant taper of slope k = tan� defined at 
the outer boundary. The slice is discretized with 8-noded and 
20-noded isoparametric solid elements. Since the analyti-
cal solution is based on a plane stress wedge, the geometry 
was discretized with one element through the thickness. The 
cross-section forces were applied through their equivalent 
nodal forces using the integration of their tractions as sche-
matically depicted in Fig. 6. The numerical procedure was 
implemented in the Matlab programming language (MAT-
LAB 2020).

The cross-section slice was discretized with both 8-noded 
and 20-noded isoparametric solid elements where the shape 
functions of the latter are provided in Appendix A. With the 
strain–displacement matrix B =

[

B1B2B3 ⋯Bi

]

 assembled 
using Eq. (13) and the linear elastic isotropic constitutive 
stiffness tensor Q = S−1 was used with the compliance ten-
sor provided below:

The elemental stiffness matrix is given by Eq. (15) using 
the standard Finite Element formulation (Bathe 1982).

Integration of Eq. (15) was done with a Gaussian quad-
rature using a full integration scheme (Dhondt 2004). The 
global stiffness matrix is eventually obtained by exploiting 
the standard assembly procedure according to K =

∑

eKe . 
Consequently, the weak form of the cross-section equilib-
rium conditions is given as Ku = f  . In order to make K posi-
tive definite, requires the removal of the six redundant equa-
tions represented by the RBMs. In order to avoid restraining 
the cross-section warping displacements by assigning dis-
crete essential boundary conditions, a set of six homogene-
ous constraint equations is used. Equations 16 represent the 
discrete formulation of Eq. (3) where the first and second 
rows of Eqs. (16) pertains to the rigid body translations and 
rigid body rotations, respectively.
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Fig. 6  Beam CSYS, uniaxial cross-section forces and the associated tractions following prismatic beam theory applied to both planes of the sym-
metrically tapered finite cross-section slice for a axial force Tz and b shear force Ty and c bending moment Mx
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where nn represents the number of nodes in both the front 
and back surfaces of the tapered cross-section slice. The 
constraints (Eqs. 16) can be applied in the virtual work prin-
ciple through the Lagrange multiplier method. In matrix 
form, Eq.  (16) can be written as Cu = 0 where 

C =

[

[

InT
1

]T[

InT
2

]T
⋯

[

InT
i

]T
⋯

[

InT
nn

]T
]

 . The total potential 

can now be formulated with the 6 × 1 Lagrange multiplier 
vector � as follows:

The solution of Eq. (17) is obtained by minimizing the 
potential energy Π according to:

Equation 18 must hold for any arbitrary �u and �� which 
means that �Π∕�u = 0 and �Π∕�� = 0 which renders the 
following constrained system of equilibrium equations:

The solution of Eq. (19) provides the nodal displacement 
vector corresponding to the relative cross-section slice 
deformation depicted in Fig. 2c in bold lines. The LHS 
diagonal of Eq. (19) contains zero entries rendering the 
matrix positive semi-definite that prevents direct solution 
methods such as e.g. the Cholesky factorisation method. A 
lower–upper (LU) factorization method is used to solve the 
system of Eqs. 19.

The element nodal force vector of Eq. (19) is obtained 
from the following equation:

where N is evaluated at the back and front surfaces of the 
cross section ( � = ±1 ). For a slice with rectangular cross 
section of height H− and H+ and width B− and B+ at the 
back and front side respectively, the corresponding element 
nodal force components at the back and front sides resulted 

(17)Π =
1

2

(

uTKu − uT f
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+ �(Cu) = 0
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�u
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�Π
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]

(20)f = ∫ NT
(�, �, �)p(x, y, z)dA

from axial force Tz , bending moment Mx and shear force Ty 
are given as follows:

The secondary field variables in terms of Cauchy stress 
and linearized Green strain are obtained following stand-
ard finite element procedure. The secondary variables are 
computed by averaging over all elemental Gauss points and 
reporting the value in the element center.

A flowchart illustrating the major steps of the solution 
process is shown in Fig. 7.

