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Abstract
In this paper, we introduce a new stationary first-order integer-valued autoregressive process (INAR) with zero-and-one-

inflated geometric innovations that is useful for modeling medical practical data. Basic probabilistic and statistical

properties of the model are discussed. Conditional least squares and maximum likelihood estimators are proposed to

estimate the model parameters. The performance of the estimation methods is assessed by some Monte Carlo simulation

experiments. The zero-and-one-inflated INAR process is subsequently applied to analyze two medical series that include

the number of new COVID-19-infected series from Barbados and Poliomyelitis data. The proposed model is compared

with other popular competing zero-inflated and zero-and-one-inflated INAR models on the basis of some goodness-of-fit

statistics and selection criteria, where it shows to provide better fitting and hence can be considered as another important

commendable model in the class of INAR models.

Keywords INAR process � Geometric distribution � Zero-and-one-inflated geometric distribution � Binomial thinning

operator � Estimation � Runs

1 Introduction

Time series of counts are emerging in almost every domain

of applications now, be in economics, medicine, or life

sciences. Some examples include the monthly cases of

crimes and offenses as studied in Bakouch and Ristić

(2010), Ristić et al. (2009, 2012), Bourguignon and Vas-

concellos (2015), Mamode Khan et al. (2020a), the daily

number of newly infected and deaths due to SARs-Cov 2

patients (Mamode Khan et al. 2020b), the weekly number

of syphilis cases, (Bourguignon et al. 2018), the number of

daily fatal road traffic accidents (Pedeli and Karlis 2011),

the tick by tick intra-day transactions of stocks (Pedeli and

Karlis 2013; Sunecher et al. 2018) and amongst others. In

such applications, the counting series are usually charac-

terized by frequent low figures that include mainly zeros

and ones and this happens mostly when the unit of the

collection is at a very micro level. Likewise, the daily

SARs-Cov 2 death and newly infected series in small

island developing states like Barbados, Guinea-Bissau, Sao

Tome consist of mainly 0’s and 1’s. The same remark can

be made to the sex offenses, arsenic, domestic violence

data that are available at http://www.forecastingprinciples.

com. The interested reader may consult more examples in

Li et al. (2015) and the references therein. Such excess of

zeros or ones leads to overdispersion in the series. This

paper, therefore, proposes an integer-valued time series

model of auto-regressive nature of order 1 to model such

data series but with a zero-and-one-inflated type innovation

structure.
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McKenzie (1985) and Al-Osh and Alzadi (1987), inde-

pendently, introduced the integer-valued autoregressive

(INAR) process fXtgt2N0
with one lag using a binomial

thinning operator as follows

Xt ¼ a � Xt�1 þ �t; t 2 N ð1Þ

where 0� a\1, f�tgt2N is a sequence of independent and

identically distributed integer-valued random variables,

called innovations, with �t independent of Xt�k for all k� 1,

Eð�tÞ ¼ l� and Varð�tÞ ¼ r2� . The binomial thinning oper-

ator ‘‘�’’ is defined by Steutel and van Harn (1979) as

a � Xt�1 ¼
PXt�1

j¼1 Yj, where the counting series fYjgj� 1 is a

sequence of independent and identically distributed Ber-

noulli random variables with

PðYj ¼ 1Þ ¼ 1� PðYj ¼ 0Þ ¼ a. From the results of Al-

Osh and Alzadi (1987), we have that a 2 ½0; 1Þ and a ¼ 1

are the conditions of stationarity and non-stationarity of the

process fXtgt2N0
, respectively. Also, a ¼ 0 (a[ 0) implies

the independence (dependence) of the observations of

fXtgt2N0
. The following representation for the marginal

distribution of the INAR(1) model, provided by Al-Osh

and Alzadi (1987), is expressed in terms of the innovation

sequence �t

Xt ¼
X1

i¼0

ai � �t�i: ð2Þ

Modeling of INAR(1) time series based on (1) was first

introduced using the Poisson marginal distribution by Al-

Osh and Alzadi (1987) and McKenzie (1988), denoted by

PINAR(1). It is a simple model and is appropriate for

modeling equidispersed time series data. In many practical

scenarios, as discussed above, data are overdispersed. To

cater for this phenomenon in counting series, Alzadi and

Al-Osh (1988) considered INAR(1) processes with geo-

metric marginal distribution for time series of overdis-

persed counts. Other useful overdispersed INAR(1) models

have been proposed, such as the negative binomial

INAR(1) process (McKenzie 1986), generalized Poisson

INAR(1) process (Alzadi and Al-Osh 1993). Jazi et al.

(2012a) and Schweer and Weiß (2014) introduced an

overdispersed INAR(1) model with geometric and com-

pound Poisson innovations, respectively. Basically, there is

an ongoing vast literature on the handling of the overdis-

persion in the simple INAR process (Weiß 2008; Awale

et al. 2021; Huang and Zhu 2021; Weiß 2020). However,

we note that the construction of the INAR process, in

addition to the self-decomposability properties, becomes

simpler with assuming the distribution of the innovation

series, and without compromising on the marginal distri-

bution of the counting series (See Bourguignon et al. 2019;

Livio et al. 2018). In fact, Livio et al. (2018) confirms that

such a later INAR process with the pre-specified innovation

yields lower AICs than other competing INAR(1)s in

Mohammadpour et al. (2018).

On the other hand, where the data set contains a large

number of zeros, Jazi et al. (2012b) introduced an INAR(1)

process with zero-inflated Poisson innovations and showed

that the marginal distribution of the process is also zero-

inflated. However, in the construction of the INAR(1)

process, it is not always direct to derive the distribution of

the counting series similar to the distribution of the zero-

inflated innovation series. In this sense, Barreto-Souza

(2015), Bakouch and Ristić (2010) and Bourguignon et al.

(2018) studied novel INAR(1) models with zero-modified

geometric and zero-truncated Poisson marginal distribu-

tion, respectively, similar to the construction process in

Livio et al. (2018). Furthermore, Li et al. (2015) developed

the mixed INAR(1) process with zero-inflated generalized

power series innovations, while Bakouch et al. (2018)

investigated the zero-inflated geometric INAR(1) process

with random coefficient until recently, Sharafi et al. (2020)

proposed the INAR(1) model with zero-modified Poisson–

Lindley innovations.

