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Abstract
In this paper, we consider an SEIR model that describes the dynamics of the COVID-19 pandemic. Subject to this model

with vaccination and treatment as controls, we formulate a control problem that aims to reduce the number of infectious

individuals to zero. The novelty of this work consists of considering a more realistic control problem by adding mixed

constraints to take into account the limited vaccines supply. Furthermore, to solve this problem, we use a set-valued

approach combining a Lyapunov function defined in the sense of viability theory with some results from the set-valued

analysis. The expressions of the control variables are given via continuous selection of an adequately designed feedback

map. The main result of our study shows that even though there are limits of vaccination resources, the combination of

treatment and vaccination strategies can significantly reduce the number of exposed and infectious individuals. Some

numerical simulations are proposed to show the efficiency of our set-valued approach and to validate our theoretical results.

Keywords Epidemiology � SEIR Compartmental model � Vaccination and treatment strategies � Mixed state-control

constraints � Viability theory � Set-valued analysis � Contingent cone
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1 Introduction

First identified in Wuhan City, China, the COVID-19 dis-

ease (caused by the SARS-COV-2 Virus) is currently one

of the worst pandemics in human history. The rapid spread

of the virus throughout the world has caused severe eco-

nomic, demographic and societal problems. During the first

12 months of its appearance, and given the lack of infor-

mation on the virus, health authorities have opted for

proactive measures to reduce the extent of the damage

caused by this pandemic. Non-pharmaceutical measures,

such as lockdowns, social distancing, quarantine and the

wearing of masks (Perra 2021), were the main weapons

available against the disease. Additionally, some treat-

ments combining several drugs have been proposed to treat

confirmed patients [(see Rismanbaf (2020)].

Despite these control measures, the reported infection

and death cases have been stepped up across several

countries. According to the World Health Organization

(WHO), there have been 158,651,638 confirmed cases of

COVID-19, including 3,299,764 deaths around the world,

as of May 11, 2021 (Organization et al. 2020). In this

context, the use of vaccines arises as an important alter-

native that can protect against COVID-19 and save the

lives of millions. In early 2021, several companies began

distributing the first COVID-19 vaccines. However, due to

high demand and limited supply of vaccines, many coun-

tries are finding it very difficult to procure the necessary

quantities and carry out their vaccination programmes.

It is well known that mathematical modelling can pre-

dict the evolution of a pandemic and help to put in place

control strategies that take into consideration certain con-

straints related to the nature of the disease and the

resources available to public authorities [see, e.g. Kumar

and Srivastava (2017); Elhia et al. (2021); Zamir et al.
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(2021) and references therein]. To our knowledge, there is

a scare on modelling studies taking into consideration the

limitation on vaccine resources. The most popular work is

done by Neilan and Lenhart (2010), which control the

propagation of the disease by a limited number of vaccines

over a period of time T while minimizing the number of

infected people and a cost associated with vaccination.

Based on this approach, Biswas et al. (2014) concentrated

on the case where the supply of vaccines is limited at each

unit of time, which can be modelled as a mixed state-

control constraint. Recently, such approaches are also

applied to diseases like Ebola and Influenza, see, e.g. Area

et al. (2018), Wang et al. (2019), Zhang et al. (2020).

In the case of COVID-19, several studies have been

proposed to understand the dynamics of this infectious

disease and investigate the impact of some control mea-

sures. For example, the work done by Libotte et al. (2020)

adopted the SIR model to describe the dynamic behaviour

of the COVID-19 epidemic in China and proposed two

optimal control problems (mono- and multi-objective) to

determine a strategy for vaccine administration in COVID-

19 pandemic treatment. Moore et al. (2021) used a math-

ematical model structured by age and UK region to

investigate several vaccination scenarios and predict the

possible long-term dynamics of SARS-CoV-2 when the

UK vaccination programme is combined with multiple

potential future relaxations of non-pharmaceutical inter-

ventions. Elhia et al. (2021) formulated a free terminal

time optimal control problem that aims to find the optimal

duration of a vaccination campaign using data from

Morocco.

It must be emphasised that the models that existed in the

literature differ on the choice of the compartmental model,

on constraints enforced or on the functional cost. These

models are generally governed by ordinary (Emary et al.

