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Abstract
Temperature distribution in biological tissue is described by dual-phase lag model supplemented by appropriate boundary

and initial conditions. Laser–tissue interactions are taken into account in the source function occurring in this model. The

problem is solved using the finite difference method. Next, the Arrhenius integral which is a measure of tissue destruction

is calculated. The inverse problem formulated here is to estimate the laser intensity assuring the destruction of this tissue

region for which the Arrhenius integral exceeds the critical value.

Keywords Bioheat transfer � Generalized dual-phase lag model � Tissue destruction � Identification problem �
Gradient method

1 Introduction

The goal of biological tissue artificial heating is to destroy

the diseased fragments and to minimize the damage of

surrounding healthy tissue. Artificial hyperthermia treat-

ments are performed using, among others, the electro-

magnetic field or the laser action. In this paper, the

influence of lasers heating on biological tissue is analyzed.

In the planning of this type of treatment, the mathematical

methods are used, which allow the laser intensity to be

estimated, assuring the destruction of the target region of

biological tissue. To analyze the problem discussed, the

mathematical models describing the laser irradiation, the

temperature distribution in the tissue domain and the tissue

damage degree should be formulated (Jacques and Pogue

2008; Niemz 2007; Tuchin 2007; Welch 1984; Welch and

van Gemert 2011). In the case of soft tissues, the scattering

generally dominates over the absorption for wavelengths

between 650 and 1300 nm and to determine the diffuse

fluence rate the steady-state optical diffusion equation can

be taken into account (Dombrovsky 2012; Farrel et al.

1992; Fasano et al. 2010; Guo et al. 2003). The temperature

field in the irradiated biological tissue can be described by

the different mathematical models. Three of them result

from the theory of continuum mechanics, namely Pennes

(1948), Vernotte (1958) and dual-phase lag (Xu et al. 2008)

models. These models are widely used in numerical mod-

eling of thermal processes occurring in the laser-irradiated

biological tissues, e.g. Afrin et al. 2012; Fanjul-Vélez et al.

2009; He et al. 2006; Hooshmand et al. 2015; Jaunich et al.

2008; Kim and Guo 2007; Narasimhan and Sadasivam

2013; Zhang et al. 2017; Zhou et al. 2009a, b. The second

group of models is based on the theory of porous media

(Vafai 2010) and then the biological tissue is divided into

two regions: vascular region (blood vessel) and extravas-

cular region (tissue). Using this approach, the generalized

dual-phase lag model (GDPL) is formulated (Zhang 2009).

This model is starting to be used to determine the tissue and

blood temperatures in the heated tissues (Afrin et al. 2012;

Jasiński et al. 2016; Kału _za et al. 2017; Majchrzak et al.

2015). Knowledge of temperature distribution allows one

to estimate the degree of tissue destruction using so-called

Arrhenius integral (Jasiński 2013; Niemz 2007) or thermal

dose parameter (Sapareto and Dewey 1984).

So far, the laser–tissue interactions have been modeled

as the direct problems. For the assumed intensity of the
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laser, the source function related to the laser heating, the

temperature distribution and finally the degree of tissue

destruction have been determined. In this paper, the inverse

problem connected with the estimation of laser intensity

assuring the destruction of target region of biological tissue

is considered. At first, the direct problem using the finite

difference method is solved. To describe the temperature

distribution the generalized dual-phase lag model supple-

mented by appropriate boundary and initial conditions is

applied. The source function in the GDPL equation

resulting from the laser heating is associated with the total

fluence rate, where its diffuse part is determined using the

steady-state optical diffusion equation. The degree of tissue

destruction is estimated on the basis of Arrhenius integral.

Next, taking into account these values, the inverse problem

is solved using the gradient method. In the final part, the

results of computations are shown.

2 Formulation of the Direct Problem

An axially symmetrical domain of biological tissue

exposed to the laser beam, as shown in Fig. 1, is consid-

ered. Thermal processes can be described by generalized

dual-phase lag model (Majchrzak et al. 2015; Zhang 2009).