However, when a data set is subject to zero inflation

along with one-inflation, the previous models are not very

useful. In this research, we restrict our attention to mod-

eling such data. Qi et al. (2019) introduced a stationary

INAR(1) process with zero-and-one-inflated Poisson

innovations. Also, Mohammadi et al. (2021) introduced the

ZOIPLINAR(1) model which is the stationary INAR(1)

model with zero-and-one-inflated Poisson–Lindley dis-

tributed innovations. The geometric distribution is one of

the most important distributions used to analyze count data.

Many authors such as McKenzie (1986), Ristić et al.

(2009, 2012), Jazi et al. (2012a, b) used geometric distri-

bution to analyze count time series data. This fact moti-

vated us to introduce the flexible INAR(1) model with

zero-and-one-inflated geometric innovations to model

count data, especially in the analyzing of the COVID-19

real data.

It should be mentioned that in the COVID-19 data time

series analysis based on the PACF plot, in most applica-

tions, it seems that order 1 is not suitable and the higher-

order time series are needed. Recently, Foroughi et al.

(2021) introduced a new portmanteau test to examine the

null hypothesis H0 : Xt �GINARð1Þ versus the alternative

H1 : Xt �GINARðpÞ for p[ 1 and a wide group of INAR

processes, called generalized INAR. They developed some

portmanteau test statistics to check the adequacy of the

fitted model. In this paper, we use the above test statistics

to check the adequacy of our introduced model which is

applied to the practical data example.

The paper is organized as follows. In Sect. 2, we

introduce and construct a flexible INAR(1) model and
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obtain some of its statistical and conditional properties.

Section 3 is devoted to parameter estimation of the model

which is included two estimation methods, maximum

likelihood, and conditional least square estimators. In Sect.

4, we present some simulation experiments and real-life

data applications to assess the performance of the proposed

zero-and-one-inflated INAR model.

2 Model Construction and Properties

In this section, we introduce a flexible INAR(1) process

with zero-and-one-inflated geometric-distributed innova-

tions denoted by INARZOIG(1) and present some of its

properties.

Based on the Eq. (1), we define the INARZOIG(1) as

follow:

Xt ¼ a � Xt�1 þ �t; t 2 N ð3Þ

where 0\a\1 and the innovation process f�tg is said to

have zero-and-one-inflated geometric distribution, denoted

by ZOIGð/0;/1; hÞ, with the following probability mass

function (pmf),

Pð�t ¼ kÞ ¼

/0 þ ð1� /0 � /1Þ
1

1þ h
; if k ¼ 0

/1 þ ð1� /0 � /1Þ
h

ð1þ hÞ2
; if k ¼ 1

ð1� /0 � /1Þ
1

1þ h
ð h
1þ h

Þk; if k ¼ 2; 3; . . .;

8
>>>>>>><

>>>>>>>:

ð4Þ

where 0�/0;/1\1, h[ 0. The parameter h is the mean

of the traditional geometric distribution and the parameters

/0 and /1 denote the unknown proportions for incorpo-

rating extra zeros and ones than those allowed by the

considered a traditional geometric distribution, respec-

tively. Also, �t is independent of Xs for all t[ s and it is

independent of the counting series contained in the bino-

mial thinning operator ‘‘�.’’
Based on Du and Li (1991) and Dion et al. (1995), it can

be easily shown that this process is stationary if and only if

0\a\1. This process is reduced into INARZIG(1) when

/1 ¼ 0 and INAROIG(1) when /0 ¼ 0, respectively.

In the following proposition, some moments and con-

ditional moments of the INARZOIG(1) process are sum-

marized for the coming use.

Proposition 1 Let fXtg be the process defined by (3). Then

a) EðXtjXt�1Þ ¼ aXt�1 þ l�
b) l ¼ EðXtÞ ¼ l�

1�a,

c) VarðXtjXt�1Þ ¼ að1� aÞXt�1 þ r2� ,

d) r2 ¼ VarðXtÞ ¼ al�þr2�
1�a2 ,

e) cðkÞ ¼ CovðXt;Xt�kÞ ¼ akcð0Þ,
qðXt;Xt�kÞ ¼ CorrðXt;Xt�kÞ ¼ ak,

f) wXt
ðsÞ ¼

Q1
i¼0 /0 þ /1ð1� ai þ aisÞ þ /2

1þhai�hais

h i
,

where /2 ¼ 1� /0 � /1, l� ¼ Eð�tÞ ¼ /1 þ /2h and

r2� ¼ Varð�tÞ ¼ l� � l2� þ 2/2h
2.

The proof of Proposition 1 is similar to Theorem 1 in Qi

et al. (2019), we omit the details here and refer the reader

to Qi et al. (2019).

Using conditional mean is one of the most common

techniques for forecasting time series processes. In the next

proposition, conditional mean and variance of INAR-

ZOIG(1) process is obtained.

Proposition 2 For INARZOIG(1) process, the (h ? 1)-

step ahead forecast which is conditional mean, and the

conditional variance are

X̂tþh ¼ EðXtþhjXt�1Þ ¼ ahþ1Xt�1 þ
ð1� ahþ1Þl�

ð1� aÞ ; ð5Þ

and

VarðXtþhjXt�1Þ ¼ ahþ1ð1� ahþ1ÞXt�1 þ
r2� ð1� a2ðhþ1ÞÞ

1� a2

þ l�ð1� ahÞða� ahþ2Þ
1� a2

;

ð6Þ

respectively.

Proof The proof of Proposition 2 is given in Appendix.h

It is clear that EðXtþhjXt�1Þ ! l�
ð1�aÞ as h ! 1, which is

the unconditional mean of the process. Also, the (h ? 1)-

step ahead conditional variance converges to
al�þr2�
1�a2 ¼ r2 as

h ! 1.

