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Abstract
In recent years, antibiotic resistance to the most effective treatments has emerged and spread. This has led to a decline in

the efficacy of antibiotics used to treat patients, with drug-resistant strain experiencing much higher failure rates and

serious side effects. In this study, we considered two-strains (e.g., drug-susceptible and drug-resistant) susceptible-infected-

recovery disease model with amplification, nonlinear incidence and treatment. We assumed amplification develops mainly

through the choice of naturally happening mutations in the presence of inappropriate treatment. We performed a rigorous

analytical analysis of the model properties and solutions to predict late-time behavior of the disease dynamics and find that

the model contains four equilibrium points: disease-free equilibrium, monoexistence endemic equilibrium 1 concerning

drug-susceptible strain, monoexistence endemic equilibrium 2 concerning drug-resistant strain and coexistence equilibrium

regarding to drug-susceptible as well as drug-resistant strains. Two basic reproduction numbers R0s and R0m are found, and

we have presented that if both are less than one ði:e:max R0s;R0m½ �\1Þ, the disease fade-out, and if both greater than one

ði:e:max R0s;R0m½ �[ 1Þ the epidemic situation occurs. Moreover, epidemics occur regarding to any strain when the basic

reproduction number remains above the value 1 and disease fade-out with regard to any strain when the basic reproduction

number remains below the value 1. In all equilibrium points, the global stability analysis was determined with the help of

appropriate Lyapunov functions. In addition, we also found that the drug-resistant strain prevalence increases when the

drug-susceptible strain is treated due to the poor-quality treatment (i.e., amplification). We also performed the sensitivity

analysis through evaluation of Partial Rank Correlation Coefficients (PRCC) to identify the most important model

parameters and found that transmission rate of both strains had the maximum influence on disease outbreak. To support

those analytical results, numerical simulations of the model were performed using ODE45 MATLAB routine.

Keywords Drug-susceptible and drug-resistant strains � Global dynamics � Amplification � Nonlinear incidence and

treatment � Basic reproduction number � Lyapunov function

1 Introduction

Many infectious diseases including dengue fever, tuber-

culosis, HIV, other sexually transmitted diseases are

engendered by more than one strain due to inappropriate

treatment (Bhunu 2009; Jabbari et al. 2016; Kooi et al.

2014; Lin et al. 2003). Pathogen mutation is a common

phenomenon in disease transmission and outcomes in the

presence of multiple variants. Therefore, one of the major

challenges in preventing or controlling the spread of

infectious diseases is to deal with the genetic variations of

pathogens.

Mathematical models can provide a significant insight to

understand the transmission dynamics of the infectious

diseases and imitate a prevention strategy which keeps a

vital role to mitigate the spread of the disease. Several

mathematical models providing dynamic analysis of the

multi-strain interactions have been proposed by consider-

ing different aspects (Ackleh and Allen 2003; Cai et al.

2007, 2012; Feng et al. 2002; Li et al. 2004; Lin et al.

2003). The epidemic models also demonstrated that any
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strain will defeat to the other strains automatically when

the basic reproduction number is remarkably high (Bre-

mermann 1989). The basic reproduction number repre-

sented the number of secondary individuals who became

infected through a single contaminated individual intro-

duced into the totally susceptible population. So, the

number of infected cases increases and the disease

becomes spread-out in the community when the basic

reproduction number is greater than one. However, if the

basic reproduction number is less than one, the disease

becomes die-out from the community and the number of

newly infective cases moves to zero (Childs et al. 2015).

Recent studies (Davies 2001; Dodd et al. 2016; McBryde

et al. 2017a, b; Mistry et al. 2012; Stengel 2008) have

demonstrated that in disease transmission, drug-resistant

strains can possess higher virulence compared to the drug-

susceptible strain. As a result, the infected individuals with

a drug-resistant strain belong to the highest mortality rate,

e.g., tuberculosis and HIV.

In mathematical models, incidence rate plays a key role

to spread the diseases outbreak. In epidemiology perspec-

tive, the incidence rate is generally known as the number of

infected individuals per unit time. Incidence rate can be

described in various ways. First of all, the bilinear inci-

dence rate is based on the mass action (Anderson and May

1992; Kermack and McKendrick 1927) (bSI, where the

infection rate is b as well as S and I represent the sus-

ceptible and infected individuals, respectively). In large-

scale population for the bilinear incidence rate, if the

number of susceptible cases increases, the number of

infected cases also increases, which is not realistic. Sec-

ondly, saturated incidence rate aSI
1þbSð Þ was introduced by

(Anderson and May 1978a, b). The effect of saturated

factor b stems from epidemical control. Thirdly, nonlinear

incidence rate was introduced by (Li et al. 2009). In the

case of nonlinear incidence rate, the effective interactions

between infective and susceptible individuals may saturate

with a significant level due to overflowing of infective

individuals. There were some studies, demonstrated non-

linear incidence rate individually which are known as

Beddington–DeAngelis-type incidence rate aSI
1þbSþcI

� �

(Beddington 1975; DeAngelis et al. 1975). Later, there

were some studies utilized the incidence rate to delineate

epidemiological models (Elaiw and Azoz 2013; Huang

et al. 2011; Kaddar 2009).

Several studies have been conducted to simulate the

model properties with fractional-order derivatives (Al-

Smadi et al. 2020a, b; Al-Smadi et al. 2021; Al-Smadi

2021; Arqub and Shawagfeh 2019; Djennadi et al.

2020, 2021). For example, Djennadi et al. (2021) studied

the Tikhonov regularization method in the sense of frac-

tional-order derivative for reformulation of the

stable solution and compared between the exact and reg-

ularized solutions under the a-priori and the a-posteriori

parameter choice rules (Djennadi et al. 2021). A fractional-

order derivative with a nonlocal and nonsingular kernel is

proposed for heat equation and obtained solution for the

inverse problem using the eigen functions expansion

method (Djennadi et al. 2020). Al-Smadi et al. (2021)

examined the numerical and graphical representation using

the Atangana–Baleanu–Caputo (ABC) fractional-order

derivative and displayed the impact of the ABC fractional

derivative (Al-Smadi et al. 2021). A new approach is

proposed to perform the analytical and numerical simula-

tions for the time-fractional partial differential equations.

This study examined various numerical examples including

linear and nonlinear terms and interpreted the n-term of the

exact solutions (Arqub and Shawagfeh 2019). Al-Smadi

et al. (2020a, b) studied the fractional Kundu–Eckhaus and

massive Thirring models to simulate nonlinear PDEs in the

concept of fractional derivative and acquired the approxi-

mate solution of that nonlinear system (Al-Smadi et al.

2020a).

In epidemiological field, intervention programs includ-

ing treatment, vaccination initiate a significant impact to

prevent the spread of disease. Treatment is an efficacious

appliance to expunge diseases. Many authors (Cohen et al.