This model consists of two coupled equations:

C
oTðr; z; tÞ

ot
þ sq

o2Tðr; z; tÞ
ot2

� �

¼ Kr2Tðr; z; tÞ þ KsT
o

ot
r2Tðr; z; tÞ
� �

þ G Tbðr; z; tÞ � Tðr; z; tÞ½ � þ eQmb þ 1 � eð ÞQm þ Qexðr; z; tÞ

þ sqC
1 � eð Þqc e

oQmb

ot
þ 1 � eð Þ oQm

ot
þ oQexðr; z; tÞ

ot

� �
;

ð1Þ

and

Tbðr; z; tÞ ¼ Tðr; z; tÞ � eqbcb
G

oTbðr; z; tÞ
ot

ð2Þ

where e is the porosity defined as the ratio of blood volume

to the total volume, C ¼ eqbcb þ 1�eð Þqc is the effective

heat capacity (q, qb, c, cb are the densities and specific

heats of tissue and blood, respectively), K ¼ ekb þ 1�eð Þk
is the effective thermal conductivity (k, kb are the thermal

conductivities of tissue and blood, respectively), G is the

coupling factor, sq is the relaxation time, sT is the ther-

malization time, Qm and Qmb are the constant metabolic

heat sources, Qex(r, z, t) is the source function connected

with the laser irradiation and T(r, z, t) and Tb(r, z, t) are the

tissue and blood temperatures.

The generalized dual-phase lag Eq. (1) is supplemented

by boundary condition (Mochnacki and Majchrzak 2017):

ðr; zÞ 2 C0 [ C :

�K n � rTðr; z; tÞ þ sT
o n � rT r; z; tð Þ½ �

ot

� �

¼ qb r; z; tð Þ þ sq
oqb r; z; tð Þ

ot

ð3Þ

where C0 corresponds to the axis of symmetry, C is the

boundary of the cylinder, n is the normal outward vector,

rT(r, z, t) is the temperature gradient and qb(r, z, t) is

known boundary heat flux. Here, the no-flux boundary

condition qb(r, z, t) = 0 is assumed. It should be noted that

for strongly scattering tissues (like the soft tissues analyzed

here), laser heating is considered as a body heat source but

the irradiated surface is thermally insulated (Afrin et al.

2012). Thus, on the upper surface of the domain considered

qb(r, z, t) = 0 is also assumed.

The initial conditions are also given:

t ¼ 0 : Tðr; z; tÞ ¼ Tp;
oTðr; z; tÞ

ot

����
t¼0

¼ wðr; zÞ ð4Þ

where Tp is known temperature and w(r, z) is the initial

heating rate.

The ordinary differential Eq. (2) is supplemented by

condition

t ¼ 0 : Tbðr; z; tÞ ¼ Tp: ð5Þ

Source function Qex(r, z, t) connected with the laser

heating can be defined as follows (Kim et al. 1996):Fig. 1 The domain considered
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Qexðr; z; tÞ ¼ la/ðr; zÞpðtÞ ð6Þ

where la [1/m] is the absorption coefficient, /(r, z) [W/

m2] is the total light fluence rate and p(t) is the function

equal to 1 when the laser is on and equal to 0 when the

laser is off.

The total light fluence rate /(r, z) is the sum of colli-

mated part /c and diffuse part /d (Gardner et al. 1996; Guo

et al. 2003; Kim et al. 1996)

/ðr; zÞ ¼ /cðr; zÞ þ /dðr; zÞ: ð7Þ

In the case of soft tissues, to determine the diffuse flu-

ence rate the steady-state optical diffusion equation (Farrel

et al. 1992; Fasano et al. 2010; Welch and van Gemert

2011) should be solved

r; zð Þ 2 X : Dr2/dðr; zÞ � la/dðr; zÞ þ l0s/cðr; zÞ ¼ 0

ð8Þ

where

D ¼ 1

3 la þ 1 � gð Þls½ � ð9Þ

and l0s ¼ ð1 � gÞls [1/m] is the effective scattering coef-

ficient (ls is the scattering coefficient, g is the anisotropy

factor).

Equation (8) is supplemented by boundary conditions

r; zð Þ 2 C : �D n � r/dðr; zÞ ¼
/dðr; zÞ

2
r; zð Þ 2 C0 : �Dn � r/dðr; zÞ ¼ 0 :

ð10Þ

The collimated fluence rate is given as (Fasano et al.

