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Abstract
Since December 2019, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused a global pandemic

named coronavirus disease-19 (COVID-19) and resulted in a worldwide economic crisis. Utilizing the spike-like protein on

its surface, the SARS-CoV-2 binds to the receptor angiotensin-converting enzyme 2 (ACE2), which highly expresses on

the surface of many cell types. Given the crucial role of ACE2 in the renin–angiotensin system, its engagement by SARS-

CoV-2 could potentially result in endothelial cell perturbation. This is supported by the observation that one of the most

common consequences of COVID-19 infection is endothelial dysfunction and subsequent vascular damage. Furthermore,

endothelial dysfunction is the shared denominator among previous comorbidities, including hypertension, kidney disease,

cardiovascular diseases, etc., which are associated with an increased risk of severe disease and mortality in COVID-19

patients. Several vaccines and therapeutics have been developed and suggested for COVID-19 therapy. The present review

summarizes the relationship between ACE2 and endothelial dysfunction and COVID-19, also reviews the most common

comorbidities associated with COVID-19, and finally reviews several categories of potential therapies against COVID-19.
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1 Introduction

In December 2019, unknown pandemic pneumonia

emerged around the world and became a global and epo-

chal challenge resulting in a near-complete halt in eco-

nomic and social activities (Guan et al. 2020). The first

cases of severe acute respiratory syndrome-coronavirus-2

(SARS-CoV-2) were reported from Wuhan and rapidly

spread around the world (Zhu et al. 2020a, b). SARS-CoV-

2 has a meaningful lethality compared to other coron-

aviruses such as SARS-CoV and Middle East Respiratory

Syndrome (MERS)-CoV (Ksiazek et al. 2003; Peiris et al.

2003), due to high infectivity. The disease caused by

SARS-CoV-2 was named as coronavirus disease 2019

(COVID-19). The most common symptoms reported in

patients with COVID-19 include cough, fever, dyspnea,

fatigue, myalgia, and shortness of breath (Huang et al.

2020a, b; Rodriguez-Morales et al. 2020). The infection of

the lungs, the most important target of SARS-CoV-2, may

result in acute respiratory distress syndrome (ARDS)

(Mason 2020).

There is a high affinity between the virus and angio-

tensin-converting enzyme 2 (ACE2) as the primary

receptor to enter the host cells through endocytosis (Hul-

swit et al. 2016). Many viruses have developed different

mechanisms to interact and attach with host cells and have

employed more than one type of receptor molecule (Bhella

2015). This is also the case for SARS-CoV-2 that employ

more than one type of receptor. Although ACE2 is cur-

rently known as the principal target for entry of SARS-

CoV-2 to the host cell, there has been growing evidence

that different types of receptors are involved in cell entry

(Amraei et al. 2020; Cantuti-Castelvetri et al. 2020; Daly
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et al. 2020; Wang et al. 2020a, b, c, d, e). CD147 (Basigin

or EMMPRIN) is a transmembrane glycoprotein (Cui et al.

2018) and belongs to the immunoglobulin superfamily.

Previous studies showed that CD147-antagonistic peptides

had an inhibitory effect on SARS-CoV, indicating it is a

functional factor in facilitating the SARS-CoV entry to

host cells (Chen et al. 2005). A recent study identified

CD147-spike protein as a novel route for SARS-CoV-2

invasion to host cells (Wang et al. 2020a, b, c, d, e). A

monoclonal blocking antibody against the extracellular

b1b2 domain of neuropilin 1 (NRP1) was shown to effec-

tively inhibit SARS-CoV-2 infection, suggesting NRP1 as

another gate for the virus (Cantuti-Castelvetri et al. 2020).

Data from this study also suggested that NRP1 is involved

in the enhanced tropism and spreading of SARS-CoV-2. In

addition, Amraie et al. (2020) showed that CD209L (L-

SIGN) and CD209 (DC-SIGN) are alternative cellular

receptors for SARS-CoV-2.

The endothelial cells (ECs) can be infected by SARS-

CoV-2 (Ackermann et al. 2020; Colmenero et al. 2020;

Menter et al. 2020; Varga et al. 2020), which results in

endothelial dysfunction. Commonly, EC dysfunction

(ECD) is a denominator of comorbidities associated with

COVID-19. Non-communicable diseases (NCDs), such as

hypertension, have been considered crucial health issues in

recent years. There is a concern that COVID-19 as a

communicable disease (CD) might cause a secondary

pandemic of NCDs. In this regard, there is a deep worry

about emerging a new disease entity, the CDs and NCDs

assembly without any boundary (Shibata et al. 2020).

Numerous investigations are progressing to distinguish and

develop efficient drugs and therapeutic strategies to treat

COVID-19 (Ragia and Manolopoulos 2020).

Among several identified cellular receptors for SARS-

CoV-2, ACE2 is the main focus of this review. We also

summarize the properties of functional and dysfunctional

endothelium and ECD-associated events that occur in

COVID-19. Then, we review the most common comor-

bidities correlated with COVID-19 infection. Finally, we

summarize vaccines, therapeutics, and strategies to treat

COVID-19.

2 Novel Severe Acute Respiratory Syndrome
Coronavirus-19

The term ‘‘corona’’ is the Latin word meaning crown, and

this virus is named coronavirus because it has a crown-like

surface created by the surface binding glycoproteins spikes.

Taxonomically, SARS CoV-2 belongs to the realm Ribo-

viria, order Nidovirales, family Coronaviridae, genus

Betacoronavirus, and the species severe acute respiratory

syndrome-related coronavirus (CSG 2020). SARS-CoV-2

is a single-stranded RNA coronavirus with four funda-

mental structural proteins, including envelope (E), matrix/

membrane (M), nucleocapsid (N), and spike (S) (Fig. 1)

(Perlman and Netland 2009; Helmy et al. 2020; Zhu et al.

2020a, b). In SARS-CoV-2, the 30 end of the viral genome

encodes the structural proteins. The S protein binds to

human ACE2 on the host cell membrane, mediating the

fusion of the virus and the host cell membrane and known

as the primary determinant of CoVs tropism (Hulswit et al.

2016). After receptor recognition, the S protein is cleaved

into two subunits, S1 and S2, to facilitate virus entry into

the cell (Shang et al. 2020). This proteolysis relies on

human transmembrane protease, serine 2 (TMPRSS2)

(Sanders et al. 2020). The receptor-binding domain (RBD)

has located on the S1 subunit, allowing direct viral binding

to the peptidase domain of ACE2. The S2 subunit probably

engages in viral and cellular membrane fusion. The 5’ end

of the viral RNA encodes two necessary precursor

polyproteins for generating non-structural proteins partici-

pating in the replication complex. The polyproteins are

cleaved to the non-structural proteins by two viral pro-

teases, 3C-like or main protease (3CLpro or Mpro) and

papain-like protease (PLpro) (Helmy et al. 2020).

3 Angiotensin-Converting Enzyme 2

3.1 Structure and Function

Angiotensin-converting enzyme 2 (EC 3.4.17.23) belongs

to the ACE family, which all are zinc metallopeptidase.

The ACE2 receptor consists of an N-terminal signal pep-

tide, a peptidase domain (PD) with a HEXXH zinc-binding

motif, a C-terminal collectrin-like domain (CLD), and a

hydrophobic transmembrane region followed by a cyto-

plasmic segment (Fig. 2a, b) (Donoghue et al. 2000; Zhang

et al. 2001). Endogenous disintegrin metalloproteinase 17

(ADAM-17) can perform ectodomain shedding of ACE2 to

produce a soluble form of ACE2 (Lambert et al. 2005). In

contrast, calmodulin (CALM) interacts with ACE2 and

inhibits its ectodomain shedding (Lambert et al. 2008a, b).

ACE is a ubiquitous protein with 42% sequence identity

and 61% sequence similarity with ACE2 (Tipnis et al.

2000). However, subtle changes in the active site residues

of two enzymes (Fig. 2c) give rise to significant differences

in their substrate specificity and reactivity (Rice et al. 2004;

Towler et al. 2004). The renin–angiotensin system (RAS)

comprises ACE2 and various regulatory enzymes and

effector peptides that serve as the key regulators of vas-

cular function under physiological and pathophysiological

conditions (Lambert et al. 2008a, b; Crowley et al. 2005).

