Torsion phenomena for zero-cycles on a product of curves over a number field

Evangelia Gazaki ${ }^{1 *}$ © and Jonathan Love ${ }^{2}$

${ }^{*}$ Correspondence: eg4va@virginia.edu
${ }^{1}$ Department of Mathematics, University of Virginia, 221 Kerchof Hall, 141 Cabell Dr., Charlottesville, VA 22904, USA Full list of author information is available at the end of the article

Abstract

For a smooth projective variety X over an algebraic number field k a conjecture of Bloch and Beilinson predicts that the kernel of the Albanese map of X is a torsion group. In this article we consider a product $X=C_{1} \times \cdots \times C_{d}$ of smooth projective curves and show that if the conjecture is true for any subproduct of two curves, then it is true for X. For a product $X=C_{1} \times C_{2}$ of two curves over \mathbb{Q} with positive genus we construct many nontrivial examples that satisfy the weaker property that the image of the natural $\operatorname{map} J_{1}(\mathbb{Q}) \otimes J_{2}(\mathbb{Q}) \xrightarrow{\varepsilon} C H_{0}\left(C_{1} \times C_{2}\right)$ is finite, where J_{i} is the Jacobian variety of C_{i}. Our constructions include many new examples of non-isogenous pairs of elliptic curves E_{1}, E_{2} with positive rank, including the first known examples of rank greater than 1. Combining these constructions with our previous result, we obtain infinitely many nontrivial products $X=C_{1} \times \cdots \times C_{d}$ for which the analogous map ε has finite image.

Keywords: Zero-cycles, Elliptic curves, Jacobians of curves, Somekawa K-groups

1 Introduction

Let X be a smooth projective variety over an algebraic number field k. Consider the Chow group $\mathrm{CH}_{0}(X)$ of zero-cycles modulo rational equivalence on X and denote by $F^{1}(X)$ the subgroup of cycles of degree zero. Let Alb_{X} denote the Albanese variety of X, and $F^{2}(X)$ the kernel of the Albanese map

$$
\operatorname{alb}_{X}: F^{1}(X) \rightarrow \operatorname{Alb}_{X}(k)
$$

Set $X_{\overline{\mathbb{Q}}}:=X \otimes_{k} \overline{\mathbb{Q}}$. The following is a famous conjecture of Beilinson [1].
Conjecture 1.1 The Albanese map $F^{1}\left(X_{\overline{\mathbb{Q}}}\right) \rightarrow \operatorname{Alb}_{X_{\overline{\mathbb{Q}}}}(\overline{\mathbb{Q}})$ is injective. That is, $F^{2}\left(X_{\overline{\mathbb{Q}}}\right)=0$.
When C is a curve, the Albanese map coincides with the isomorphism between $\operatorname{Pic}^{0}(C)$ and the k-rational points of the Jacobian J_{C} of C, and hence $F^{2}(C)=0$ in this case. In higher dimensions however there is hardly any evidence for this conjecture.

Next suppose that k is an arbitrary algebraic number field. Using standard push-forward and pull-back arguments for Chow groups, the above conjecture implies the following.

Conjecture 1.2 The group $F^{2}(X)$ is torsion.

The goal of this article is to obtain some weak evidence for Conjecture 1.2 for a product $X=C_{1} \times \cdots \times C_{d}$ of smooth projective curves over k.

A product formula for Somekawa K-groups and applications

Let J_{i} be the Jacobian variety of C_{i}. Under the assumption $X(k) \neq \emptyset$, Raskind and Spiess ([14, (1.4)]) established an isomorphism

$$
\mathrm{CH}_{0}(X) \simeq \mathbb{Z} \oplus \bigoplus_{\nu=1}^{d} \bigoplus_{1 \leq i_{1}<\cdots<i_{v} \leq d} K\left(k ; J_{i_{1}}, \ldots, J_{i_{\nu}}\right),
$$

which in turn yields an isomorphism (see [19, p. 4])

$$
F^{2}(X) \simeq \bigoplus_{\nu=2}^{d} \bigoplus_{1 \leq i_{1}<\cdots<i_{\nu} \leq d} K\left(k ; J_{i_{1}}, \ldots, J_{i_{v}}\right),
$$

where $K\left(k ; J_{i_{1}}, \ldots, J_{i_{v}}\right)$ is the Somekawa K-group attached to $J_{i_{1}}, \ldots, J_{i_{v}}$ (cf. [17]). For semiabelian varieties G_{1}, \ldots, G_{r} over k, the K-group $K\left(G_{1}, \ldots, G_{r}\right)$ is a generalization of the Milnor K-group $K_{r}^{M}(k)$ of the field k. In fact when $G_{1}=\cdots=G_{r}=\mathbb{G}_{m}$ there is an isomorphism $K\left(\mathbb{G}_{m}, \cdots, \mathbb{G}_{m}\right) \simeq K_{r}^{M}(k)$. For the latter, there is a well-defined map

$$
K_{r}^{M}(k) \otimes K_{s}^{M}(k) \rightarrow K_{r+s}^{M}(k)
$$

for $r, s \geq 0$, given by concatenation of symbols. In Sect. 3 we prove the following analog for Somekawa K-groups attached to abelian varieties.

Proposition 1.3 (cf. Proposition 3.1) Let A_{1}, \ldots, A_{r} be abelian varieties over a perfect field k with $r \geq 3$. Let L / k be a finite extension. There is a well-defined homomorphism

$$
\Phi_{L}: K\left(k ; A_{1}, A_{2}\right) \otimes A_{3}(L) \otimes \cdots \otimes A_{r}(L) \rightarrow K\left(k ; A_{1}, \ldots, A_{r}\right) .
$$

In the simplest case of an element $\left\{a_{1}, a_{2}\right\}_{k / k} \otimes a_{3} \otimes \cdots \otimes a_{r}$ with $a_{i} \in A_{i}(k)$ for all i, the map Φ_{L} is simply given by concatenation,

$$
\Phi_{L}\left(\left\{a_{1}, a_{2}\right\}_{k / k} \otimes a_{3} \otimes \cdots \otimes a_{r}\right)=\left\{a_{1}, \ldots, a_{r}\right\}_{k / k}
$$

The general definition is more involved; we omit it here for the purposes of the introduction. We will refer to the homomorphism Φ as a product formula for Somekawa K-groups attached to abelian varieties. While the proof of Proposition 1.3 is relatively straightforward, it yields the following important corollary, allowing us to deduce Conjecture 1.2 for a product of arbitrarily many curves, assuming it is known for each subproduct of two curves.

Corollary 1.4 (cf. Corollary 3.3) Let $d \geq 2$ and $X=C_{1} \times \cdots \times C_{d}$ be a product of smooth projective curves over a number field k with $C_{i}(k) \neq \emptyset$ for $i \in\{1, \ldots, d\}$. Suppose that for each $1 \leq i<j \leq d$ the group $F^{2}\left(C_{i} \times C_{j}\right)$ is torsion. Then $F^{2}(X)$ is torsion.

The componentwise subgroup

Proving Conjecture 1.2 for even a single product $X=C_{1} \times C_{2}$ of two non-rational curves C_{1}, C_{2} seems to be far out of reach. To date, the best results towards understanding the structure of $F^{2}(X)$ are due to Langer and Saito [12] and Langer and Raskind [11], who proved that for the self-product $X=E \times E$ of an elliptic curve E over \mathbb{Q} without and with potential CM respectively, the p-primary torsion subgroup of $\mathrm{CH}_{0}(X)$ is finite for every prime p coprime to the conductor N of E.

In this article we give evidence for a weaker question. We consider the homomorphism

$$
\varepsilon_{X}: \mathrm{CH}_{0}\left(C_{1}\right) \otimes \cdots \otimes \mathrm{CH}_{0}\left(C_{d}\right) \rightarrow \mathrm{CH}_{0}(X)
$$

induced by the intersection product. We define the componentwise subgroup $F^{2}(X)_{\text {comp }}$ of $F^{2}(X)$ to be $F^{2}(X)_{\text {comp }}:=F^{2}(X) \cap \operatorname{Im}\left(\varepsilon_{X}\right)$ (see Definition 2.3). We propose the following conjecture, which is automatically implied by Conjecture 1.2.

Conjecture 1.5 The subgroup $F^{2}(X)_{\text {comp }}$ is finite.
To the authors' knowledge this article is the first instance where Conjecture 1.5 is stated at this level of generality. In the special case when $X=C_{1} \times C_{2}$ is a product of two curves with $X(k) \neq \emptyset$, the group $F^{2}(X)_{\text {comp }}$ is precisely the image of the natural map

$$
\varepsilon_{X}: J_{1}(k) \otimes J_{2}(k) \rightarrow F^{2}(X)
$$

When both C_{i} are elliptic curves, this conjecture has been considered in [8] and [13], both of which provide new examples of such surfaces X for which $F^{2}(X)_{\text {comp }}$ is finite. Note that if the base change X_{L} satisfies Conjecture 1.5 for all finite extensions L / k, then X satisfies Conjecture 1.2 (see Remark 2.17), so Conjecture 1.5 can be seen as a first step towards Conjecture 1.2 for products of curves.

Detecting torsion classes for a product of two curves

In Sect. 4 we construct many nontrivial examples for which Conjecture 1.5 can be verified. For the sake of introduction, we choose to state our results in their simplest form.

Assume the curves C_{1} and C_{2} each have a distinguished rational point $O_{i} \in C_{i}(k)$. Then every k-rational point (P, Q) on $X=C_{1} \times C_{2}$ gives rise to a zero-cycle in $F^{2}(X)_{\text {comp }}$, namely

$$
z_{P, Q}:=[P, Q]-\left[P, O_{2}\right]-\left[O_{1}, Q\right]-\left[O_{1}, O_{2}\right]=\pi_{1}^{\star}\left([P]-\left[O_{1}\right]\right) \cdot \pi_{2}^{\star}\left([Q]-\left[O_{2}\right]\right)
$$

where $\pi_{i}: X \rightarrow C_{i}$ is the natural projection. When X is a product of two elliptic curves, such zero-cycles in fact generate $F^{2}(X)_{\text {comp }}$, but this is generally not true for higher genus curves. The following key proposition can be used to show that certain cycles of this form are torsion.

Proposition 1.6 (cf. Proposition 4.5) Let H be an elliptic (resp. hyperelliptic) curve, let $P \in H(k)$, and let $\phi_{i}: H \rightarrow C_{i}$ be a regular map for each $i=1,2$. Suppose there exists $W \in$ $H(\bar{k})$, fixed by negation (resp. the hyperelliptic involution), such that $\left[\phi_{i}(W)\right]-\left[O_{i}\right] \in J_{i}(\bar{k})$ is torsion for $i=1,2$. Then the zero-cycle $z_{\phi_{1}(P), \phi_{2}(P)}$ is torsion.