3  Results

3.1  Isotropic Material

In this section, the results obtained from the numerical 
implementation of the method in Matlab are presented. Lin-
ear elastic isotropic mechanical properties of the material 
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Fig. 7  Major steps of the solution process

Table 1  Deviation percentage between numerical and analytical 
stresses in a prismatic slice for axial, bending and torsion load cases 
as well as different element types

Element type Error (%)

Axial load case  Tz Bending 
load case  Mx

Torsion 
load case 
 Mz

8-noded element 2.27e-14 0.84 0.077
20-noded element 1.36e-13 0.002 0.012
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used for validating the model are as follows. � = 0.25 and 
E = 1 × 10

5
MPa.

Table 1 denotes the relative error percentage between the 
numerical and analytical solutions for the normal stress �zz 
and shear stress �yz in a prismatic slice. As expressed in 
Table 1, the error for the axial load case is numerically zero 
for both 8-noded and 20-noded elements whereas in the case 
of bending moment load, the error for the 8-noded element 
is higher than the 20-noded element. This difference is due 
to shear locking that occurs in linear elements (e.g. 8-noded 
element) with full integration under bending, while the shear 
locking problem is eliminated when using quadratic ele-
ments (e.g. 20-noded element). In the torsion load case, the 
error is negligible for 8-noded and 20-noded elements. Both, 
the 8-noded and 20-noded elements were implemented in the 
Matlab code. However, the discretization with the 20-noded 
element did not significantly improve the numerical results 
in the present cases, therefore, the results of the 8-noded ele-
ment are presented for the taper slice modeling. It should be 
noted that the 8-noded element discretization is the preferred 
choice—if possible—in order to reduce- the computational 
time of the cross-section analysis.

Figure 8 shows a good agreement between the analytical 
solution (blue) and the numerical solution (dash-dot) for the 
cross-section displacements under pure bending. The for-
mer was obtained by removing the RBMs from the total 

displacements using the method presented in Appendix B. 
Figure 8 shows that shear bending induced S-shaped warp-
ing displacements are present in addition to the shortening 
(top) and elongation (bottom) of the slice. Consequently, the 
S-shaped warping displacement vanishes in a prismatic slice. 
Comparison of the analytical solution with the numerical 
prediction in Fig. 8 shows that the latter is more compliant.

Figure 9 compares the numerical and analytical solu-
tions for shear and normal stress components of a 5° tapered 
cross-section slice under axial loading. All stresses are eval-
uated at the mid-plane of the cross-section slice at z = 0. 
As seen in Fig. 9, the numerical results agree well with the 
analytical solution for all the three stress components �yy , 
�yz and �zz.

Figure 10 shows the numerical and analytical solutions 
of the shear and normal stress components for a 5° tapered 
cross-section slice under pure bending. A very good agree-
ment is observed for the shear �yz and normal �zz stress 
components. A small variance between the analytical and 
the numerical solutions for the normal stress �yy becomes 
apparent (see Fig. 10a). It was found that the deviation error 
can be reduced by using a 20-noded element discretization.

Figure 11 demonstrates the shear stresses predicted by 
the proposed numerical method and the finite element (FE) 
software COMSOL Multiphysics (COMSOL Multiphysics® 
v. 5.6). In order to make a true comparison of the stress 
results predicted by COMSOL software and the proposed 
method, the geometrical parameters of the tapered beam are 
chosen so that the cross-section slice at the midspan of the 
COMSOL model corresponds to the cross-section geometry 
modeled in the proposed method. Figure 11a and b depict 
the mesh geometry and COMSOL contour plot of shear 
stresses at the midspan cross-section slice of the clamped 
tapered beam under torsion, respectively. The predicted 
shear stresses by the proposed numerical method agree well 
with the COMSOL results (c.f. Fig. 11c).

Figure 12 shows the effect of the tapered slice thick-
ness on the accuracy of the numerical solutions. As seen 
in Fig. 12, there is no significant dependency between the 
accuracy of the numerical results and the slice thickness. 
The maximum and minimum deviation errors are around 
3.5% and 0.5% for slice thicknesses of 1 m and 3 m, respec-
tively. It is worth noting that the deviation error decreases 
slightly when the thickness to width aspect ratio approaches 
one. It is important to discretize the model in such a way that 
high-quality elements are obtained to achieve the highest 
accuracy.