Angiotensinogen is an a-glycoprotein substrate of the RAS

released from the liver (Menard et al. 1983; Deschepper
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1994; Hall 2003), whose renin-mediated hydrolysis pro-

duces inactive decapeptide angiotensin I, Ang I (Ang (1-

10)), which itself is cleaved by ACE to produce an active

vasoconstrictor octapeptide Ang II (Ang (1-8)) (Fig. 3)

(Amraei and Rahimi 2020). In vitro, ACE2 cleaves Ang I

and octapeptide Ang II to produce Ang (1-9) and hep-

tapeptide Ang (1-7), respectively (Tipnis et al. 2000;

Vickers et al. 2002). The efficiency of ACE2 to produce

Ang (1-7) from Ang II is remarkably higher than to gen-

erate Ang (1-9) from Ang I. Notably, Ang (1-9) is not

cleaved by ACE2, but it is cleaved by ACE or neprilysin

(NEP). Despite the higher affinity of Ang (1-9) for ACE,

this peptide is hydrolyzed preferentially by NEP rather than

ACE (Rice et al. 2004). The Ang II binds to and activates

Angiotensin-2 type 1 receptor 1 (AT1) and Angiotensin II

type 1 receptor 2 (AT2). The AT1 activation leads to the

activation of an excess of kinases, e.g., c-Jun N-terminal

kinase (JNK), mitogen-activated protein kinase (MAPK),

that regulate vasoconstriction, inflammation, and fibrotic

remodeling, while activation of AT2 stimulates various

phosphatases (e.g., protein tyrosine phosphatases (PTP)

and protein phosphatase 2 (PP2A)), resulting in vasodila-

tion and growth inhibition (Lin and Pan 2008; Karnik et al.

2015).

Generally, Ang (1-7) and Ang II have contrasting

effects; Ang II acts as a vasoconstrictor while Ang (1-7)

acts as a vasodilator (Ferrario et al. 1997). It has been

reported that Ang (1-7) reduces lung inflammation, fibrosis,

and pulmonary arterial hypertension (Wagenaari et al.

2013; Meng et al. 2014; Magalhaes et al. 2015).

Fig. 1 Schematic representation of SARS-CoV-2, its components, and their role

Fig. 2 Schematic of angiotensin-converting enzyme 2 (ACE2) and Zn-binding and active site residues
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Additionally, in vivo evidence supports the role of ACE2 in

the human heart and reducing levels of Ang II and

increasing levels of Ang (1-7) by ACE2 (Zisman et al.

2003; Rice et al. 2004).

MAS is a G protein-coupled receptor (GPCR) that was

initially described as an oncogene (Young et al. 1986). The

Ang (1-7) specifically binds to the MAS receptor on the

MAS-transfected cells (Santos et al. 2003). MAS activation

stimulates phosphoinositide 3 kinase (PI3K)/AKT axis and

subsequent activation of eNOS (Fig. 3). Furthermore, the

activation of GPCR induces the activation of phospholi-

pases A (PLA) and C (PLC) that result in generating

arachidonic acid and stimulating intracellular calcium,

respectively (Bader et al. 2014; Solinski et al. 2014).

Altogether, the activation of these pathways regulates some

events in endothelial cells, including anti-fibrosis and anti-

inflammatory responses and vasodilation. MAS acts similar

to a physiological antagonist of the AT1 receptor through

the heterodimerization with it, thereby inhibiting AT1-in-

duced Ang II functions (Kostenis et al. 2005).

3.2 Expression and Viral Tropism

Viral tissue tropism refers to the cells and tissues of a host

that support the virus’s growth. One of the influencing

factors on tissue tropism is the presence of cellular recep-

tors, permitting viral entry into host cells. The SARS-CoV-

2 displays strong binding to cell-associated and soluble

ACE2 receptors expressed in many organs such as the lung,

kidneys, heart, intestine, brain, and liver (Kuba et al. 2010;

South et al. 2020). Furthermore, it can infect human blood

vessels and kidney organoids via ACE2, indicating viral

tropism for vascularized tissues (Monteil et al. 2020). The

presence of the ACE2 receptor on a wide range of cell

types, including pneumocytes and macrophages, as well as

smooth muscle and arterial endothelial cells of almost all

organs (Hamming et al. 2004) may explain the multi-organ

failure in some patients with severe COVID-19 infection

(Kuba et al. 2010; Clerkin et al. 2020).

Fig. 3 Schematic representation of the renin-angiotensin system (RAS) and the physiological role of ACE2
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3.3 Gene Polymorphism, Gender Susceptibility,
and Genetic Susceptibility

Susceptibility to SARS-CoV-2 and COVID-19 disease

outcomes may be affected by gene polymorphism, mRNA

expression, and protein polymorphism of human ACE2.

ACE2 gene polymorphism is reported in the Chinese,

Canadian, and Indian populations, which was correlated

with hypertension and pathological variations in blood

pressure (Niu et al. 2007; Fan et al. 2009; Chen et al.

2010, 2016; Malard et al. 2013; Patnaik et al. 2014; Luo

et al. 2019). Similarly, ACE polymorphism was reported in

African–Americans with hypertension (Duru et al. 1994),

suggesting that it regulates the RAS pathway. Sequence

alignment and comparison of the 10 human ACE2 proteins

and 4 various ACE2 isoforms available in GeneBank were

shown 100% identity among the complete ACE2 sequences

and a deletion in the CLD domain or truncation in the

transmembrane domain in different isoforms of ACE2.

However, the role of these isoforms in SARS-CoV-2

infection and COVID-19 outcomes remains uncertain

(Devaux et al. 2020). A recent investigation of the func-

tional coding variants and the allele frequency in the ACE2

gene from genome databases revealed 32 coding variants

of ACE2 among different populations and one variant with

a truncation Gln300X in China populations. Also, the

distributions of seven hotspot variants in various popula-

tions were observed (Cao et al. 2020). In this study, no

mutation was found in the binding residues of S-protein of

coronavirus in different populations. However, another

investigation showed that several ACE2 variants may

decrease the association between ACE2 and the S-protein

in SARS-CoV or NL63 (Li et al. 2005). ACE2 polymor-

phism might create the chance that some people could have

less susceptibility to SARS-CoV-2 infection than others.

ACE2 polymorphism might be correlated with the less

susceptibility of some people to SARS-CoV-2 infection.

Given that ACE2 acts as a cellular doorway for SARS-

CoV-2, a higher expression level of ACE2 causes more

SARS-CoV-2 infection. Various studies indicated that the

ACE2 expression in the lung is higher in men than women,

as well as in the Asian population than in Caucasian and

African American populations (Sun et al. 2020). Based on

a similar observation, higher levels of Ang (1-7) were

reported in males compared with females (Gwathmey et al.

2008). Also, in another investigation, the males had higher

expression levels of ACE2 in the lungs than the females

(Zhao et al. 2020), although the ACE2 activity shows no

difference between the males and females (Fernández-

Atucha et al. 2017). Five cell types in the male lung were

reported to express ACE2, while two to four cell types in

the female lung do so (Zhao et al. 2020). In agreement with

these findings, in a statistical study including 1099 patients,

the SARS-CoV-2 infected males (58.1%) were somewhat,

but not statistically significant, higher than the SARS-CoV-

2 infected females (41.9%) (Guan et al. 2020). Some of the

sex hormones might affect the homeostasis of RAS. In

addition, the female sex hormones can influence ACE2

activity (Fernández-Atucha et al. 2017); estrogen has a

positive effect on ACE2 activity, so that the ACE/ACE2

activity ratio in the female serum is less than that in the

males (Hu et al. 2018). Furthermore, increasing proges-

terone during pregnancy may significantly induce upregu-

lation of ACE2 expression in the reproductive system as

well as the other organs (Levy et al. 2008; Neves et al.

2008). All clinical reports published to date indicate that

men represent a significant percentage (66–75%) of the

most severe cases of COVID-19.

4 COVID-19-Associated Endothelial Cell
Dysfunction

ECs are infected by SARS-CoV-2, especially in the highly

vascularized tissues (Ackermann et al. 2020; Colmenero

et al. 2020; Khider et al. 2020; Menter et al. 2020; Pons

et al. 2020; Puelles et al. 2020; Varga et al. 2020), sug-

gesting the incidence of endothelial dysfunction in

COVID-19. In this section, we compare the properties of a

functional and dysfunctional endothelium and summarize

the events following ECD in COVID-19 patients, including

pro-inflammatory storm, thromboembolism, and

coagulopathy.

4.1 Functional versus Dysfunctional
Endothelium

The endothelium is a semi-permeable membrane and

innermost layer of blood vessels, which forms an extensive

interface between the blood and surrounding tissues for

passaging substances and plays a critical role in preserving

vascular homeostasis (Michiels 2003). The endothelium

secretes several mediators required for regular vascular

function, i.e., regulating vascular tone, coagulation, vas-

cular cell growth, and immune responses (Levick 2013).

The endothelium also preserves an excellent balance

between anti- and pro-thrombotic phases under physio-

logical conditions.

EC dysfunction is known as an imbalance between

relaxing and contracting factors or pro- and anti-coagulant

mediators (De Meyer and Herman 1997) and involves

disruption of the vasoactive role of endothelial cells in

regulating tissue perfusion (Szmitko et al. 2003). ECD

encompasses various modifications of functional pheno-

type, which are critical for regulating hemostasis,
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thrombosis, and inflammatory reactions within blood ves-

sels (Chesterman 1988; Wu et al. 1988; Gimbrone Jr 2016).