This proposition is the main new tool we use to construct torsion classes in $F^{2}(X)_{\text {comp }}$. While the result is a relatively direct consequence of Weil reciprocity of the Somekawa K-group $K\left(k ; J_{1}, J_{2}\right)$, its power lies in the fact that its conditions are quite easy to satisfy, allowing us to apply it to large classes of examples.

We first observe two direct consequences of Proposition 1.6 which are likely known to the experts, but we could not find them in the literature at this level of generality. First, any product $X=E_{1} \times E_{2}$ of isogenous rank 1 elliptic curves over a number field satisfies Conjecture 1.5. Second, let E be an elliptic curve over \mathbb{Q} with potential CM by the ring of integers of a quadratic imaginary field K. Suppose that $E(\mathbb{Q})$ has rank 1 and $E(K)$ has rank 2. Then Conjecture 1.5 holds for the base change $E_{K} \times E_{K}$ to K (cf. Proposition 4.8).

The following Corollary gives a less trivial application of Proposition 1.6.

Corollary 1.7 (cf. Proposition 4.7) Let H be a hyperelliptic curve over k with Jacobian J. Suppose $\operatorname{rank} J(k)=1$, and that there exists $P, W \in H(k)$, with W fixed by the hyperelliptic involution, and $[P]-[W] \in J(k)$ is of infinite order. Then $H \times H$ satisfies Conjecture 1.5.

There are 860 genus 2 curves over \mathbb{Q} in the LMFDB [18] with conductor at most 10000 satisfying the criteria in Corollary 1.7, assuming that analytic rank equals algebraic rank for each of the curves considered (as predicted by the Birch and Swinnerton-Dyer conjecture). To our knowledge these are the first examples of Conjecture 1.5 (and the first pieces of evidence towards Conjecture 1.2) involving products of higher genus curves of positive rank.
The most substantial contribution of Proposition 1.6 is for products $X=E_{1} \times E_{2}$ of elliptic curves with positive rank over \mathbb{Q} and fully rational 2-torsion, a situation which is discussed in Sect. 4.2. For any such pair of elliptic curves, a theorem of Scholten ([15, Theorem 1]) provides an explicit hyperelliptic curve H of genus 2 over k with explicit regular maps $H \xrightarrow{\phi_{i}} E_{i}$ for $i=1,2 .{ }^{1}$ We thus obtain the following important corollary.

Corollary 1.8 In the above set-up suppose that the set $\left\{z_{\phi_{1}(P), \phi_{2}(P)}: P \in H(k)\right\}$ generates a finite index subgroup of $F^{2}\left(E_{1} \times E_{2}\right)_{\text {comp. }}$. Then $E_{1} \times E_{2}$ satisfies Conjecture 1.5.

We present an algorithm (cf. Algorithm 1) that can be used to check the above criteria computationally. Applying this algorithm to a collection of curves from the LMFDB [18] allowed us to find many explicit examples. This includes the first known examples where $F^{2}(X)_{\text {comp }}$ is finite with E_{1}, E_{2} non-isogenous curves with rank greater than 1 . Specifically, for products $X=E_{1} \times E_{2}$ with E_{1}, E_{2} non-isomorphic elliptic curves over \mathbb{Q} with torsion subgroup $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$, we verify that $F^{2}(X)_{\text {comp }}$ is finite for 2602 pairs of rank 1 curves (out of 4950 pairs tested), 995 pairs of rank 2 curves (out of 4950), 17 pairs of rank 3 curves (out of 190), 3311 pairs with ranks 1 and 2 respectively (out of 10000), 955 pairs with ranks 1 and 3 respectively (out of 10000), and 615 pairs with ranks 2 and 3 respectively (out of 10000). We also found several self-products $E \times E$ satisfying Conjecture 1.5 with E of rank 2 or 3 . We refer to Table 1 for more details.

We note that to our knowledge there are only two previously known constructions of non-isogenous rank 1 pairs with product satisfying Conjecture 1.5. The first one is due to Prasanna and Srinivas, who in an upcoming preprint ${ }^{2}$ [13] constructed two such pairs: one pair of two non-isogenous curves with conductor 37, and the other pair with two non-isogenous curves of conductor 91 . The second construction is due to the second author, who constructed a 2-parameter family $E_{s, t}$ of elliptic curves over a number field k with the property that for each $s \in k$, and all $t_{1}, t_{2} \in k$ outside a finite subset depending on s, if $E_{s, t_{1}}(k)$ and $E_{s, t_{2}}(k)$ both have rank 1, then $E_{s, t_{1}} \times E_{S, t_{2}}$ satisfies Conjecture 1.5. In Sect. 4.3 we recall some details of these constructions.

Products of more curves

The proof of Corollary 1.4 yields the following important corollary, which allows us to produce infinitely many nontrivial products for which Conjecture 1.5 is true.

[^0]Corollary 1.9 Let E_{1}, E_{2} be any of the rank 1 pairs mentioned above such that $F^{2}\left(E_{1} \times\right.$ $\left.E_{2}\right)_{\text {comp }}$ is finite. Let $d \geq 2$ and $X=C_{1} \times \cdots \times C_{d}$ with each C_{i} either an elliptic curve isogenous to E_{1} or E_{2}, or a curve with $C_{i}(\mathbb{Q}) \neq \emptyset$ and $\operatorname{rank}\left(J_{C_{i}}(\mathbb{Q})\right)=0$. Then $F^{2}(X)_{\operatorname{comp}}$ is finite.

The above corollary is one of multiple corollaries we obtain by combining Corollary 1.4 and the various constructions that give finiteness of $F^{2}\left(C_{1} \times C_{2}\right)_{\text {comp }}$.

2 Background

Throughout this article, k will be a perfect field.
Notation 2.1 Let X be a smooth projective variety over k. We will always assume that X has a k-rational point. By a point $x \in X$ we will always mean a closed point and we will denote by $k(x)$ the residue field of x. Given a field extension L / k, we let $X(L)$ denote the set of L-rational points of X with respect to the extension $k \hookrightarrow L$, and X_{L} denote the base change to L. We use parentheses, as in $\left(X_{1}\right)_{L}$, if the variety is labelled with an index.

Given $P \in X(k)$ and a finite extension L / k, we also use P to denote the L-rational point of X_{L} induced by base change. We write $[P]_{L}$ to denote the divisor on X_{L} supported at P with multiplicity one; if it is clear from context that we are considering divisors on X_{L}, we may drop the subscript and just write $[P]$.

2.1 Zero-cycles

Let X be a smooth projective variety over k. The group $\mathrm{CH}_{0}(X)$ is the quotient of the free abelian group $Z_{0}(X):=\bigoplus_{x \in X} \mathbb{Z}$ on all closed points of X modulo rational equivalence. The generators of $\mathrm{CH}_{0}(X)$ will be written as classes $[x]$ of closed points. There is a well-defined degree map

$$
\operatorname{deg}: \mathrm{CH}_{0}(X) \rightarrow \mathbb{Z},[x] \mapsto[k(x): k]
$$

We will denote by $F^{1}(X)$ the kernel of deg. Moreover, there is a higher dimensional analog of the Abel-Jacobi map,

$$
\operatorname{alb}_{X}: F^{1}(X) \rightarrow \operatorname{Alb}_{X}(k)
$$

called the Albanese map of X, where Alb_{X} is the Albanese variety of X (dual to the Picard variety $\operatorname{Pic}^{0}(X)$). When X is a curve, alb_{X} is precisely the Abel-Jacobi map, and $\operatorname{Alb}_{X}=J_{X}$ is the usual Jacobian of X. We will denote by $F^{2}(X)$ the kernel of alb_{X}.

From now on we suppose $X=C_{1} \times \cdots \times C_{d}$ is a product of smooth projective curves over k. In this case $\operatorname{Alb}_{X}=J_{1} \times \cdots \times J_{d}$, where J_{i} is the Jacobian of C_{i}, for $i \in\{1, \ldots, d\}$. Let $\pi_{i}: X \rightarrow C_{i}$ be the projection to the i-th component for $i \in\{1, \ldots, d\}$, which induces a pullback homomorphism, $\pi_{i}^{\star}: \mathrm{CH}_{0}\left(C_{i}\right) \rightarrow \mathrm{CH}_{0}(X)$. We can define a zerocycle on X given the input of a zero-cycle on each component. Namely, we consider the homomorphism

$$
\begin{equation*}
\varepsilon_{X}: \mathrm{CH}_{0}\left(C_{1}\right) \otimes \cdots \otimes \mathrm{CH}_{0}\left(C_{d}\right) \rightarrow \mathrm{CH}_{0}(X) \tag{2.2}
\end{equation*}
$$

defined as follows. Let $x_{i} \in C_{i}$ for each $i \in\{1, \ldots, d\}$. Define

$$
\varepsilon_{X}\left(\left[x_{1}\right] \otimes \cdots \otimes\left[x_{d}\right]\right)=\pi_{1}^{\star}\left(\left[x_{1}\right]\right) \cdot \pi_{2}^{\star}\left(\left[x_{2}\right]\right) \cdots \cdots \pi_{d}^{\star}\left(\left[x_{d}\right]\right),
$$

and extend linearly. Here \cdot is the intersection product.

Definition 2.3 We define the componentwise subgroup $\mathrm{CH}_{0}(X)_{\text {comp }}$ of $\mathrm{CH}_{0}(X)$ to be the image of ε_{X}, and $F^{2}(X)_{\text {comp }}:=\mathrm{CH}_{0}(X)_{\text {comp }} \cap F^{2}(X)$.