According to Proposition 1, the Fisher index of disper-

sion for the model can be calculated as

FIX ¼ r2

l
¼ aþ FI�

1þ a
; ð7Þ

where FI� ¼ 1� l� þ 2
h2/2

l�
, then the dispersion of the

INARZOIG(1) process is similar to the dispersion of its

innovation process, i.e., it is overdispersed (underdis-

persed) if the innovations f�tg is overdispersed

(underdispersed).

Remark 1 After some calculation, it is easy to show that �t

is overdispersed if h[ /1ffiffiffiffiffiffi
2/2

p
�/2

, it is underdispersed if

0\h\ /1ffiffiffiffiffiffi
2/2

p
�/2

and it is equidispersed if h ¼ /1ffiffiffiffiffiffi
2/2

p
�/2

.

Iran J Sci Technol Trans Sci (2022) 46:891–906 893

123



Since the model (3) forms a stationary discrete-time

Markov chain, the transition probabilities obtained as (see,

e.g., Weiß 2008):

Pij ¼ PðXt ¼ jjXt�1 ¼ iÞ ¼
Xminði;jÞ

k¼0

i

k

� �

akð1� aÞi�kPð�t ¼ j� kÞ

ð8Þ

where Pð�t ¼ jÞ is the pmf of f�tg defined by (4) and

i, j = 0, 1, ....

Hence, the marginal probability function of Xt of

INARZOIG(1) is obtained as:

Pj ¼ PðXt ¼ jÞ ¼
X1

i¼0

PðXt ¼ jjXt�1 ¼ iÞPðXt�1 ¼ iÞ

¼
X1

i¼0

PijPi ¼
X1

i¼0

Xminði;jÞ

k¼0

i

k

� �

akð1� aÞi�kPð�t ¼ j� kÞPi; j ¼ 0; 1; . . .:

ð9Þ

Also, the joint probability of the processes using the first-

order dependence can be calculated as:

f ði1; i2; . . .; inÞ ¼ PðX1 ¼ i1;X2 ¼ i2; . . .;Xn ¼ inÞ

¼ Pi1

Yn�1

s¼1

Xminðis;isþ1Þ

k¼0

is
k

� �

akð1� aÞis�kPð�t ¼ isþ1 � kÞ
( )

:

ð10Þ

2.1 Distributions of Lengths of Zeros and Ones

Mood (1940) presented a definition of the number of the

‘‘succession’’ of similar events preceded and succeeded by

different events, and called it ‘‘the Run.’’ In this section, we

find the expected length of the runs of zeros and the lengths

of the runs of ones for the INARZOIG(1) process.

Theorem 1 The expected length of the runs of zeros for the

INARZOIG(1) process is

g0 ¼
1þ h

ð1þ hÞ/1 þ h/2

ð11Þ

and the expected length of the runs of ones for the INAR-

ZOIG(1) process is

g1 ¼
ð1þ hÞ2

ð1þ hÞ2½1� a/0 � ð1� aÞ/1� � /2ðhþ aÞ
: ð12Þ

Proof The zero-to-zero transition probability for the

INARZOIG(1) process is obtained as:

P00 ¼ PðXt ¼ 0jXt�1 ¼ 0Þ ¼ Pð�t ¼ 0Þ ¼ /0 þ
/2

1þ h
:

ð13Þ

Therefore, the transition probabilities from zero to nonzero

for the INARZOIG(1) process can be obtained as

p	 ¼ PðXt 6¼ 0jXt�1 ¼ 0Þ ¼ 1� /0 þ
/2

1þ h

� �

¼ /1 þ
h/2

1þ h
: ð14Þ

Since the run length of zeros is defined as the number of

zeros between two nonzero values, it can be shown that it

follows from a geometric distribution with the parameter

p	, and hence, the expected run length of zeros in the

process is 1
p	. The expected run length of ones can be

obtained similarly. h

The expected length of the runs of zeros is independent

of a. If /0 ¼ 0 or /1 ¼ 0, we obtain the expected length of

the runs for the INAROIG(1) or INARZIG(1) process,

respectively.

Theorem 2 The proportion of zeros in the INARZOIG(1)

process is given by

PðXt ¼ 0Þ ¼
Y1

i¼0

/0 þ /1ð1� aiÞ þ /2

1þ hai

� �

; ð15Þ

and the proportion of ones in the INARZOIG(1) process is

PðXt ¼ 1Þ ¼
X1

j¼0

/1a
j þ /2ha

j

ð1þ ha jÞ2

 !"

Y

i6¼j

/0 þ /1ð1� aiÞ þ /2

1þ hai

� �#

:

ð16Þ

Proof Using part (f) of Proposition 1 and based on the

following relationship between the probability generating

function (pgf) and pmf,

PðXt ¼ kÞ ¼ 1

k!
wðkÞ
Xt
ð0Þ

where wðkÞ
Xt
ð:Þ denotes the kth derivative of the pgf wXt

ð:Þ,
the proof is completed by calculating the following

statements.

PðXt ¼ 0Þ ¼ wð0Þ
Xt
ð0Þ ¼ wXt

ð0Þ;

and

PðXt ¼ 1Þ ¼ wð1Þ
Xt
ð0Þ:

h
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3 Parameter Estimation

Let X ¼ ðX1; . . .;XnÞ be observations from the model (3)

and k 2 K ¼ fða; h;/0;/1Þ
0
; 0\a\1; 0�/0\1; 0�

/1\1; h[ 0g denote the parameter vector. In the study of

integer-valued time series, different estimation methods are

applied. In this section, we are going to estimate the

parameters of the INARZOIG(1) model using conditional

maximum likelihood (CML) and conditional least squares

(CLS) estimation methods.