Furthermore, it may cause the development and mainte-

nance of high blood pressure (Hedner et al. 2000). The

succession of cellular events leading to ECD can depict

two types: (1) reversible EC activation, including (a) type I

EC activation or EC stimulation, which involves the

release of stored proteins independent of de novo protein

synthesis, and (b) type II EC activation, which involves de

novo synthesis and secretion of proteins; (2) irreversible

EC injury including (a) endothelial apoptosis, and (b) en-

dothelial necrosis (Fig. 4) (Zhang et al. 2020a, b, c, d, e).

To date, many molecules are suggested as biomarkers of

EC dysfunction. Some of these biomarkers solely origi-

nated from the activated ECs. In contrast, other biomarkers

are not endothelial-specific and derived from other acti-

vated cell types, e.g., platelets, neutrophils, macrophages,

and T lymphocytes. Therefore, a variety of reactions and

events are expected from these biomarkers. The biomarkers

of ECD are summarized in Table 1.

4.2 COVID-19-Associated Pro-inflammatory
Storm

The high activation of the innate immune response against

the virus induces the overexpression of pro-inflammatory

cytokines, resulting in a ‘‘cytokine storm’’ (Liu et al. 2016).

Toll-like receptors (TLRs) are the principal players in

innate immunity and involved in recognizing molecular

patterns from SARS-CoV-2 (such as viral proteins and

single-stranded RNA) to produce pro-inflammatory

responses (Fitzgerald et al. 2001; Takeuchi and Akira

2009; Chakraborty et al. 2020; Choudhury and Mukherjee

2020; Moreno-Eutimio et al. 2020). A highly pathogenic

SARS-CoV-2 infection ascribed to IL-6, resulting from

enhancing virus replication mainly in the lower respiratory

tract (Ulhaq and Soraya 2020). Furthermore, an increased

level of ferritin and IL-6 was found in non-survivors

compared to survivors in the recent outbreak of SARS-

CoV-2 in China (Huang et al. 2020a, b).

Based on a recent meta-analysis data, the mean con-

centrations of IL-6 in patients with complicated COVID-19

were 2.9-fold higher than those with an uncomplicated

disease course (Coomes and Haghbayan 2020). Studies

have exhibited that IL-6 is correlated with activation of the

coagulation cascade, vascular leakage, and cardiomyopa-

thy (Levi et al. 2003; Kanda and Takahashi 2004). The

association of serum SARS-CoV-2 RNA level with ele-

vated IL-6 concentration and poor prognosis implicates

that multiple organ dysfunction in severe COVID-19

patients might be at least partly due to a direct viral

invasion (Chen et al. 2020a, b). In another study, the

COVID-19 severity attributed to the overproduction of pro-

inflammatory cytokines IL-6, IL-1b, IL-2, IL-7, IL-10,

Fig. 4 A pattern of endothelial cell dysfunction (ECD) and comorbidities associated with COVID-19 and their correlation
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TNF-a, and monocyte chemoattractant protein-1 (MCP-1)

(Mehta et al. 2020). The cytokine storm leading to the

vascular endothelial cell apoptosis (loss of integrity)

resulted in increased vascular permeability and vascular

leakage, lung microvascular dysfunction, alveolar edema,

and eventually hypoxia (De Lorenzo et al. 2020). Fur-

thermore, pro-inflammatory cytokines upregulate the

adhesion molecules to capture inflammatory cells from the

circulation, leading to endothelial activation, procoagulant,

and pro-adhesive alterations, deteriorating microvascular

flow, and therefore tissue perfusion (De Lorenzo et al.

2020). The sequence of cellular events leading to the

hypercoagulation state observed in patients with severe

COVID-19 can be summarized as (1) SARS-CoV-2

infection, (2) cytokine storm, (3) endothelial activation

followed by platelet activation, (4) the expression of tissue

factor (TF) and the subsequent exposure of TF to the blood,

(5) the activation of the extrinsic coagulation pathway

together with the decreasing endogenous anticoagulant

levels and increasing plasminogen activator inhibitor-1

(PAI-1) levels, and finally, (6) an extra production of

thrombin and fibrinolysis shutdown (Levi and van der Poll

2017; Beristain-Covarrubias et al. 2019; Schmitt et al.

2019).

4.3 COVID-19-Associated Thromboembolism
and Coagulopathy

During endothelial dysfunction, the endothelium proper-

ties, including thrombotic and coagulant, would be chan-

ged, which may shift the homeostasis of endothelium

toward a pro-inflammatory and pro-thrombotic phenotype

(Chousterman et al. 2017). The vascular ECs and skin ECs

were found to be infected by SARS-CoV-2 (Ackermann

Table 1 One summary of the biomarkers of EC dysfunction (Zhang et al. 2010; Zhang et al. 2020a, b, c, d, e)

Biomarkers Members Description

Selectin family E- and P-selectin E-selectin is a specific marker of EC activation. P-selectin is marker of

EC activation and platelet activation

Immunoglobulin

gene superfamily

ICAM-1, -2, and -3; VCAM-1; VE-cadherina;

ESAM-1b; JAMsc; PECAM-1d, and CD99

VE-cadherin is a specific biomarker of EC activation. The molecules

ICAM-1, VCAM-1, PECAM-1, and JAM-A may signify activation

of ECs or activation of other cell types, including immune effector,

platelet, leukocyte, or epithelial cells

The avb3 heterodimer also expresses on leukocytes and macrophages,

and it is not EC specific

Integrin family avb3 heterodimer (CD51/CD61) While vWF is not EC specific, vWFpp is specific marker of EC

activation. TF is not EC specific

Coagulant family 1. Procoagulant (pro-thrombotic) molecules:

thrombin, vWFe, TFf, PAI-1g, PAFh, and

vWFppi

It is an inhibitor of endogenous NOSm, and the elevated levels of

ADMA may serve as a specific marker for EC activation

2. Anticoagulant (anti-thrombotic) molecules:

tPAj, heparin sulfate, TMk, and AT-IIIl
IL-b, IL-6, and IL-8 may signify EC activation and/or mononuclear

cell activation (especially T-cell activation)

Asymmetric

Dimethyl Arginine

(ADMA)

– Chemokines play a critical role in stimulating integrin expression and

increasing integrin affinity on leukocytes, which results in promoting

the adhesion of leukocytes and ECs

PTX3 is an acute-phase protein that can directly be produced by the

activated ECs

Cytokines family IL-1an, IL-b, IL-6 and IL-8 The CECs can serve as a sentinel for EC activation and injury and/ or

vascular dysfunction

– –

Chemokines family – –

Pentraxin gene

family

PTX3 –

Circulating

endothelial cells

(CECs)

– –

aVascular endothelium cadherin; bendothelial selective adhesion molecule-1; cjunctional adhesion molecules; dplatelet EC adhesion molecule-1;
evon Willebrand factor; ftissue factor; gplasminogen-activating inhibitor-1; hplatelet-activating factor; ivWF pro-peptide; jtissue plasminogen

activator; kthrombomodulin; lantithrombin III;
mnitric oxide synthase; ninterleukin
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et al. 2020; Colmenero et al. 2020; Menter et al. 2020;

Varga et al. 2020), and circulating ECs are elevated in

patients with COVID-19 admitted to the hospital (Khider

et al. 2020). In addition to the respiratory tract, SARS-

CoV-2 viral load has been discerned in highly vascularized

tissues, including the heart, kidneys, liver, and brain (Pons

et al. 2020; Puelles et al. 2020). Infection caused by SARS-

CoV-2 has adverse effects on endothelium, correlating with

EC apoptosis, suggesting the endothelium may become

dysfunctional in COVID-19 (Varga et al. 2020; Wichmann

et al. 2020). The hyper-inflammatory and procoagulatory

states in COVID-19 indicate that the endothelium serves as

a target and an effector participating in thrombosis and

inflammation (Klok et al. 2020).

The thrombus formation results in alveolar damage and

microcirculatory disturbance, thereby respiratory dysfunc-

tion in COVID-19. Both alveolar damage and microcir-

culatory disturbance correlated with thrombus formation

participate in respiratory dysfunction in COVID-19.

However, the commonly embolic event is due to the deep

vein thrombus. In some cases, in situ formation in the

pulmonary arteries can be responsible for pulmonary dys-

function. In another study, despite the absence of clinical

presentations of thromboembolism, the autopsy examina-

tion of all COVID-19 patients showed thrombus estab-

lishment in small- and mid-sized pulmonary arteries (Lax

et al. 2020).

The analysis of conventional coagulation tests in

COVID-19 patients provided important data, including

antithrombin activity (AT), fibrinogen, fibrin degradation

product (FDP), D-dimer, prothrombin time (PT), and

activated partial thromboplastin time (APTT) (Tang et al.

2020). Although coagulation laboratory tests, including PT,

APTT, and platelet count, are often normal and aren’t

practical indicators of the thrombotic risk, increased

D-dimer implicating that D-dimer monitoring is critical in

COVID-19 coagulopathy. The typical COVID-19-associ-

ated coagulopathy can be diagnosed by elevated D-dimer,

fibrinogen, and VWF levels. The increasing levels of VWF,

to 3–4 times normal amounts, have been reported in

patients with COVID-19 (Keith et al. 2020; Zachariah et al.