2009; Kuddus et al. 2021a, b; Kuddus et al. 2020) have

discussed the consequences of treatment considering vari-

ous type of treatment functions. Normally, in a classical

model, treatment rate is assumed to be commensurate with

the number of infected cases. Zhang and Liu (2008)

demonstrated the better treatment rate in terms of contin-

uous differentiable function which reaches at its highest

value. The removal rate is designated by the expression
rI

1þbI, where r represents the rate of remedy from the disease

which is positive constant, and b identifies the conse-

quences of delay in treatment which is also a non-negative

constant.

However, the rising threat of drug-resistant strain pre-

sents a major challenge in the world, predominantly in low-

and middle-income countries. Once drug-resistant strains

have arisen in a population, amplification of these strains

may also contribute to the disease burden. Current studies

(Dodd et al. 2016; Kuddus et al. 2020; McBryde et al.

2017a, b) have demonstrated that drug-resistant strains can

in some cases contain higher virulence to convey disease

than drug-susceptible strains, and those individuals infec-

ted with a drug-resistant strain have the maximum death

rate. To examine the threat posed by drug-resistant strain,

we present a two-strain disease model with associated

infectious compartments and use it to investigate the

emergence and spread of drug-resistant strain through

amplification. Here, we incorporated Beddington–
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DeAngelis-type incidence rate and the saturated treatment

rate, and with a competing mechanism between the drug-

susceptible and drug-resistant strains. The global stability

of the disease-free equilibrium, monoexistence equilibrium

with respect to drug-susceptible or drug-resistant strain is

investigated through suitable Lyapunov functions, and

coexistence endemic equilibrium with respect to both

strains performs through numerical analysis. Sensitivity

analysis also performed to identify the most important

parameter for the disease outbreak.

The rest of the paper is constructed as follows: In Sect. 2

we exhibit the two-strain SIR model Beddington–

DeAngelis-type incidence rate and the saturated treatment

rate, and validate the positivity and boundedness of solu-

tions as well as the existence of the equilibria. Global

stability analysis of all of the equilibrium point is demon-

strated in Sect. 3. Sensitivity of the model parameter is

presented in Sect. 4. To buttress the analytical solution of

the proposed two-strain model, numerical simulations are

demonstrated in Sect. 5. In the end, an incisive discussion

about our findings is described and delivered a concluding

remark.

2 Model Formulation and Assertion

We presented a two-strain SIR model for drug-susceptible

and drug-resistant strains with amplification, nonlinear

incidence and treatment among the following mutually

exclusive compartments: S tð Þ-susceptible individuals

(those who are free from disease but infected in any time);

Is tð Þ-infected individuals (who are infected and have

entered the active cases) associated with the drug-suscep-

tible strain; Im tð Þ-infected individuals (who are infected

and infectious) associated with the drug-resistant strain,

and R tð Þ-recovered individuals, who were previously

infected and were successfully treated and have immunity

against both strains. Thus, the total number of the popu-

lations is:

N tð Þ ¼ S tð Þ þ Is tð Þ þ Im tð Þ þ R tð Þ: ð1Þ

At the progresses, the infected persons with the drug-

susceptible and drug-resistant strain lose infectivity and

shift to the recovered compartment (R) owing to their

health immunity or by treatment. These recovered indi-

viduals are able to protect them against the infectious

microbes and that is why they are not being infected again

with the disease (Fig. 1). According to our consideration,

the model is constructed with the following differential

equations:

_S ¼ K� lS� bsIsS
1þ b1Sþ c1Is

� bmImS
1þ b2Sþ c2Im

; ð2Þ

_Is ¼
bsIsS

1þ b1Sþ c1Is
� ssIs
1þ d1Is

� xs þ /s þ lð ÞIs; ð3Þ

_Im ¼ qxsIs þ
bmImS

1þ b2Sþ c2Im
� smIm
1þ d2Im

� xm þ /m þ lð ÞIm; ð4Þ

_R ¼ 1� qð ÞxsIs þ xmIm þ ssIs
1þ d1Is

þ smIm
1þ d2Im

� lR:

ð5Þ

where S 0ð Þ[ 0; Is 0ð Þ� 0; Im 0ð Þ� 0; R 0ð Þ� 0:

Let the total inflow into the susceptible individuals be a

constant rate K and the natural death rate l is included in

every compartment. Let /s and /m are the disease-related

death rate for the drug-susceptible and drug-resistant

strains, respectively. q be the proportion of amplification

due to inappropriate or incorrect treatment. Amplification

develops mainly through the choice of naturally happening

mutations in the presence of inappropriate treatment. When

preliminary resistance has established, acquisition of

resistance to supplementary drugs more likely treatment

with usual regimens may be suboptimal (Trauer et al.

2014). In model (2–5), we choose the incidence rates as

Beddington DeAngelis type:

f1 S; Isð Þ ¼ bsIsS
1þ b1Sþ c1Is

; ð6Þ

f2 S; Imð Þ ¼ bmImS
1þ b2Sþ c2Im

: ð7Þ

Here, bs and bm are transmission rate for the drug-sus-

ceptible and drug-resistant strains, respectively. b1 and b2
are the preventive measure according to the drug-suscep-

tible individuals and drug-resistant individuals. Further, c1
and c2 are other measure of inhibition effect like treatment

for the drug-susceptible and drug-resistant infective strains.

In this paper, it is fascinating to declare that the fol-

lowing three different incidence rate can be obtained from

the proposed incidence rate.

(1) If we consider b1 ¼ b2 ¼ 0 and c1 ¼ c2 ¼ 0 then

f1 S; Isð Þ ¼ bsSIs and f2 S; Imð Þ ¼ bmSIm which are

bilinear incidence rates (Anderson and May

1978a, b; Bailey 1975; Hethcote 2000; Shulgin

et al. 1998; Zhonghua and Yaohong 2010).

(2) If we consider c1 ¼ c2 ¼ 0; then f S; Isð Þ ¼ bsSIs
1þb1S

and

f S; Imð Þ ¼ bmSIm
1þb2S

; which are saturated incidence rates

to the saturation factors b1 and b2 owing to the

preventive measure to prevent the transmission of the
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epidemic disease (Capasso and Serio 1978; Koro-

beinikov and Maini 2005; Xu and Ma 2009).

(3) If we consider b1 ¼ b2 ¼ 0; then f S; Isð Þ ¼ bsSIs
1þc1Is

and

f S; Imð Þ ¼ bmSIm
1þc2Im

; which are saturated incidence rates

according to the infected individuals. In this instance,

the interaction of susceptible individuals with the

infected individuals may saturate at extreme infec-

tion risk due to crowding of infective individuals or

due to nonappearance of protection equipment taken

by susceptible individuals (Li et al. 2009; Meng et al.

2010; Zhang et al. 2008). Furthermore, the contact

between susceptible individuals and drug-resistant

infected individuals may spread infection at signif-

icant level due to the inappropriate or poorly

administrated treatment.

The terms h Isð Þ ¼ ssIs
1þd1Is

and h Imð Þ ¼ smIm
1þd2Im

in system

(2–5) represent the treatment terms, where ss and sm are

positive constant, whereas the resource limitation is taking

into account with a constant rate d1 and d2 (Zhonghua and
Yaohong 2010; Zhou and Fan 2012).