3.1 Conditional Maximum Likelihood Estimation

For simplicity of notations, we can write the likelihood

function through the joint probability function (10) as

PðX1 ¼ x1Þ
Yn�1

i¼1

PkðXiþ1 ¼ xiþ1jXi ¼ xiÞ

¼ PX1

Yn�1

i¼1

XminðXi;Xiþ1Þ

k¼0

Xi

k

� �

akð1� aÞXi�kPð�t ¼ Xiþ1 � kÞ
( )

;

ð17Þ

where PX1
is the pmf of X1 and PkðXiþ1jXiÞ is the condi-

tional pmf. To overcome the complexity of the marginal

distribution, a simple approach is to find the conditional

pmf conditioned on the first observation X1, essentially

ignoring the dependency on the initial value and obtain the

conditional maximum likelihood (CML) estimate given X1

as an estimate of k by maximizing the conditional log-

likelihood.

lnðkjX1Þ ¼
Xn

i¼1

logPkðXiþ1jXiÞ; ð18Þ

over k. Since there is no closed form for the CML esti-

mates, these estimates are achieved using numerical

methods. The asymptotic properties of the CML estimators

follow from Freeland and McCabe (2004).

3.2 Conditional Least Squares Estimation

In this subsection, we describe the estimation of the

unknown parameters of the INARZOIG(1) process using

the two-step CLS estimation method proposed by Karlsen

and Tjøstheim (1988) which is conducted by the following

two steps.

Step 1

Let b1 ¼ ða; l�Þ
0
, then the conditional least square

(CLS) estimators of the parameters a and l� are obtained

by minimizing the function

Qnðb1Þ ¼
Xn

t¼2

½Xt � g1ðb1;Xt�1Þ�2; ð19Þ

where g1ðb1;Xt�1Þ ¼ EðXtjXt�1Þ ¼ aXt�1 þ l�, and are

given by

âcls ¼
ðn� 1Þ

Pn
t¼2 XtXt�1 �

Pn
t¼2 Xt

Pn
t¼2 Xt�1

ðn� 1Þ
Pn

t¼2 X
2
t�1 � ð

Pn
t¼2 Xt�1Þ2

; ð20Þ

and

l̂�;cls ¼
Pn

t¼2ðXt � âclsXt�1Þ
n� 1

: ð21Þ

Step 2

Let b2 ¼ ð/0;/1Þ
0

and Yt ¼ Xt � EðXtjXt�1Þ,
g2ðb2;Xt�1Þ ¼ VarðXtjXt�1Þ. Then

EðY2
t jXt�1Þ ¼Eð Xt � EðXtjXt�1Þ½ �2jXt�1Þ

¼VarðXtjXt�1Þ ¼ g2ðb2;Xt�1Þ

where VarðXtjXt�1Þ ¼ âclsð1� âclsÞXt�1 þ l̂�;cls � l̂2�;clsþ
2ðl̂�;cls�/1Þ2
ð1�/0�/1Þ : Therefore, the CLS criterion function for b2 can

be written as

Q	
nðb2Þ ¼

Xn

t¼2

Y2
t � g2ðb2;Xt�1Þ

	 
2 ð22Þ

The CLS estimator b̂2;cls ¼ ð/̂0;cls; /̂1;clsÞ
0

of b2 are

obtained by numerical solution of (22).

Step 3

Based on the results from Steps 1 and 2, the estimator

ĥcls of h can be obtained by considering the following

equation:

l̂�;cls ¼ /̂1;cls þ ð1� /̂0;cls � /̂1;clsÞh;

Therefore, the resulting CLS estimators is

ðâcls; ĥcls; /̂0;cls; /̂1;clsÞ
0
. To study the asymptotic behavior

of the estimators, we make the following assumptions,

(C1) Xt is a stationary and ergodic process.

(C2) EðX4
t Þ\1:

Proposition 3 Under the assumptions (C1) and (C2), the

CLS estimator b̂1;cls ¼ ðâcls; l̂�;clsÞ
0
is strongly consistent

and asymptotically normal,

ffiffiffi
n

p
b̂1;cls � b1;0

� �
�!L Nð0;V�1

1 W1V
�1
1 Þ

where b1;0 ¼ ða0; l�;0Þ
0
denote the true value of b1,

V1 ¼ E½ o
ob1

g1ðb1;0;X1Þ o

ob
0
1

g1ðb1;0;X1Þ�,

q11ðb1;0Þ ¼ X2 � g1ðb1;0;X1Þ
	 
2

, and W1 ¼

E q11ðb1;0Þ o
ob1

g1ðb1;0;X1Þ o

ob
0
1

g1ðb1;0;X1Þ
� �

.
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Proposition 4 Under the assumptions (C1) and (C2), the

CLS estimator b̂2;cls ¼ ð/̂0;cls; /̂1;clsÞ
0
is strongly consistent

and asymptotically normal,

ffiffiffi
n

p
b̂2;cls � b2;0

� �
�!L Nð0;V�1

2 W2V
�1
2 Þ

where b2;0 ¼ ð/0;0;/1;0Þ
0
denotes the true value of b2,

V2 ¼ E½ o
ob2

g2ðb2;0;X1Þ o

ob
0
2

g2ðb2;0;X1Þ�,

q21ðb2;0Þ ¼ ½Y2
2 � g2ðb2;0;X1Þ�2, and W2 ¼

E½q21ðb2;0Þ o
ob2

g1ðb2;0;X1Þ o

ob
0
2

g2ðb2;0;X1Þ�:

Based on Propositions 3 and 4 and Theorem 3.2 in

Nicholls and Quinn (1982), we have the following

proposition.

Proposition 5 Under the assumptions (C1) and (C2), the

CLS estimator b̂cls ¼ ðb̂1;cls; b̂2;clsÞ
0
is strongly consistent

and asymptotically normal,

ffiffiffi
n

p
b̂cls � b0

� �
�!L Nð0;XÞ;

where

X ¼
V�1
1 W1V

�1
1 V�1

1 MV�1
2

V�1
2 MV�1

1 V�1
2 W2V

�1
2

" #

;

M ¼ Eð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q11ðb1;0Þq21ðb2;0Þ

q
o
ob1

g1ðb1;0;X1Þ o

ob
0
2

g2ðb2;0;X1ÞÞ;
and b0 ¼ ðb1;0; b2;0Þ

0
denotes the true value of b:

Based on the above proposition, we state the strong

consistency and asymptotic normality of k̂cls in the fol-

lowing proposition.