It is not known whether ε_{X} is surjective onto $\mathrm{CH}_{0}(X)$, but we can obtain a surjective map by considering the base change of X to the residue fields of all closed points x of X. Given $x \in X$, denote by ε_{x} the composition

$$
\varepsilon_{x}: \mathrm{CH}_{0}\left(\left(C_{1}\right)_{k(x)}\right) \otimes \cdots \otimes \mathrm{CH}_{0}\left(\left(C_{d}\right)_{k(x)}\right) \xrightarrow{\varepsilon X_{k(x)}} \mathrm{CH}_{0}\left(X_{k(x)}\right) \xrightarrow{\left(\pi_{x}\right)_{\star}} \mathrm{CH}_{0}(X),
$$

where $\left(\pi_{x}\right)_{\star}$ is the proper push-forward induced by the base change $X_{k(x)} \rightarrow X$. Then

$$
\begin{equation*}
\bigoplus_{x \in X} \mathrm{CH}_{0}\left(\left(C_{1}\right)_{k(x)}\right) \otimes \cdots \otimes \mathrm{CH}_{0}\left(\left(C_{d}\right)_{k(x)}\right) \xrightarrow{\oplus \varepsilon_{x}} \mathrm{CH}_{0}(X) \tag{2.4}
\end{equation*}
$$

is a surjection. For, every closed point $x \in X$ has a $k(x)$-rational point $\left(x_{1}, \ldots, x_{d}\right) \in$ $C_{1}(k(x)) \times \cdots \times C_{d}(k(x))$ lying above it, so that $\varepsilon_{x}\left(\left[x_{1}\right] \otimes \cdots \otimes\left[x_{d}\right]\right)=[x]$.
From now on assume that for each $i=1, \ldots, d$ there exists a fixed k-rational point $O_{i} \in C_{i}(k)$, so that we have an isomorphism

$$
\operatorname{alb}_{C_{i}}: F^{1}\left(C_{1}\right)=\operatorname{Pic}^{0}\left(C_{i}\right) \stackrel{\simeq}{\rightarrow} J_{i}(k),
$$

and a decomposition $\mathrm{CH}_{0}\left(C_{i}\right) \xrightarrow{\simeq} \mathbb{Z} \oplus J_{i}(k)$, sending the class $\left[x_{i}\right.$] of a closed point to the pair $\left(\left[k\left(x_{i}\right): k\right],\left[x_{i}\right]-\left[k\left(x_{i}\right): k\right]\left[O_{i}\right]\right)$. We get a similar decomposition, $\mathrm{CH}_{0}\left(\left(C_{i}\right)_{L}\right) \simeq$ $\mathbb{Z} \oplus J_{i}(L)$, over any finite extension L / k by using the pullback [$\left.O_{i}\right]_{L}$ of the zero-cycle [O_{i}]. By expanding the tensor products in (2.4), we obtain a surjection

$$
\begin{equation*}
\mathbb{Z} \oplus \bigoplus_{v=1}^{d} \bigoplus_{1 \leq i_{1}<\cdots<i_{v} \leq d}\left(\bigoplus_{L / k \text { finite }} J_{i_{1}}(k(x)) \otimes \cdots \otimes J_{i_{v}}(k(x))\right) \rightarrow \mathrm{CH}_{0}(X) \tag{2.5}
\end{equation*}
$$

Raskind and Spiess determined the kernel of this map. The relations are given by Somekawa K-groups $K\left(k ; J_{i_{1}}, \ldots, J_{i_{v}}\right)$. Before we recall their precise result, we review some necessary facts about Somekawa K-groups.

2.2 The Somekawa K-group

Let G_{1}, \ldots, G_{r} be semi-abelian varieties over k. The Somekawa K-group $K\left(k ; G_{1}, \ldots, G_{r}\right)$ attached to G_{1}, \ldots, G_{r} was defined by K. Kato and Somekawa in [17], and it is a generalization of the Milnor K-group $K_{r}^{M}(k)$.
We note that the signs need to be dropped from the original definition (see [14, p. 10] for the correction). In what follows we will only need the explicit definition of this K-group for abelian varieties, so we omit the more general cases.

Notation 2.6 Let A be an abelian variety over k. Given a tower $F / L / k$ of field extensions, we denote by $\operatorname{res}_{F / L}: A(L) \rightarrow A(F)$ and $N_{F / L}: A(F) \rightarrow A(L)$ the usual restriction and norm map for abelian varieties. Here for $N_{F / L}$ to be well-defined we need to assume F / L is a finite extension.
If we want to draw attention to the choice of extension $\phi: L \rightarrow F$ (for instance, if we are considering multiple embeddings of L into F), we may use the notation $\operatorname{res}_{\phi}$ or N_{ϕ}. The restriction map is in fact defined for an arbitrary field extension F / L; it is the obvious embedding induced by precomposing with the morphism $\operatorname{Spec} F \rightarrow \operatorname{Spec} L$. The norm map is only defined for finite extensions. We note that when F / L is a finite Galois extension with Galois group G, then $N_{F / L}(a)=\sum_{g \in G} g a$, for $a \in A(F)$.

With these norm and restriction maps, an abelian variety A becomes a Mackey functor over k (cf. [14, p. 13]). The following definition is due to Kahn.

Definition 2.7 (see [6]) Let A_{1}, \ldots, A_{r} be abelian varieties over k. Their Mackey product $\left(A_{1} \otimes^{M} \cdots \otimes^{M} A_{r}\right)(k)$ is defined to be $\left(\bigoplus_{F / k \text { finite }} A_{1}(F) \otimes \cdots \otimes A_{r}(F)\right) /(\mathbf{P F})$ where (PF) is the subgroup generated by the following type of elements.

Let $F / L / k$ be a tower of finite extensions. Let $a_{i} \in A_{i}(F)$ for some $i \in\{1, \ldots, r\}$ and $a_{j} \in A_{j}(L)$ for every $j \neq i$. We require

$$
\begin{equation*}
\left(a_{1} \otimes \cdots \otimes N_{F / L}\left(a_{i}\right) \otimes \cdots \otimes a_{r}\right)-\left(\operatorname{res}_{F / L}\left(a_{1}\right) \otimes \cdots \otimes a_{i} \otimes \cdots \otimes \operatorname{res}_{F / L}\left(a_{r}\right)\right) \in(\mathbf{P F}) \tag{2.8}
\end{equation*}
$$

The relation (2.8) is known as projection formula. The elements of $\left(A_{1} \otimes^{M} \ldots \otimes^{M} A_{r}\right)(k)$ are traditionally denoted as symbols $\left\{a_{1}, \ldots, a_{r}\right\}_{L / k}$, for a given finite extension L / k and $a_{i} \in$ $A_{i}(L), i \in\{1, \ldots, r\}$. Using the fact that $N_{F / L} \circ \operatorname{res}_{F / L}=[F: L]$, an immediate consequence of the projection formula is that $[F: L]\left\{a_{1}, \ldots, a_{r}\right\}_{L / k}=\left\{\operatorname{res}_{F / L}\left(a_{1}\right), \ldots, \operatorname{res}_{F / L}\left(a_{r}\right)\right\}_{F / k}$ for any tower $F / L / k$ of finite extensions. In particular, symbols are preserved under isomorphisms of extensions of k.
Below we give the definition of the Somekawa K-group $K\left(k ; A_{1}, \ldots, A_{r}\right)$ attached to abelian varieties A_{1}, \ldots, A_{r}. For the more general definition we refer to [17, p. 107].

Definition 2.9 ([17, p. 107]) The Somekawa K-group $K\left(k ; A_{1}, \ldots, A_{r}\right)$ attached to A_{1}, \ldots, A_{r} is defined to be

$$
K\left(k ; A_{1}, \ldots, A_{r}\right):=\left(A_{1} \otimes^{M} \ldots \otimes^{M} A_{r}\right)(k) /(\mathbf{W R}),
$$

where (WR) is the subgroup generated by the following types of elements. Let C be a smooth projective curve over k.
For each closed point $x \in C$, let $\iota_{x} \in C(k(x))$ be the canonical inclusion Spec $k(x) \rightarrow$ C, and let the extension $k \rightarrow k(x)$ be determined by composing l_{x} with the structure morphism $C \rightarrow$ Spec k.
For every $f \in k(C)^{\times}$and every collection of regular maps $g_{i}: C \rightarrow A_{i}$ for $i \in\{1, \ldots, r\}$ we insist that

$$
\begin{equation*}
\sum_{x \in C} \operatorname{ord}_{x}(f)\left\{g_{1} \circ \iota_{x}, \ldots, g_{r} \circ \iota_{x}\right\}_{k(x) / k} \in(\mathbf{W R}) \tag{2.10}
\end{equation*}
$$

The generators of $K\left(k ; A_{1}, \ldots, A_{r}\right)$ will again be denoted as symbols $\left\{a_{1}, \ldots, a_{r}\right\}_{L / k}$. The relation (2.10) is known as Weil reciprocity. When $r=1$ we have an isomorphism $K(k ; A) \simeq A(k)$. When k is algebraically closed, this follows by [16, Chapter III, Theorem $1])$. For a proof in the general case see [4, Corollary 3.7].

Notation 2.11 We will denote by $\operatorname{Symb}_{k}\left(A_{1}, \ldots, A_{r}\right)$ the subgroup of $K\left(k ; A_{1}, \ldots, A_{r}\right)$ generated by symbols $\left\{a_{1}, \ldots, a_{r}\right\}_{k / k}$ defined over k.

2.3 The norm and restriction maps on K-groups

Let L / k be a finite extension. There is a restriction map on K-groups

$$
\operatorname{res}_{L / k}: K\left(k ; A_{1}, \ldots, A_{r}\right) \rightarrow K\left(L ;\left(A_{1}\right)_{L}, \ldots,\left(A_{r}\right)_{L}\right)
$$

defined as follows. Let F / k be a finite extension. Since we assumed that the base field k is perfect, the primitive element theorem implies that the extension F / k is simple. That is, $F \simeq k[X] /(f(X))$ for some irreducible polynomial $f(X) \in k[X]$ (where restricting the isomorphism to the constant field gives the embedding $k \hookrightarrow F$). This gives an isomorphism

$$
F \otimes_{k} L \simeq L[X] /(f(X)) \simeq \prod_{j=1}^{n} L[X] /\left(f_{j}(X)\right)=\prod_{j=1}^{n} L_{j}
$$

where $f(X)=\prod_{j} f_{j}(X)$ is the factorization of $f(X)$ into irreducible polynomials in $L[X]$. For each j, the given extensions L / k and F / k induce canonical extensions L_{j} / L (by inclusion of scalars $\left.L \rightarrow L[X] /\left(f_{j}(X)\right)\right)$ and $L_{j} / F\left(\right.$ by $k[X] /(f(X)) \rightarrow L[X] /(f(X)) \rightarrow L[X] /\left(f_{j}(X)\right)$, sending $x \mapsto x$ and constants along the inclusion $k \hookrightarrow L)$.
Given $a_{i} \in A_{i}(F)$ for $i \in\{1, \ldots, r\}$, we define

$$
\begin{equation*}
\operatorname{res}_{L / k}\left(\left\{a_{1}, \ldots, a_{r}\right\}_{F / k}\right)=\sum_{j=1}^{n}\left\{\operatorname{res}_{L_{j} / F}\left(a_{1}\right), \ldots, \operatorname{res}_{L_{j} / F}\left(a_{r}\right)\right\}_{L_{j} / L} . \tag{2.12}
\end{equation*}
$$

We refer to $[17,(1.3)]$ for a definition of the restriction map in the imperfect case.
Moreover, there is a norm map

$$
N_{L / k}: K\left(L ;\left(A_{1}\right)_{L}, \ldots,\left(A_{r}\right)_{L}\right) \rightarrow K\left(k ; A_{1}, \ldots, A_{r}\right)
$$

sending a symbol $\left\{b_{1}, \ldots, b_{r}\right\}_{F / L}$ to $\left\{b_{1}, \ldots, b_{r}\right\}_{F / k}$, with the extension F / k determined by composing the embeddings $k \hookrightarrow L \hookrightarrow F$. As usual, we have an equality $N_{L / k} \circ \operatorname{res}_{L / k}=$ [$L: k]$.