Figure 13 shows the deviation error between the numeri-
cal and the analytical solutions of a tapered slice under axial 
and bending moment loading for different taper angles. The 
results show a good agreement between the numerical and 

Fig. 8  Grey, black dash-dot and blue are the initial configurations, 
the numerical solution and the analytical solution, respectively for the 
cross-section displacements of a tapered cross-section slice for pure 
bending with a taper angle of 5° and a scale factor of 50. The non-
linear and unsymmetrical cross-section warping under pure bending 
is different to the response of a prismatic cross-section which is accu-
rately predicted
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analytical results for 3°, 4°and 5° taper angles, especially in 
the case of axial loading. The maximum error is around 5% 
for normal stress �yy in the case of bending and a taper angle 
of 5° c.f. Fig. 13b. The deviation error increases slightly 
with taper angle as seen in Fig. 13b.

3.2  Composite Material (Transversely Isotropic)

Mechanical material properties of the composite (i.e. trans-
versely isotropic) tapered beam used for the validation of the 
proposed numerical method against commercial FE software 
COMSOl are as follows.

Ez = 1e5MPa,Ex = Ey = 1e4MPa, �xz = �yz = 0.3, �xy = 0.25,Gxz = Gyz = 8000MPa

Fig. 9  Marker points and continuous lines represent the numeri-
cal and analytical solutions, respectively for stress components of a 
cross-section slice of 5° taper angle under the axial loading case  Tz. 

It is noteworthy to mention that both components �yy and �yz would 
be zero and �zz would be incorrectly predicted as a constant value in 
stepwise prismatic cross-section analysis predictions
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The tapered beam’s length along the Z direction in the 
COMSOL model is considered long enough (L = 100 m) 
to avoid the effect of boundary condition and loads on the 
stress results at the midspan cross-section.

Figure 14 depicts the shear and normal stresses predicted 
by the proposed numerical method and the FE software 
COMSOL for a 3° tapered cross-section slice under axial 
loading. Similar to the torsion case (c.f. Fig. 11a), to make a 
true comparison, the geometry of the cross-section slice at 
the midspan of the tapered beam modeled by COMSOL FE 

corresponds to the slice geometry modeled by the proposed 
method. The predicted shear and normal stress components 
agree relatively well with their corresponding COMSOl 
results (c.f. Fig. 14). The composite tapered slice exhibits 
slightly higher deviation errors than the isotropic tapered 
slice for normal stress components �yy and �zz (c.f. Fig. 14 
and Fig. 9).

Figure 15 demonstrates normal and shear stress compo-
nents for a 3° tapered cross-section slice under pure bend-
ing. The predicted shear �yz and normal �zz stress components 

Fig. 10  Marker points and continuous lines represent the numeri-
cal and analytical solutions, respectively for stress components of a 
cross-section slice of 5° taper angle under the pure bending moment 
load case  Mx. It is noteworthy to mention that both components �yy 

and �yz would be zero in stepwise prismatic cross-section analysis 
predictions. The assumed linearly distributed tractions are a good 
approximation of the axial stress distribution �zz
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match very well with their correspondings predicted by FE 
software COMSOL, however there is a slight deviation error 
in �yy stress component. It is noteworthy that the normal stress 
component �zz does not change linearly with the slice’s height 
(i.e. Y axis) for the composite tapered slice, and it deviates 
from linearity at the top and bottom of the slice (c.f. Fig. 15c).

4  Discussion

The Lagrange multiplier method used for applying the 
boundary conditions provides the capability to accurately 
predict the warping deformation in tapered cross-sections 
without restraining the response. In the FE formulation, 
the nodal forces were calculated assuming prismatic 

Fig. 11  Shear stresses predicted by the proposed numerical method 
and commercial FE software COMSOL for a cross-section slice of 5° 
taper angle under a torsion load  Mz a Finite element mesh in COM-
SOL software b COMSOL contour plot of the shear stresses at the 

midspan cross-section slice of the tapered beam clamped at one end 
and under torsion at the other end c Comparison between the shear 
stresses predicted by the proposed numerical method and COMSOL 
software
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assumptions for the tractions, however, the numerically 
predicted results agreed well with the FE results predicted 
by COMSOL software and analytical solutions for the dis-
placement and stress components. Applying approximate 
prismatic tractions enables coupling of the cross-section 
forces to the nodal forces without compromising the accu-
racy of the predicted displacement and stress. The appli-
cability of the approximate prismatic assumption has been 
confirmed in other research works (Taglialegne 2018; Ber-
tolini et al. 2019a, b). The numerical prediction of the slice 

displacement was slightly more compliant compared to the 
analytical solution, which is likely caused by neglecting 
the shear tractions when calculating the nodal forces.