2010)

/cðr; zÞ ¼ I expð�l0t zÞ exp � r2

r2
D

� �
ð11Þ

where I [W/m2] is the surface irradiance of laser, rD is the

radius of laser beam and l0t [1/m] is the attenuation coef-

ficient defined as

l0t ¼ la þ l0s: ð12Þ

Solution of the above-presented problems allows one to

determine the Arrhenius integral (Jasiński 2013; Niemz

2007)

A r; z; tf
	 


¼ P

Ztf

0

exp � E

RTðr; z; tÞ

� �
dt ð13Þ

where P[1/s] is the pre-exponential factor, E[J/mol] is the

activation energy, R[J/(mol K)] is the universal gas con-

stant and [0, t f] is the time interval under consideration.

A value of damage integral A(r, z, tf) = 1 corresponds to

a 63% probability of cell death at a specific point (r, z),

while A(r, z, tf) = 4.6 corresponds to 99% probability of

cell death at this point (Chang and Nguyen 2004).

3 Inverse Problem

The inverse problem formulated here concerns the estimate

of laser intensity I which ensures the destruction of target

region of biological tissue. Thus, the following criterion

can be formulated:

SðIÞ ¼
XF
f¼1

XM
i¼1

Aðri; zi; tf ; IÞ � Amðri; zi; tf Þ
� �2 ð14Þ

where Amðri; zi; tf Þ is the ‘measured’ Arrhenius integral.

Aðri; zi; tf ; IÞ is the calculated Arrhenius integral obtained

from the direct problem solution with current estimate of

the unknown parameter I, while M is the number of points

and F is the number of time steps.

This inverse problem is solved using the gradient

method (Kurpisz and Nowak 1995). Thus, using the nec-

essary condition of optimum one has

dSðIÞ
dI

¼ 2
XF
f¼1

XM
i¼1

A
f
i � Amðri; zi; tf Þ

h i oAðri; zi; tf ; IÞ
oI

¼ 0

ð15Þ

where (c.f. Eq. 13)

V
f
i ¼

oAðri; zi; tf ; IÞ
o I

¼ P

Ztf

0

E

RT2ðri; zi; tÞ
exp � E

RTðri; zi; tÞ

� �
Uðri; zi; tÞdt

ð16Þ

while

Uðri; zi; tÞ ¼
oTðri; zi; tÞ

oI
ð17Þ

are the sensitivity coefficients and A
f
i ¼ Aðri; zi; tf ; IÞ.

Function A
f
i is expanded into a Taylor series about

known value of I k, this means

A
f
i ¼ A

f
i

� �k

þ V
f
i

� �k

Ikþ1 � Ik
	 


ð18Þ

where k is the number of iteration and Ik for k = 0 is the

arbitrary assumed value of I, while Ik for k[ 0 results from

the previous iteration.

Introducing formula (18) to Eq. (15) one obtains

XF
f¼1

XM
i¼1

A
f
i

� �k

þ V
f
i

� �k

Ikþ1 � Ik
	 


� Amðxi; tf Þ
� �

V
f
i

� �k

¼ 0:

ð19Þ
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After the mathematical manipulations one has

Ikþ1 ¼ Ik þ

PF
f¼1

PM
i¼1

Amðri; zi; tf Þ � A
f
i

� �k
� �

V
f
i

� �k

PF
f¼1

PM
i¼1

V
f
i

� �k
� �2

;

k ¼ 0; 1; 2; . . .;K

ð20Þ

where K is the assumed number of iterations.

To determine the sensitivity coefficients (17), the gov-

erning equations should be differentiated with respect to

the unknown parameter I (Kleiber 1997; Majchrzak and

Mochnacki 2014). At first, the source function Qex(r, z, t)