From proposed two-strain model (2–5) we can indicate

that recovered individuals, R, have no effect on S; Is; and

Im; for that reason, we can only concentrate on following

reduced system (8–10) if we desire to demonstrate the

disease incidence and prevalence dynamics. The reduced

system is:

_S ¼ K� lS� bsIsS
1þ b1Sþ c1Is

� bmImS
1þ b2Sþ c2Im

; ð8Þ

_Is ¼
bsIsS

1þ b1Sþ c1Is
� ssIs
1þ d1Is

� xs þ /s þ lð ÞIs; ð9Þ

_Im ¼ qxsIs þ
bmImS

1þ b2Sþ c2Im
� smIm
1þ d2Im

� xm þ /m þ lð ÞIm: ð10Þ

where S 0ð Þ[ 0; Is 0ð Þ� 0; Im 0ð Þ� 0:

2.1 Positivity Analysis

For the system above from (8) to (10), we observe a region

of attraction which is described details with the help of

Lemma 1.

Lemma 1 The set X ¼ S; Is; Imð Þ 2 R3
þ : 0\S

�
þIs þ

Im � K
lg is a positively invariant region of system (8–10).

Proof Let, N ¼ Sþ Is þ Im; then _N ¼ _Sþ _Is þ _Im;

_N ¼ K� lN � ssIs
1þ d1Is

� smIm
1þ d2Im

� xs þ /s � qxsð ÞIs � xm þ /mð ÞIm; then

N tð Þ�N 0ð Þe�lt þ K
l

1� eltð Þ:

h

Thus, limt!1 supN tð Þ� K
l. Furthermore, if N[ K

l then

_N\0. This reveals that the solutions of system (8–10)

Fig. 1 Flow chart of two-strain

mathematical model
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point toward X. Hence, X is positively invariant and the

solutions are bounded with the non-negative conditions.

We determined the biological feasible solution set.

Above Lemma 1 convinced that all solutions of model (8–

10) are non-negative and bounded in the feasible set. Thus,

the model is biologically meaningful.

2.2 Existence of Equilibria

The existence of endemic equilibrium E1 S�m; 0; I
�
m

� �
,

equating Eq. (10) to zero, we get

bmI
�
mS

�
m

1þ b2S�m þ c2I�m
¼ smI�m

1þ d2I�m
þ vmI

�
m; ð11Þ

After simplify above Eq. (11), we have S�m in respect of

I�m as follows:

S�m ¼
1þ c2I

�
m

� �
vm þ sm þ vmd2I

�
m

� �
bm � b2 vm þ smð Þ þ bm � b2vmð Þd2I�m

; ð12Þ

S�m is positive if,

bm [ b2 vm þ smð Þ: ð13Þ

Now equating Eq. (8) to zero and solving we obtain the

following quadratic equation in S�m;

K� lS�m � bmI
�
mS

�
m

1þ b2S� þ c2I�m
¼ 0;

After simplify we get the following equation

lb2S
�2
m þ l�Kb2þ lc2þbmð ÞI�m

� �
S�m�K 1þc2I

�
m

� �
¼0:

ð14Þ

Now substituting the value of S�m from Eq. (12) into

Eq. (14), we get the following cubic equation in I�m:

lb2
1þ c2I

�
m

� �2
vm þ sm þ vmd2I

�
m

� �2
qþ pd2I�m
� �2

þ mþ l I�m
� � 1þ c2I

�
m

� �
vm þ sm þ vmd2I

�
m

� �

qþ pd2I�m
� �

� K 1þ c2I
�
m

� �
¼ 0;

where

p ¼ bm � b2vm; q ¼ bm � b2 vm þ smð Þ;m ¼ l� Kb2; l

¼ lc2 þ bm;

lb2 1þc2I
�
m

� �2
vmþsmþvmd2I

�
m

� �2
þ mþ l I�m
� �

1þc2I
�
m

� �
vmþsmþvmd2I

�
m

� �
qþpd2I

�
m

� �

�K 1þc2I
�
m

� �
qþpd2I

�
m

� �2¼0;

)lb2 1þc2I
�
m

� �
vmþsmþvmd2I

�
m

� �2
þ mþ l I�m
� �

vmþsmþvmd2I
�
m

� �
qþpd2I

�
m

� �

�K qþpd2I
�
m

� �2¼0;

ð15Þ

After simplify we get the following cubic equation in

terms of I�m

lb2c2v
2
md

2
2þpd22vml

� �
I�3m

þ lb2v
2
md

2
2þ2vmlb2c2d2 vmþsmð Þ

�

þvmld2qþd2p vmþsmð Þlþmvmd2�Kpd2f g�I�2m
þ 2ld2vmb2 vmþsmð Þþlb2c2 vmþsmð Þ2
h

þmd2p vmþsmð Þþqf vmþsmð Þlþvmmd2�2Kpd2g�I�m
þlb2 vmþsmð Þ2þm vmþsmð Þq�Kq2¼0;

The above equation will be in the following form,

A1I
�3
m þ A2I

�2
m þ A3I

�
m þ A4 ¼ 0: ð16Þ

where

A1¼lb2c2v
2
md

2
2þpd22vml;

A2¼lb2v
2
md

2
2þ2vmlb2c2d2 vmþsmð Þ

þvmld2qþd2p vmþsmð Þlþmvmd2�Kpd2f g;
A3¼2ld2vmb2 vmþsmð Þþlb2c2 vmþsmð Þ2

þmd2p vmþsmð Þþq vmþsmð Þlþvmmd2�2Kpd2f g;
A4¼lb2 vmþsmð Þ2þm vmþsmð Þq�Kq2;

and

p ¼ bm � b2vm; q ¼ bm � b2 vm þ smð Þ;m ¼ l� Kb2; l
¼ lc2 þ bm:

It can be declared that p; q[ 0 with condition (13). Now

employing the Descartes’ rule of sign technique, cubic

Eq. (16) can have unique positive real root I�m if satisfying

the following conditions:

1. A2 [ 0;A3 [ 0 and A4\0;

2. A2 [ 0;A3\0 and A4\0;

3. A2\0;A3\0 and A4\0;

We consider first two cases from which we have the

following inequalities.
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vmþsmð Þlþmvmd2�Kpd2[0;

) vmþsmð Þlþmvmd2[Kpd2;

) vmþsmð Þlþvmd2 l�Kb2ð Þ[Kd2 bm�b2vmð Þ;
) vmþsmð Þlþvmd2l�vmd2Kb2[Kbmd2�Kd2b2vm;

) vmþsmð Þlþvmd2l[Kbmd2;

ð17Þ

and

A4\0;

) lb2 vm þ smð Þ2þm vm þ smð Þq� Kq2\0:

Now putting the value of q and m then we get,

) lb2 vm þ smð Þ2þ l� Kb2ð Þ vm þ smð Þ
bm � b2 vm þ smð Þf g � K bm � b2 vm þ smð Þf g2\0;

