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Abstract
In this paper, we give the necessary and sufficient conditions for the existence of strong (1, 1, 2)-kernels in the corona of

graphs. Moreover, we consider lower and upper strong (1, 1, 2)-kernel numbers and we prove that the difference between

these parameters can be arbitrarily large.
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1 Introduction and Preliminary Results

In general, we use the standard terminology and notation of

graph theory, see Diestel (2005). Let G be an undirected,

connected, simple graph with the vertex set V(G) and the

edge set E(G). Then, the order of G is its number of ver-

tices and the size of G is its number of edges. For a vertex

x 2 VðGÞ, let degGðxÞ denote its degree. By Pn for n� 2,

and Cn for n� 3, we mean a path and a cycle of order n,

respectively. Let Tn; n� 2, be a tree of order n. In any tree,

a vertex of degree 1 is a leaf and LðGÞ ¼ fx 2
VðGÞ : degGðxÞ ¼ 1g. A vertex adjacent to at least one leaf

is a support vertex.

By dGðx; yÞ, we denote the distance between vertices x

and y in G being the length of a shortest path between x and

y. Let J � VðGÞ. Then, dGðx; JÞ ¼ miny2J dGðx; yÞ. The

diameter of G is the number diamðGÞ ¼ maxx;y2VðGÞ
dGðx; yÞ. A tree containing exactly two support vertices is

called a 2-palm. If a 2-palm has the diameter 3, then we

call it a double star. A double star Pðn1; n� n1 � 2Þ of

order n� 5 and diameter 3 is a tree with the support vertex

x adjacent to n1 leaves and the support vertex y adjacent to

n� n1 � 2 leaves. Clearly, x and y are adjacent.

For any vertex v 2 VðGÞ, the open neighborhood of v

we define as NGðvÞ ¼ fu 2 VðGÞ : uv 2 EðGÞg.

Let G be a graph with VðGÞ ¼ fx1; . . .; xng, n� 2 and

H ¼ ðHiÞi2I¼f1;...;ng be a sequence of n vertex disjoint

graphs. For a nonempty graph Hi; i 2 I let

VðHiÞ ¼ fyi1; . . .; yipig; pi � 1. The corona of the graph G

and the sequence H is a graph G � H, such that VðG �
HÞ ¼ VðGÞ [

S
i2I VðHiÞ and EðG � HÞ ¼ EðGÞ [

S
i2

IEðHiÞ [
S

i2Ifxiyit : t ¼ 1; . . .; pig. If all graphs in the

sequence H are isomorphic to the same graph H, then we

obtain the corona of two graphs.

A subset S � VðGÞ is an independent set of G if no two

vertices of S are adjacent in G. A subset D � VðGÞ is a

dominating set of G if each vertex not belonging to D is

adjacent to at least one vertex of D. A subset J � VðGÞ
being independent and dominating is a kernel of G.

The theory of kernels was initiated for digraphs by

Neumann and Morgenstern in 1953 in the context of game

theory, see Von Neumann and Morgenstern (1953). Since

then kernels have been relevant in the graph theory for their

relations with distinct problems, for example in the list

colorings and perfectness. Berge was one of the pioneers in

this area studying the problem of the existence of kernels in

digraphs and using a kernel for solving problems in other

areas of mathematics, see Berge (1973). There are many

types and generalizations of kernels. Main two directions

of generalizations concern (k, l)-kernels which generalize
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kernels in the distance sense and kernels by monochro-

matic paths which generalize kernels with respect to edge

coloring of a graph. Many kinds of kernels are intensively

studied in the literature, for details see Galeana-Sanchez

and Ramirez (2007), Galeana-Sanchez and Sanchez-Lopez

(2011), Kucharska (2005), Szumny et al. (2008) and

Włoch (2008). Kernels by monochromatic paths are stud-

ied only in digraphs because in undirected graphs the

existing problem is trivial. The problem of the existence of

(k, l)-kernels in undirected graphs is interesting only for

special values of k, l.

In an undirected graph, every maximal independent set

is its kernel, since every maximal independent set is also a

dominating set. The problem is more complicated if we add

restrictions related to the domination or the independence.

Then, new types of kernels are defined and studied, among

others efficient dominating sets (Bange et al. 1988), sec-

ondary domination (Hedetniemi et al. 2008), restrained

independent dominating sets (Domke et al. 1999).