connected with the laser irradiation is differentiated

oQexðr; z; tÞ
oI

¼ la
o/dðr; zÞ

oI
þ o/cðr; zÞ

oI

� �
pðtÞ ð21Þ

or

oQexðr; z; tÞ
oI

¼ la Wdðr; zÞ þWcðr; zÞ½ �pðtÞ ð22Þ

where

Wdðr; zÞ ¼
o/dðr; zÞ

oI
; Wcðr; zÞ ¼

o/cðr; zÞ
oI

: ð23Þ

Taking into account the dependence (11) one has

Wcðr; zÞ ¼ expð�l0tzÞ exp � r2

r2
D

� �
ð24Þ

while the function Wd(r, z) results from the differentiation

of Eq. (8) and boundary conditions (10). Thus

r; zð Þ 2 X : Dr2Wdðr; zÞ � laWdðr; zÞ þ l0sWcðr; zÞ ¼ 0

ð25Þ

and

r; zð Þ 2 C : �Dn � rWdðr; zÞ ¼
Wdðr; zÞ

2
ð26Þ

Next, Eqs. (1) and (2) are differentiated with respect to

the parameter I and then

C
oUðr; z; tÞ

ot
þ sq

o2Uðr; z; tÞ
ot2

� �

þ G Ubðr; z; tÞ � Uðr; z; tÞ½ � þ oQexðr; z; tÞ
oI

ð27Þ

Ubðr; z; tÞ ¼ Uðr; z; tÞ � eqbcb
G

oUbðr; z; tÞ
ot

ð28Þ

where

Uðr; z; tÞ ¼ oTðr; z; tÞ
oI

; Ubðr; z; tÞ ¼
oTbðr; z; tÞ

oI
: ð29Þ

The boundary condition (3) and the initial conditions (4)

(5) are also differentiated

ðr; zÞ 2 C :

� K n � rUðr; z; tÞ þ sT
o n � rU r; z; tð Þ½ �

ot

� �
¼ 0

ð30Þ

t ¼ 0 : Uðr; z; tÞ ¼ 0;
oUðr; z; tÞ

o t

����
t¼0

¼ owðr; zÞ
o I

ð31Þ
t ¼ 0 : Ubðr; z; tÞ ¼ 0: ð32Þ

START
Set the value of ( = 0)I kk

collimated fluence rate:
formula 11( )

:diffuse fluence rate
andequations (8) (10)

tissue and blood
:temperatures

equations (1)-(5)

Determine the
:Arrhenius integral

formula (13)

formula (24)

equations ( ) ( )25 and 26

formula (22),
equations 27 , 28 ,( )  ( )

(30), (31), (32)

formula (16)

if k K<

END

melborptcerid
eh t

evloS
melborptcerid

eh t
evloS

s
m el borplan oitidda

eht
evloS

yes

no

Determine the
:value I k+1

)formula (20

Fig. 2 Flowchart of the identification algorithm
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In Fig. 2, the summary of the identification algorithm is

presented.

4 Method of Solution

The direct problem and additional ones connected with the

sensitivity functions are solved using the finite difference

method. For this purpose, the uniform spatial grid of

dimensions n 9 n (h is the grid spacing) shown in Fig. 3 is

introduced.

At first, the optical diffusion Eq. (8) is approximated

D
1

ri;j

/d i;jþ1 �/d i;j�1

2h
þ
/d i;jþ1 � 2/d i;jþ/d i;j�1

h2
þ
/d i�1;j� 2/d i;jþ/d iþ1;j

h2

� �

�la/d i;jþl0s/c i;j ¼ 0

ð33Þ

and then (i = 1, 2,…, n - 1, j = 1, 2,…, n - 1)

/d i;j ¼
D 2ri;j � h
	 


2ri;j la h2 þ 4Dð Þ/d i;j�1 þ
D 2ri;j þ h
	 


2ri;j la h2 þ 4Dð Þ/d i;jþ1

þ D

la h2 þ 4D
/d i�1;j þ/d iþ1;j

	 

þ l0s h

2

la h2 þ 4D
/c i;j

:

ð34Þ

The boundary conditions (10) are also approximated

The system of Eqs. (34) and (35) is solved using the iter-

ative method. In a similar way, the problem described by

Eqs. (25) and (26) is solved.

Next, Eqs. (1) and (2) are approximated

C
T
f
i;j � T

f�1
i;j

Dt
þ
T
f
i;j � 2T

f�1
i;j þ T

f�2
i;j

Dtð Þ2

" #

þ G T
f�1
b i;j � T

f�1
i;j

� �
þ eQm b þ 1 � eð ÞQm þ Q

f�1
ex i;j

ð36Þ

and

T
f
b i;j ¼ T

f�1
i;j � eqbcb

G

T
f
b i;j � T

f�1
b i;j

Dt
ð37Þ

where

r2Ts
i;j ¼

Ts
i�1;j � 2Ts

i;j þ Ts
iþ1;j

h2
þ 1

ri;j

Ts
i;jþ1 � Ts

i;j�1

2h

þ
Ts
i;j�1 � 2Ts

i;j þ Ts
i;jþ1

h2
ð38Þ

while s = f - 1 or s = f - 2 and Dt is the time step.