Proposition 6 Under the assumptions (C1) and (C2), the

CLS estimator k̂cls is strongly consistent and asymptotically

normal,

ffiffiffi
n

p
k̂cls � k0

� �
�!L Nð0;DXD0 Þ

where k0 ¼ ða0; h0;/0;0;/1;0Þ
0
denotes the true values of

k ¼ ða; h;/0;/1Þ
0
and

D ¼

1 0 0 0

0
1

/2

1

/2
2

/0 þ /1 þ h/2 � 1

/2
2

0 0 1 0

0 0 0 1

2

6
6
6
6
6
4

3

7
7
7
7
7
5
;

and /2 ¼ 1� /0 � /1.

The brief proofs of Propositions 3–6 are given in

Appendix.

4 Numerical Illustration

This part of the paper includes two subsections. In the first

part, the performance of the estimation methods, which are

presented in the previous section, is evaluated through a

simulation study. Moreover, the empirical distribution of

the simulated sample path in points zero and one are

compared with the results of the Eqs. (15) and (16). To

ensure the practical performance of the proposed process,

the second part is focused on two real-life application

series: the number of daily infected cases due to COVID-

19 in Barbados, available in https://ourworldindata.org/

covid-cases and the Poliomyelitis data from Zeger (1988)

and Maiti et al. (2018).

4.1 Simulation

To conduct the simulation study, we need to generate a

random sample from the INARZOIG(1) process. Based on

the second stochastic representation in Zhang et al. (2016),

we first generate a random sample �1; . . .; �n from

ZOIGð/0;/1;
h

1þhÞ and then simulate fXtgnt¼1 from INAR-

ZOIG(1) model. The simulation comprised the following

steps:

Step 1 Generate Z1; . . .; Zn form Bernoullið1� /Þ,
Step 2. From Bernoulli(p) generate g1; . . .; gn,
Step 3. From Geð h

1þhÞ generate T1; . . .; Tn,

Step 4. Use �i ¼ ð1� ZiÞgi þ ZiTi for i = 1, ..., n,

generate �1; . . .; �n,
where /0 ¼ /ð1� pÞ and /1 ¼ /p.
According to the above algorithm, we generate a ran-

dom sample (with n = 1000) from the INARZOIG(1)

process with /0 ¼ 0:4, /1 ¼ 0:2, h ¼ 1; 5 and a ¼ 0:1; 0:5.

The sample path and barplot of the marginal distribution of

this simulated count time series is presented in Fig. 1.

As can be seen from Fig. 1, for all values of a and larger

values of h, the sample path tends to have larger values.

But for all values of a and smaller values of h, the process
has a strong tendency to return to zero or one values with

less mean and variance which is clear from parts (b) and

(d) of Proposition 1.

In addition, Fig. 1 shows that the number of zeros and

ones increases by decreasing the values of h.
To compare the performance of the CML and the CLS

estimators, we simulate the data for n = 50, 100, 200, 500,

1000, a ¼ 0:2, /0 ¼ 0:1; 0:4, /1 ¼ 0:1 and h ¼ 1; 3 with

10,000 replications. Mean and mean squared error (MSE)

of the estimates are computed to evaluate the estimates.

The function ‘‘nlminb’’ in ‘‘R’’ is used to obtaining these

estimates. The results of the simulation are given in

Tables 1 and 2. These tables show that the CML estimate is
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Fig. 1 Barplots of limiting

marginal distribution and

sample paths of the simulated

INARZOIG(1) process for

/0 ¼ 0:4, /1 ¼ 0:2, h ¼ 1; 5
and a ¼ 0:1; 0:5
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performed better than CLS estimate because of smaller

MSE (except for a few cases).

In Table 3, we compare the empirical distribution of the

simulated sample path with Eqs. (15) and (16) and it can be

seen that for different values of n and other parameters of

the model the estimated values of the proportion of zeros

and ones are near to the theoretical values of them.

4.2 Real Data

In this subsection, using two real-life data sets, we show

the applicability of the INARZOIG(1). In the first example,

we use the data of new infected cases in Barbados from

March 17, 2020, until January 02, 2021, and in the second,

we considered the Poliomyelitis data which are the

monthly cases in the USA from 1970 to 1983. To compare

INARZOIG(1) model with various INAR(1) models such

as OMGINAR(1) (one modified geometric INAR(1)

model), PINAR(1) (INAR(1) process with Poisson-dis-

tributed innovations), ZIPINAR(1) (INAR(1) process with

zero-inflated Poisson-distributed innovations),

OIPINAR(1) (INAR(1) process with one-inflated Poisson-

distributed innovations), ZOIPINAR(1) (INAR(1) process

with zero–one-inflated Poisson-distributed innovations),

ZOIPLINAR(1) (INAR(1) process with zero–one-inflated

Poisson–Lindley distributed innovations, INARG(1)

(INAR(1) process with geometric-distributed innovations),

INARZIG(1) (INAR(1) process with zero-inflated geo-

metric-distributed innovations) and INAROIG(1)

(INAR(1) process with one-inflated geometric-distributed

innovations) for these data sets. We use the AIC (Akaike

information criterion), loglik (log-likelihood function),

AICc (corrected version of the AIC), BIC (Bayesian

information criterion), PMAE(h) (predicted mean absolute

error), and the PTP(h) (percentage of true prediction )

criteria where the last two criteria are the h-step ahead

forecasting accuracy measures.

To calculate the last two measures, we divide the data

into two parts. The first part is used to fit the considered

models, and the second part which is the last 20 observa-

tions is used to compute the X̂tþh and then the

PMAE(h) and PTP(h) are computed for h = 1.