) lb2 vm þ smð Þ2þ l� Kb2ð Þ vm þ smð Þ
bm � b2 vm þ smð Þf g � K b2m � 2bmb2 vm þ smð Þ

�

þ b22 vm þ smð Þ2
o
\0;

) lb2 vm þ smð Þ2þ l� Kb2ð Þ vm þ smð Þ
bm � b2 vm þ smð Þf g � Kb2m þ 2Kbmb2 vm þ smð Þ
� Kb22 vm þ smð Þ2\0;

) vm þ smð Þ lb2 vm þ smð Þ þ lbm � lb2 vm þ smð Þ½
�Kb2bm þ Kb22 vm þ smð Þ þ 2Kbmb2 � Kb22 vm þ smð Þ

�

\Kb2m;

) lbm þ Kbmb2\
Kb2m

vm þ smð Þ ;

) bm lþ Kb2ð Þ\ Kb2m
vm þ smð Þ ;

) 1\
Kbm

vm þ smð Þ lþ Kb2ð Þ ;

) 1\R0m;

) R0m [ 1:

ð18Þ

After finding the value of I�m, we can evaluate the value

of S�m using Eq. (12). This indicates that there exists a

unique endemic equilibrium point E1 S�m; 0; I
�
m

� �
if

inequalities (13), (17) and (18) are satisfied.

The existence of endemic equilibrium E2 S�s ; I
�
s ; 0

� �
.

Equating Eq. (9) to zero, we get

bsI
�
s S

�

1þ b1S� þ c1I�s
� ssI�s
1þ d1I�s

� xs þ /s þ lð ÞI�s ¼ 0;

) bsI
�
s S

�

1þ b1S� þ c1I�s
¼ ssI�s

1þ d1I�s
þ xs þ /s þ lð ÞI�s ;

i:e:;
bsI

�
s S

�
s

1þ b1S�s þ c1I�s
¼ ssI�s

1þ d1I�s
þ vsI

�
s :

ð19Þ

where vs ¼ xs þ /s þ lð Þ:
After simplifying above Eq. (18), we have S�s with

regard to I�s as follows

S�s ¼
1þ c1I

�
s

� �
vs þ ss þ vsd1I

�
s

� �
bs � b1 vs þ ssð Þ þ bs � b1vsð Þd1I�s

; ð20Þ

S�s is positive if,

bs [ b1 vs þ ssð Þ: ð21Þ

Now equating Eq. (8) to zero and solving, we get the

following quadratic equation in S�s ,

K� lS�s �
bsI

�
s S

�
s

1þ b1S�s þ c1I�s
¼ 0;

After simplifying we get the following equation in the

following form,

lb1S
�2
s þ l� Kb1 þ lc1 þ bsð ÞI�s

� �
S�s � K 1þ c1I

�
s

� �
¼ 0:

ð22Þ

Now substituting the value of S�s from Eq. (19) into

Eq. (21), we get the following cubic equation in I�s :

lb1
1þ c1I

�
s

� �2
vs þ ss þ vsd1I

�
s

� �2
q1 þ p1d1I�s
� �2

þ m1 þ l1I
�
s

� � 1þ c1I
�
s

� �
vs þ ss þ vsd1I

�
s

� �

q1 þ p1d1I�s
� �

¼ 0;

where

p1 ¼ bs � b1vs; q1 ¼ bs � b1 vs þ ssð Þ;m1 ¼ l� Kb1; l1
¼ lc1 þ bs;

) lb1 1þ c1I
�
s

� �2
vs þ ss þ vsd1I

�
s

� �2
þ m1 þ l1I

�
s

� �
1þ c1I

�
s

� �
vs þ ss þ vsd1I

�
s

� �
q1 þ p1d1I

�
s

� �

� K 1þ c1I
�
s

� �
q1 þ p1d1I

�
s

� �2¼ 0;

) lb1 1þ c1I
�
s

� �
vs þ ss þ vsd1I

�
s

� �2
þ m1 þ l1I

�
s

� �
vs þ ss þ vsd1I

�
s

� �
q1 þ p1d1I

�
s

� �

� K q1 þ p1d1I
�
s

� �2¼ 0;

ð23Þ

After simplifying Eq. (22), we get the following form,
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ðlb1c1v2sd
2
1 þ l1vsd

2
1p1ÞI�3s

þ lb1v
2
sd

2
1 þ 2lb1c1d1vs vs þ ssð Þ

�

þl1vsd1q1 þ d1p1 vs þ ssð Þl1 þ m1vsd1 � Kp1d1f g�I�2s
þ 2lb1vsd1 vs þ ssð Þ þ lb1c1 vs þ ssð Þ2
h

þm1d1p1 vs þ ssð Þ þ q1 vs þ ssð Þl1 þ m1vsd1 � 2Kp1d1f g�I�s
þ lb1 vs þ ssð Þ2þm1q1 vs þ ssð Þ � Kq21 ¼ 0;

The above equation will be in the following form,

K1I
�3
s þ K2I

�2
s þ K3I

�
s þ K4 ¼ 0: ð24Þ

where

K1 ¼ lb1c1v
2
sd

2
1 þ l1vsd

2
1p1;

K2 ¼ lb1v
2
sd

2
1 þ 2lb1c1d1vs vs þ ssð Þ

þ l1vsd1q1 þ d1p1 vs þ ssð Þl1 þ m1vsd1 � Kp1d1f g;
K3 ¼ 2lb1vsd1 vs þ ssð Þ þ lb1c1 vs þ ssð Þ2

þ m1d1p1 vs þ ssð Þ þ q1 vs þ ssð Þl1 þ m1vsd1 � 2Kp1d1f g;
K4 ¼ lb1 vs þ ssð Þ2þm1q1 vs þ ssð Þ � Kq21;

and

p1 ¼ bs � b1vs; q1 ¼ bs � b1 vs þ ssð Þ;m1 ¼ l� Kb1; l1
¼ lc1 þ bs:

It can be declared that p1; q1 [ 0 with condition (21).

Now, employing the Descartes rule of sign technique,

cubic Eq. (24) can have unique positive real root I�s if

satisfying any one of the following conditions.