2021), partial (Miyaoka et al. 2019) or stochastic differ-

ential equations (Britton et al. 2019), and fractional-order

derivatives [see, e.g. Sweilam et al. (2019), Boujallal

(2021)]. In addition, the control problems formulated for

COVID-19 have been solved using direct (Kohler et al.

2020) and indirect approaches (Grigorieva et al. 2021;

Khajji et al. 2021) from control theory. For a detailed lit-

erature review of the different types of models proposed for

COVID-19, the interested readers can consult (Perra 2021).

In this work, we focus on the control of the COVID-19

pandemic by setting and resolving a more realistic control

problem that takes into account the limited vaccines supply

and treatment. The novelty of our work consists of

• Considering a mixed constraints control problem by

adding the limited vaccines supply as constraint. To the

best of our knowledge, our work is the first that takes

the limitation of the COVID-19 vaccines resources as a

constraint when formulating the control problem.

• Proposing an extension of our previous work (Boujallal

et al. 2021b) to the case with mixed constrains.

• Using the set-valued approach which is predicated on

viability theory (Aubin 2009) and set-valued analysis

(Aubin and Frankowska 2009), we provide feedback

controls via selections of a suitable constructed multi-

function, which take into consideration constraints on

the control variables and the vaccine limitation

resources, and can reduce to zero asymptotically the

number of infected people.

We recall that viability theory offers a solid framework of

dynamical systems that obey constraints in a set-valued

form. The main concern of viability theory is the compu-

tation of the set of initial states (known as a viability ker-

nel) from which the evolution of a given system remains

within a viability constraint set. Motivated by the difficulty

of kernel computation, we use a set-valued approach that

allows the characterization of the viability set in terms of a

contingent cone (see definition 14). This approach is used

for systems in finite and infinite dimensions [see Boujallal

and Kassara (2015), Boujallal and Kassara (2020)]. More

recently, this approach is employed in (Boujallal et al.

2021a, b) to deal with a control problem of a general class

of epidemiological models where the objective is to erad-

icate the infectious from a population, while Elhia et al.

(2020) treated this problem for the SEIR model of COVID-

19 with saturated treatment function and screening effort.

The remainder of the paper is organised as follows: In

Sect. 2, we present the SEIR COVID-19 model and set the

control problem we will investigate. Section 3 will be

concerned with presenting the set-valued approach, and

Sect. 4 to characterise a continuous selection that provides

us with control strategies to deal with the COVID-19

pandemic. To show the efficiency of our approach, we

propose in Sect. 5 numerical simulations and conclude this

paper in Sect. 6.

2 Mathematical Model and Control Problem

2.1 Mathematical Model

The COVID-19 model under consideration in the present

paper describes the dynamics of a population divided into

four different compartments

• Susceptible individuals (S) are those vulnerable to

become infected;

• Exposed individuals (E), who have been infected but

are not infectious and do not show symptoms of the

disease;
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• Infectious individuals (I), who may transmit the

infection;

• Recovered or Immune individuals (R).

Thus, the total population at time t is presented by

NðtÞ ¼ SðtÞ þ EðtÞ þ IðtÞ þ RðtÞ:

This model is formulated based on the following

parameters

• All recruitments are into the susceptible compartment

and occur at a constant rate K;
• d denotes the natural death rate;

• The transmission of the disease occurs following an

adequate contact between a susceptible and infectious.

Due to the nonlinear contact dynamics in the popula-

tion, we use the incidence function c
SI

N
to indicate

successful transmission of the disease, where c denotes

the effective contact rate with infectious individuals in

compartment I;

• The exposed individuals become infectious at a rate e;

• g is the rate at which infectious individuals recover;

• a denotes the death rate due to the disease.

Here, all the parameters are positive constants.