2020). Furthermore, factor VIII and angiopoietin 2, stored

in Weibel–Palade bodies, are released in response to

SARS-CoV-2 infection (Streetley et al. 2019; Escher et al.

2020; Helms et al. 2020; Smadja et al. 2020). Angiopoietin

2 represses anticoagulatory, anti-inflammatory, and anti-

apoptotic signaling induced by angiopoietin 1; therefore, it

acts as an antagonist for angiopoietin 1 (Uchimido et al.

2019). Altogether, these studies emphasize the prothrom-

botic and procoagulatory characteristics of COVID-19.

5 COVID-19-Associated Comorbidities

Hypertension, heart failure, global cardiovascular diseases,

and diabetes mellitus are associated with the severity of

COVID-19 and the mortality of COVID-19 patients (Hu

et al. 2020; Hessami et al. 2020; Su et al. 2020). Therefore,

a correlation exists between comorbidities and the

increased risk of COVID-19 severity. The common

denominator among all these comorbidities is pre-existing

endothelial dysfunction (Fig. 4). In this section, the most

common comorbidities among COVID-19 patients,

including aging, obesity, hypertension, diabetes, renal

dysfunction, and cardiovascular diseases, are summarized.

5.1 Aging

Clinical data from COVID-19 patients indicate that chil-

dren have lower infection rates and better clinical outcomes

than adults (Guan et al. 2020; Li et al. 2020a, b, c). The

lower susceptibility of children to COVID-19 than adults

ascribed to the lower expression of ACE2 (Chen et al.

2016). The ACE2 expression and activity during the

development of human children are obscure (Dong et al.

2020). Aging might be associated with the poor prognosis

and pathological progression of COVID-19. The results

from a study comprising a cohort of 1099 patients with

laboratory-confirmed COVID-19 indicated that the severe

patients and the non-survivors were significantly higher

than the non-severs and the survivors (Yang et al.

2020a, b). The effect of aging on ACE2 activity might

depend on gender (Fernández-Atucha et al. 2017; Hu et al.

2018). An investigation of the ACE2 activity in humans

indicated that although the ACE2 activity had a consider-

able difference between the young and aged females, it was

not different in the young and aged males. Another study

reported the upper ACE2 activity in the aged females

compared to the younger ones (Fernández-Atucha et al.

2017). Thus, the activity of ACE2 in women is contro-

versial during aging, maybe due to sample number or

genetic diversity.

5.2 Hypertension and Cardiovascular Disease

ACE2 produces Ang (1-7), thereby regulating blood pres-

sure by altering vascular tone and function. The RAS

dysregulation mainly implicates hypertension pathogenesis

and progression (Riet et al. 2015). ACE2 was shown to

decrease blood pressure in hypertension animal models

(Kuba et al. 2010). Furthermore, decreased ACE2 levels

were found in the lung tissues of patients with idiopathic

pulmonary-associated hypertension (Zhang et al. 2018).

Similarly, ACE2 declined in kidneys, blood vessels, and
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the brain of the models of hypertension (Xia et al. 2013;

Mendoza-Torres et al. 2015). Given that ACE2 is known as

the main SARS-CoV-2 entry receptor and the protective

role of ACE2 in lungs (Imai et al. 2005) and heart

(Crackower et al. 2002) tissue injuries, ACE2 plays a role

in the development and progression of COVID-19 com-

plications. In 2020, a high severity rate was observed in

COVID-19 patients with hypertension (Guan et al. 2020).

Also, it has to note that older COVID-19 patients with

hypertension might have dysregulated ACE2 expres-

sion/function that inclines them to severe disease and

mortality (Li et al. 2020a, b, c; Verity et al. 2020; Wang

et al. 2020a, b, c, d, e; Wu and McGoogan 2020).

A multivariable-adjusted analysis consisting of 487

Chinese COVID-19 patients revealed that age over 50,

male gender, and hypertension are independent factors for

COVID-19 severity on admission (Shi et al. 2020a, b, c). In

another study involving 548 Chinese inpatients, the

prevalence of hypertension was significantly higher in

patients with severe COVID-19 compared to non-severe

cases (Li et al. 2020a, b, c). In contrast, a study in France

showed that hypertension is not associated with COVID-19

severity (Simonnet et al. 2020). Shibata et al. (2020)

believe that evidence is yet insufficient and speculate that

the high prevalence of hypertension among patients with

severe and fatal COVID-19 may be due to the vulnerability

of older individuals to SARS-CoV-2 infection. To date,

there is no clear evidence approved that hypertension is a

critical factor for developing the severe disease in COVID-

19 patients as hypertension is not located in the list of risk

factors of the Centers for Disease Control and Prevention

(CDC) for COVID-19 severity (Shibata et al. 2020).

Cardiovascular complications seem the riskiest and most

lethal among different consequences of severe COVID-19.

There is a reciprocal relationship between viral respiratory

infections and cardiovascular diseases; on the one side,

viral respiratory infectious diseases can increase the risk of

cardiovascular events; on the other side, the underlying

cardiovascular comorbidities raise the risk of mortality

among patients with infection (Annamaria et al. 2020).

Acute myocardial injury is the most commonly reported

cardiovascular complication of COVID-19 infection

proved by elevated cardiac biomarkers, including cardiac

troponins and ECG changes (Bansal 2020). The incidence

of myocardial injury was reported 7–28% and fluctuated

among hospitalized patients (Bhatraju et al. 2020; Clerkin

et al. 2020; Guo et al. 2020; Lippi et al. 2020; Shi et al.

2020a, b, c). Therefore, myocardial cell injury due to the

direct viral attack to the myocardium and vascular

endothelium is one of the suggested mechanisms for car-

diovascular injury in COVID-19. Another assumption is

the influence of tissue hypoxia, coronary plaque destabi-

lization, and microthrombogenesis induced by the

systematic inflammation and correlated with cytokine

storm (Clerkin et al. 2020).

Acute cardiac injury and heart failure have been sug-

gested as predictors of COVID-19 severity and outcome

(Huang et al. 2020a, b). Some studies found a correlation

between elevated troponin levels and a more severe clinical

course and worse outcomes in Chinese hospitalized

patients (Guo et al. 2020; Lippi et al. 2020; Shi et al.

2020a, b, c; Wang et al. 2020a, b, c, d, e). In contrast, in a

study accomplished in the USA, elevated troponin levels

on ICU admission were in only 15% of fatally ill COVID-

19 patients, with a 50% of mortality rate in the cohort as a

whole (Bhatraju et al. 2020). A cohort study involving 191

hospitalized Chinese COVID-19 patients found heart fail-

ure in half of the fatal cases and only 12% of survivors

(Zhou et al. 2020). Data from a recent study have

emphasized that genetic susceptibility to COVID-19-re-

lated cardiac events is a potential contributor to the high

mortality among African American patients with COVID-

19 (Giudicessi et al. 2020). Hachim et al. (2020) performed

in silico analysis of publicly available transcriptomic

datasets to elucidate the potential molecular pathways and

the endothelium role in the pathogenesis of cardiac and

vascular injuries in COVID-19. Their analysis using the

SARS-CoV-2-infected cardiomyocyte-derived dataset

revealed downregulating four cardioprotective genes,

including MRPS11, HIKESHI, NDUFB7, and NDU-

FA4L2. Furthermore, they showed that three genes,

including SON DNA and RNA binding protein (SON),

O-linked N-acetylglucosamine [GlcNAc] transferase

(OGT), and RAR-related orphan receptor A (RORA), were

shared by all the venous thromboembolism, heart failure,

and acute coronary syndrome, although they differentially

expressed in the peripheral blood of patients with every

three conditions. Besides, evaluating the expression of

these genes in healthy blood endothelial cells using the

dataset GSE17078 showed a significantly lower SON,

OGT, and RORA expression in African Americans than

Caucasians. As the results are indicated, the downregula-

tion of cardio-protective genes may likely play a role in

cardiovascular events in patients with COVID-19, and

probably the expression pattern of the SON, OGT, and

RORA genes participates in genetic susceptibility to car-

diovascular injury observed in COVID-19 patients. Recent

evidence suggests that the endothelial dysfunction because

of a direct viral invasion is unifying the occurrence of

cardiovascular events and other pre-existing comorbidities

in severe COVID-19. However, the complex interaction

between cytokines and coagulation storms within the ves-

sels is beyond everything else that can irreparably com-

promise the endothelium integrity and its anti-

inflammatory and antithrombotic properties (Zheng et al.