(a) K2 [ 0;K3 [ 0 and K4\0;

(b) K2 [ 0;K3\0 and K4\0;

(c) K2\0;K3\0 and K4\0:

We consider first two cases from which we have the

following inequalities,

vs þ ssð Þl1 þ m1vsd1 � Kp1d1 [ 0;

) vs þ ssð Þl1 þ m1vsd1 [Kp1d1;

) vs þ ssð Þl1 þ l� Kb1ð Þvsd1 [Kd1 bs � b1vsð Þ;
) vs þ ssð Þl1 þ lvsd1 � Kb1vsd1 [Kd1bs � Kd1b1vs;

) vs þ ssð Þl1 þ lvsd1 [Kd1bs;

ð25Þ

and

K4\0;

) lb1 vs þ ssð Þ2þm1q1 vs þ ssð Þ � Kq21\0;

q1 ¼ bs � b1 vs þ ssð Þ and m1 ¼ l� Kb1;

) lb1 vs þ ssð Þ2þ l� Kb1ð Þ bs � b1 vs þ ssð Þf g
vs þ ssð Þ � K bs � b1 vs þ ssð Þf g2\0;

) lb1 vs þ ssð Þ2þ l� Kb1ð Þ bs � b1 vs þ ssð Þf g vs þ ssð Þ

� K b2s � 2b1bs vs þ ssð Þ þ b21 vs þ ssð Þ2
n o

\0;

) lb1 vs þ ssð Þ2þ l� Kb1ð Þ bs � b1 vs þ ssð Þf g
vs þ ssð Þ � Kb2s þ 2Kb1bs vs þ ssð Þ

� Kb21 vs þ ssð Þ2\0;

) vs þ ssð Þ½lb1 vs þ ssð Þ þ lbs � lb1 vs þ ssð Þ
� Kb1bs þ Kb21 vs þ ssð Þ þ 2Kb1bs

� Kb21 vs þ ssð Þ�\Kb2s ;

) lbs þ Kb1bs\
Kb2s

vs þ ssð Þ ;

) lþ Kb1ð Þbs\
Kb2s

vs þ ssð Þ ;

) 1\
Kbs

vs þ ssð Þ lþ Kb1ð Þ ;

) 1\R0s;

) R0s [ 1:

ð26Þ

After having the value of I�s ; we can evaluate the value

of S�s using Eq. (20). This indicates that there exists a

unique endemic equilibrium point E2 S�s ; I
�
s ; 0

� �
if inequal-

ities (21), (25) and (26) are satisfied.

2.3 Analysis of Equilibrium Points and Their
Stability

We analyze proposed model (8–10) and get four equilib-

rium points as: (1) the disease-free equilibrium (DFE)

E0 S0; Is0; Im0ð Þ; i.e., there is no disease infection, (2) the

disease endemic equilibrium 1 E1 S�; 0; I�m
� �

; i.e., drug-

susceptible strain comes to an end, but drug-resistant strain

persists in the community, (3) the disease endemic equi-

librium 2 E2 S�; I�s ; 0
� �

; i.e., drug-resistant strain comes to

an end, but drug-susceptible strain persists in the commu-

nity and (4) the coexistence equilibrium E2 S�; I�s ; I
�
m

� �
; i.e.,
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both drug-susceptible and drug-resistant strains keep con-

tinue to spread in the community. We can conclude from

the analytical evidence of system (8–10) that the disease-

free equilibrium E0 is a trivial equilibrium point which is

given as follows:

E0ðS0; Is0; Im0 ¼ E0

K
l
; 0; 0

	 

:

We determine the basic reproduction number utilizing

the next generation matrix method (Diekmann et al. 2010).

We define the matrix _x ¼ T þ Rð Þx using the same notation

expressed in (Diekmann et al. 2010), where x ¼ Is; Imð Þ
0
,

the matrix T corresponding to transmission (the rate of

being infected of susceptible individuals who move into the

infected compartments Is and Im) and the matrix R repre-

sents the corresponding transitions among the

compartments.

Regarding the subsystem Is and Im we have the trans-

mission and transition matrices are given by

T ¼

bsS0
1þ b1S0

0

0
bmS0

1þ b2S0

0
BB@

1
CCA and R

¼ � lþ ss þ /s þ xsð Þ 0

qxs � lþ sm þ /m þ xmð Þ

	 


¼ �vs 0

qxs �vm

	 

:

Now the next generation matrix, KL ¼ T �R�1
� �

¼

bsS0
1þ vs 1þ b1S0ð Þ 0

qxsbsS0
vsvm 1þ b2S0ð Þ

bmS0
1þ vm 1þ b2S0ð Þ

0
BB@

1
CCA:

The characteristic equation is

KL � kIj j ¼

bsS0
vs 1þ b1S0ð Þ � k 0

qxsS0bs
vsvm 1þ b2S0ð Þ

bmS0
vm 1þ b2S0ð Þ � k

��������

��������
¼ 0;

bsS0
vs 1þ b1S0ð Þ � k

	 

bmS0

vm 1þ b2S0ð Þ � k

	 

¼ 0;

i.e., k1 ¼ bsS0
vs 1þb1S0ð Þ and k2 ¼ bmS0

vm 1þb2S0ð Þ.
Hence, the basic reproduction numbers for drug-sus-

ceptible and drug-resistant quantities are

R0s ¼
bsS0

vs 1þ b1S0ð Þ ¼
bsK

vs lþ b1Kð Þ ;

R0m ¼ bmS0
vm 1þ b2S0ð Þ ¼

bmK
vm lþ b2Kð Þ :

Figure 2 shows the correlation between the model out-

puts R0s and R0m for the existence and stability of the four

equilibrium points. The purple shaded region indicates the

disease-free equilibrium point E0 which is bounded by

max R01;R02½ �\1: The red shaded area illustrates the drug-

resistant strain equilibrium point E1ð Þ where

R0m [max R0s; 1½ �: Conversely, drug-susceptible endemic

equilibrium point E2 is green shaded region where

R0s [max R0m; 1½ �. Finally, the yellow region indicates the

coexistence equilibrium E� where max R01;R02½ �[ 1:

3 Global Stability Analysis

In this section, we discuss the global stability analysis of

our proposed model. We operate the method of Lyapunov

function to perform the global stability analysis of each of

the equilibrium point. A Lyapunov function is a scalar

function founded on phase space to perform a stability

analysis of the equilibrium points of a system. The benefit

of this function is that without an actual solution, we can

perform whether a system is stable or unstable. In addition,

the global stability analyses of mathematical models can

recognize areas in the parameter space where the numerous

asymptotic states are stable or unstable, thus permitting us

to forecast the long-term behavior of the dynamical system.

3.1 Disease-Free Equilibrium

Theorem 1 The disease-free equilibrium E0 is globally

asymptotically stable if q ¼ 0 and max R0s;R0m½ �\1:

Proof Consider the appropriate Lyapunov function (V),

which is defined as:Fig. 2 Correlation between the model outputs basic reproduction

numbers R0s and R0m corresponding to the four equilibrium points
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V ¼ S� S0 ln Sð Þ þ Is þ Im þ C;

where C ¼ �S0 þ S0 ln S0:

_V ¼ 1�S0
S

	 

_Sþ _Isþ _Im;

¼ 1�S0
S

	 

K�lS� bsIsS

1þb1Sþ c1Is
� bmImS
1þb2Sþ c2Im

	 


þ bsIsS
1þb1Sþ c1Is

� ssIs
1þd1Is

� xsþ/sþlð ÞIs

þ bmImS
1þb2Sþ c2Im

� smIm
1þd2Im

� xmþ/mþlð ÞIm;