2.4 K-group of a product of curves

From now on we assume that $X=C_{1} \times \cdots \times C_{d}$ is a product of smooth projective curves over k, with fixed k-rational points $O_{i} \in C_{i}(k)$ for each $i \in\{1, \ldots, d\}$. To each nonempty subset $\left\{i_{1}, \ldots, i_{v}\right\} \subseteq\{1, \ldots, d\}$, we have a Somekawa K-group $K\left(k ; J_{i_{1}}, \ldots, J_{i_{v}}\right)$ associated to the Jacobians $J_{i_{1}}, \ldots, J_{i_{v}}$.

In this setting, Raskind and Spiess ([14, Corollary 2.4.1]) established an isomorphism

$$
\begin{equation*}
\widehat{\varepsilon}: \mathbb{Z} \oplus \bigoplus_{\nu=1}^{d} \bigoplus_{1 \leq i_{1}<\cdots<i_{\nu} \leq d} K\left(k ; J_{i_{1}}, \ldots, J_{i_{\nu}}\right) \stackrel{\cong}{\rightrightarrows} \mathrm{CH}_{0}(X) . \tag{2.13}
\end{equation*}
$$

The map $\widehat{\varepsilon}$ is quite explicit. Given a finite extension $k \hookrightarrow L$ and a symbol $\left\{a_{i_{1}}, \ldots, a_{i_{v}}\right\}_{L / k} \in K\left(k ; J_{i_{1}}, \ldots, J_{i_{v}}\right)$, define $z_{i} \in \mathrm{CH}_{0}\left(\left(C_{i}\right)_{L}\right)$ by $z_{i}:=a_{i}$ if $i \in\left\{i_{1}, \ldots, i_{v}\right\}$, and $z_{i}:=\left[O_{i}\right]_{L}$ otherwise. Then

$$
\begin{aligned}
\widehat{\varepsilon}\left(\left\{a_{i_{1}}, \ldots, a_{i_{v}}\right\}_{L / k}\right): & =\left(\left(\pi_{L / k}\right)_{\star} \circ \varepsilon_{X_{L}}\right)\left(z_{1} \otimes \cdots \otimes z_{d}\right) \\
& =\left(\pi_{L / k}\right)_{\star}\left(\pi_{1}^{\star}\left(z_{1}\right) \cdot \pi_{2}^{\star}\left(z_{2}\right) \cdots \cdot \pi_{d}^{\star}\left(z_{d}\right)\right),
\end{aligned}
$$

where $\mathrm{CH}_{0}\left(X_{L}\right) \xrightarrow{\left(\pi_{L / k}\right)_{\star}} \mathrm{CH}_{0}(X)$ is the pushforward map induced by base change along L/k.
One can then define a finite filtration on $\mathrm{CH}_{0}(X)$ by setting $\mathrm{Fil}^{0}(X)=\mathrm{CH}_{0}(X)$, and

$$
\operatorname{Fil}^{n}(X):=\widehat{\varepsilon}\left(\bigoplus_{v=n}^{d} \bigoplus_{1 \leq i_{1}<\cdots<i_{v} \leq d} K\left(k ; J_{i_{1}}, \ldots, J_{i_{v}}\right)\right)
$$

for $1 \leq n \leq d$ (see [19, Example 2.2]). This gives identifications $\operatorname{Fil}^{1}(X)=F^{1}(X)=$ $\operatorname{ker}(\operatorname{deg}), \operatorname{Fil}^{2}(X)=F^{2}(X)=\operatorname{ker}\left(\operatorname{alb}_{X}\right)$, and we obtain an isomorphism

$$
\begin{equation*}
\bigoplus_{\nu=2}^{d} \bigoplus_{1 \leq i_{1}<\cdots<i_{v} \leq d} K\left(k ; J_{i_{1}}, \ldots, J_{i_{v}}\right) \simeq F^{2}(X) \tag{2.14}
\end{equation*}
$$

Recall that $\operatorname{Symb}_{k}\left(J_{i_{1}}, \ldots, J_{i_{v}}\right)$ denotes the subgroup of $K\left(k ; J_{i_{1}}, \ldots, J_{i_{v}}\right)$ generated by symbols of the form $\left\{a_{i_{1}}, \ldots, a_{i_{v}}\right\}_{k / k}$ (cf. Notation 2.11). The following lemma follows easily by the explicit description of the map $\widehat{\varepsilon}$.

Lemma 2.15 The isomorphism $\widehat{\varepsilon}$ induces identifications

$$
\mathrm{CH}_{0}(X)_{\mathrm{comp}} \simeq \mathbb{Z} \oplus \bigoplus_{\nu=1}^{d} \bigoplus_{1 \leq i_{1}<\cdots<i_{\nu} \leq d} \operatorname{Symb}_{k}\left(J_{i_{1}}, \ldots, J_{i_{v}}\right)
$$

and

$$
\begin{equation*}
F^{2}(X)_{\mathrm{comp}} \simeq \bigoplus_{\nu=2}^{d} \bigoplus_{1 \leq i_{1}<\cdots<i_{\nu} \leq d} \operatorname{Symb}_{k}\left(J_{i_{1}}, \ldots, J_{i_{\nu}}\right) \tag{2.16}
\end{equation*}
$$

Proof We only prove the first claim. The second follows in a similar manner. It is clear by definition that an element in \mathbb{Z} or in $\operatorname{Symb}_{k}\left(J_{i_{1}}, \ldots, J_{i_{v}}\right)$ maps into $\mathrm{CH}_{0}(X)_{\text {comp }}$. Conversely, write an arbitrary element $z_{1} \otimes \cdots \otimes z_{d} \in \mathrm{CH}_{0}\left(C_{1}\right) \otimes \cdots \otimes \mathrm{CH}_{0}\left(C_{d}\right)$ as

$$
\left(\left(z_{1}-\operatorname{deg}\left(z_{1}\right)\left[O_{1}\right]\right)+\operatorname{deg}\left(z_{1}\right)\left[O_{1}\right]\right) \otimes \cdots \otimes\left(\left(z_{d}-\operatorname{deg}\left(z_{d}\right)\left[O_{d}\right]\right)+\operatorname{deg}\left(z_{d}\right)\left[O_{d}\right]\right)
$$

and expand. Each term in the expansion will have in the i-th component either a multiple of $\left[O_{i}\right.$] or an element of $J_{i}(k)$, and so its image under ε_{X} will be either in $\widehat{\varepsilon}(\mathbb{Z})$ or in $\widehat{\varepsilon}\left(\operatorname{Symb}_{k}\left(J_{i_{1}}, \ldots, J_{i_{v}}\right)\right)$ for some choice of i_{1}, \ldots, i_{v}.

Remark 2.17 All the above discussion shows that if the base change X_{L} satisfies the weaker Conjecture 1.5 for all finite extensions L / k, then $F^{2}(X)$ is generated by torsion elements, so X satisfies Conjecture 1.2

3 Product formula and applications

Proposition 3.1 Let A_{1}, \ldots, A_{r} be abelian varieties over a perfect field k with $r \geq 3$. Let L / k be a finite extension. There is a well-defined homomorphism

$$
\begin{aligned}
\Psi_{k}: & K\left(k ; A_{1}, A_{2}\right) \otimes A_{3}(k) \otimes \cdots \otimes A_{r}(k) \rightarrow K\left(k ; A_{1}, \ldots, A_{r}\right) \\
& \left\{a_{1}, a_{2}\right\}_{F / k} \otimes a_{3} \otimes \cdots \otimes a_{r} \mapsto\left\{a_{1}, a_{2}, \operatorname{res}_{F / k}\left(a_{3}\right) \ldots, \operatorname{res}_{F / k}\left(a_{r}\right)\right\}_{F / k}
\end{aligned}
$$

which extends for every finite extension L / k to a homomorphism

$$
\Phi_{L}: K\left(k ; A_{1}, A_{2}\right) \otimes A_{3}(L) \otimes \cdots \otimes A_{r}(L) \rightarrow K\left(k ; A_{1}, \ldots, A_{r}\right)
$$

given by $\Phi_{L}=N_{L / k} \circ \Psi_{L} \circ\left(\operatorname{res}_{L / k} \otimes 1_{A_{3}} \otimes \cdots \otimes 1_{A_{r}}\right)$, where $N_{L / k}$ and $\operatorname{res}_{L / k}$ are the norm and restriction maps on Somekawa K-groups (see Sect. 2.3).

Proof It is enough to show that the homomorphism Ψ_{k} is well-defined. We first verify the projection formula (2.8). Let $F / K / k$ be a tower of finite extensions, and suppose $a_{1} \in A_{1}(F), a_{2} \in A_{2}(K)$. Moreover, let $a_{i} \in A_{i}(k)$ for $3 \leq i \leq r$. We compute

$$
\begin{aligned}
& \Psi_{k}\left(\left\{a_{1}, \operatorname{res}_{F / K}\left(a_{2}\right)\right\}_{F / k} \otimes a_{3} \otimes \cdots \otimes a_{r}\right) \\
& \quad=\left\{a_{1}, \operatorname{res}_{F / K}\left(a_{2}\right), \operatorname{res}_{F / k}\left(a_{3}\right), \ldots, \operatorname{res}_{F / k}\left(a_{r}\right)\right\}_{F / k} \\
& \quad=\left\{a_{1}, \operatorname{res}_{F / K}\left(a_{2}\right), \operatorname{res}_{F / K}\left(\operatorname{res}_{K / k}\left(a_{3}\right)\right), \ldots, \operatorname{res}_{F / K}\left(\operatorname{res}_{K / k}\left(a_{r}\right)\right)\right\}_{F / k} \\
& \stackrel{(\mathbf{P F F})}{=}\left\{N_{F / K}\left(a_{1}\right), a_{2}, \operatorname{res}_{K / k}\left(a_{3}\right), \ldots, \operatorname{res}_{K / k}\left(a_{r}\right)\right\}_{K / k} \\
& \quad=\Psi_{k}\left(\left\{N_{F / K}\left(a_{1}\right), a_{2}\right\}_{K / k} \otimes a_{3} \otimes \cdots \otimes a_{r}\right) .
\end{aligned}
$$

The symmetric relation for $a_{1} \in A_{1}(K), a_{2} \in A_{2}(F)$ is analogous.
We next verify Weil reciprocity (2.10). Let C be a smooth projective curve over k and suppose we have regular maps $g_{i}: C \rightarrow A_{i}$ for $i=1$, 2. Let $a_{i} \in A_{i}(k)$ for $i \in\{3, \ldots, r\}$. Let $C \xrightarrow{\pi}$ Spec k be the structure morphism. For each $i \in\{3, \ldots, r\}$ define $g_{i}: C \rightarrow A_{i}$ to be the constant map $g_{i}:=a_{i} \circ \pi$. Let $f \in k(C)^{\times}$. We have

$$
\begin{aligned}
& \Phi_{k}\left(\sum_{x \in C} \operatorname{ord}_{x}(f)\left\{g_{1} \circ \iota_{x}, g_{2} \circ \iota_{x}\right\}_{k(x) / k} \otimes a_{3} \otimes \cdots \otimes a_{r}\right) \\
& =\sum_{x \in C} \operatorname{ord}_{x}(f)\left\{g_{1} \circ \iota_{x}, g_{2} \circ \iota_{x}, \operatorname{res}_{k(x) / k}\left(a_{3}\right), \ldots, \operatorname{res}_{k(x) / k}\left(a_{r}\right)\right\}_{k(x) / k} \\
& =\sum_{x \in C} \operatorname{ord}_{x}(f)\left\{g_{1} \circ \iota_{x}, g_{2} \circ \iota_{x}, g_{3} \circ \iota_{x}, \ldots, g_{r} \circ \iota_{x}\right\}_{k(x) / k} \stackrel{(\text { WRR })}{=} 0 .
\end{aligned}
$$

Remark 3.2 Proposition 3.1 can be thought of as the analog of the product formula for Milnor K-groups. Kahn and Yamazaki (cf. [7]) in fact defined a tensor product structure in the category of homotopy invariant Nisnevich sheaves with transfers, which when evaluated at $\operatorname{Spec}(k)$ coincides with a Somekawa K-group. Such a property therefore is not surprising.