2020).
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5.3 Renal Dysfunction

The ACE2 expression and activity are enhanced in the

kidneys (Kuba et al. 2010), and the kidneys may be a major

target organ of SARS-CoV-2 infection. The urine samples

from some COVID-19 patients were found positive for

SARS-CoV-2 (Guan et al. 2020). Acute kidney injury was

reported in more than 20% of COVID-19 patients with a

fatal disease and correlated with a higher risk of death in

COVID-19 patients (Cheng et al. 2020; Fanelli et al. 2020;

Richardson et al. 2020; Yang et al. 2020a, b). The

expression level of ACE2 decreased in both acute kidney

injury (Fang et al. 2013) and several models of chronic

kidney disease, which disturbed the RAS homeostasis in

the kidneys (Kuba et al. 2010; Soler et al. 2013). Therefore,

it is plausible that the decreased ACE2 expression in per-

sons with acute renal disease, on the one hand, and the

decreased ACE2 activity due to viral binding, on the other

hand, could potentially worsen kidney injury in patients

with simultaneously COVID-19 and chronic kidney dis-

ease. In agreement, an independent risk factor for mortality

in hospitalized patients was renal dysfunction (Cheng et al.

2020). These studies nominate acute kidney injury as one

of the most critical complications that happen in COVID-

19 patients. Nevertheless, further investigation into the

implication of ACE2 in renal injury and clinical outcomes

of the COVID-19 patients with chronic kidney diseases as

comorbidity is needed.

5.4 Obesity and Diabetes

The adipose tissue directly secretes various inflammatory

products, and obesity represents a low-grade inflammation

state. Hyperplastic or hypertrophied adipose tissue releases

various factors such as inflammatory cytokines, trans-

forming growth factor-b (TGF-b), hemostatic proteins

(plasminogen activator inhibitor-1; PAI-1), proteins

affecting blood pressure (angiotensinogen), angiogenic

molecules (vascular endothelial growth factor; VEGF), etc.

(Divella et al. 2016). The main adipose tissue-derived

inflammatory cytokines consist of TNFa, IL-1, and IL-6.

According to the CDC report, people with a body mass

index (BMI) of C 40 (severe obesity) display a higher risk

of severe COVID-19 (Hageman 2020).

ACE2 has expressed in pancreatic beta cells (Bindom

and Lazartigues 2009; Blodgett et al. 2015; Shoemaker

et al. 2015; Roca-Ho et al. 2017; Wang et al. 2017; Xuan

et al. 2018). Earlier studies showed that ACE2 is a potential

therapeutic target to improve microcirculation in the islets

of Langerhans (Lu et al. 2014). A diverse range of harmful

stimuli participates in vascular complications in diabetes

including pro-inflammatory cytokines, chemokines,

adhesion molecules, and transcription factors (Forbes and

Cooper 2013). Type 2 diabetes mellitus (T2DM) is corre-

lated with a chronic systemic inflammation state, and it has

been clear that the levels of circulating inflammatory

markers elevate in patients with diabetes (Festa et al. 2000;

Vozarova et al. 2001). Previously, it is found that SARS-

CoV damaged the endocrine part of the pancreas and

higher fasting plasma glucose (FPG), hyperglycemia, was

an independent predictor for mortality and morbidity in

SARS-CoV patients and associated with the higher levels

of ACE2 expression in the pancreas, suggesting that

SARS-CoV can cause lesions in the pancreatic islets (Yang

et al. 2010). It is likely that SARS-CoV-2 also could cause

new-onset diabetes either by a direct action on the islets or

by increasing insulin resistance. It was reported that dia-

betes mellitus is a common comorbidity in COVID-19

patients (Arentz et al. 2020; Bornstein et al. 2020; Gentile

et al. 2020; Muniyappa and Gubbi 2020; Myers et al. 2020;

Rayman et al. 2020). Most of the available evidence is

related to type 2 diabetes mellitus and does not discern

between the major types of diabetes mellitus (Lim et al.

2020). Changes in insulin requirements are apparently

correlated with inflammatory cytokines levels in diabetic

patients with COVID-19 (Lim et al. 2020).

An analysis of 1099 Chinese patients with laboratory-

confirmed SARS-CoV-2 infection revealed that 7.4% of all

patients, 16.2% of patients with severe disease, and 26.9%

of patients experiencing a primary composite endpoint of

ICU admission and mechanical ventilation had coexisting

diabetes (Guan et al. 2020). In agreement, some meta-

analyses confirmed the negative effects of diabetes on

disease severity or progression in patients with COVID-19

(Fadini et al. 2020; Hu et al. 2020; Li et al. 2020a, b, c).

One of the meta-analyses reported that the incidence of

diabetes was twofold higher in ICU/severe cases than in

non-ICU/severe cases of patients with COVID-19 (Li et al.

2020a, b, c). Another study showed that more than 66% of

COVID-19 patients that did not survive had diabetes

(Remuzzi and Remuzzi 2020). Altogether, these studies

intimate that coexisting pancreatic dysfunction is a risk

factor in COVID-19 patients and also suggest the incidence

of new-onset diabetes in these patients.

6 Prevention of SARS-CoV-2 Infection

Vaccination is critical for the prevention of SARS-CoV-2

and for overcoming the pandemic. The development of

covid-19 vaccines is based on seven platforms: inactivated

vaccine, viral vector, mRNA, protein subunit, virus-like

particle (VLP), DNA, and live attenuated vaccines (Li et al.

2022).
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6.1 Inactivated Vaccines

Inactivated vaccines use in vitro-cultured viruses (SARS-

CoV-2), which are inactivated by chemical substances,

heat, or radiation (Forchette et al. 2021). The vaccine can

maintain the whole virus as an immunogen (Li et al. 2022).

Through injection into the body, it activates immune

responses of the human body and produces a wide range of

antibodies. The WHO has approved two types of inacti-

vated vaccines: BBIBP-CorV(Sinopharm), CoronaVac

(Sinovac), and COVAXIN (Bharat) (Li et al. 2022).

6.2 Viral Vector Vaccines

Viral vector vaccines utilize attenuated viruses such as

adenovirus as a vector to deliver genetic material of viral

proteins (e.g., DNA of s protein) into the body (Forchette

et al. 2021). When adenovirus-based vaccines are injected,

COVID-19 spike protein is produced and provokes the

immune system and induces Th1 cell responses. Besides

adenovirus, vesicular stomatitis virus (VSV) can also be

genetically engineered for COVID-19 vaccine production

(Li et al. 2022). The WHO has approved two types of viral

vector vaccines: Ad26.COV2.S (Johnson & Johnson) and

AZD1222 (AstraZeneca-University of Oxford).

6.3 mRNA Vaccines

mRNA vaccines are acquired from mRNA, encapsulated

by lipid nanoparticles (LNP) or other delivery systems

(Forchette et al. 2021). The mRNA vaccine contains

genetic code to make SARS-CoV-2 S protein; when it is

injected into the body, COVID-19 virus spike protein is

created and recognized by the immune system and induces

Th1 cell responses, germinal center cell responses and

produces specific antibodies against the COVID-19 virus

(Forchette et al. 2021). The capsulation of mRNA with

LNP can transfer mRNA into cells efficiently and provoke

a strong immune response; therefore, it is used in most

mRNA vaccines. The WHO approved mRNA vaccines:

mRNA-1273 (Moderna) and BNT162b2 (Pfizer-BioN-

Tech) (Li et al. 2022).

6.4 Protein Subunit Vaccine

Protein subunit vaccines include viral proteins or peptides

(spike proteins) as the antigen, which are expressed sys-

temically by several protein expression systems such as

yeast, bacteria, insect, or mammalian cells. Also, this type

of vaccine needs an adjuvant to signal antigen-presenting

cells to provoke strong immune responses. (Li et al. 2022;

Forchette et al. 2021; Heidary et al. 2022; Alshrari et al.

2021). The WHO has approved only one COVID-19 pro-

tein subunit vaccine for emergency use: NVX-CoV2373

(Novavax).

6.5 VLP Vaccines

VLP vaccines are made up of non-infectious and non-

replicating virus-like particles of SARS-COV-2 (such as S

proteins) expressed in vitro. VLP vaccines do not contain

genetic material but assume the function and structure of

the virus (antigen covering a shell structure), stimulate

immune responses, and produce antibodies (Li et al. 2022;

Forchette et al. 2021). Plant-based VLPs have the potential

to use as a COVID-19 vaccine; they are not approved yet

but are in clinical trials and preclinical stages. They show

immunogenicity and safety in human clinical trials (Chen

et al. 2013).

6.6 DNA Vaccines

DNA vaccines consist of a recombinant plasmid containing

a gene encoding the viral proteins or polypeptides of

SARS-CoV-2. Through injection of DNA vaccines, spike

protein is produced and activates the immune responses.

The WHO has not approved any COVID-19 DNA vaccine

for emergency use (Li et al. 2022).

6.7 Live Attenuated Vaccines

Live attenuated vaccines are viruses acquired from reverse

genetics to reduce virulence, so they function as non- or

weak pathogenic antigens. The main processes for vaccine

production include virulence gene knockout and codon pair

deoptimization (CPD). The CPD method induces extensive

cellular, humoral, and innate immunity responses in

recipients against viral proteins. The WHO has not

approved any COVID-19 live attenuated vaccine for

emergency use (Li et al. 2022).