¼ lS0�
lS20
S

�lSþlS0�
bsIsS

1þb1Sþ c1Is

þ bsIsS0
1þb1Sþ c1Is

� bmImS
1þb2Sþ c2Im

þ bmImS0
1þb2Sþ c2Im

þ bsIsS
1þb1Sþ c1Is

� ssIs
1þd1Is

� xsþ/sþlð ÞIs

þ bmImS
1þb2Sþ c2Im

� smIm
1þd2Im

� xmþ/mþlð ÞIm;

¼ 2lS0�lS�lS20
S

þ bsIsS0
1þb1Sþ c1Is

þ bmImS0
1þb2Sþ c2Im

� ssIs
1þd1Is

� xsþ/sþlð ÞIs�
smIm

1þd2Im
� xmþ/mþlð ÞIm;

¼ lS0 2� S

S0
�S0

S

	 

þ bsIsS0
1þb1Sþ c1Is

�vsIsþ
bmImS0

1þb2Sþ c2Im
�vmIm� ssIs

1þd1Is
� smIm
1þd2Im

:

where vs ¼xsþ/sþl and vm ¼xmþ/mþl:

¼ lS0 2� S

S0
� S0

S

	 

� vs 1� bsS0

1þ b1S0ð Þvs

	 

Is

� vm 1� bmS0
1þ b2S0ð Þvm

	 

Im � ssIs

1þ d1Is
� smIm
1þ d2Im

;

_V0 � lS0 2� S

S0
� S0

S

	 

� vs 1� R0sð Þ

Is � vm 1� R0mð ÞIm � ssIs
1þ d1Is

� smIm
1þ d2Im

;

h

Since the arithmetic mean is greater than or equal to the

geometric mean, so it becomes as:

S

S0
þ S0

S
� 2:

Therefore, we have _V0 � 0 for max R0s;R0m½ �\1: Hence,

it follows from Lyapunov stability that E0 is globally

asymptotically stable.

3.2 Monoexistence Endemic Equilibrium 1

Theorem 2 The strain1 endemic equilibrium 1, E1 is

globally asymptotically stable if R0m [max R0s; 1½ �:

Proof Consider the suitable Lyapunov function (V1) as

follows:

V1 tð Þ ¼ 1

bmf I�m
� � Vs tð Þ þ

I�m
bmS

�
mf I�m; S�m
� � Vm tð Þ: ð27Þ

Vs tð Þ ¼
S

S�m
� 1� ln

S

S�m

	 

;

_Vs tð Þ ¼
1

S�m
1� S�m

S

	 

ds

dt
;

¼ 1

S�m
1� S�m

S

	 

K� lS� bmImS

1þ b2Sþ c2Imð Þ

	 

;

¼ 1

S�m
1� S�m

S

	 


lS�m þ bmI
�
mS

�
m

1þ b2S�m þ c2I�m
� �� lS� bmImS

1þ b2Sþ c2Imð Þ

 !
;

¼ 1

S�m
1� S�m

S

	 

l S�m � S
� �

þ bmS
�
mf S�m; I

�
m

� �
� bmSf S; Imð Þ

� �
;

¼ �
S� S�m
� �2

S�mS
þ bmf S�m; I

�
m

� �
1� S�m

S

	 

1� Sf S; Imð Þ

S�mf S�m; I
�
m

� �
" #

;

¼ �
S� S�m
� �2

S�mS
þ bmf S�m; I

�
m

� �
1� 1

x

	 

1� xF zð Þð Þ;

where

x ¼ S

S�m
; z ¼ Im

I�m
; andF zð Þ ¼ f S; Imð Þ

f S�m; I
�
m

� � :

_Vs tð Þ ¼ �
S� S�m
� �2

S�mS

þ bmf S�m; I
�
m

� �
1� xF zð Þ � 1

x
þ F zð Þ

	 

: ð28Þ

Again
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Vm tð Þ ¼ Im
I�m

� 1� ln
Im
I�m

	 

;

_Vm tð Þ ¼ 1

I�m
1� I�m

Im

	 

dIm
dt

;

¼ 1

I�m
1� I�m

Im

	 


bmImS
1þ b2Sþ c2Imð Þ �

smIm
1þ d2Imð Þ � vmIm

	 


¼ 1

I�m
1� I�m

Im

	 


bmSf S; Imð Þ � sm
1þ d2Im

þ vm

	 

I�m

Im
I�m

� 
;

¼ 1

I�m
1� I�m

Im

	 


bmS
�
mf S�m; I

�
m

� � Sf S; Imð Þ
S�mf S�m; I

�
m

� �� bmS
�
mf S�m; I

�
m

� � Im
I�m

" #
;

¼ 1

I�m
1� 1

z

	 

bmS

�
mf S�m; I

�
m

� �
xF zð Þ � z½ �;

where x ¼ S
S�m
; z ¼ Im

I�m
; andF zð Þ ¼ f S;Imð Þ

f S�m;I
�
mð Þ :

_Vm tð Þ ¼ 1

I�m
bmS

�
mf S�m; I

�
m

� �
xF zð Þ � z� xF zð Þ

z
þ 1

	 

:

ð29Þ

From (27),

_V1 tð Þ ¼ �
S� S�m
� �2

bmf S�m; I
�
m

� �
S�mS

þ 1� xF zð Þ � 1

x
þ F zð Þ þ xF zð Þ � z� xF zð Þ

z
þ 1;

_V1 tð Þ ¼ �
S� S�m
� �2

bmf S�m; I
�
m

� �
S�mS

þ 1� 1

x
þ ln

1

x

	 
� �

þ 1� xF zð Þ
z

þ ln
xF zð Þ
z

	 
� �
þ F zð Þ � ln

1

x

	 


� ln
xF zð Þ
z

	 

� z;

_V1 tð Þ ¼ �
S� S�m
� �2

bmf S�m; I
�
m

� �
S�mS

� g
1

x

	 


� g
xF zð Þ
z

	 

þ F zð Þ � ln

1

x

	 

� ln

xF zð Þ
z

	 

� z:

h

It is easy to prove that F zð Þ � z� ln 1
x

� �
� ln

xF zð Þ
z

� �
� 0

only for the values, x ¼ z ¼ 1: Combining with the fact

g� 0 only for the argument is 1, we observe that _V1 tð Þ� 0:

We recognize that _V1 tð Þ becomes zero only for the con-

dition, x ¼ z ¼ 1. In particular, those conditions necessitate

for any solution of S tð Þ ¼ S�m tð Þ; and Im tð Þ ¼ I�m tð Þ for all t.
Thus, we observe that all solutions limit to the monoexis-

tence endemic equilibrium 1. Hence, we conclude that

E1 S�m; 0; I
�
m

� �
is globally asymptotically stable.