The dynamics of the model is governed by the following

nonlinear system

_S ¼ K� c
SI

N
� dS;

_E ¼ c
SI

N
� ðeþ dÞE;

_I ¼ eE � ðgþ aþ dÞI;
_R ¼ gI � dR;

8
>>>>>>><

>>>>>>>:

ð1Þ

with initial conditions

Sð0Þ ¼ S0 � 0; Eð0Þ ¼ E0 � 0;

Ið0Þ ¼ I0 � 0; Rð0Þ ¼ R0 � 0:
ð2Þ

2.2 Control Problem Under Mixed Constraints

In this section, we introduce two control strategies to

eradicate the COVID-19 infectious from a specified pop-

ulation, namely vaccination and treatment strategies.

Motivated by realistic condition, the limitation of vaccine

resources at each time instant is also considered in this

paper. Thus, this problem is solved in the framework of set-

valued approach as stated in Sect. 3, and a modified

dynamics of the SEIR model (1) with vaccination and

treatment is proposed as follows:

_S ¼ K� c
SI

N
� dS� u1S;

_E ¼ c
SI

N
� ðeþ dÞE;

_I ¼ eE � ðgþ aþ dÞI � u2I;

_R ¼ gI � dRþ u1Sþ u2I;

8
>>>>>>><

>>>>>>>:

ð3Þ

subject to control constraints

0� ui � umax
i � 1 for i ¼ 1; 2; ð4Þ

and mixed state-control constraints

u1S�V0; ð5Þ

with V0 is an upper bound taking positive values.

The control in system (3) is represented by u ¼ ðu1; u2Þ0,
where u1 stands for the fraction of vaccinated individuals

and u2 represents the fraction of individuals that is put

under treatment. The control u must range in the subset,

U¼:
Y2

i¼1

½0; umax
i �; where umax

i � 1:

Therefore, the control problem we have to deal with is

stated as follows:

For each ðS0;E0; I0;R0Þ 2 C � R4
þ, find a control �u such

that:

�u : ½0;1Þ ! U; ð6aÞ

�u1ðtÞ �SðtÞ�V0; for all t� 0; ð6bÞ

and,

lim
t!1

�IðtÞ ¼ 0; ð6cÞ

where ð �S; �E; �I; �RÞ denotes a solution of system (3) for the

control �u.

3 The Set-Valued Approach

Here, we are going to provide a brief outline of the set-

valued control approach mentioned above, see Boujallal

(2022) for more mathematical details. It involves the fol-

lowing class of nonlinear augmented control system,

_x ¼ f ðx; y; uÞ; ðx; y; uÞ 2 K; ð7aÞ

_y ¼ hðx; y; uÞ; ð7bÞ

_u ¼ v� du; ð7cÞ

where f and h represent sufficiently smooth functions from

Rn � Rm � Rp to Rn; and Rm; respectively, for integers

n, m and p. The state (x, y) evolves in the subset

S¼: Rn
þ � Rm

þ, the control u takes values within constraint
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subset, U¼:
Qp

i¼1½0; umax
i �, where umax

i are positive numbers,

and K stands for a mixed state-control constraint set. Here,

v stands for the control and has values in closed subset

V ¼
Yi¼2

i¼1

½0; dumax
i �: ð8Þ

In the sequel, we need to assume the following

assumptions:

Assumption 1

xi ¼ 0 and y� 0)fiðx; y; uÞ� 0; for all u 2 U

yj ¼ 0 and x� 0)hjðx; y; uÞ� 0; for all u 2 U ;
ð9Þ

for i ¼ 1; :::; n and j ¼ 1; :::;m:

Assumption 2 There exist constants c1; c2 [ 0 such that,

for all (x, y, u) in Da,

kf ðx; y; uÞk� c1ðkxk þ kyk þ kuk þ 1Þ;

and

khðx; y; uÞk� c2ðkxk þ kyk þ kuk þ 1Þ:

Remark 1 It is noteworthy to mention that, under

Assumption 1, all trajectories of system (), issued from

ðx0; y0Þ 2 Rn
þ � Rm

þ, are positively invariant; i.e.

ð�xðtÞ; �yðtÞÞ 2 Rn
þ � Rm

þ for all t� 0, while assumption 2

guarantees the existence of global solution, i.e. on ½0;1Þ.