Table 1 Mean and MSE for

CML and CLS estimators for

h ¼ 1

n Method a /0 /1 h

Mean MSE Mean MSE Mean MSE Mean MSE

a ¼ 0:2, /0 ¼ 0:1, /1 ¼ 0:1

50 CML 0.1914 0.0121 0.1287 0.0146 0.1244 0.0111 1.0248 0.0384

CLS 0.1994 0.0147 0.0994 0.0033 0.1010 0.0033 1.0062 0.0928

100 CML 0.1965 0.0069 0.1134 0.0083 0.1096 0.0059 1.0104 0.0155

CLS 0.1916 0.0094 0.0992 0.0032 0.0996 0.0033 1.1016 0.0518

200 CML 0.1977 0.0035 0.1051 0.0049 0.1025 0.0033 1.0039 0.0076

CLS 0.1915 0.0054 0.0998 0.0032 0.1007 0.0033 1.0144 0.0286

500 CML 0.1992 0.0014 0.1007 0.0022 0.1008 0.0013 1.0004 0.0026

CLS 0.1955 0.0022 0.0997 0.0033 0.1001 0.0033 1.0101 0.0151

1000 CML 0.1993 0.0006 0.0995 0.0011 0.1002 0.0006 1.0001 0.0012

CLS 0.1978 0.0011 0.0999 0.0033 0.1000 0.0032 1.0088 0.0104

a ¼ 0:2, /0 ¼ 0:4, /1 ¼ 0:1

50 CML 0.1853 0.0139 0.4024 0.0198 0.1115 0.0080 1.0062 0.0201

CLS 0.1981 0.0152 0.2507 0.0428 0.0997 0.0033 0.8215 0.1700

100 CML 0.1918 0.0071 0.3998 0.0109 0.1061 0.0046 0.9999 0.0094

CLS 0.1902 0.0100 0.2499 0.0437 0.1003 0.0033 0.8245 0.1242

200 CML 0.1967 0.0036 0.3985 0.0060 0.1027 0.0025 0.9984 0.0056

CLS 0.1924 0.0059 0.2488 0.0437 0.1006 0.0033 0.8169 0.0977

500 CML 0.1978 0.0014 0.3983 0.0023 0.1005 0.0009 0.9989 0.0024

CLS 0.1960 0.0025 0.2507 0.0431 0.0985 0.0033 0.8145 0.0826

1000 CML 0.1997 0.0006 0.3998 0.0011 0.1003 0.0004 0.9995 0.0011

CLS 0.1986 0.0012 0.2506 0.0431 0.0992 0.0032 0.8123 0.0782
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4.2.1 COVID-19 Data in Barbados

In this subsection, using a real data set, we show the

applicability of the INARZOIG(1). We use the data of new

infected cases in Barbados from the 17th of March 2020

until the 2nd of January 2021. This data set has 292

observations for which 148 (51%) of observations are zero

and 64 (22%) of observations are one, and the other 80

(27%) of observations had infected cases more than one.

The mean and variance of observations are 1.35 and 5.60,

respectively, and hence, the Fisher index of them is given

as 4.15 and it shows that the data are overdispersed. The

barplot, series plot, ACF and PACF are plotted in Figs. 2

and 3, respectively. It is noted that the PACF yields

Table 2 Mean and MSE for

CML and CLS estimators for

h ¼ 3

n Method a /0 /1 h

Mean MSE Mean MSE Mean MSE Mean MSE

a ¼ 0:2, /0 ¼ 0:1, /1 ¼ 0:1

50 CML 0.1912 0.0124 0.1292 0.0144 0.1217 0.0111 1.0259 0.0393

CLS 0.1943 0.0136 0.1005 0.0033 0.0992 0.0033 3.0492 0.6482

100 CML 0.1944 0.0067 0.1125 0.0081 0.1102 0.0059 1.0100 0.0161

CLS 0.1918 0.0088 0.0993 0.0033 0.1005 0.0033 3.0630 0.3971

200 CML 0.1993 0.0016 0.1014 0.0037 0.1010 0.0028 3.0014 0.0020

CLS 0.1925 0.0049 0.0996 0.0033 0.1004 0.0033 3.0539 0.2405

500 CML 0.1995 0.0006 0.0999 0.0015 0.1006 0.0012 2.9992 0.0004

CLS 0.1961 0.0021 0.1004 0.0033 0.0996 0.0033 3.0403 0.1432

1000 CML 0.1996 0.0003 0.1002 0.0007 0.1002 0.0005 2.9996 0.0001

CLS 0.1982 0.0010 0.1003 0.0033 0.0993 0.0033 3.0319 0.1055

a ¼ 0:2, /0 ¼ 0:4, /1 ¼ 0:1

50 CML 0.1973 0.0064 0.3951 0.0139 0.1089 0.0066 2.9966 0.0135

CLS 0.1912 0.0146 0.2505 0.0431 0.0991 0.0033 2.4848 1.3653

100 CML 0.1987 0.0031 0.3978 0.0067 0.1043 0.0036 2.9991 0.0022

CLS 0.1874 0.0091 0.2521 0.0427 0.1002 0.0033 2.4954 0.9963

200 CML 0.1991 0.0014 0.3992 0.0033 0.1014 0.0019 2.9999 0.0004

CLS 0.1919 0.0051 0.2513 0.0042 0.0993 0.0033 2.4793 0.8224

500 CML 0.2001 0.0005 0.4002 0.0013 0.1009 0.0007 2.9998 0.0001

CLS 0.1965 0.0021 0.2473 0.0443 0.0994 0.0033 2.4504 0.7604

1000 CML 0.2002 0.0002 0.3997 0.0006 0.1004 0.0003 3.0001 0.00001

CLS 0.1985 0.0011 0.2479 0.0440 0.1003 0.0033 2.4443 0.7251

Table 3 Estimated values of the

proportion of zeros and ones in

the simulated data from

INARZOIG(1) processes for

different values of n

n P̂0 P̂1 n P̂0 P̂1

a ¼ 0:2, /0 ¼ 0:1, /1 ¼ 0:1, h ¼ 1

PðXt ¼ 0Þ ¼ 0:4, PðXt ¼ 1Þ ¼ 0:31

a ¼ 0:2, /0 ¼ 0:1, /1 ¼ 0:1, h ¼ 3

PðXt ¼ 0Þ ¼ 0:18, PðXt ¼ 1Þ ¼ 0:21

50 0.4 0.32 50 0.18 0.16

100 0.38 0.30 100 0.21 0.19

200 0.41 0.31 200 0.17 0.21

500 0.39 0.33 500 0.18 0.22

1000 0.41 0.31 1000 0.18 0.21

a ¼ 0:2, /0 ¼ 0:4, /1 ¼ 0:1, h ¼ 1

PðXt ¼ 0Þ ¼ 0:57, PðXt ¼ 1Þ ¼ 0:26

a ¼ 0:2, /0 ¼ 0:4, /1 ¼ 0:1, h ¼ 3

PðXt ¼ 0Þ ¼ 0:39, PðXt ¼ 1Þ ¼ 0:22

50 0.60 0.24 50 0.40 0.20

100 0.55 0.27 100 0.40 0.30

200 0.57 0.26 200 0.36 0.26

500 0.58 0.27 500 0.41 0.22

1000 0.58 0.27 1000 0.40 0.23
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significant lags with values greater than one, and it seems