3.3 Monoexistence Endemic Equilibrium 2

Theorem 3 The strain 2 endemic equilibrium 2, E2, is

globally asymptotically stable if R0s [ max R0m; 1½ �:

Proof Consider the following Lyapunov function,

V2 tð Þ ¼ 1

bsf S�s ; I
�
s

� �Vs tð Þ þ
I�s2

bsS�s f S�s ; I
�
s

� �Vis tð Þ: ð30Þ

Now

Vs tð Þ¼g
S

S�s

	 

¼ S

S�s
�1þ ln

S

S�s

	 

;

dVs

dt
¼ 1

S�s
1�S�s

S

	 

ds

dt
;

¼ 1

S�s
1�S�s

S

	 


lS�s þ
bsI

�
s S

�
s

1þb1S�s þc1I�s
� ��lS� bsIsS

1þb1Sþc1Isð Þ

 !
;

¼ 1

S�s
1�S�s

S

	 


l S�s �S
� �

þbsS
�
s f S�s ;I

�
s

� �
�bsSf S;Isð Þ

� �
;

¼�
S�S�s
� �2

S�sS
þbsf S�s ;I

�
s

� �
1�S�s

S

	 


1� Sf S;Isð Þ
S�s f S�s ;I

�
s

� �
 !

;

¼�
S�S�s
� �2

S�sS
þbsf S�s ;I

�
s

� �
1�1

x

	 

1�xF yð Þð Þ;

where x¼ S
S�s
;y¼ Is

I�s
;and F zð Þ¼ f S;Isð Þ

f S�s ;I
�
sð Þ :

_Vs ¼ �
S� S�s
� �2

S�sS
þ bsf S�s ; I

�
s

� �
1� xF yð Þ � 1

x
þ F yð Þ

	 

:

ð31Þ

Again

268 Iranian Journal of Science (2023) 47:259–274

123



Vis ¼ g
Is
I�s

	 

¼ Is

I�s
� 1þ ln

Is
I�s

	 

;

dVis

dt
¼ 1

I�s
1� I�s

Is

	 

dIs
dt

;

¼ 1

I�s
1� I�s

Is

	 

bsIsS

1þ b1Sþ c1Isð Þ �
ssIs

1þ d1Isð Þ � vsIs

	 

;

¼ 1

I�s
1� I�s

Is

	 

bsSf S; Isð Þ � I�s

ss
1þ d1Isð Þ þ vs

	 

Is
I�s

� 
;

¼ 1

I�s
1� I�s

Is

	 


bsS
�
s f S�s ; I

�
s

� � Sf S; Isð Þ
S�s f S�s ; I

�
s

� �� bsI
�
s S

�
s

1þ b1S�s þ c1I�s
� � Is

I�s

" #
;

¼ 1

I�s
1� I�s

Is

	 


bsS
�
s f S�s ; I

�
s

� � Sf S; Isð Þ
S�s f S�s ; I

�
s

� �� bsS
�
s f S�s ; I

�
s

� � Is
I�s

" #
;

¼ 1

I�s
1� 1

y

	 

bsS

�
s f S�s ; I

�
s

� �
xF yð Þ � yð Þ;

where x ¼ S
S�s
; y ¼ Is

I�s
; andF zð Þ ¼ f S;Isð Þ

f S�s ;I
�
sð Þ :

¼ 1

I�s
bsS

�
s f S�s ; I

�
s

� �
1� 1

y

	 

xF yð Þ � yð Þ;

¼ 1

I�s
bsS

�
s f S�s ; I

�
s

� �
xF yð Þ � y� xF yð Þ

y
þ 1

	 

:

ð32Þ

Putting Eqs. (31) and (32) in (30), we get

dV2 tð Þ
dt

¼�
S�S�2
� �2

bsf S�s ;I
�
s

� �
SS�s

þ1�xF yð Þ�1

x

þF yð ÞþxF yð Þ�y�xF yð Þ
y

þ1;

¼�
S�S�2
� �2

bsf S�s ;I
�
s

� �
SS�s

þ 1�1

x
þ ln

1

x

	 
	 


þ 1�xF yð Þ
y

þ ln
xF yð Þ
y

	 
	 

þF yð Þ�y� ln

1

x

	 


� ln
xF yð Þ
y

	 

;

dV2 tð Þ
dt

¼�
S�S�2
� �2

bsf S�s ;I
�
s

� �
SS�s

�g
1

x

	 


�g
xF yð Þ
y

	 

þF yð Þ�y� ln

1

x

	 

� ln

xF yð Þ
y

	 

:

h

It is simple to show that F yð Þ � y� ln 1
x

� �
�

ln
xF yð Þ
y

� �
� 0 only for the values, x ¼ y ¼ 1. Combining

with the fact g� 0 only for the argument is 1, we observe

that dV2

dt
� 0. We recognize that dV2

dt
becomes zero only for

the condition, x ¼ y ¼ 1. In particular, those conditions

necessitate for any solution S tð Þ ¼ S�s tð Þ and Is tð Þ ¼ I�s tð Þ
for all t. Thus, we observe that all solutions limit to the

monoexistence endemic equilibrium 2. Hence, we con-

cluded that E2 S�s ; I
�
s ; 0

� �
is globally asymptotically stable.

In addition, we observed that if R0s [ max R0m; 1½ �; then
both the drug-susceptible and drug-resistant strains persist

in the population. Figure 3 shows that the drug-susceptible

strain is not essentially the most prevalent at equilibrium

even if it has the highest basic reproduction number. This is

a result of the circumstance that the drug-susceptible strain

persists purely on direct transmission, whereas the drug-

resistant strain prevalence is driven by a combination of

direct transmission and amplification. These outcomes

describe in part the increase in drug-resistant strain

prevalence when the drug-susceptible strain is treated,

which is similar to the previous study (Kuddus et al.

2021a, b).

4 Sensitivity Analysis

In this section, we performed sensitivity analysis which is

very important to identify the significance of the model

parameter to prevent the control of drug-susceptible and

drug-resistant strains. In this analysis, we implemented the

PRCC to identify the effect of specific parameter on the

model outcome according to the variation of those value.

The Latin Hypercube Sampling (LHS) procedure is taken

to evaluate the PRCC values for several input parameters.

A total of 100,000 simulations are executed, and a uniform

distribution is allocated to every model parameter. Here,

we consider the model outputs are the basic reproduction

numbers, namely R0s and R0m. The PRCC values remain

between the ranges -1 and ? 1. Positive PRCC value for

the model parameters reveals a favorable response to the

outcome; however, negative value for the model parame-

ters represents a deleterious correlation of the model out-

comes. The enormous (smaller) value of the absolute

PRCC value demonstrates more (less) significant interde-

pendence between the parameter and the model outcome.

Figures 4, 5 represent the correlation between the model

outputs R0s;R0m corresponding to the model parameters

bs; bm;xs;xm;/s; ss; sm; b1; b2 and /m. The transmission

rate bs and bm has highest positive PRCC values, which

reveals that bs and bm are most significant parameter to

increase the basic reproduction numbers R0s and R0m,
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respectively. In contrast, the parameters xs; ss; b1, and /s

as well as xm; sm; b2 and /m have negative PRCC values,

which infers that increasing these parameters value will

decrease R0s and R0m and the disease will be going to

eradicate from the society.