Corollary 1.4 follows now as an easy corollary to Proposition 3.1. We restate this in greater generality here.

Corollary 3.3 Let $X=C_{1} \times \cdots \times C_{d}$ be a product of smooth projective curves over a perfect field k with $C_{i}(k) \neq \emptyset$ for $i \in\{1, \ldots, d\}$. Suppose that for each $1 \leq i<j \leq d$ the group $F^{2}\left(C_{i} \times C_{j}\right)$ is torsion. Then $F^{2}(X)$ is torsion. In the special case when k is an algebraic number field, we conclude that if Conjecture 1.2 is true for any subproduct of two curves, then it is true for X.

Proof The assumption that $F^{2}\left(C_{i} \times C_{j}\right)$ is torsion for each $1 \leq i<j \leq d$ means precisely that the group $\bigoplus_{1 \leq i<j \leq d} K\left(k ; J_{i}, J_{j}\right)$ is torsion. If $d=2$ then we are done, so let us assume $d \geq 3$. Using the identification (2.14), it is enough to show that for every $3 \leq v \leq d$ the group $K\left(k ; J_{i_{1}}, \ldots, J_{i_{v}}\right)$ is torsion. Thus, the claim comes down to showing that if A_{1}, \ldots, A_{r} are abelian varieties over k such that the Somekawa K-group $K\left(k ; A_{1}, A_{2}\right)$ is torsion, then so is the group $K\left(k ; A_{1}, \ldots, A_{r}\right)$.
Let $\left\{a_{1}, \ldots, a_{r}\right\}_{L / k} \in K\left(k ; A_{1}, \ldots, A_{r}\right)$, where L / k is a finite extension and $a_{i} \in A_{i}(L)$ for $i \in\{1, \ldots, r\}$. If \widehat{L} / k is the Galois closure of L / k, then

$$
[\widehat{L}: L]\left\{a_{1}, \ldots, a_{r}\right\}_{L / k} \stackrel{(\mathbf{P F})}{=}\left\{\operatorname{res}_{\widehat{L} / L}\left(a_{i_{1}}\right), \operatorname{res}_{\widehat{L} / L}\left(a_{1}\right), \ldots, \operatorname{res}_{\widehat{L} / L}\left(a_{r}\right)\right\}_{\widehat{L} / k} .
$$

Thus, to prove $\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}_{L / k}$ is torsion, it is enough to consider the case that L / k is a Galois extension with Galois group G.

We consider the homomorphism

$$
\Phi_{L}: K\left(k ; A_{1}, A_{2}\right) \otimes A_{3}(L) \otimes \cdots \otimes A_{r}(L) \rightarrow K\left(k ; A_{1}, \ldots, A_{r}\right)
$$

of Proposition 3.1. To show that the symbol $\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}_{L / k}$ is torsion, it suffices to show that an integer multiple of it lies in the image of Φ_{L}. We have,

$$
\begin{aligned}
& \Phi_{L}\left(\left\{a_{1}, a_{2}\right\}_{L / k} \otimes a_{3} \otimes \cdots \otimes a_{r}\right)= \\
& N_{L / k} \circ \Psi_{L} \circ\left(\operatorname{res}_{L / k} \otimes 1_{A_{3}} \otimes \cdots \otimes 1_{A_{r}}\right)\left(\left\{a_{1}, a_{2}\right\}_{L / k} \otimes a_{3} \otimes \cdots \otimes a_{r}\right) .
\end{aligned}
$$

Since L / k is finite Galois, we have an isomorphism of L-algebras,

$$
L \otimes_{k} L \simeq \prod_{\sigma \in G} L .
$$

In particular, in the definition of the restriction map on Somekawa K-groups (see Sect. 2.3) we have $L_{j} \simeq L$ for all $j=1, \ldots,[L: k]$, and hence

$$
\operatorname{res}_{L / k}\left(\left\{a_{1}, a_{2}\right\}_{L / k}\right)=\sum_{j=1}^{[L \cdot k]}\left\{a_{1}, a_{2}\right\}_{L / L}=[L: k]\left\{a_{1}, a_{2}\right\}_{L / L} .
$$

We conclude that

$$
\begin{aligned}
\Phi_{L}\left(\left\{a_{1}, a_{2}\right\}_{L / k} \otimes a_{3} \otimes \cdots \otimes a_{r}\right) & =N_{L / k}\left([L: k]\left\{a_{1}, \ldots, a_{r}\right\}_{L / L}\right) \\
& =[L: k]\left\{a_{1}, \ldots, a_{r}\right\}_{L / k} .
\end{aligned}
$$

Remark 3.4 The assumption $C_{i}(k) \neq \emptyset$ can be removed, if we instead assume that for some finite extension L / k, we have $C_{i}(L) \neq \emptyset$ for all i and Conjecture 1.2 holds for every product $\left(C_{i}\right)_{L} \times\left(C_{j}\right)_{L}$ with $1 \leq i<j \leq d$. This follows easily by the formula $N_{L / k} \circ \operatorname{res}_{L / k}=[L: k]$.

The previous corollary shows that Conjecture 1.2 holds for arbitrary products of curves if it holds for pairwise products; the following corollary gives the analogous statement for the weaker Conjecture 1.5.

Corollary 3.5 Let $X=C_{1} \times \cdots \times C_{d}$ be a product of smooth projective curves over a perfect field k with $C_{i}(k) \neq \emptyset$ for $i \in\{1, \ldots, d\}$. Suppose that for each $1 \leq i<j \leq d$ the group $F^{2}\left(C_{i} \times C_{j}\right)_{\text {comp }}$ is finite. Then $F^{2}(X)_{\text {comp }}$ is finite.

Proof Since $C_{i}(k) \neq \emptyset$ for all i the Raskind-Spiess isomorphism applies, and so by (2.16), the assumption that $F^{2}\left(C_{i} \times C_{j}\right)_{\text {comp }}$ is finite for all $1 \leq i<j \leq d$ amounts to saying that $\operatorname{Symb}_{k}\left(J_{i}, J_{j}\right)$ is finite. The corollary then follows by Proposition 3.1 after noticing the surjectivity of the homomorphism

$$
\Psi_{k}: \operatorname{Symb}_{k}\left(J_{i_{1}}, J_{i_{2}}\right) \otimes J_{i_{3}}(k) \otimes \cdots \otimes J_{i_{v}}(k) \rightarrow \operatorname{Symb}_{k}\left(J_{i_{1}}, \ldots, J_{i_{v}}\right) .
$$

In the following section, we will give many applications of Corollary 3.5.

4 Finiteness of $F^{2}\left(C_{1} \times C_{2}\right)_{\text {comp }}$

The goal of this section is to determine pairs of curves C_{1}, C_{2} such that $F^{2}\left(C_{1} \times C_{2}\right)_{\text {comp }}$ is finite. Note that if C is a curve then $F^{2}(C \times C)_{\text {comp }}$ is not a priori finite, so the case $C_{1}=C_{2}$ is often nontrivial.

Convention 4.1 Let C_{1}, C_{2} be curves over k with Jacobians J_{1} and J_{2}, and let $X=C_{1} \times C_{2}$. We will suppose there are fixed rational points $O_{1} \in C_{1}(k)$ and $O_{2} \in C_{2}(k)$; if C_{i} is an elliptic curve, we will always take O_{i} to be the identity of $C_{i}(k)$.

There are two main principles we use in order to examine whether $F^{2}(X)_{\text {comp }}$ is finite. Lemma 4.2 allows us to reduce the problem to checking a finite list of relations, and Proposition 4.5 gives us a way to produce these relations.

Lemma 4.2 Let B be a list of $\left(\operatorname{rank} J_{1}(k)\right)\left(\operatorname{rank} J_{2}(k)\right)$ linearly independent elements of $J_{1}(k) \otimes J_{2}(k)$. If $\varepsilon_{X}(t)$ is torsion for all $t \in B$, then $F^{2}(X)_{\text {comp }}$ is finite.

Proof By (2.16), $F^{2}(X)_{\text {comp }}$ is the image of the finitely generated abelian group $J_{1}(k) \otimes$ $J_{2}(k)$ under ε_{X}. Since B generates a full-rank subgroup of $J_{1}(k) \otimes J_{2}(k)$, every element of $J_{1}(k) \otimes J_{2}(k)$ maps to torsion in $F^{2}(X)_{\text {comp }}$.

We list two consequences of Lemma 4.2. The first is immediate.
Corollary 4.3 If $J_{1}(k)$ or $J_{2}(k)$ has rank 0 , then $F^{2}(X)_{\text {comp }}$ is finite.
Corollary 4.4 Let $C_{1}, C_{2}, C_{2}^{\prime}$ be curves over k. If $F^{2}\left(C_{1} \times C_{2}\right)_{\text {comp }}$ is finite and the Jacobians of C_{2} and C_{2}^{\prime} are isogenous, then $F^{2}\left(C_{1} \times C_{2}^{\prime}\right)_{\text {comp }}$ is finite.

Proof This follows by covariant functoriality of the Somekawa K-group (cf. [17, p. 4]). Namely, let J_{2} and J_{2}^{\prime} be the Jacobians of C_{2} and C_{2}^{\prime} respectively; if $\phi: J_{2} \rightarrow J_{2}^{\prime}$ is an isogeny, then it induces a group homomorphism $K\left(k ; J_{1}, J_{2}\right) \rightarrow K\left(k ; J_{1}, J_{2}^{\prime}\right)$ sending a symbol $\{a, b\}_{L / k}$ to $\{a, \phi(b)\}_{L / k}$.