that the INAR with an order greater than 1 is suitable for

the data. To determine the order of the process, we use the

portmanteau tests introduced by Foroughi et al. (2021)

with m = 2, 3, 4, 8, 12. We want to test the null hypothesis

that the data set follows the INAR(1) versus the alternative

hypothesis that the data follow the INAR(p) with p[ 1.

The p values are reported in the Table 4 and show that

order 1 is appropriate for this data set.

The relative frequencies of zeros and ones and Fig. 2

show the inflation in zeros and ones. The extra zeros and

ones motivated us to use INARZOIG for this data set. To

show the adequacy of the INARZOIG(1), we compare the

proposed model with OMGINAR(1), PINAR(1), ZIPI-

NAR(1), OIPINAR(1), ZOIPINAR(1), ZOIPLINAR(1),

INARG(1), INARZIG(1) and INAROIG(1) based on the

mentioned criteria. The results in the Table 5, show that the

INARZOIG(1) has the best fit since it has the largest

Loglik and smallest values of other criteria except for BIC

which are indicated by bold numbers. In the sense of BIC,

INARZIG(1) is the best model and to show that INAR-

ZOIG(1) is more suitable for this data set than the

INARZIG(1), we use the likelihood ratio test (LRT) with

the following hypothesis.

H0 : /1 ¼ 0

H1 : /1 6¼ 0

�

ð23Þ

The LRT statistics is equal to 3.937 and the critical value at

level 0.05 is equal to 3.841. Hence, we can conclude that

the null hypothesis rejects and the zero-and-one-inflated

distribution is more suitable than zero-inflated model for

this data set. Also, we calculated two forecasting accuracy

measures; however, they are the same for all models and

PMAE is equal to 4.45 and PTP is equal to 20.

The last figure shows the daily new infected cases of

COVID-19 in Barbados and their predicted values using

INARZOIG(1). As can be seen, the predicted values are

closed to the original data, which indicates the good per-

formance of the proposed fitted model in the sense of

forecasting (Fig. 4).

4.2.2 Poliomyelitis Data

In this subsection, we considered the Poliomyelitis data

which are the monthly cases in the USA from 1970 to 1983.

These data were analyzed by Zeger (1988) for the first time.

This data set has 168 observations for which 64 (38%) of

observations are zero and 55 (32%) of observations are one,

and the other 49 (30%) of observations had monthly cases

more than one. The mean and variance of observations are

1.33 and 3.50, respectively, and hence, the Fisher index of

them is given as 2.63. The value of the Fisher index indicates

that the data are overdispersed. Recently, Maiti et al. (2018)

considered these data and fittedmost of the existing INAR(1)

models including Poisson INAR(1), overdispersed models

such as geometric INAR(1) and compound Poisson

INAR(1), zero-inflated models like zero-inflated and zero-

modified INAR(1) and their proposed sub-model, the one-

modified geometric INAR(1)(OMGINAR(1)). Using some

goodness of fit criteria and 1-step ahead forecasting accuracy

measures, they showed that OMGINAR(1) had the best fit

among all considered models.

Bar−Plot
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Fig. 2 Barplot and series plot of the new infected cases in Barbados
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Now, we analyze the data further. First, we plot the

barplot and the series plot in Fig. 5. These figures and the

frequencies of the observed zeros and ones show the extra

number of zeros and ones. This fact and the overdispersion

of the data, motivated us to fit the INARZOIG(1) model

into this data set. The ACF and PACF of the data are

plotted in Fig. 6.

Based on the conclusions of Maiti et al. (2018) about the

considered data set, we compare our model with OMGI-

NAR(1) and used the reported criteria in that paper for this

model. Also, we considered the ZOIPLINAR(1), intro-

duced by Mohammadi et al. (2021), as another alternative

to compare with. We use the Loglik, AIC, AICc, and BIC

criteria, and the results are reported in Table 6. As can be

seen, the INARZOIG(1) model has the largest Loglik and

smallest AIC, AICc, but the value of the BIC of the

OMGINAR(1) is the smallest BIC. Nevertheless, based on

Raftery (1995), since the difference between these values is

less than 2, it is not significant and the other criteria show

that the INARZOIG(1) is more suitable for this data set.

We can conclude that our introduced model has the best fit

on this data set; however, the forecasting accuracy mea-

sures are the same when PMAE is equal to 0.95 and PTP is

equal to 45 for all considered models. Moreover, from

Fig. 7 that shows the plot of the Poliomyelitis data and

their predicted values, it can be seen that the predicted

values are found to be almost close to the real data. This

figure indicates the good performance of the INAR-

ZOIG(1) in the sense of forecasting, too.

5 Conclusion

This paper analyzes the zero-and-one-inflated time series

using a flexible INAR(1) model based on the zero-and-one-

inflated geometric-distributed innovation. The main prop-

erties of this novel INAR(1) process are established, and its

model parameters are estimated via the CML and CLS

approaches. The performance of the two estimation tech-

niques is assessed through some Monte Carlo experiments

wherein both approaches are shown to provide consistent

estimates, but with the CML approach providing lesser

biased estimates.