In Włoch (2012), Włoch introduced the concept of a 2-

dominating kernel in graphs (shortly (2-d)-kernel). A sub-

set J � VðGÞ is a 2-dominating kernel of G if J is inde-

pendent and 2-dominating, i.e., J is independent and each

vertex from VðGÞ n J has at least two neighbors in J. Some

properties of (2-d)-kernels were studied in Bednarz et al.

(2015), Bednarz and Włoch (2016), Bednarz and Włoch

(2017). In Nagy (2016), Nagy introduced and studied a

more general concept, namely a k-dominating kernel for

k� 2.

In Hedetniemi et al. (2008), the authors introduced the

definition of a (1, 2)-dominating set. A set S � VðGÞ is

called a (1, 2)-dominating set of G if for every vertex v 2
VðGÞ n S there are two distinct vertices u;w 2 S, such that

u is adjacent to v, and w is within distance 2 of v (i.e.,

dGðv;wÞ� 2Þ. This kind of domination is called also as

secondary domination. In this terminology, a 2-dominating

set is the same as a (1, 1)-dominating set. In particular if

for a vertex v 2 VðGÞ n S there exists a vertex u 2 S, such

that dGðv;wÞ ¼ 2 we say that v is 2-distance dominated by

S. In Hedetniemi et al. (2008), the authors considered also

a (1, 2)-kernel called as an independent (1, 2)-dominating

set and they obtained some properties of this set.

In [5], the authors introduced and studied some new

types of kernels based on (2-d)-kernels and (1, 2)-kernels

as a natural consequence.

A subset J � VðGÞ is a (1, 1, 2)-kernel of G if J is

independent and (1, 1, 2)-dominating i.e., for each vertex

x 62 J there are three distinct vertices y1; y2; y3 2 J such that

xyi 2 EðGÞ, for i ¼ 1; 2 and dGðx; y3Þ� 2. Clearly, every

(1, 1, 2)-kernel is the classical kernel, the (1, 2)-kernel and

the 2-dominating kernel.

Let J be a (1, 1, 2)-kernel. If for every vertex x 62 J there

exists y 2 J, such that dGðx; yÞ ¼ 2, then J is a strong

(1, 1, 2)-kernel. In other words J is a strong (1, 1, 2)-kernel

if J is independent and strong (1, 1, 2)-dominating.

Moreover, for a graph G being totally disconnected the set

V(G) is a (1, 1, 2)-kernel and a strong (1, 1, 2)-kernel.

Below we give some necessary conditions for the exis-

tence of the (1, 1, 2)-kernels, see [5].

(i) If J is a (1, 1, 2)-kernel (strong (1, 1, 2)-kernel) of

G, then jJj � 3.

(ii) If J is a (1, 1, 2)-kernel (strong (1, 1, 2)-kernel) of

G, then LðGÞ � J.

(iii) If J is a (1, 1, 2)-kernel (strong (1, 1, 2)-kernel) of

G, then for every x 62 J, it holds degGðxÞ� 3.

(iv) Pn and Cn does not have a (1, 1, 2)-kernel (strong

(1, 1, 2)-kernel).

There was given a complete characterization of trees with a

strong (1, 1, 2)-kernel in the paper [5]. Moreover, this type

of kernel was studied in generalized Petersen graph and the

join of graphs.

Theorem 1 A subset J � VðGÞ is a strong (1, 1, 2)-kernel

if and only if J is a maximal independent set and J is a

minimal strong (1, 1, 2)-dominating set.

Proof Assume that a subset J � VðGÞ is a maximal

independent set and J is a minimal strong (1, 1, 2)-domi-

nating set. Then, by the definition, J is a strong (1, 1, 2)-

kernel.

Conversely, let J � VðGÞ be a strong (1, 1, 2)-kernel of

a graph G. From the definition of a strong (1, 1, 2)-kernel,

it is clear that J is an independent set and J is a strong

(1, 1, 2)-dominating set. We prove that J is a maximal

independent set. Suppose on the contrary that J is not a

maximal independent set. Then, there exists a vertex x 62 J,

such that J [ fxg is an independent set. Therefore, NðxÞ \
J ¼ ; which is a contradiction to the fact that x is

dominated by J. Hence, J is the maximal independent set.