Finiteness of $F^{2}\left(C_{1} \times C_{2}\right)_{\text {comp }}$ implies that $\left\{P_{1}, P_{2}\right\}_{k / k} \in \operatorname{Symb}_{k}\left(J_{1}, J_{2}\right)$ is torsion for all $P_{1} \in J_{1}(k)$ and $P_{2} \in J_{2}(k)$, and so

$$
\varepsilon_{X}\left(P_{1} \otimes \phi\left(P_{2}\right)\right)=\left\{P_{1}, \phi\left(P_{2}\right)\right\}_{k / k} \in \operatorname{Symb}_{k}\left(J_{1}, J_{2}^{\prime}\right)
$$

is torsion. Since the map $J_{2}(k) \rightarrow J_{2}^{\prime}(k)$ induced by ϕ has finite cokernel, elements of the form $P_{1} \otimes \phi\left(P_{2}\right)$ generate a full-rank subgroup of $J_{1}(k) \otimes J_{2}(k)$.

Given an elliptic or hyperelliptic curve H, let $P \mapsto \bar{P}$ denote negation or the hyperelliptic involution, respectively.

Proposition 4.5 Let H be an elliptic or hyperelliptic curve, let $P \in H(\bar{k})$, and let $\phi_{i}: H \rightarrow$ C_{i} be a morphism for each $i=1,2$. Suppose that $\phi_{i}(P) \in C_{i}(k)$ for each $i=1,2$, and also suppose there exists $W \in H(\bar{k})$ with $W=\bar{W}$ and such that $\left[\phi_{i}(W)\right]-\left[O_{i}\right] \in J_{i}(\bar{k})$ is torsion for $i=1,2$. Then the symbol

$$
\left\{\left[\phi_{1}(P)\right]-\left[O_{1}\right],\left[\phi_{2}(P)\right]-\left[O_{2}\right]\right\}_{k / k} \in \operatorname{Symb}_{k}\left(J_{1}, J_{2}\right)
$$

is torsion.

Proof Let L / k be a finite extension that contains subfields isomorphic to the fields of definition of W and of P, so that we can identify P, \bar{P}, and W with elements of $H(L)$. Then $[P]+[\bar{P}]-2[W]$ is a principal divisor on H_{L}.
Define $g_{i}: H_{L} \rightarrow\left(J_{i}\right)_{L}$ to act on L-rational points by $R \mapsto\left[\phi_{i}(R)\right]-\left[\phi_{i}(W)\right]$. For $i=1,2$, set $W_{i}=\phi_{i}(W)$ and $P_{i}:=\phi_{i}(P)$. Note that the relation $[\bar{P}]-[W]=-[P]+[W]$ on H
induces the relation

$$
\left[\phi_{i}(\bar{P})\right]-\left[\phi_{i}(W)\right]=-\left[\phi_{i}(P)\right]+\left[\phi_{i}(W)\right]=-\left[P_{i}\right]+\left[W_{i}\right]
$$

in $J_{i}(L)$ by proper pushforward of Chow groups. The principal divisor $[P]+[\bar{P}]-2[W]$ then induces a Weil reciprocity relation (2.10) on the group $K\left(L ;\left(J_{1}\right)_{L},\left(J_{2}\right)_{L}\right)$:

$$
\begin{aligned}
0 & =\left\{\left[P_{1}\right]-\left[W_{1}\right],\left[P_{2}\right]-\left[W_{2}\right]\right\}_{L / L}+\left\{-\left[P_{1}\right]+\left[W_{1}\right],-\left[P_{2}\right]+\left[W_{2}\right]\right\}_{L / L}-2\{0,0\}_{L / L} \\
& =2\left\{\left[P_{1}\right]-\left[W_{1}\right],\left[P_{2}\right]-\left[W_{2}\right]\right\}_{L / L} .
\end{aligned}
$$

Since $\left[W_{i}\right]-\left[O_{i}\right] \in J_{1 L}(L)$ is torsion for each $i=1,2$, there exists $n>0$ such that

$$
\begin{aligned}
0 & =n\left\{\left[P_{1}\right]-\left[W_{1}\right],\left[P_{2}\right]-\left[W_{2}\right]\right\}_{L / L} \\
& =n\left\{\left[P_{1}\right]-\left[O_{1}\right]+\left[O_{1}\right]-\left[W_{1}\right],\left[P_{2}\right]-\left[O_{2}\right]+\left[O_{2}\right]-\left[W_{2}\right]\right\}_{L / L} \\
& =n\left\{\left[P_{1}\right]-\left[O_{1}\right],\left[P_{2}\right]-\left[O_{2}\right]\right\}_{L / L} .
\end{aligned}
$$

Applying the norm map $N_{L / k}: K\left(L ;\left(J_{1}\right)_{L},\left(J_{2}\right)_{L}\right) \rightarrow K\left(k ; J_{1}, J_{2}\right)$ (see Sect. 2.3), we can conclude that

$$
0=2 n\left\{\left[P_{1}\right]_{L}-\left[O_{1}\right]_{L},\left[P_{2}\right]_{L}-\left[O_{2}\right]_{L}\right\}_{L / k} .
$$

Since $P_{i} \in C_{i}(k)$ by assumption, the divisors $\left[P_{i}\right]_{L}-\left[O_{i}\right]_{L} \in J_{i}(L)$ are in the image of $\operatorname{res}_{L / k}: J_{i}(k) \rightarrow J_{i}(L)$. Hence, the projection formula (2.8) gives

$$
\begin{aligned}
0 & =n\left\{\operatorname{res}_{L / k}\left(\left[P_{1}\right]-\left[O_{1}\right]\right), \operatorname{res}_{L / k}\left(\left[P_{2}\right]-\left[O_{2}\right]\right)\right\}_{L / k} \\
& =n\left\{\left[P_{1}\right]-\left[O_{1}\right], N_{L / k}\left(\operatorname{res}_{L / k}\left(\left[P_{2}\right]-\left[O_{2}\right]\right)\right)\right\}_{k / k} \\
& =n[L: k]\left\{\left[P_{1}\right]-\left[O_{1}\right],\left[P_{2}\right]-\left[O_{2}\right]\right\}_{k / k}
\end{aligned}
$$

Remark 4.6 Most of the examples we explore below use Proposition 4.5; that is, the key relation comes from Weil reciprocity for an elliptic or hyperelliptic curve. See Remark 4.18 for examples that use Weil reciprocity for a curve that is neither elliptic nor hyperelliptic.

4.1 Isogenous pairs

We list some consequences of Proposition 4.5 that can be obtained by setting H equal to one of the factors of X.

4.1.1 Rank 1 hyperelliptic curves

Proposition 4.7 Let C_{1}, C_{2} be hyperelliptic curves over k with isogenous Jacobians J_{1} and J_{2}. Suppose rank $J_{1}(k)=1$, and there exist $P, W \in C_{1}(k)$ with W a Weierstrass point and $[P]-[W]$ of infinite order. Then $F^{2}\left(C_{1} \times C_{2}\right)_{\text {comp }}$ is finite.

Proof For the case $C_{2}=C_{1}$, we can apply Proposition 4.5 and Lemma 4.2 using $\phi_{1}=\phi_{2}$ the identity map on H, and $O_{1}=O_{2}=W$. The general case follows by Corollary 4.4.

In light of this result, Corollaries 4.3 and 3.5 , we can conclude that $F^{2}\left(C_{1} \times \cdots \times C_{d}\right)_{\text {comp }}$ is finite if all J_{i} with rank $J_{i}(k) \neq 0$ come from a single isogeny class with rank 1 over k.
While Proposition 4.7 does apply when C_{1}, C_{2} are isogenous elliptic curves (take W to be the identity of $\left.C_{1}(k)\right)$, it yields a more interesting result when the genus of C_{1} is at least 2. In the LMFDB [18] there are 868 genus 2 curves over \mathbb{Q} that have Jacobian of rank

1 , conductor at most 10000, and a rational Weierstrass point W. For all but 8 of these, there exists another rational point P such that $[P]-[W]$ has infinite order. These provide the first nontrivial examples of products X with $F^{2}(X)_{\text {comp }}$ finite involving positive rank curves of higher genus.

4.1.2 Self-product of a rank 2 CM elliptic curve

Let E be an elliptic curve over \mathbb{Q} such that $E_{\overline{\mathbb{Q}}}$ has complex multiplication by the full ring of integers \mathcal{O}_{K} of a quadratic imaginary field K. It follows that K is of the form $K=\mathbb{Q}(\sqrt{-D})$ with $D \in\{1,2,3,7,11,19,43,67,163\}$. We write $\mathcal{O}_{K}=\mathbb{Z}[\omega]$ and we denote by $[\omega]: E_{K} \rightarrow E_{K}$ the extra endomorphism. Suppose that $E(\mathbb{Q})$ has rank 1 and let P be a point of infinite order. It follows by [5, Lemma 4.5] that the point $[\omega](P) \in E(K)$ is \mathbb{Z}-linearly independent from P, and thus $E(K)$ has rank at least 2 . In all cases we have computed, $E(K)$ actually has rank exactly 2 .

Proposition 4.8 Suppose that E satisfies the above assumptions and assume additionally that $\operatorname{rank}(E(\mathbb{Q}))=1$ and $\operatorname{rank}(E(K))=2$. Let S be a set consisting of E_{K} together with arbitrarily many curves over K with Jacobian of rank 0 . Then $F^{2}\left(C_{1} \times \cdots \times C_{d}\right)_{\text {comp }}$ is finite for all $C_{1}, \cdots, C_{d} \in S$. (In particular, $F^{2}\left(E_{K} \times E_{K}\right)_{\text {comp }}$ is finite.)

Proof By Corollary 3.5 it suffices to show that $F^{2}\left(C_{i} \times C_{j}\right)_{\text {comp }}$ is finite for all $1 \leq i<j \leq d$. If either J_{i} or J_{j} has rank 0 this follows by Corollary 4.3. The only remaining case is when $C_{i}=C_{j}=E_{K}$. Since $P \in E(\mathbb{Q})$ and $[\omega](P) \in E(K) \backslash E(\mathbb{Q})$ are \mathbb{Z}-linearly independent, they generate a finite index subgroup of $E(K)$. By Lemma 4.2, it is enough to show that the symbols

$$
\{P, P\}_{K / K},\{[\omega](P), P\}_{K / K},\{P,[\omega](P)\}_{K / K},\{[\omega](P),[\omega](P)\}_{K / K}
$$

are all torsion. This follows by applying Proposition 4.5 to the four choices of $\phi_{1}, \phi_{2} \in$ $\{[1],[\omega]\}$.