The features of different COVID-19 vaccines are shown

in Table 2.

7 Potential Strategies and Therapeutic
Agents for COVID-19 Treatment

Although vaccine development is a major focus for pre-

venting SARS-CoV-2, other therapeutic approaches,

including antiviral drugs and monoclonal antibodies, have

been utilized and researched to treat patients with COVID-

19. This section highlights some pre-existing US Food and

Drug Administration (FDA)-approved drugs and potential

therapeutic future strategies (Fig. 5).
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Table 2 Features of various COVID-19 vaccine platforms

Vaccine

Platform

Vaccine name (approved

by WHO)

Vaccine manufacturer Structure of vaccine platforms

Inactivated

vaccine

BBIBP-CorV Sinopharm Based on chemically or physically inactivated virus grown in cell

cultureCoronaVac Sinovac

Covaxin Bharat

Viral vector

vaccine

AZD1222 AstraZenecaUniversity

of oxford

Use safe modified viral vectors to express SARS-CoV-2 proteins

Ad26.COV-2-S Johnson & Johnson

mRNA vaccine BNT162b2 Pfizer-BioNTech Uses mRNA encapsulated by LNP

mRNA-1273 Moderna

Protein subunit

vaccine

NVX-CoV2373 Novavax Composed of viral proteins expressed by expression systems

VLP vaccine In clinical and preclinical

stages

– Contains non-infectious virus-like structures that mimic the virus but

do not contain viral genome

DNA vaccine In clinical and preclinical

stages

– Contains circular DNA that encodes viral protein of SARS-CoV-2

Live attenuated

vaccine

In clinical and preclinical

stages

– Utilizes a weakened version of the virus from reverse genetics

Fig. 5 Schematic representation of potential drugs and strategies for the treatment of COVID-19
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7.1 RAS Inhibitors and ACE2 Activators

ACE inhibitors (ACEIs) and angiotensin II receptor

blockers (ARBs) are common antihypertensive drugs

developed to inhibit RAS and to decrease the adverse

effects of Ang II by reducing its production (ACEIs) or

downstream effects (ARBs). It has been exhibited that both

ACEI and ARBs improve endothelial dysfunction (Shahin

et al. 2011; Li et al. 2014). Furthermore, they may reduce

the tissue factor expression and hence procoagulatory

states in endothelial cells and other cell types (Müller et al.

2000). Several experimental animal models have exhibited

inconsistent findings correlated with the effects of ACEIs

and ARBs on ACE2 levels or activity in tissue. While some

have shown that RAS inhibitors upregulate ACE2 expres-

sion (Ferrario et al. 2005), others showed no effect. Against

attainable animal studies, only a few studies investigated

the effect of ACEIs and ARBs on ACE2 levels or ACE2

activity in humans. An earlier study assessed the impact of

ACEI and ARB treatment on the intestinal gene expression

of ACE2 (Vuille-dit-Bille et al. 2015). The results indi-

cated that the mRNA expression level of ACE2 was

increased 1.9-fold in patients treated with ACEIs compared

to non-treated controls, although ACE2 expression levels

showed no significant differences in patients treated with

ARBs compared to the non-treated group. Furuhashi et al.

(2015) performed a cohort study consist Japanese hyper-

tensive patients to investigate the effects of RAS inhibitors

on urinary ACE2 levels. They found that although Ang II

receptor blocker olmesartan increased urinary ACE2

levels, other ARBs and the ACE inhibitor enalapril did not

significantly affect the treatment groups. These conflicting

results suggested that ACEIs or ARBs effects on ACE2

expression depend on tissue kind and clinical state.

On the one hand, if RAS inhibitors upregulate ACE2

expression in viral infection, theoretically it can increase

the opportunity of viral entry into organs and susceptibility

to infection. On the other hand, it is noteworthy that ACE2,

as a natural RAS inhibitor, via the production of

vasodilator angiotensin (1-7), participates in the natural

host response against pulmonary infection (Sodhi et al.

2019). Thus, it is plausible that RAS inhibition participates

in lung protection against SARA-CoV-2 infection (Imai

et al. 2005; Kuba et al. 2005). The effect of RAS inhibitors

on worse outcomes and mortality was investigated in Ira-

nian COVID-19 diabetic patients (Aghaaliakbari et al.

2020). Data showed that ACEI use was correlated with a

higher mortality rate in diabetic patients with COVID-19,

although the ARB’s use did not affect the survival rate.

Interestingly, the use of neither ACEI nor ARBs did not

correlate with mortality in non-diabetic COVID-19

patients. However, the results showed the adverse effect of

using ACEIs in diabetic COVID-19 patients but could not

support such an effect in the COVID-19 patients’ outcomes

treated with ARBs. Nevertheless, more studies are needed

to confirm the effect of ACEIs on the death risk in diabetic

COVID-19 patients. Given that no valid/enough clinical

data affirm the hypothesis that RAS inhibitors enhance the

risk of COVID-19 or disease severity, the International

Society of Hypertension and other knowledgeable societies

have already recommended that the use of ACEIs and

ARBs must be continued in high-risk patients during the

pandemic (Shibata et al. 2020). More examination is nee-

ded to determine if RAS inhibitors are advantageous or

disadvantageous in COVID-19 treatment.

Increasing the ACE2 activity or decreasing the effect of

the classical RAS through opposing Ang II effects is an

approach to reconstructing vascular dysfunction and other

pathological diseases (Qaradakhi et al. 2020). The increase

in ACE2 activity protects against lung damage and reduces

the inflammatory response in lung injury (Fang et al. 2019;

Peiró and Moncada 2020). It has been found that xan-

thenone (XNT) and diminazene aceturate (DIZE) activate

ACE2. DIZE is an antitrypanosomal agent that is com-

mercially available. Because of its vasorelaxation,

hypotensive, and anti-inflammatory properties and its

ability to augment ACE2, DIZE has been shown beneficial

cardioprotective effects in various experimental models of

diseases (Velkoska et al. 2016). The protective effect of

ACE2 activation on pulmonary injury, including ARDS,

indicated that developing and utilizing ACE2 activators

can be a potential therapeutic strategy against COVID-19.

7.2 Recombinant ACE2, ADAM-17 Enhancers/
Activators, and Calmodulin Antagonists

SARS-CoV-2 utilizes ACE2 as a doorway to cellular entry,

resulting in the systematic shortage of ACE2. It has shown

that recombinant ACE2 (rACE2) can protect against dia-

betic nephrology, hypertension (Kuba et al. 2010), and

pulmonary injury (Imai et al. 2005). Given that ACE2 is

the crucial receptor for SARS-CoV-2 infection, it has been

suggested that inhibiting ACE2/SARS-CoV-2 interaction

could be a promising pharmacologic target for treating

patients with COVID-19. Despite anchored ACE2 may

enable SARS-CoV-2 to enter cells, circulating ACE2 (de-

tached form) may restrict SARS-CoV-2 entry into pul-

monary endothelial cells by attaching itself to the virus.

Treatment of COVID-19 patients with a human recombi-

nant soluble ACE2 (hrsACE2) is already under clinical

trials (Zhang et al. 2020a, b, c, d, e). Furthermore, ADAM-

17 contributes to the cleavage of ACE2 ectodomain, and

the stimulation of ADAM-17 expression could result in

increasing ACE2 shedding and elevating soluble ACE2

levels (Lambert et al. 2005). This introduces ADAM-17 as
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an attractive target for reducing the SARS-CoV-2 infec-

tivity, suggesting each agent that could upregulate or

activate (such as 5-fluorouracil) ADAM-17 will probably

have a potential role in COVID-19 treatment (Kyula et al.

2010). It was exhibited that estradiol upregulates ADAM-

17 expression in human non-small cell lung cancer (Ren

et al. 2015). If estradiol shows such a positive effect on

ADAM-17 levels in COVID-19 patients, it will mean

higher ACE2 shedding in women and probably provide

another plausible explanation for lower susceptibility to

SARS-CoV-2 and severity of COVID-19 in women com-

pared to men (Ragia and Manolopoulos 2020). Overall,

using soluble ACE2 as a decoy receptor could potentially

increase anchored ACE2 receptors available for converting

Ang II to vasodilator Ang (1-7), resulting in reduced

hypertension and inflammation.

The function of various cell surface proteins regulates

by their ectodomain release, including cytokines, growth

factors, and enzymes such as ACE2, etc. (Lambert et al.

2008a, b). It has been exhibited that CALM, a ubiquitous

calcium-binding protein, interacts with ACE2 and inhibits

its ADAM17-dependent ectodomain shedding. It has also

shown that CALM inhibitors such as calmidazolium

stimulate the shedding of the ACE2 ectodomain in a dose-

and time-dependent manner (Lambert et al. 2008a, b).