After the mathematical manipulations one has

Fig. 3 Differential grid

�D
/d i;n � /d i;n�1

h
¼

/d i;n

2
! /d i;n ¼

2D

2Dþ h
/d i;n�1; i ¼ 1; 2; . . .n� 1

D
/d 1;j � /d 0;j

h
¼

/d 0;j

2
! /d 0;j ¼

2D

2Dþ h
/d 1;j; j ¼ 1; 2; . . .; n� 1

�D
/d n;j � /d n�1;j

h
¼

/d n;j

2
! /d n;j ¼

2D

2Dþ h
/d n�1;j; j ¼ 1; 2; . . .; n� 1

D
/d i;1 � /d i;n

h
¼ 0 ! /d i;0 ¼ /d i;1; i ¼ 1; 2; . . .; n� 1

: ð35Þ
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and

T
f
b i;j ¼

GDt
GDt þ eqbcb

T
f�1
i;j þ eqbcb

GDt
T
f�1
b i;j

� �
ð40Þ

The approximate form of boundary condition (3) is as

follows (i = 1, 2,…, n - 1, j = 1, 2,…, n - 1):

n � rT r; z; tð Þ½ �fi;j
þ sT
Dt

n � rT r; z; tð Þ½ �fi;j� n � rT r; z; tð Þ½ �f�1
i;j

n o
¼ 0:

ð41Þ

It means

Because the explicit scheme of finite difference method

is considered, the stability criterion should be determined

(Majchrzak and Mochnacki 2016).

In a similar way, Eqs. (27) and (28) related to the sen-

sitivity functions, supplemented by boundary and initial

conditions (30), (31), (32) are solved.

Finally, the Arrhenius integral (13) and the sensitivity

function (16) are calculated

A
f
i ¼ P

Xf

k¼1

exp � E

RTk
i

� �
Dt ð43Þ

and

V
f
i ¼ P

Xf

k¼1

E

R Tk
ið Þ2

exp � E

RTk
i

� �
Uk

i Dt ð44Þ

5 Results of Computations

The cylinder of dimensions 0.02 m 9 0.02 m is consid-

ered. The following values of parameters are assumed:

q = 1000 kg/m3, qb = 1060 kg/m3, c = 4000 J/(kg K), cb-

= 3770 J/(kg K), k = kb = 0.5 W/(m K), e = 0.0041,

G = 34,785 W/(m3 K), sq = 0.46772 s, sT = 0.46771 s

(Zhang 2009), Qm = Qmb = 250 W/m3, la = 50 1/m, ls-
= 16,900 1/m, g = 0.952.

At first, the direct problem is solved under the

assumption that the radius of laser beam is equal to rD-

= 0.001 m and laser intensity equals I = 0.3 MW/m2. The

initial tissue and blood temperatures are equal to Tp-

= 37 �C and initial heating rate w(r, z) = 0. In the

Arrhenius integral (13): P = 3.1 9 1098 1/s,

E = 6.28 9 105 J/mol, R = 8.314 J/(mol K). The problem

is solved using explicit scheme of the finite difference

method (100 9 100 nodes, time step Dt = 0.02 s).