Now suppose on the contrary that J is not a minimal

strong (1, 1, 2)-dominating set. Then, there exists a vertex

u 2 J, such that J n fug is still a strong (1, 1, 2)-dominat-

ing set. It implies that u is dominated by J n fug; hence,

there exists a vertex y 2 J n fug adjacent to u, which is a

contradiction to the fact that J is an independent set.

Therefore, J is a minimal strong (1, 1, 2)-dominating set.

Thus ends the proof. h

Let Ið1;1;2ÞðGÞ be the largest cardinality of a strong

(1, 1, 2)-kernel of a graph G, and let ið1;1;2ÞðGÞ be the

smallest cardinality of this kernel.

Theorem 2 (Realization Theorem) For an arbitrary inte-

ger n� 1 , there exists a graph G, such that
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Ið1;1;2ÞðGÞ � ið1;1;2ÞðGÞ ¼ n ð1Þ

Proof Let n� 1 be an integer. To prove this theorem, it

suffices to construct a graph G, such that equality (1) holds.

To construct it, let us consider a double star Pð2; nþ 6Þ of

order nþ 10 with support vertices x, y. We define a graph

G as follows VðGÞ ¼ VðPð2; nþ 6ÞÞ and

EðGÞ ¼ EðPð2; nþ 6ÞÞ [ E0, where E0 is the set of 2ðnþ
3Þ edges added to the double star Pð2; nþ 6Þ. To describe

the set E0, let us consider the set V0 of nþ 6 leaves adja-

cent to the support vertex x in the double star Pð2; nþ 6Þ.
On the set V0, we define a 2-coloring function by distin-

guishing three red vertices and nþ 3 blue. Let B be the set

of all blue vertices, and let R be the set of red vertices.

Then, V0 ¼ B [ R and clearly B \ R ¼ ;. The set E0 con-

tains edges joining blue and red vertices, such that every

blue vertex is joined with exactly two red vertices,

assuming that none of the red vertices is adjacent to all

nþ 3 blue vertices. It is clear that each red vertex has at

least two blue neighbors. By fz1; z2g, we denote the set of

two leaves adjacent to the support vertex y. We show that

the set J1 ¼ fz1; z2g [ R is the smallest strong (1, 1, 2)-

kernel of G and the set J2 ¼ fz1; z2g [ B is the largest

strong (1, 1, 2)-kernel of G. The independence of J1 and J2

is obvious. Firstly, we shall show that J1 and J2 are strong

(1, 1, 2)-dominating sets. Clearly, x; y 62 J1 and x; y 62 J2.

Moreover, the vertex y is 2-dominated by vertices z1; z2 and

dGðy;BÞ ¼ 2 and dGðy;RÞ ¼ 2. Hence, the support vertex y

is strong (1, 1, 2)-dominated by J1 and J2. Analogously, we

can show that the support vertex x and vertices from the set

B are strong (1, 1, 2)-dominated by J1 and J2. From the

above, jJ1j ¼ jRj þ jLðxÞj ¼ 5 and J1 is the smallest strong

(1, 1, 2)-kernel of G. Moreover, jJ2j ¼ jBj þ jLðxÞj ¼ nþ
5 and J2 is the largest strong (1, 1, 2)-kernel of G. Con-

sequently, Ið1;1;2ÞðGÞ � ið1;1;2ÞðGÞ ¼ n: Thus, the theorem is

proved. h

A dominating set S � VðGÞ is a restrained dominating

set if every vertex v 2 VðGÞ n S is adjacent to a vertex in S

and another vertex in VðGÞ n S. A restrained dominating

set which is also independent is called a restrained kernel.

The concept of restrained domination in graphs was

introduced by Telle and Proskurowski (1997), albeit indi-

rectly, as a vertex partition problem. The restrained dom-

ination and total restrained domination were studied in

Domke et al. (1999) and Chen et al. (2011).

Theorem 3 If J � VðGÞ is a strong (1, 1, 2)-kernel, then

J is a restrained kernel.