Remark 2 The solution �u of (7c) related to control v 2 V

satisfies the inequality:

u0j expð�atÞ� �ujðtÞ� umax
j � ðumax

j � u0j Þ expð�atÞ;

for j ¼ 0; . . .; p. Then, for each u0 2 U ,

�uðtÞ 2 U for all t� 0: ð10Þ

Definition 1 We call a control strategy any function �v :

½0;1Þ ! V such that system () has a global solution

ð�x; �y; �uÞ with values in K \ R4
þ � U , and satisfying

lim
t!1

�yðtÞ ¼ 0.

Definition 2 (Boujallal 2022) Let X stand for a non empty

subset of Rm and, u : Rm � Rm ! R; a C1 real-valued

function. It is called an X-Lyapunov function if the

following holds,

s : ½0 1Þ ! X; differentiable, and

uðsðtÞ; _sðtÞÞ� 0 for all t� 0;
) lim

t!1
sðtÞ ¼ 0:

ð11Þ

Inspired by Lyapunov functions given in Definition 2,

we introduce the subset

Du¼: ðx; y; uÞ 2 K j uðy; hðx; y; uÞÞ� 0f g; ð12Þ

and its related feedback map given by

Guðx; y; uÞ ¼
:

v 2 V jf
ðf ðx; y; uÞ; hðx; y; uÞ; v� duÞ 2 TDuðx; y; uÞ

�
;

ð13Þ

where

TDuðzÞ ¼ fq j lim inf
e#0

dðzþ eq;DuÞ
e

¼ 0g; ð14Þ

stands for the contingent cone to subset Du at point z 2 Du.

Therefore, feedback control strategies can be given as

continuous selections v ¼ fðx; y; uÞ of the feedback map Gu

given by (13). Recall that f is a selection of Gu whenever

fðx; y; uÞ 2 Guðx; y; uÞ for all ðx; y; uÞ 2 Du.

According to Boujallal (2022), the feedback map given

in (13) can be expressed for each ðx; y; uÞ 2 Du, as follows:

Guðx; y; uÞ ¼
Gðx; y; uÞ if uðy; hðx; y; uÞÞ\0;
Cuðx; y; uÞ if uðy; hðx; y; uÞÞ ¼ 0;

�
�
�
� ð15Þ

where

Gðx; y; uÞ¼: v 2 V jf
ðf ðx; y; uÞ; hðx; y; uÞ; v� duÞ 2 TKðx; y; uÞg;

ð16Þ

and

Cðx; y; uÞ¼: v 2 Gðx; y; uÞ jf
‘uðx; y; uÞ þ muðx; y; uÞ; v

� �
� 0

�
;

ð17Þ

for all ðx; y; uÞ 2 K: Here, the functions ‘u and mu are

given by

‘uðx; y; uÞ¼: rzuðy; hðx; y; uÞÞ;rxhðx; y; uÞfh i
þ rzuðy; hðx; y; uÞÞ;ryhðx; y; uÞh
� �

� d rzuðy; hðx; y; uÞÞ;ruhðx; y; uÞuh i
þ ryuðy; hðx; y; uÞÞ; hðx; y; uÞ
� �

;

ð18Þ

muðx; y; uÞ¼
: ðruhðx; y; uÞÞ0rzuðy; hðx; y; uÞÞ: ð19Þ

Assumption 3 For all ðx; y; uÞ 2 Du, there exists v 2
Gðx; y; uÞ which satisfies the following statement

‘uðx; y; uÞ þ v;muðx; y; uÞ
� �

\0; ð20Þ

where functions ‘u and mu are, respectively, given by

Eqs. (18) and (19).

Remark 3 It should be also noted that assumption 3 plays a

central rule in proving the existence of continuous selec-

tions of the feedback map Gu.

Then, we are in a statement to prove the following main

results.

832 Iran J Sci Technol Trans Sci (2022) 46:829–838

123



Theorem 1 Assume that both assumptions 2 and 3 are

satisfied. Then, any continuous selection of the feedback

map Gu provides feedback control strategies for each

ðx0; y0; u0Þ 2 Du \ R4
þ � U .

Proof Let f : Du ! V be a continuous selection of Gu,

then subset Du is viable under system ().