4.2 Non-isogenous pairs: a new construction

Let E_{1}, E_{2} be elliptic curves over k with fully k-rational 2 -torsion, so that there exist Weierstrass forms

$$
E_{1} \simeq E_{\alpha, \beta}: y^{2}=x(x-\alpha)(x-\beta), \quad E_{2} \simeq E_{\gamma, \delta}: y^{2}=x(x-\gamma)(x-\delta)
$$

for some $\alpha, \beta, \gamma, \delta \in k^{\times}$with $\alpha \neq \beta$ and $\gamma \neq \delta$. In [15, Theorem 1], Scholten defines the curve

$$
\begin{equation*}
H_{\alpha, \beta, \gamma, \delta}:(\alpha \delta-\beta \gamma) y^{2}=\left((\alpha-\beta) x^{2}-(\gamma-\delta)\right)\left(\alpha x^{2}-\gamma\right)\left(\beta x^{2}-\delta\right) \tag{4.9}
\end{equation*}
$$

over k, and provides explicit degree $2 k$-rational maps $f_{1}: H_{\alpha, \beta, \gamma, \delta} \rightarrow E_{\alpha, \beta}$ and f_{2} : $H_{\alpha, \beta, \gamma, \delta} \rightarrow E_{\gamma, \delta}$. These maps each send the Weierstrass points of $H_{\alpha, \beta, \gamma, \delta}$ to 2-torsion points.

Composing f_{1} with an isomorphism $E_{\alpha, \beta} \rightarrow E_{1}$, and f_{2} with an isomorphism $E_{\gamma, \delta} \rightarrow E_{2}$, we obtain maps $\phi_{i}: H_{\alpha, \beta, \gamma, \delta} \rightarrow E_{i}$, which map Weierstrass points to torsion points. This means that any $P \in H(k)$ will allow us to apply Proposition 4.5.

Proposition 4.10 Let $\alpha, \beta, \gamma, \delta \in k^{\times}$with $\alpha \neq \beta$ and $\gamma \neq \delta$, and set $E_{1}: y^{2}=x(x-$ $\alpha)(x-\beta)$ and $E_{2}: y^{2}=x(x-\gamma)(x-\delta)$. Let B be the list of points in $E_{1}(k) \times E_{2}(k)$ output

```
Algorithm 1: Computing elements of \(E_{1}(k) \otimes E_{2}(k)\) that map to torsion in \(F^{2}\left(E_{1} \times E_{2}\right)\).
    Input : \(\alpha, \beta, \gamma, \delta \in k^{\times}\)with \(\alpha \neq \beta\) and \(\gamma \neq \delta\).
    Output: A list of pairs \(\left(P_{1}, P_{2}\right) \in E_{1}(k) \times E_{2}(k)\), for \(E_{1}: y^{2}=x(x-\alpha)(x-\beta)\) and
            \(E_{2}: y^{2}=x(x-\gamma)(x-\delta)\).
    1 Find a basis \(R_{1}, \ldots, R_{r}\) for a full-rank subgroup of \(E_{1}(k)\), and a basis \(S_{1}, \ldots, S_{s}\) for a full-rank
    subgroup of \(E_{2}(k)\).
    2 Initialize empty lists \(B\) (of points in \(\left.E_{1}(k) \times E_{2}(k)\right)\) and \(T\) (of vectors in \(\mathbb{Q}^{r s}\) ).
    Define \(H:=H_{\alpha, \beta, \gamma, \delta}\) as in (4.9) and the corresponding maps \(\phi_{i}: H \rightarrow E_{i}\).
    4 Search for rational points \(P \in H(k)\).
    5 for each point \(P \in H(k)\) found do
        Find \(a_{1}, \ldots, a_{r}, d_{1} \in \mathbb{Z}, d_{1} \neq 0\), such that \(a_{1} R_{1}+\cdots+a_{r} R_{r}=d_{1} \phi_{1}(P)\) in \(E_{1}(k)\).
        Find \(b_{1}, \ldots, b_{s}, d_{2} \in \mathbb{Z}, d_{2} \neq 0\), such that \(b_{1} S_{1}+\cdots+b_{s} S_{s}=d_{2} \phi_{2}(P)\) in \(E_{2}(k)\).
        Define the vector \(v(P) \in \mathbb{Q}^{r s}\) to be
        \(\frac{1}{d_{1} d_{2}}\left(a_{1}, \ldots, a_{r}\right) \otimes\left(b_{1}, \ldots, b_{s}\right)=\frac{1}{d_{1} d_{2}}\left(a_{1} b_{1}, a_{1} b_{2}, \ldots, a_{1} b_{s}, a_{2} b_{1}, \ldots, a_{2} b_{s}, \ldots, a_{r} b_{s}\right)\).
        if \(T \cup\{v(P)\}\) is linearly independent then
            Append \(v(P)\) to \(T\).
            Append ( \(\phi_{1}(P), \phi_{2}(P)\) ) to \(B\).
        end
    end
    Return \(B\).
```

by Algorithm 1. Then $\left(P_{1} \otimes P_{2}:\left(P_{1}, P_{2}\right) \in B\right)$ is a linearly independent list of elements of $E_{1}(k) \otimes E_{2}(k)$, all of which map to torsion in $F^{2}\left(E_{1} \times E_{2}\right)$ under ε_{X}.

Proof An element $\left(P_{1}, P_{2}\right) \in B$ is of the form $\left(\phi_{1}(P), \phi_{2}(P)\right)$ for some $P \in H(k)$. Recall that the maps ϕ_{i} send Weierstrass points of H to 2 -torsion points of E_{1} and E_{2}. Hence, by Proposition 4.5, $\varepsilon_{X}\left(P_{1} \otimes P_{2}\right)$ is torsion. Now $v(P)$, defined in line 8 , is the image of $\left(\phi_{1}(P), \phi_{2}(P)\right)$ under the bilinear map

$$
E_{1}(k) \times E_{2}(k) \rightarrow\left(E_{1}(k) \otimes E_{2}(k)\right) \otimes \mathbb{Q} \simeq \mathbb{Q}^{r s}
$$

induced by sending $\left(R_{i}, S_{j}\right) \mapsto R_{i} \otimes S_{j}$ for each $1 \leq i \leq r$ and $1 \leq j \leq s$. We can see from line 11 and the preceding lines that B is constructed so that its image T in $\left(E_{1}(k) \otimes E_{2}(k)\right) \otimes \mathbb{Q}$ (and therefore its image in $E_{1}(k) \otimes E_{2}(k)$) is a linearly independent list.

Applying Lemma 4.2 gives the following immediate consequence.
Corollary 4.11 Assume the setup of Proposition 4.10. If the length of B is equal to $\left(\operatorname{rank} E_{1}(k)\right)\left(\operatorname{rank} E_{2}(k)\right)$, then $F^{2}\left(E_{1} \times E_{2}\right)_{\text {comp }}$ is finite.

4.2.1 Computations

The authors used Magma to implement a version of Algorithm 1 [10], with a few modifications as described in Sect. 4.2.2.
By running this algorithm and applying Corollary 4.11, the authors were able to find a substantial collection of pairs of curves $E_{1} \times E_{2}$ such that $F^{2}\left(E_{1} \times E_{2}\right)_{\text {comp }}$ is finite, including the first known examples of pairs of non-isomorphic curves with rank greater than 1. Specifically, they used the LMFDB [18] to obtain a list of the first m_{1} elliptic curves

Table 1 Counting pairs of elliptic curves over \mathbb{Q} with $F^{2}\left(E_{1} \times E_{2}\right)_{\text {comp }}$ finite.

\# of E_{1}	$\operatorname{rank} E_{1}(\mathbb{Q})$	\# of E_{2}	$\operatorname{rank} E_{2}(\mathbb{Q})$	total \# of pairs	$\# F^{2}(X)_{\text {comp }}$ finite
100	1	100	1	4950	2602
100	2	100	2	4950	995
100	2	$=E_{1}$		100	70
20	3	20	3	190	17
20	3	$=E_{1}$		20	8
100	1	100	2	10,000	3311
500	1	20	3	10,000	955
500	2	20	3	10,000	615

over \mathbb{Q} of rank r_{1} and torsion subgroup $C_{2} \times C_{2}$ (ordered by conductor), and the first m_{2} elliptic curves over \mathbb{Q} of rank r_{2} and torsion subgroup $C_{2} \times C_{2}$, for various choices of $m_{1}, r_{1}, m_{2}, r_{2}$. The torsion subgroup $C_{2} \times C_{2}$ was chosen as it is the simplest torsion structure for which the curves have fully rational 2-torsion, though the algorithm would work equally well on any torsion structure of the form $C_{2} \times C_{2 n}$. For each E_{1} from the first list and E_{2} from the second, they ran algorithm 1 ; for each pair with an output of length $r_{1} r_{2}$, the pair $\left(E_{1}, E_{2}\right)$ was added to a list of pairs for which $F^{2}\left(E_{1} \times E_{2}\right)_{\text {comp }}$ is known to be finite.

The findings are summarized in Table 1, with $m_{1}, r_{1}, m_{2}, r_{2}$ appearing as "\# of E_{1}," $" \operatorname{rank} E_{1}(\mathbb{Q})$," "\# of E_{2}," and "rank $E_{2}(\mathbb{Q})$," respectively. For rows with $\operatorname{rank} E_{1}(\mathbb{Q})=$ $\operatorname{rank} E_{2}(\mathbb{Q})$, only one pair out of $\left(E_{1}, E_{2}\right)$ or $\left(E_{2}, E_{1}\right)$ was tested, and diagonal pairs $\left(E_{1}, E_{1}\right)$ were not included. For rows containing " $=E_{1}$ " in the "\# of E_{2} " column, only pairs (E_{1}, E_{1}) were tested.

4.2.2 Improvements on algorithm 1

The authors' code makes some changes to algorithm 1, including the following.

- The curve $H_{\alpha, \beta, \gamma, \delta}$ depends on the choice of $\alpha, \beta, \gamma, \delta$, and is not invariant under isomorphism. In fact, while the curves

$$
\begin{equation*}
E_{\alpha, \beta} \simeq E_{\beta, \alpha} \simeq E_{-\alpha, \beta-\alpha} \simeq E_{\beta-\alpha,-\alpha} \simeq E_{-\beta, \alpha-\beta} \simeq E_{\alpha-\beta,-\beta} \tag{4.12}
\end{equation*}
$$

are isomorphic, these typically produce six ${ }^{3}$ non-isomorphic hyperelliptic curves

$$
\begin{equation*}
H_{\alpha, \beta, \gamma, \delta}, H_{\beta, \alpha, \gamma, \delta}, H_{-\alpha, \beta-\alpha, \gamma, \delta}, H_{\beta-\alpha,-\alpha, \gamma, \delta}, H_{-\beta, \alpha-\beta, \gamma, \delta}, H_{\alpha-\beta,-\beta, \gamma, \delta} . \tag{4.13}
\end{equation*}
$$

Each of these six curves H comes with maps $\phi_{1}: H \rightarrow E_{1}$ and $\phi_{2}: H \rightarrow E_{2}$. Therefore, we can extend algorithm 1 to search for points P on all six of these curves.