Proof Suppose that J is a strong (1, 1, 2)-kernel. Then, J is

an independent set and J is a strong (1, 1, 2)-dominating

set. Therefore for each vertex x 62 J, there exists a vertex

y 2 J, such that dGðx; yÞ ¼ 2. Consequently, there exists a

vertex z 62 J adjacent to x. And also from the fact that J is a

(1, 1)-dominating set there exists a vertex u 2 J adjacent to

x. Hence, a vertex x is adjacent to z 62 J and to y 2 J. By

the assumption that J is an independent set, it follows that J

is the restrained kernel. h

2 Strong (1, 1, 2)-Kernels in the Corona
of Graphs

In this section, we study the existence of strong (1, 1, 2)-

kernels in the corona G � H. We give the necessary and

sufficient conditions for the existence of strong (1, 1, 2)-

kernels in this graph product. We consider this problem

depending on whether all graphs Hi for i ¼ 1; . . .; n are

nonempty or at least one of them has an order at most 1.

The existence of distinct types of kernels in G � H has been

investigated, see for example in Szumny et al. (2008) and

Włoch (2008).

Theorem 4 Let G be a connected graph of order n� 2 and

H be a sequence of n vertex disjoint nonempty graphs

H1; . . .;Hn of order pi � 2. The graph G � H has a strong

(1, 1, 2)-kernel if and only if Hi has a strong (1, 1, 2)-

kernel, for i ¼ 1; . . .; n.

Proof Let G be a graph of order n� 2 and suppose that

H1; . . .;Hn are vertex disjoint nonempty graphs. Suppose

that Hi has a strong (1, 1, 2)-kernel Ji, for i ¼ 1; . . .; n. We

shall show that J ¼
Sn

i¼1 Ji is a strong (1, 1, 2)-kernel of

G � H. The independence of J is obvious, then it suffices to

show that J is a strong (1, 1, 2)-dominating set. Every

vertex from VðHiÞ n J is strong (1, 1, 2)-dominated by

Ji � J, for i ¼ 1; . . .; n . Let us consider the vertex

xi 2 VðGÞ. Clearly, xi is 2-dominated by Ji since pi � 2 and

there exists a vertex y
j
t 2 Ji � VðHjÞ, such that j 6¼ i and

vertices xi, xj are adjacent in G. Then, by the definition of

G � H, it holds dG�Hðxi; yjtÞ ¼ 2. Consequently, J is a strong

(1, 1, 2)-kernel of G � H.

Assume now that G � H has a strong (1, 1, 2)-kernel.

Firstly, we show that J \ VðGÞ ¼ ;. Suppose on the

contrary that J \ VðGÞ 6¼ ; and let xi 2 J \ VðGÞ. Then,

VðHiÞ \ J ¼ ;; hence, vertices from VðHiÞ are not 2-

dominated by J. It is a contradiction with the assumption

that J is a strong (1, 1, 2)-kernel. This means that J �
Sn

i¼1 VðHiÞ and moreover J ¼
Sn

i¼1 Ji, where Ji is a strong

(1, 1, 2)-kernel of Hi. Consequently, Hi has a strong

(1, 1, 2)-kernel for all i ¼ 1; . . .; n. Thus ends the proof. h

From the above characterization, we obtain the value of

parameters of a strong (1, 1, 2)-kernel in the corona G � H.

The number of all strong (1, 1, 2)-kernels in a graph G we

denote by rð1;1;2ÞðGÞ.
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Corollary 5 Let G be a connected graph of order n� 2 and

H be a sequence of n vertex disjoint nonempty graphs

H1; . . .;Hn of order pi � 2 with a strong (1, 1, 2)-kernel.

Then,

Ið1;1;2ÞðG � HÞ ¼
Xn

i¼1

Ið1;1;2ÞðHiÞ;

ið1;1;2ÞðG � HÞ ¼
Xn

i¼1

ið1;1;2ÞðHiÞ;

rð1;1;2ÞðG � HÞ ¼
Yn

i¼1

rð1;1;2ÞðHiÞ:

The problem of the existence of strong (1, 1, 2)-kernels

in the corona of the graphs G � H is more complicated if

for at least one of a graph Hi, i ¼ 1; . . .; n it holds a con-

dition jVðHiÞj� 1. The next theorem gives a complete

characterization of the existence of a strong (1, 1, 2)-kernel

in that case.