This means that, for each ðx0; y0; u0Þ 2 Du, the system ()

has a solution ð�x; �y; �uÞ : ½0;1Þ ! Du; which satisfies

�xð0Þ ¼ x0; �yð0Þ ¼ y0 and �uð0Þ ¼ u0. According to Remark

1 and 2, this solution satisfies ð�xðtÞ; �yðtÞ; �uðtÞÞ 2 R4
þ � U

for all t� 0.

From Eq. (12), this solution satisfies

uð�yðtÞ; hð�xðtÞ; �yðtÞ; �uðtÞÞÞ� 0 for all t� 0;

and out of Eq. (7b), it follows that

uð�yðtÞ; _�yðtÞÞ� 0 for all t� 0:

In addition, since function u is an Rm
þ-Lyapunov function

in the sense of definition 2, then we get �yðtÞ ! 0 when

t ! 1. Consequently, f provides a feedback control

strategy for each ðx0; y0; u0Þ 2 Du \ R4
þ � U . h

Now, let us introduce the following set-valued map, for

each l[ 0;

Cl
uðx; y; uÞ¼

:
v 2 Gðx; y; uÞ jf

‘uðx; y; uÞ þ muðx; y; uÞ; v
� �

� � l
�
;

ð21Þ

for all ðx; y; uÞ 2 K; where ‘u and mu are, respectively,

given by (18) and (19). Arguing as in the proof of (Bou-

jallal et al. 2021b, Theorem 2), we can easily get the fol-

lowing result.

Theorem 2 Assume that, for some l[ 0, the map Cl
u

admits a continuous selection. Then, such selection pro-

vides feedback control strategies for each

ðx0; y0; u0Þ 2 K \ R4
þ � U .

4 Characterization of Continuous Selection

Now, we will characterize the continuous selection of the

feedback map Cl
u, given by (21), and which bring us the

vaccination and treatment strategies in order to solve the

problem (). For that purpose, let us rewrite the model (3) in

the general form of system 7. Let

x ¼ ðx1; x2; x3Þ0 ¼ ðS;E;RÞ0, y ¼ I and u ¼ ðu1; u2Þ0, then
the dynamic

f ðx; y; uÞ ¼

K� c
x1y

N
� dx1 � u1x1

c
x1y

N
� ðeþ dÞx2

gy� dx3 þ u1x1 þ u2y

0

B
B
B
@

1

C
C
C
A
; ð22Þ

and the infectious dynamics is given by

hðx; y; uÞ ¼ ex2 � ðgþ aþ d þ u2Þy: ð23Þ

Now, let us express the Lyapunov function u, given in

Definition 2, by

uðy; hðx; y; uÞÞ ¼ hðx; y; uÞ þ ay; for all a[ 0:

Indeed, we get thanks to (7b),

_�yðtÞ� � a�yðtÞ;

which yields the estimate

0� �yðtÞ� y0 expð�atÞ for all t� 0:

Letting t ! 1, we get

�yðtÞ ! 0:

In this case, the expressions of functions ‘u and mu are

given by

‘uðx; y; uÞ ¼ ef2ðx; y; uÞ � ðgþ aþ d þ u2 � aÞ�
hðx; y; uÞ þ du2y;

muðx; y; uÞ ¼ ð0;�yÞ0:
ð24Þ

4.1 The Case of Limited Vaccination Constraint

The set of mixed constraints is given as follows:

K ¼ ðx; y; uÞ 2 R5 j u1x1 �V0

� �
:

Let Du¼: ðx; y; uÞ 2 K j /ðx; y; uÞ� 0f g; then the maps G

and Cl are expressed as follows:

Guðx; y; uÞ ¼
V if u1x1\V0;

v 2 V j u1f1ðx; y; uÞ þ x1v1 � 0f g if u1x1 ¼ V0;

�
�
�
�

and

Cl
uðx; y; uÞ ¼ v 2 Gðx; y; uÞ j ‘u � yv2 � � l

� �
:

Hence, the continuous selection of the map Cl can be

expressed as follows:

fðx; y; uÞ ¼ ðv1; v2Þ0; ð25Þ

where
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v1 ¼ max 0;min dumax
1 ;� u1

x1
f1ðx; y; uÞ

� �� �

;

v2 ¼ min dumax
2 ;max 0;