In Figs. 4 and 5 the distributions of collimated fluence

rate /c(r, z) and diffuse fluence rate /d(r, z) are shown,

Dt þ sT
Dt

T
f
i;n � T

f
i;n�1

h
� sT
Dt

T
f�1
i;n � T

f�1
i;n�1

h
¼ 0 ! T

f
i;n ¼ T

f
i;n�1 þ

sT
Dt þ sT

T
f�1
i;n � T

f�1
i;n�1

� �

�Dt þ sT
Dt

T
f
i;1 � T

f
i;0

h
þ sT
Dt

T
f�1
i;1 � T

f�1
i;1

h
¼ 0 ! T

f
i;0 ¼ T

f
i;1 �

sT
Dt þ sT

T
f�1
i;0 � T

f�1
i;1

� �

�Dt þ sT
Dt

T
f
1;j � T

f
0;j

h
þ sT
Dt

T
f�1
1;j � T

f�1
0;j

h
¼ 0 ! T

f
0;j ¼ T

f
1;j �

sT
Dt þ sT

T
f�1
1;j � T

f�1
0;j

� �

Dt þ sT
Dt

T
f
n;j � T

f
n�1;j

h
� sT
Dt

T
f�1
n;j � T

f�1
n�1;j

h
¼ 0 ! T

f
n;j ¼ T

f
n�1;j þ

sT
Dt þ sT

T
f�1
n;j � T

f�1
n�1;j

� �

: ð42Þ

T
f
i;j ¼

C Dt þ 2sq
	 


� G Dtð Þ2

C Dt þ sq
	 
 T

f�1
i;j � sq

Dt þ sq
T
f�2
i;j

þ KDt Dt þ sTð Þ
C Dt þ sq
	 
 1

h2
� 1

2hri;j

� �
T
f�1
i;j�1 þ

1

h2
þ 1

2hri;j

� �
T
f�1
i;jþ1 þ

1

h2
T
f�1
i�1;j þ T

f�1
iþ1;j

� �
� 4

h2
T
f�1
i;j

� �

� KDtsT
C Dt þ sq
	 
 1

h2
� 1

2hri;j

� �
T
f�2
i;j�1 þ

1

h2
þ 1

2hri;j

� �
T
f�2
i;jþ1 þ

1

h2
T
f�2
i�1;j þ T

f�2
iþ1;j

� �
� 4

h2
T
f�2
i;j

� �

þ Dtð Þ2

C Dt þ sq
	 
 GT

f
b i;j þ eQm b þ 1 � eð ÞQm þ Q

f�1
ex i;j

h i

ð39Þ
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while Fig. 6 illustrates the distribution of source function

Qex(r, z) related to the laser irradiation. As can be seen,

only in the small part of the tissue (0 B r B 0.004 m,

0 B z B 0.006 m) the source function associated with the

laser irradiation is non-zero.

Figures 7 and 8 illustrate the courses of the same

functions, as previously in the z direction for r = 0. Max-

imal values of these functions are clearly visible.

The tissue temperature distributions after the time 60

and 120 s are shown in Figs. 9 and 10, while in Figs. 11

and 12 the distributions of Arrhenius integral for the same

moments of time are presented. The subdomain marked in

black (Figs. 11, 12) corresponds to this part of the tissue

which is destroyed (A(r, z, t f) C 1).

It should be noted that to better illustrate the results of

computations, in the Figs. 4, 5, 6, 11 and 12 only the

fragment of the domain corresponding to 0 B r B 0.006

m, 0 B z B 0.006 m is shown.

Next, the inverse problem is solved. Thus, on the basis

of the values of Arrhenius integrals, at the nodes located in

the subdomain 0 B r B 0.001 m and 0 B z B 0.001 m,

Fig. 5 Distribution of function /d(r, z) [kW/m2]

Fig. 6 Distribution of source function Qex(r, z) [kW/m3]

Fig. 7 Distribution of function /c(r, z) and /d(r, z) for r = 0

Fig. 4 Distribution of function /c(r, z) [kW/m2]
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obtained from the direct problem solution the laser inten-

sity is identified. In Fig. 13 the results for two initial values

I0 = 0.25 MW/m2 and I0 = 0.5 MW/m2 are shown. For

these values, the iteration process is convergent and the

final value of I is obtained after 20 and 25 iterations,

respectively.

In conclusion, it is possible to estimate the intensity of

the laser which will ensure the appropriate distribution of

Arrhenius integral—it means the assumed tissue

destruction.

Fig. 9 Tissue temperature distribution after 60 s

Fig. 10 Tissue temperature distribution after 120 s

Fig. 11 Arrhenius integral distribution after 60 s

Fig. 8 Distribution of function Qex(r, z) for r = 0
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6 Conclusions

The solution of the inverse problem consisting in estimat-

ing the laser intensity which ensures the destruction of

assumed tissue subdomain is presented. The temperature

field in the biological tissue is described by the generalized

dual-phase lag model, while the degree of tissue destruc-

tion is determined using the Arrhenius integral. The direct

problem and additional one related to the sensitivity anal-

ysis are solved using the finite difference method, while to

solve the inverse problem the gradient method is applied.

However, it should be noted that the gradient algorithm is

not always convergent. Thus, appropriate selection of the

starting point I0, which ensures convergence, is, therefore,

extremely important.

Presented approach can be used, among others, in the

case of electromagnetic field interaction on biological tis-

sue, e.g. (Paruch 2017). For the postulated degree of tissue

destruction it is possible to identify, for example, the

voltage on the electrodes.
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