Theorem 6 Let G be a connected graph of order n� 2 and

; 6¼ H ¼ ðHiÞi2I¼f1;...;ng be a sequence of graphs, such that

for at least one of a graph Hi; 1� i� n, it holds a condition

jVðHiÞj � 1. A subset J	 � VðG � HÞ is a strong (1, 1, 2)-

kernel if and only if J is a nonempty independent set of G,

such that J	 ¼ J [
S

i2I1
Ji, where I 
 I1 ¼ fi : xi 62 Jg,

Ji � VðHiÞ and Hj ¼ ; for j 2 I n I1 and for each i 2 I 1

there exists xp 2 NGðxiÞ n J, such that VðHpÞ 6¼ ; or xi is 2-

distance dominated by J. Moreover, for each i 2 I 1 the

following conditions hold:

(i) if jVðHiÞj ¼ 0, then xi is 2-dominated by J or

(ii) if jVðHiÞj ¼ 1, then xi is dominated by J,

and Ji is

(a) a strong (1, 1, 2)-kernel if NGðxiÞ \ J ¼ ; or

(b) a (2-d)-kernel if NGðxiÞ \ J 6¼ ;.

Proof Let G be a graph of order n� 2 and H 6¼ ; be a

sequence of graphs as in the statements of the theorem.

1. Suppose that J is a nonempty independent set of a

graph G. We shall prove that the set J	 ¼ J [
S

i2I1
Ji is a

strong (1, 1, 2)-kernel, where I1 ¼ fi : xi 62 Jg and

Ji � VðHiÞ. Assume that for each i 2 I1 there exists

xp 2 NGðxiÞ n J, such that VðHpÞ 6¼ ; or xi is 2-distance

dominated by J and VðHjÞ ¼ ; for j 2 I n I1. Suppose that

the condition (i) or (ii) is valid. Assume that also the set

Ji � VðHiÞ, i 2 I1 satisfies the condition (a) or (b). It is

obvious that J and Ji are independent sets. To prove the

independence of J	, let us consider vertices xk and y
j
t, such

that xk 2 J and y
j
t 2 Jj. From the fact that J	 ¼ J [

S
i2I1

Ji,

where I 1 ¼ fi : xi 62 Jg, it is clear that k 6¼ j; hence, xk and

y
j
t are not adjacent. If we consider that vertices y

j
t 2 Jj and

yik 2 Ji, then the condition of independence is obvious

because the sets Hj and Hi are disjoint. Hence, J	 is an

independent set. Now we shall show that J	 is a strong

(1, 1, 2)-dominating set. Let us consider a vertex not

belonging to J	. Clearly, it belongs to VðHiÞ n Ji; i 2 I 1 or

VðGÞ n J. Without loss of generality denote these vertices

by yit or xi, respectively. Then, we consider the following

cases:

1.1. yit 2 VðHiÞ n Ji for i 2 I1.

If Ji satisfies the condition (a), then Ji is a strong

(1, 1, 2)-kernel. Hence, the vertex yit is strong (1, 1, 2)-

dominated by Ji.

If Ji satisfies the condition (b), then the vertex yit is 2-

dominated by Ji. Since the vertex xi 62 J and from the fact

that NGðxiÞ \ J 6¼ ;, there exists a vertex xk 2 J, such that

dGðyit; xkÞ ¼ 2. Hence, yit is strong (1, 1, 2)-dominated by

J	.
1.2. xi 2 VðGÞ n J for i 2 I 1.

We distinguish the following possibilities:

If the condition (a) or (b) hold, then the vertex xi is 2-

dominated by Ji � VðHiÞ. Moreover, from the assumption,

there exists xp 2 NGðxiÞ n J, such that VðHpÞ 6¼ ;. Hence,

there is y
p
t 2 Jp, such that dGðypt ; xiÞ ¼ 2. Otherwise, xi is 2-

distance dominated by J. Therefore, xi is strong (1, 1, 2)-

dominated by J	.
If the condition (i) is valid, then jVðHiÞj ¼ 0 and xi is 2-

dominated by J. By the assumption xi is 2-distance

dominated by Jp if VðHpÞ 6¼ ; or is 2-distance dominated

by J. If the condition (ii) holds, clearly jVðHiÞj ¼ 1, then xi
is dominated by J and is dominated by yi1 2 Ji. Hence, xi is