The effect of the slice thickness on the accuracy of the 
numerical results was found to be insignificant. As only one 
element was used to discretize the slice through the thick-
ness, the slight change in the numerical prediction error 
(i.e. approx. 1%) with slice thickness can be attributed to a 
change in the element aspect ratio and accordingly the ele-
ment quality. In order to eliminate the numerical error due to 
element quality, the slice thickness and the model discretiza-
tion should be chosen such that elements with aspect ratios 
much larger or smaller than one are avoided.

The numerical model predicted the stress components 
well with high accuracy for slices with small taper angles 
between 3° and 5° which is the case for the majority of 
beam-type structures in engineering applications (e.g. 
wind turbine blades). With increasing slice taper angle, 
the error caused by the prismatic traction formulation 
increases which reduces the accuracy of the numerical 
model. This deviation however, is not a shortcoming of 
the method per se but rather a limitation of the currently 
adopted prismatic coupling between the cross-section 
force and the nodal forces. Future research will focus on 
coupling the cross-section forces to the cross-section slice 
faces in such a way that the nodal forces do not explicitly 
appear in the formulation. It is expected that the method 
will also provide accurate predictions for large taper 
angles.

Fig. 12  Deviation percentage between the numerical stress compo-
nents at the slice mid-plane and the corresponding analytical solu-
tions versus the taper slice thickness for an axial load case

Fig. 13  Deviation percentage between the maximum values of numerical stress components and the corresponding analytical ones versus the 
slice taper angle for both a axial load case and b bending load cases
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5  Conclusions

In this work, a numerical framework was developed for ana-
lyzing tapered cross-sections. The method was implemented 
using Matlab programming and the numerical results were 
validated against closed-form analytical solutions and COM-
SOL FE results. The following conclusions can be drawn 
from this work:

 i. It was demonstrated that the proposed method can pro-
vide accurate predictions of warping deformation and 
stress/strain fields of tapered 3D cross sections, which 
is not possible with stepwise prismatic formulations.

 ii. The feasibility of tapered 3D cross-section analysis 
was demonstrated and validated.

 iii. The Lagrange multiplier method was applied suc-
cessfully to the cross-section analysis of tapered finite 
cross-section slices, allowing for warping displace-
ment to be modelled.

 iv. The numerically predicted stress and strains at the 
slice mid-plane are largely independent of the slice 
thickness.

 v. The numerically predicted cross-section displacements 
and stresses agree well with the analytical solution 
for small taper angles which are the case for many 
engineering structures such as wind turbine blades.

Fig. 14  Normal and shear stress components predicted by the proposed numerical method (marker points) and commercial FE software COM-
SOL (continuous lines) for a 3° tapered cross-section slice under axial loading
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Appendix 1

The shape functions for 20-noded isoparametric solid element 
used in the numerical approach proposed in this work:

(A1)Ni =
1

8

(

1 + ��i
)(

1 + ��i
)(

1 + ��i
)(

��i + ��i + ��i − 2
)

fori = 1, 3, 5, 7, 13, 15, 17, 19

(A2)Ni =
1

4

(

1 − �2
)(

1 + ��i
)(

1 + ��i
)

fori = 2, 6, 14, 18

(A3)Ni =
1

4

(

1 − �2
)(

1 + ��i
)(

1 + ��i
)

fori = 4, 8, 16, 20

Appendix 2

For direct comparison of the cross-section displacements 
obtained from the numerical method, it was necessary to 
remove the RBMs from the total displacements ũ provided 

(A4)Ni =
1

4

(

1 − �2
)(

1 + ��i
)(

1 + ��i
)

fori = 9, 10, 11, 12

Fig. 15  Normal and shear stress components predicted by the proposed numerical method (marker points) and commercial FE software COM-
SOL (continuous lines) for a 3° tapered cross-section slice under pure bending moment
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by the analytical 2D wedge solution. Using the constraints 
in Eq. (16) it is possible to define the following identity for 
the two rigid body translations uT:

The displacement vector components due to rigid 
body rotation �x of the cross-section slice are given by 
uR = nT

[

�x 0 0
]T

= �x

[

−z y
]T . In a similar fashion, the 

following identity can be established by substituting the 
displacement components due to rigid body rotation into 
Eq. (21):

The rigid body rotation can be obtained from Eq. x and 
the components of the cross-section deformation without 
RBMs are u = ũ − uT − uR which in expanded form is 
notably:
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