‘ðx; y; uÞ þ l
y

� �� �

:

4.2 The Case of Unlimited Vaccination Constraint

The set of constraint is given by

K ¼ R5:

Then, the maps G and Cl
u are expressed as follows:

Gðx; y; uÞ ¼ V;

and

Cl
uðx; y; uÞ ¼ v 2 V j ‘uðx; y; uÞ � yv2 � � l

� �
:

Hence, the continuous selection of the map Cl
u can be

expressed as follows:

fðx; y; uÞ ¼ ðv1; v2Þ0; ð26Þ

where

Table 1 Parameter’s description

and value for model (1)
Parameter Description Value References

d Natural death rate 1=ð83� 365Þ Carcione et al. (2020)

K Per-capita birth rate dN Assumed

c Transmission rate 0.192 Kumar et al. (2021)

a The death rate due to the disease 0.006 Carcione et al. (2020)

e Exposed to infectious rate 1/3 Carcione et al. (2020)

g Recovery rate 1/8 Carcione et al. (2020)
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Fig. 1 Simulation results of the

model (3) with unlimited

vaccination resources (i.e.

without mixed constraints). (a)
Evolution in time of susceptible

population (S) with

S0 ¼ 2� 106. (b) Evolution in

time of exposed population (E)

with E0 ¼ 0:5� 103. (c)
Evolution of infectious

population (I) with I0 ¼ 103. (d)
Evolution in time of vaccinated

population (W) with W0 ¼ 0
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v1 2 ½0; dumax
1 �;

v2 ¼ min dumax
2 ;max 0;

‘ðx; y; uÞ þ l
y

� �� �

:

5 Numerical Simulation

In this section, numerical simulations of the system (3) are

carried out in order to describe the spread of COVID-19

with treatment and under the limitation of vaccination

resources. All simulations are performed using MATLAB

and the parameters are given in Table 1. It should be noted

that inspired by Carcione et al. (2020), the dynamic of the
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Fig. 2 (a) Evolution of the

control u1 with u01 ¼ 0:4. (b)
Evolution of the control u2 with

u02 ¼ 0. The control u ¼
ðu1; u2Þ0 is given via selection f,
given by (26), with l ¼ 2 and

d ¼ 0:8

0 20 40 60 80
Time (days)

1.88

1.9

1.92

1.94

1.96

1.98

2

S
u

sc
ep

ti
b

le
 p

op
u

la
ti

on
 (

S
) 

 

106

Without controls
With controls

(a)

0 20 40 60 80
Time (days)

0

2000

4000

6000

8000

10000

12000

E
xp

os
ed

 p
op

u
la

ti
on

 (
E

)

Without controls
With controls

(b)

0 20 40 60 80
Time (days)

0

0.5

1

1.5

2

2.5

In
fe

ct
ed

 p
op

u
la

ti
on

 (
I)

  

104

Without controls
With controls

(c)

0 20 40 60 80
Time (days)

0

2000

4000

6000

8000

10000

12000

14000

V
ac

ci
n

at
ed

 p
op

u
la

ti
on

(d)

Fig. 3 Simulation results of the

model (3) with limited

vaccination resources (i.e. with

mixed constraint: u1S�V0 and

V0 ¼ 104). (a) Evolution in time

of susceptible population (S)

with S0 ¼ 2� 106. (b)
Evolution in time of exposed

population (E) with

E0 ¼ 0:5� 103. (c) Evolution
of infectious population (I) with

I0 ¼ 103. (d) Evolution in time

of vaccinated population (W)

with W0 ¼ 0

Iran J Sci Technol Trans Sci (2022) 46:829–838 835

123



vaccinated individuals, denoted by W, is given by
_W ¼ u1S.

In Fig. 1, we consider the case where the two u1 and u2
controls are both applied and where there are no mixed

constraints. The Fig. 1a–d show the number of people in

the compartments (S), (E), (I) and (W) with and without

controls. Our numerical results show that the use of both

controls significantly reduces the number of susceptible,

exposed and infected people. This significant decline can

be explained by the availability of vaccination resources
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(b)

Fig. 4 (a) Evolution of the

control u1 with u01 ¼ 5� 10�3.