Phenothiazine antipsychotic agents, such as melatonin,

trifluoperazine, chlorpromazine, etc., interact with CALM

and inhibit its function (Roufogalis 1985; Soto-Vega et al.

2004). Melatonin is protective against virus-related dis-

eases such as acute lung injury or ARDS and has a high

safety profile (Zhang et al. 2020a, b, c, d, e). Melatonin has

been suggested as a potential adjuvant therapy in COVID-

19 due to its advantageous effects, including anti-inflam-

matory, antioxidant, and immunomodulatory (Zhang et al.

2020a, b, c, d, e). Tamoxifen is a triphenylethylene antie-

strogen that binds to estrogen receptors and modifies their

processing. There is evidence that tamoxifen is also a

CALM antagonist and inhibits the activation of cAMP

phosphodiesterase by CALM (Lam 1984). Thus, it is fea-

sible that the expression of ACE2 has been affected by

tamoxifen. Toremifene is another CALM antagonist that,

besides tamoxifen, has been exhibited for SARS-CoV and

MERS-CoV inhibition (Dyall et al. 2014). Thus, it is likely

that both tamoxifen and toremifene could also inhibit

SARS-CoV-2.

7.3 TMPRSS2 Inhibitors

Intravascular thrombosis and coagulation more damage to

the endothelium and can participate in endothelial inflam-

mation and dysfunction in COVID-19 patients (Chouster-

man et al. 2017; Evans et al. 2020). Several clinical reports

implicated developing thrombotic complications despite

prophylactic anticoagulation in COVID-19 patients (Klok

et al. 2020; Thachil et al. 2020), suggesting the necessity of

supplemental therapy to impede thrombosis. The use of

synthetic serine protease inhibitors such as nafamostat

mesylate and camostat mesylate, and physiologic antico-

agulants such as protein C (Richardson et al. 2008) and

antithrombin (Iba et al. 2018) can be a potential therapy

against COVID-19. As previously mentioned, TMPRSS2

cleaves and activates the spike protein of SARS-CoV-2 and

is essential for viral uptake (Sanders et al. 2020). There-

fore, TMPRSS2 inhibition could be a potential therapy

against SARS-CoV-2 infection. Camostat mesylate is a

potent TMPRSS2 inhibitor and was recently confirmed to

obstruct SARS-CoV-2 entry into lung cells (Hoffmann

et al. 2020a, b). Nafamostat mesylate is another TMPRSS2

inhibitor with therapeutic potential for COVID-19 treat-

ment. It has reported that the nafamostat efficacy to inhibit

SARS-CoV-2 entry into host cells is significantly higher

(approximately 15-fold) than camostat (Hoffmann et al.

2020a, b). Both camostat and nafamostat mesylate have

been used to treat diseases unrelated to coronavirus and

thus are readily available. However, TMPRSS2 expression

in microvascular ECs normally is below the detection

level, but it actively has increased during angiogenic or

tubulogenic responses (Aimes et al. 2003). Furthermore,

the TMPRSS2 activity, similar to other serine proteases, is

regulated by nitrosylation (Stamler et al. 2001). Thus, the

activation of endothelial nitric oxide synthase (eNOS) and

following production of nitric oxide (NO) may likely affect

viral infection. Nevertheless, additional studies are

required to better understand the physiological expression

and function of TMPRSS2 in adult ECs.

7.4 Statins

Statins are conventional cholesterol-lowering drugs used

for improving vascular endothelial function and the pre-

vention of atherosclerotic cardiovascular diseases (Adh-

yaru and Jacobson 2018; Dastghaib et al. 2020). Different

mechanisms have been introduced to improve endothelial

function mediated by statin, including reducing oxidized

low-density lipoprotein cholesterol, inducing eNOS

expression and nitric oxide release, decreasing C-reactive

protein (CRP) levels, inhibition of NF-jB, the high

mobility group box 1(HMGB1)/TLR4 pathway and other

signaling pathways (Hölschermann et al. 2006; Peymani

et al. 2021). CRP is an acute-phase protein and belongs to

the pentraxin family of proteins, and its circulating con-

centrations increase in response to inflammation (Pepys

and Hirschfield 2003). Thus, reducing CRP levels by sta-

tins implicated the anti-inflammatory properties of these

drugs independent of their cholesterol-lowering effects.

Statins exhibited advantageous effects in hypertensive
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patients, with normal cholesterol levels, due to their anti-

inflammatory properties (Peymani et al. 2021). Statins

reduce the tissue factor expression in endothelial cells, and

these drugs may impede EC activation and exhibit

antithrombotic and anticoagulant effects (Lee et al. 2020).

Other suggested mechanisms to elucidate the antithrom-

botic property of statin include decreasing platelet aggre-

gation and increasing thrombomodulin expression in

endothelial cells (Lee et al. 2020). The ability of statins to

prevent endothelial dysfunction introduces these as

promising drugs for obstructing vascular damage in

COVID-19. Furthermore, some properties of statins,

including availability, low cost, and safety, suggest their

application as part of COVID-19 treatment.

Recently, a small observational study has been per-

formed on patients with a pre-existing chronic cardiovas-

cular disease and with an incidence of COVID-19 (Rossi

et al. 2020). However, the results showed a trend toward

reducing mortality risk in patients taking statin compared

to patients without statin, but the effect of statins was not

substantially significant. Besides, the risk of mortality was

not significantly different between the subgroup of high-

intensity statins and the subgroup of low- or moderate-

intensity statins. Further analysis was performed to inves-

tigate whether the pharmacokinetic characteristics of sta-

tins were able to affect the mortality rate. The comparison

of the survival curves demonstrated a significant reduction

in mortality in the patients who assumed lipophilic statins

compared to patients who did not take statins and also

patients who took hydrophilic statins. Against hydrophilic

statins, which have some hardships in organ penetrating,

lipophilic statins have a broad tissue distribution and reach

throughout the body, providing a protective role against the

virus. Therefore, hydrophilic statins have fewer anti-in-

flammatory effects compared to lipophilic statins.

A recent meta-analysis reported that statin use did not

improve illness’ severity or mortality in COVID-19

infections (Hariyanto and Kurniawan 2020). However, the

statins decreased the risk of neutrophilia but did not

influence the mortality in chronic renal disease patients

with COVID-19 (Yang et al. 2020a, b). Data from a ret-

rospective cohort study in Iran revealed an association, but

not statistically significant, between statin use and a lower

risk of morbidity and mortality (Peymani et al. 2021).

Moreover, statin use reduced the necessity of being sub-

jected to mechanical ventilation, and statin users displayed

a more normal computed tomography (CT) scan result. In a

similar retrospective cohort study in China, statin use

correlated with a lower death rate compared to non-use in

COVID-19 (Zhang et al. 2020a, b, c, d, e). Given that both

statins and ARBs upregulate ACE2 activity and opposed

endothelial dysfunction, a statin/ARB combination therapy

might be considered for patients with severe COVID-19

infection (Fedson et al. 2020). Taken together, statin use

and its capability in improving COVID-19 outcomes are

debatable, and there is a necessity for prospective ran-

domized controlled trials and comprehensive retrospective

studies to more assess the potential pleiotropic effects of

statin treatment in COVID-19.

7.5 SARS-CoV-2 Replication Inhibitors

Due to their critical role in processing and generating 16

non-structural proteins involved in SARS-CoV-2 replica-

tion, the SARS-CoV-2 proteases, including Mpro and

PLpro, are other attractive targets for COVID-19 treatment.

To date, several novels or repurposed drugs have been

recognized that effectively interact with one or both the

viral proteases, thereby inhibiting the processing of the

replicase polyproteins and assembly of the viral transcrip-

tion or replication complex (Neumaier et al. 2020). They

can divide into two groups: (1) peptides that mimic part of

the substrate of the proteases and (2) different small

molecule drugs. In a recent study, Zhang et al.

(2020a, b, c, d, e) developed an a-ketoamide inhibitor

based on the crystal structure of unliganded SARS-CoV-2

Mpro and introduced it as a lead compound to treat

COVID-19. In another recent study, Jin et al. (2020a, b)

assayed more than 10,000 compounds by combining

structure-based virtual and high-throughput screening.

They identified six compounds that inhibit Mpro. Among

these compounds, ebselen also showed a significant

antiviral effect in cell-based assays. Furthermore, it has

been exhibited that ebselen effectively inhibits SARS-

CoV-2 PLpro (Weglarz-Tomczak et al. 2020). Recently,

the antineoplastic agent carmofur has been shown to inhibit

SARS-CoV-2 replication by inhibiting its Mpro (Jin et al.

2020a, b).

The 5-leader-UTR-RNA dependent RNA polymerase

(RdRp) is one of the critical non-structural proteins

involved in viral replication, which may be targeted by

nucleoside analogues, such as remdesivir, molnupiravir,

ribavirin, favipiravir, Galidesivir, paxlovid, and tocilizu-

mab, to inhibit RNA synthesis and SARS-CoV-2 infection

(Han et al. 2021). Remdesivir is an antiviral drug, acting as

a nucleoside analog inhibiting the RNA-dependent RNA

polymerase (RdRp) of coronaviruses (e.g., SARS-CoV-2),

and is the primary antiviral approved by US Food and Drug

Administration (FDA) for COVID-19 treatment in adults

and pediatric patients aged 12 years and older and weigh-

ing at least 40 kg requiring hospitalization (Forchette et al.