Furthermore, the INARZOIG(1) model is applied to

analyze the COVID-19 series from Barbados, which is

found to consist of a more frequent number of zeros and

ones. Also, using the portmanteau test we indicate that

order 1 is suitable for this data set. As a next example, this

model is applied to another real data set which is the

monthly cases in the USA from 1970 to 1983 that was

analyzed by Zeger (1988) for the first time. Under the data

applications, the INARZOIG(1) model is shown to provide

better fitting criteria than the existing competing models.

Evidently, the statistical performance of the INARZOIG(1)

depends on the nature of the data as well, but overall, the

INARZOIG(1) model has a worthy contribution to the class

of INAR models.
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new infected cases in Barbados

Table 4 The p values of the

portmanteau tests for different

values of m

m Test statistics

QLB QBP QLM

2 0.3669 0.3703 0.3661

3 0.4645 0.4386 0.4381

4 0.3779 0.3829 0.3824

8 0.3458 0.3528 0.3522

12 0.4927 0.4995 0.4986
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Table 5 Parameter estimations

and their standard errors and

Loglik, AIC, AICc and BIC

criteria for compared models

that are fitted to daily new

infected cases of COVID-19 in

Barbados

Model Estimated values (SE) AIC Loglik AICc BIC

PINAR(1) â ¼ 0:1482ð0:0305Þ 1184.856 - 590.428 1184.897 1192.210

k̂ ¼ 1:1493ð0:0712Þ
ZIPINAR(1) â ¼ 0:1903ð0:0314Þ

k̂ ¼ 2:7531ð0:1892Þ 992.236 - 493.118 992.319 1003.266

/̂0 ¼ 0:6033ð0:0350Þ
OIPINAR(1) â ¼ 0:1858ð0:0311Þ

k̂ ¼ 1:0747ð0:0590Þ 1147.017 - 570.509 1147.100 1158.047

/̂1 ¼ 0:0000ð0:0433Þ
ZOIPINAR(1) â ¼ 0:1669ð0:0370Þ

k̂ ¼ 3:9909ð0:3100Þ 949.333 - 470.666 949.471 964.039

/̂0 ¼ 0:5890ð0:0350Þ
/̂1 ¼ 0:1723ð0:0303Þ

ZOIPLINAR(1) â ¼ 0:1391ð0:0393Þ
ĥ ¼ 0:6411ð0:0816Þ 908.542 - 450.271 908.682 923.249

/̂0 ¼ 0:4793ð0:0507Þ
/̂1 ¼ 0:0970ð0:0367Þ

INARG(1) â ¼ 0:0763ð0:0398Þ 933.106 - 464.553 933.148 940.460

ĥ ¼ 1:2472ð0:1105Þ
INARZIG(1) â ¼ 0:1445ð0:0371Þ

ĥ ¼ 1:8385ð0:2208Þ 908.344 - 451.172 908.428 919.375

/̂0 ¼ 0:3720ð0:0624Þ
INAROIG(1) â ¼ 0:1078ð0:0399Þ

ĥ ¼ 1:1887ð0:1035Þ 930.972 - 462.486 931.553 942.002

/̂1 ¼ 0:000ð0:0389Þ
INARZOIG(1) â ¼ 0:1381ð0:0393Þ

ĥ ¼ 2:1965ð0:0587Þ 906.407 - 449.204 906.547 921.114

/̂0 ¼ 0:4284ð0:0383Þ
/̂1 ¼ 0:0772ð0:0334Þ
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Table 6 Parameter estimation

and Loglik, AIC, BIC and AICc

criteria for compared models for

Poliomyelitis data

Model Estimated values Loglik AIC AICc BIC

OMGINAR(1) â ¼ 0:068

p̂ ¼ 0:882 - 264.005 534.01 534.1563 543.3819

ĥ ¼ 0:577

ZOIPLINAR(1) â ¼ 0:0845ð0:0493Þ
ĥ ¼ 0:9116ð0:1613Þ - 262.411 532.823 533.0685 545.318

/̂0 ¼ 0:1887ð0:0970Þ
/̂1 ¼ 0:1881ð0:0660Þ

INARZOIG(1) â ¼ 0:0817ð0:0496Þ
ĥ ¼ 1:4812ð0:3066Þ - 262.0769 532.1538 532.3992 544.6497

/̂0 ¼ 0:1124ð0:1151Þ
/̂1 ¼ 0:1656ð0:0691Þ
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Appendix

Proof of Proposition 2

EðXtþh j Xt�1Þ ¼ Eðahþ1 � Xt�1

þ
Xh

i¼0

ai � �tþh�i j Xt�1Þ

¼ ahþ1Xt�1 þ Eð�tÞ
Xh

i¼0

ai

¼ ahþ1Xt�1 þ
ð1� ahþ1Þl�

ð1� aÞ
VarðXtþh j Xt�1Þ ¼ Varðahþ1 � Xt�1

þ
Xh

i¼0

ai � �tþh�i j Xt�1Þ

¼ ahþ1ð1� ahþ1ÞXt�1 þ
Xh

i¼0

a2iVarð�tÞ

þ
Xh

i¼0

aið1� aiÞEð�tÞ

¼ ahþ1ð1� ahþ1ÞXt�1

þ ð1� a2ðhþ1ÞÞr2�
1� a2

þ ð1� ahÞða� ahþ2Þl�
1� a2

Proof of Propositions 3 and 4 These two Propositions are

similar to Theorem 1 and 2 in Yang et al. (2019), which

can be proved by verifying the regularity conditions of

Theorems 3.1 and 3.2 in Klimko and Nelson (1978). For

instance, in the proof of Proposition 3, the partial deriva-

tives
ogða;Fm�1Þ

oai
have finite fourth moments in Klimko and

Nelson (1978), umða0Þ in Klimko and Nelson (1978) is

corresponded to q11ðb1;0Þ in Step 1. Hence, Proposition 3

can be regarded as a direct conclusion of Theorem 3.2.

Proof of Proposition 5 The proof of Proposition 5 is

similar to Proposition 4 in Liu and Zhu (2021), we omit the

details here and refer the reader to Liu and Zhu (2021).

Proof of Proposition 6 This is an application of the d-
method. For completeness, we refer the reader to Theo-

rem A on p. 122 of Serfling (1980) for a proof.
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