2-dominated. Analogously as above, we can show that xi is

2-distance dominated. Therefore, xi is strong (1, 1, 2)-

dominated by J	.
2. Conversely, suppose that a set J	 � VðG � HÞ is a

strong (1, 1, 2)-kernel and the sequence of graphs H is as

in the statements of the theorem. From the definition of

G � H and by the fact that for at least one of a graph Hi,

1� i� n, it holds jVðHiÞj� 1 it is clear that J	 \ VðGÞ 6¼ ;
and J	 \ VðHÞ 6¼ ;. It follows that there exists a vertex

xt 2 J	 \ VðGÞ and then J	 \ VðHtÞ ¼ ;, otherwise a

contradiction to the fact that J	 is a strong (1, 1, 2)-kernel.

Moreover, by the assumption, if xt 2 J	, then VðHtÞ ¼ ;.

There also exists a vertex y
j
k 2 J	 \ VðHjÞ and xj 62 J	.

From the above, we deduce that J	 ¼ J [
S

i2I 1
Ji, where

J � VðGÞ, Ji � VðHiÞ and I 1 ¼ fi : xi 62 Jg, VðHjÞ ¼ ;
for j 2 I n I 1. Because for at least one of the graph Hi

there is jVðHiÞj � 1, it is clear that J � VðGÞ is nonempty.

It is also obvious that J and Ji for i ¼ 1; . . .; n, are

independent sets. Let us consider an arbitrary vertex from

VðG � HÞ n J	. Then, by the definition of J	, it does not

belong to J and to Ji, i 2 I1. Since J	 is a strong (1, 1, 2)-
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kernel, then there exist three vertices belonging to J	, such

that two of them are adjacent to considered vertex and

there is a vertex in J	 being at the distance 2 from a given

vertex. Let us consider an arbitrary vertex x 62 J	 and firstly

assume that x 2 VðGÞ n J, we denote this vertex as xi,

i 2 I1. From the fact that xi is 2-distance dominated by J	,

there exists a vertex xp 2 NGðxiÞ n J, such that VðHpÞ 6¼ ;
and then dG�Hðxi; ypt Þ ¼ 2 for y

p
t 2 Jp � VðHpÞ or there

exists a vertex xt 2 J, such that dGðxi; xtÞ ¼ 2, i.e., xi is

2-distance dominated by J.

Since a vertex xi is 2-dominated by J	 there must exist

two vertices u; v 2 NGðxiÞ, such that u; v 2 J	. We consider

the following cases:

2.1. jVðHiÞj ¼ 0. Then, u; v 2 J � VðGÞ. Hence, xi is

2-dominated by J and the condition (i) holds. This situation

is presented on Fig. 1 taking account above considerations

related to 2-distance domination.

2.2. jVðHiÞj ¼ 1. Clearly, VðHiÞ ¼ fug and then a

vertex u 2 Ji dominates the vertex xi and it is obvious that

u is adjacent to xi. There also exists a vertex v 2 J � VðGÞ
which dominates the vertex xi. Hence, xi is dominated by

J and the condition (ii) holds. See Fig. 2.

2.3. jVðHiÞj � 2. Then, we consider the following

possibilities:

2.3.1. if NGðxiÞ \ J ¼ ;, then u; v 2 Ji � VðHiÞ and Ji
must be a strong (1, 1, 2)-kernel. Otherwise, each vertex

yipi ; pi [ 1, such that yipi 2 VðHiÞ n Ji is not strong (1, 1, 2)-

dominated by J	. Hence, the condition (a) holds. See

Fig. 3.

2.3.2. if NGðxiÞ \ J 6¼ ;, then u 2 J and it is necessary

that a graph Hi has a (2-d)-kernel Ji. Therefore, a vertex

v 2 Ji and each vertex yipi ; pi [ 1, such that yipi 2 VðHiÞ n Ji
is 2-dominated by Ji and dG�Hðu; yipiÞ ¼ 2, hence yipi is

strong (1, 1, 2)-dominated by J	. See Fig. 4.

Assuming that the vertex x 62 J	 belongs to VðHiÞ n Ji
we prove analogously as in cases 2.3.1. and 2.3.2 for the

vertex yipi .

Thus, the theorem is proved. h
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