2021; Alshrari et al. 2021). It is effective in shortening the

time of recovery in patients who were hospitalized with

COVID-19 and had evidence of lower respiratory tract

infection. A combination therapy using remdesivir and

GC376, an inhibitor of the Mpro, resulted in a synergistic
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antiviral effect against SARS-CoV-2 in Vero cells by

inhibiting the replication of SARS-CoV-2 through different

drug targets (Fu et al. 2020). A recent retrospective com-

parative study in the USA involving 2483 COVID-19

patients revealed that patients who received remdesivir

recovered more rapidly than those who did not receive

remdesivir (Garibaldi et al. 2021). In 2020, the FDA

approved and recommended remdesivir for the treatment of

adult and pediatric hospitalized patients with COVID-19

(aged[ 12 years with a body weight of at least 40 kg)

(Aleissa et al. 2020). Recent studies have also exhibited

that ribavirin, a guanine derivative that was approved by

FDA to treat the hepatitis C virus (HCV), respiratory

syncytial virus, and Ebola virus (EBOV) infection, has

antiviral activity against SARS-CoV-2 (Elfiky 2020; Wang

et al. 2020a, b, c, d, e). Molnupiravir (also known as

EIDD-2801/MK-4482) increases the frequency of viral

RNA mutations and impairs SARS-CoV-2 replication in

animal models and in humans (Kabinger et al. 2021).

Molnupiravir has been primarily used to treat RNA viruses

such as influenza and coronaviruses (Forchette et al. 2021).

Recent studies have shown that molnupiravir reduces the

risk of hospitalization and death in non-hospitalized adults

with mild-to-moderate COVID-19 disease. Molnupiravir is

only administered orally for a short period of about five

days. Although it is well tolerated and safe in short-term

use, it may produce mutations in human DNA in long-term

use (Wen et al. 2022). Recent in vitro and clinical studies

have exhibited the capability of favipiravir to inhibit

SARS-CoV-2 replication (Choy et al. 2020), improve the

symptoms of COVID-19 patients, and reduce the treatment

period (Chen et al. 2020a, b). Galidesivir, which was

developed to treat RNA viral infections, including HCV,

significantly decreased the MERS-CoV and SARS-CoV

loads, and improved survival (Taylor et al. 2016), also

inhibited the replication of SARS-CoV-2 in animal models

(Elfiky 2020). Paxlovid is an oral antiviral drug candidate

for SARS-CoV-2 protease inhibitors developed by Pfizer. It

is based on blocking the activity of SARS- COV-2-3Cl

protease, which is needed for the SARS-COV-2 to repli-

cate. Paxlovid is an oral antiviral drug candidate for SARS-

CoV-2 protease inhibitors developed by Pfizer. It is based

on blocking the activity of SARS-COV-2-3Cl protease,

which is needed for the SARS-COV-2 to replicate. Pax-

lovid is a combination of PF-07321332 and ritonavir.

Ritonavir helps slow down the metabolism or breakdown

of PF-07321332 so that it remains active longer at higher

concentrations in the body. Paxlovid reduces the risk of

hospitalization or death by 89% (Wen et al. 2022). Further

investigations to find compounds inhibiting different stages

of SARS-CoV-2 replication can help to COVID-19

treatment.

7.6 Other Potential Drugs

Many Chinese herbal medicines (CHMs) have demon-

strated antiviral effects through different mechanisms,

including inhibiting S protein-ACE2 interaction, binding to

RdRp and inhibiting viral replication, anti-inflammatory

effects, etc. (Han et al. 2021). Recently, the Lianhuaqing-

wen capsule, a traditional Chinese medicine commonly

used to treat viral diseases such as influenza, was demon-

strated to inhibit the replication of SARS-CoV-2 and its

inflammatory activity in vitro (Runfeng et al. 2020).

Liquiritin is one of the major flavonoids in Glycyrrhiza

uralensis that showed therapeutic effects against COVID-

19 by impeding the SARS-CoV-2 replication in Vero E6

cells (Zhu et al. 2020a, b). Scutellariae, a widely used

antiviral herb, inhibited the replication of SARS-CoV-2 by

interfering with SARS-CoV-2 protease Mpro in Vero cells

(Liu et al. 2021). Although recent computational studies

and some databases have identified some CHM as potential

therapeutic drugs against COVID-19, experimental and

clinical studies still require to validate the antiviral effects

of these predicted herbs against COVID-19 (Han et al.

2021).

Some drugs, including chloroquine (CQ) and hydroxy-

chloroquine (HCQ), exert antiviral effects by inhibiting

viral entry, inhibiting viral replication, and diminishing the

inflammatory response induced by SARS-CoV-2. Although

several clinical studies exhibited that CQ was effective

against SARS-CoV-2 infections (Gao et al. 2020; Huang

et al. 2020a, b), other clinical studies reported that HCQ

had a more therapeutic effect against COVID-19 than CQ

(Yao et al. 2020). A clinical study exhibited a synergistic

effect of HCQ and azithromycin against COVID-19 in a

cohort of French patients (Andreani et al. 2020; Gautret

et al. 2020). Although some experimental and clinical

studies indicated potential therapeutic effects of CQ and

HCQ to treat SARS-CoV-2 infection, others exhibited that

these drugs failed to improve the clinical outcomes of

COVID-19 (Chowdhury et al. 2020; Elavarasi et al. 2020;

Kumar et al. 2021). These may be due to different disease

stages in the clinical trials, different treatment times, and

dosages (Han et al. 2021).

Antibody-based therapy is another strategy to treat viral

diseases, including COVID-19. The production of specific

antibodies is an adaptive immune response in COVID-19

patients. Tocilizumab (TCZ) is a monoclonal antibody

(mAb) that inhibits the interleukin-6 (IL-6) receptor; FDA

approves it for treating cytokine release syndrome and for

emergency use to treat patients hospitalized with

COVID19. One of the critical cytokines described in the

cytokine storm induced by COVID-19 is IL-6, which has a

vital role in systemic inflammation (Petrelli et al. 2021). In
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addition, the WHO has recommended the use of tocilizu-

mab and sarilumab plus corticosteroids to treat severe

COVID-19 (Hwang et al. 2022). The antibodies from

patients with COVID-19 can bind to the SARS-CoV-2-S

protein or -RBD and inhibit their interactions with ACE2

receptors (Han et al. 2021). Some of these antibodies, such

as CB6LALA, ADG20, CT-P59, AZD8895, etc., are in

phase 2 or 3 clinical trials in order to treat COVID-19 (Shi

et al. 2020a, b, c; Valdez-Cruz et al. 2021). Recently, a

clinical trial examined the efficacy of neutralizing antibody

LY-CoV555 in COVID-19 patients. The results indicated

that patients who received LY-CoV555 had slightly lower

symptom severity and viral load than those who had

received the placebo (Chen et al. 2021). Canakinumab, a

human monoclonal antibody targeting IL-1b, caused rapid,

long-lasting improvement in oxygenation levels in 60.3%

of the patients with mild or severe non-intensive care

COVID-19, which is better than that of the patients who

were treated with standard HCQ plus lopinavir/ritonavir, a

standard therapy (Katia et al. 2021).

8 Conclusion

SARS-CoV-2 has a high affinity to ACE2 as the primary

for cellular entry. A correlation exists between SARS-

CoV-2 tropism and the organs expressing ACE2, including

the lung, kidneys, heart, etc. Besides, evidence suggests the

correlation of the ACE2 expression with gender and

genetic properties results in more susceptibility to COVID-

19 in men than women, also in the Asian population than

the Caucasian and African-American people. One of the

most common causes of severe disease and mortality

observed in COVID-19 patients is associated with SARS-

CoV-2-induced ECD, also pre-existing endothelial dys-

function due to aging, hypertension, cardiovascular dis-

eases, renal dysfunction, diabetes, and obesity. Alterations

in ACE2 expression/function that happen in these comor-

bidities may be correlated with COVID-19 severity. Iden-

tifying and developing therapeutic strategies against

COVID-19 are necessary to restrain this global pandemic.

In this context, several potential therapeutic strategies have

been suggested, including those that target the primary

viral receptor or its ectodomain shedding, viral uptake,

viral replication, etc. These include using RAS inhibitors,

ACE2 activators, recombinant ACE2, ADAM-17 enhan-

cers/activators, TMPRSS2 inhibitors, statins, calmodulin

antagonists, SARS-CoV-2 replication inhibitors, CHMs,

anti-inflammatory drugs, and neutralizing antibodies. Fur-

ther investigations are needed to further develop these

strategies and even identify new therapeutic strategies and

drugs.
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