(b) Evolution of the control u2
with u02 ¼ 0. The control u ¼
ðu1; u2Þ0 is given via selection f,
given by (25), with l ¼ 2 and

d ¼ 0:8

0 20 40 60 80
Time (days)

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

S
u

sc
ep

ti
b

le
 p

op
u

la
ti

on
 (

S
) 

 

106

Without mixed constraint
 With mixed constraint

(a)

0 20 40 60 80
Time (days)

0

100

200

300

400

500

600

700

E
xp

os
ed

 p
op

u
la

ti
on

 (
I)

  

Without mixed constraint
 With mixed constraint

(b)

0 20 40 60 80
Time (days)

0

200

400

600

800

1000

1200

In
fe

ct
ed

 p
op

u
la

ti
on

 (
I)

  

Without mixed constraint
 With mixed constraint

(c)

Fig. 5 A comparison of the

evolution in time of susceptible,

exposed and infected population

without and with mixed

constraint (with V0 ¼ 104).(a)
Evolution in time of susceptible

population (S) with

S0 ¼ 2� 106. (b) Evolution in

time of exposed population (E)

with E0 ¼ 0:5� 103. (c)
Evolution of infectious

population (I) with I0 ¼ 103
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(the absence of mixed vaccination constraint) which allows

to vaccinate a very large number of the population and save

the lives of more than 786706 people (see Fig. 1d). In this

case, the controls u1 and u2 are given in Fig. 2.

For Fig. 3, it concerns the case where the supply of

vaccines is limited with u1S�V0 ¼ 104. It can be seen in

Fig. 3b, c that even with constraints on the number of

people vaccinated; vaccination and treatment combined

can help reduce the number of people exposed and infected

with COVID-19. On the other hand, the limit of resources

available for a good vaccination campaign means that the

number of susceptible or vulnerable people remains higher

compared to the case without control (see Fig. 3a). Also,

we note in Fig. 3d that the number of people vaccinated

will not exceed 12,500 people, i.e. a drop of 98.41%

compared to the result obtained in Fig. 1d. Profiles of the

controls u1 and u2 are depicted in Fig. 4.

Figure 5 shows the evolution of the number of indi-

viduals in compartments (S), (E) and (I) in both cases: with

and without mixed constraints. It can be seen that the

numbers of individuals in these compartments remain

higher in the case where mixed constraints are considered.

In Fig. 6, we depict the dynamic of our controlled model

using different values of V0. In this figure, we can see the

important impact of V0 on the evolution of the number of

susceptible, exposed, infected and vaccinated individuals.

More V0 is important more the number of people in S,

E and I compartments decrease. So, it is important to

double the global efforts to give access to vaccines, espe-

cially for low-income countries, which can help protect a

maximum number of people against the SARS-CoV-2

virus.

6 Concluding Remarks and Future Works

Through this work, we contribute to the global efforts that

aim to understand and control the spread of COVID-19

disease. We considered a compartmental epidemic model

where the population is divided into four categories (sus-

ceptible, exposed, infectious and removed individuals) and

includes two control variables, namely vaccination and

treatment. As it is well known, vaccination against

COVID-19 provides multiple challenges that are not

encountered by many other vaccination programmes. In
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Fig. 6 Simulation results of the

model (3) with limited

vaccination resources and

different values of V0.

(a) Evolution in time of

susceptible population (S).

(b) Evolution in time of exposed

population (E). (c) Evolution of

infectious population (I).

(d) Evolution in time of

vaccinated population (W)
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several countries, infection rates are increasing exponen-

tially, while vaccination rates are restricted by supply and

logistics. In this context, we formulated a control problem

with mixed constraints that takes into account the limita-

tion of vaccination resources and aims to reduce asymp-

totically the number of infected people to zero. To solve

our control problem, we applied a set-valued approach

based on viability theory and set-valued analysis. More

precisely, the control pair that reduces the number of

infectious (I) individuals is introduced via continuous

selections of a designed feedback map.

In future work, it will be interesting to extend this study

to other diseases and consider other mixed constraints

related to age and regional spread of the disease.
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