5 Numerical Simulations

In this section, we conducted numerical simulations of our

proposed two-strain disease model with the help of

MATLAB routine (ode45 solver) to support the analytical

result. The ode45 solver is very useful for solving ordinary

differential equations with several initial condition. It

associates approaches of orders four and five to evaluate

error and regulate step size. ODE45 is so precise to deliver

appropriate results than the other numerical methods.

According to the analytical result, we found four equilib-

rium points such as: a disease-free equilibrium E0ð Þ; a

monoexistent endemic equilibrium 1 E1ð Þ; a monoexistent

endemic equilibrium 2 E2ð Þ and coexistent endemic equi-

librium E3ð Þ. Using the basic reproduction numbers for

drug-susceptible R0sð Þ and drug-resistant strain R0mð Þ
found using the next generation matrix technique, we

investigated the impact of their relative magnitude on the

infected population of both drug-susceptible and drug-re-

sistant strains. Figures 6, 7, 8 and 9 represent in which

conditions the drug-susceptible and drug-resistant strains

will be fade-outs or persist in the population, thus allow us

to predict the long-term behavior of the disease dynamics.

Here, we used different initial conditions to demonstrate

the system of trajectories in all equilibrium points. From

Fig. 6 we observe that both of the disease strains are dies-

out when the basic reproduction numbers are less than one

(i.e., max R0s;R0m½ �\1). From Fig. 7 we discover that the

drug-susceptible strain dies-out, whereas the drug-resistant

strain persists in the population when R0m [max R0s; 1½ �.
Figure 8 depicts that if R0s [max R0m; 1½ � hold, then the

drug-susceptible strain transmits into the population,

whereas the drug-resistant strain dies-out from the popu-

lation. Finally, from Fig. 9 we observe that both drug-

susceptible and drug-resistant strains spread-out in the

population if max R0s;R0m½ �[ 1. Therefore, we need to

reduce the period of infectiousness down until

max R0s;R0m½ �\1 for controlling drug-susceptible and

drug-resistant strains. This information can hopefully

advise Ministry of Health for the programmatic manage-

ment of treatment regimens.Fig. 4 PRCC values representing the sensitivities of the model output

R0s with regard to the estimated parameters bs, xs; ss;b1, and /s

Fig. 5 PRCC values representing the sensitivities of the model output

R0m with regard to the estimated parameters bm, xm; sm;b2, and /m

Fig. 3 Impact of amplification qð Þ on drug-susceptible and drug-

resistant strains when R0s [max R0m; 1½ �
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6 Conclusion

In this study, we proposed a two-strain SIR epidemic

model and mathematically inspected the nonlinear inci-

dence and treatment. We executed a series of analytical and

numerical simulations of our model and obtained four

equilibrium points such as: a disease-free equilibrium E0ð Þ;
a monoexistent endemic equilibrium 1 E1ð Þ; a monoexis-

tent endemic equilibrium 2 E2ð Þ and coexistent endemic

equilibrium E3ð Þ. We performed the existence of all equi-

libria. The stability analysis also performed for the disease-

free equilibrium E0ð Þ, monoexistent endemic equilibrium 1

E1ð Þ and monoexistent endemic equilibrium 2 E2ð Þ of the
system and showed that they are globally asymptotically

stable. We determined the basic reproduction numbers R0s

and R0m for the drug-susceptible and drug- resistant strains.

From this determination, we observed that the disease will

eradicate from the society if the basic reproduction num-

bers are less than one; otherwise, the disease persists in the

population.

We also investigated that drug-susceptible strain persists

mainly on direct transmission, whereas the drug-resistant

strain is driven by a combination of direct transmission and

amplification. These outcomes describe in part the increase

in drug-resistant strain prevalence when the drug-suscep-

tible strain is treated, which is similar to the previous study

(Haq et al. 2022; Kuddus et al. 2021a, b; Meehan et al.

2018). Therefore, rapid identification of drug-resistant

Fig. 6 Disease-free equilibrium: R0s; R0m½ �\1. In this case both

drug-susceptible prevalence and drug-resistant prevalence dies-out

Fig. 7 Disease endemic equilibrium 1: R0m [max R0s; 1½ �. In this case
drug-resistant prevalence spreads in the population but drug-suscep-

tible dies-out

Fig. 8 Disease endemic equilibrium 2: R0s [max R0m; 1½ �. In this case
drug-susceptible prevalence spreads in the population, but drug-

resistant prevalence dies-out

Fig. 9 Co-existent endemic equilibrium: max R0s;R0m½ �[ 1. In this

case both of the drug-susceptible and drug-resistant prevalence

spreads in the population
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strain, rapid diagnosis and prompt commencement of

treatment and successful completion of treatment are the

most effective ways of eliminating drug-resistant strain.

The information that we generate from this model about

amplification and transmission will either challenge or

support the recommendation that exposure to drug-resistant

patients and person to person transmission is the major

mode of acquiring drug-resistant strain. If most is trans-

mitted and not acquired, this recommends that efforts to

improve present treatment of drug-susceptible patients—

aimed at enhancing adherence to therapy and dropping

acquired resistance—will not significantly decrease the

epidemic of drug-resistant strain.

In addition, a sensitivity analysis is carried out to

identify the most significance model parameter for the

controlling of the disease outbreak. We found that trans-

mission rates bs and bm are the most important parameters.

We also performed the correlation between two basic

reproduction numbers, namely R0s and R0m, and displayed

their consequences. Finally, numerical simulations are

conducted to support the analytical outcomes of the model

and displayed the system trajectories at each equilibrium

point.

The existence and global stability of the transmission

dynamics of infectious diseases models with treatment and

vaccination were considered in previous modeling studies

using different types of methods (e.g., fractional-order,

Atangana–Baleanu–Caputo Operator) (Gholami et al.

2022; Naik et al. 2020; Naim et al. 2022). Previous studies

showed that if the basic reproduction number is less than

one, then the disease fade-out using Routh-Hurwitz sta-

bility criterion. If the basic reproduction number is greater

than one, then the disease persists in the population. Finally

previous studies also showed the impact of treatment and

vaccination on the dynamics of COVID-19 (Allegretti et al.

2021; Joshi et al. 2023; Yavuz et al. 2021, 2022).

In this study, we measured a two-strain disease model

with related infectious compartments and use it to examine

the emergence and spread of drug-resistant strain through

amplification. Here, we integrated Beddington–DeAngelis-

type incidence rate and the saturated treatment rate, and

with a competing mechanism between the drug-susceptible

and drug-resistant strains. Here we found that if the basic

reproduction numbers of drug-susceptible strain and drug-

resistant strain are less than one, then the disease is die-out

from the community. If the basic reproduction number of

drug-resistant strain is greater than one, but that of the

drug-susceptible strain is less than one, then only drug-

resistant strain persists. Finally, the drug-susceptible and

drug-resistant strains persist in the population if the drug-

susceptible strain basic reproduction number is greater than

one and the drug-resistant strain’s basic reproduction

number bigger than threshold, owing to the amplification

pathway to achieve co-existence.
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