- As written, line 1 requires a full set of Mordell-Weil generators for $E_{1}(k)$ and $E_{2}(k)$. This is not a problem if generators are given (for instance if the curves are obtained from the LMFDB), but if they are not already known then computing these sets can potentially be a significant bottleneck for the runtime. Fortunately, a full set of

[^1]generators is not necessary. Instead, one can initialize empty lists B_{i} of elements of $E_{i}(k)$ for $i=1,2$. For each $P \in H(k)$, one checks whether line 6 is possible using the current points in B_{1}. If not, first append $\phi_{1}(P)$ to B_{1}, and then proceed. One can do the same for B_{2} and line 7 .
With this modification, the values of $r=\# B_{1}$ and $s=\# B_{2}$ are regularly updated, and T must be recomputed from B whenever this occurs. It is therefore helpful to define new lists to store the coefficients of $\phi_{1}(P)$ (resp. $\phi_{2}(P)$) generated in line 6 (resp. line 7) for each P considered, in order to more quickly recompute $v(P) \in \mathbb{Q}^{r s}$ for the new values of r and s. Note that the ranks of $E_{1}(k)$ and $E_{2}(k)$ must be known in advance in order to know when we reach $r=\operatorname{rank} E_{1}(k)$ and $s=\operatorname{rank} E_{2}(k)$.

- Rather than returning a list of points $\left(\phi_{1}(P), \phi_{2}(P)\right) \in E_{1}(k) \times E_{2}(k)$, the code returns a list of tuples $\left(P, \phi_{1}, \phi_{2}\right)$, so that Weil reciprocity (2.10) can be verified.

4.3 Non-isogenous pairs: previous constructions

We are aware of two previous constructions of pairs E_{1}, E_{2} of non-isogenous rank 1 curves over k with $F^{2}\left(E_{1} \times E_{2}\right)_{\text {comp }}$ finite.
Both constructions use the fact that it suffices to find non-torsion points $P_{1} \in E_{1}(k)$ and $P_{2} \in E_{2}(k)$ with $\left\{P_{1}, P_{2}\right\}_{k / k}$ torsion (Lemma 4.2).

4.3.1 Modular parametrizations

Prasanna and Srinivas considered two pairs of non-isogenous rank 1 curves over \mathbb{Q} : one pair of curves of conductor 91,

$$
E_{1}^{(91)}: y^{2}+y=x^{3}+x, \quad E_{2}^{(91)}: y^{2}+y=x^{3}+x^{2}-7 x+5
$$

and one pair of curves of conductor 37,

$$
E_{1}^{(37)}: y^{2}+y=x^{3}-x, \quad E_{2}^{(37)}: y^{2}+y=x^{3}+x^{2}-23 x-50
$$

They prove the following proposition.
Proposition 4.14 ([13], in preparation) Let $N=37$ or 91 . Let $X=E_{1}^{(N)} \times E_{2}^{(N)}$ as defined above. Then $F^{2}(X)_{\text {comp }}$ is finite.

Note that for $N=37$ or 91, every elliptic curve of conductor N is isogenous to either $E_{1}^{(N)}$ or $E_{2}^{(N)}$ (see for example [18]). So together with Corollary 4.4 we can conclude that $F^{2}\left(E_{1} \times E_{2}\right)_{\text {comp }}$ is finite for any two curves E_{1}, E_{2} of conductor N.
We make a few remarks on the approach. For each of $N=37$ and $N=91$, they show that the two modular parametrizations $X_{0}(N) \rightarrow E_{i}^{(N)}$ factor through a common hyperelliptic curve H. For $N=37, X_{0}(37)$ is itself a genus 2 hyperelliptic curve. On the other hand, $X_{0}(91)$ is not hyperelliptic, but it has an Atkin-Lehner involution w_{91}, and the modular parametrizations of $E_{1}^{(91)}$ and $E_{2}^{(91)}$ both factor through the genus 2 hyperelliptic curve $X_{0}(91) /\left\langle w_{91}\right\rangle$. Since the two elliptic curves have rank 1, the theory of Heegner points can be used to compute a point $P \in H(\overline{\mathbb{Q}})$ such that the image of P under each $f_{i}: H \rightarrow E_{i}^{(N)}$ is a rational point of infinite order.

As in Proposition 4.5, one can obtain the desired relation in $F^{2}\left(E_{1}^{(N)} \times E_{2}^{(N)}\right)$ by applying Weil reciprocity to a principal divisor on H. Rather than using a Weierstrass point as in

Proposition 4.5, however, Prasanna and Srinivas find another point $Q \in H(\overline{\mathbb{Q}})$ such that $f_{i}(Q) \in E_{i}^{(N)}(\mathbb{Q})$, and apply Weil reciprocity to the divisor $[P]+[\bar{P}]-[Q]-[\bar{Q}]$.

4.3.2 Rational curves in a Kummer surface

Given a number field k, define a 2-parameter family of curves over k by

$$
\begin{equation*}
E_{s, t}: y^{2}=x^{3}-3 t^{2} x+2 t^{3}+(1-s-3 t)^{2} s \tag{4.15}
\end{equation*}
$$

Note that the curve $E_{s, t}$ has a k-point $P_{s, t}:=(1-s-2 t, 1-s-3 t)$. For each $s \in k$, let D_{s} denote the locus of points $t \in k$ at which the discriminant of $E_{s, t}$ vanishes, or the point $P_{s, t}$ is torsion in $E_{s, t}(k)$. It can be shown (as in the proof of [8, Proposition 5.3]) that D_{s} is finite for all $s \in k \backslash\{0\}$. In a previous paper, the second author proved the following.

Proposition 4.16 ([8, Corollary 1.4]) Let $s \in k$. For all $t_{1}, t_{2} \in k \backslash D_{s}$ such that $E_{s, t_{1}}(k)$ and $E_{s, t_{2}}(k)$ have $\operatorname{rank} 1, F^{2}\left(E_{s, t_{1}} \times E_{s, t_{2}}\right)_{\text {comp }}$ is finite.

Together with Corollaries 3.5, 4.3, and 4.4, this result can be used to create large sets of elliptic curves for which any product X of curves from the set has finite $F^{2}(X)_{\text {comp }}$.

Corollary 4.17 Fix $s \in k$, and set

$$
S_{s}=\left\{E_{s, t}: t \in k \backslash D_{s}, \operatorname{rank} E_{S, t}(k)=1\right\} .
$$

Suppose C_{1}, \ldots, C_{d} are elliptic curves over k such that for each i, either rank $C_{i}(k)=0$ or C_{i} is isogenous to a curve in S_{s}. Then $F^{2}\left(C_{1} \times \cdots C_{d}\right)_{\text {comp }}$ is finite.

As an example, setting $s=1$ and searching through elliptic curves of height at most 60^{6}, the second author computed 27062 pairwise non-isomorphic rank 1 elliptic curves in S_{1}. More generally, for any fixed value of $s \in\left(k \backslash k^{2}\right) \cup\{1\}$, the one-parameter family $E_{S, t}$ (considered as an elliptic curve over $k(t)$) has generic rank 1, with $P_{s, t}$ a point of infinite order [8, Proposition 5.3]. It is believed that any such family should have infinitely many specializations of rank 1 . If this is true, then for any $s \in\left(k \backslash k^{2}\right) \cup\{1\}$, the set S_{s} will contain an infinite set of rank 1 curves, pairwise non-isogenous over \mathbb{Q}, all of whose pairwise products have finite $F^{2}(X)_{\text {comp }}$.

We mention a few words about the construction. Let E_{1} and E_{2} be rank 1 elliptic curves over k, and consider the degree 2 map $\pi: E_{1} \times E_{2} \rightarrow Y$ obtained by taking the quotient by negation. The family $E_{S, t}$ is defined in order to guarantee existence of a rational curve in Y passing through both $\pi\left(P_{s, t_{1}}, P_{s, t_{2}}\right)$ and $\pi\left(O_{1}, O_{2}\right)$.

The paper [8] then proceeds to take a principal divisor on this rational curve and pull it back along π to produce the desired relation in $F^{2}\left(E_{1} \times E_{2}\right)$. We will provide another explanation for this relation. Note that any rational curve $\mathbb{P}^{1} \rightarrow Y$ defines a hyperelliptic curve ${ }^{4} H$ mapping to $E_{1} \times E_{2}$ by taking the fiber product:

[^2]with $f(\bar{P})=-f(P)$ for all $P \in H(\bar{k})$. By composing with projection maps, we find maps $\phi_{1}: H \rightarrow E_{1}$ and $\phi_{2}: H \rightarrow E_{2}$ satisfying $\phi_{i}(\bar{P})=-\phi_{i}(P)$; in particular, Weierstrass points of H must map to 2 -torsion points on each E_{i}. If $\pi\left(P_{1}, P_{2}\right)$ is in the image of the rational curve $\mathbb{P}^{1} \rightarrow Y$, then $\left(P_{1}, P_{2}\right)$ is in the image of f, so Proposition 4.5 can be used to verify that $\left\{P_{1}, P_{2}\right\}_{k / k}$ is torsion.

Remark 4.18 All examples discussed so far can be accounted for using Weil reciprocity on an elliptic or hyperelliptic curve, but there are examples using other curves. In his thesis [9], the second author provides some rank 1 pairs E_{1}, E_{2} with $F^{2}\left(E_{1} \times E_{2}\right)_{\text {comp }}$ finite, not accounted for using any of the above techniques, for which the desired relation in $F^{2}\left(E_{1} \times E_{2}\right)$ comes from Weil reciprocity on a bielliptic curve. Using the Cremona labelling [2], these examples include (37a1, 43a1), (37a1, 57a1), (37a1, 77a1), (53a1, 58a1), (61a1, 65a1), (61a1, 65a2), (65a2, 79a1) ([9, Sect. 3.3.1]), and (37a1, 53a1) ([9, Proposition 3.4.1]).

Acknowledgements

The first author was partially supported by the NSF Grants DMS- 2001605 and DMS- 2302196, and the second author by a CRM-ISM postdoctoral fellowship. We are very thankful to Professors Kartik Prasanna and Akshay Venkatesh for introducing us to this question and to Kartik Prasanna and Vasudevan Srinivas for allowing us to include in our article something about their work in preparation. We are also thankful to Professors Spencer Bloch and Shuji Saito for showing interest in our article. Lastly we would like to thank our referees whose suggestions helped improve this article.

Data availability The code used to produce the data in Table 1 is available at https://github. com/jonathanrlove/zero-cycles/ [10], and can also be made available by the second author upon request. All other relevant data are available within the paper.

Author details

${ }^{1}$ Department of Mathematics, University of Virginia, 221 Kerchof Hall, 141 Cabell Dr., Charlottesville, VA 22904, USA, ${ }^{2}$ Department of Mathematics and Statistics, McGill University, Burnside Hall, 805 Sherbrooke Street West, Montreal, QC H3A 0B9, Canada.

Received: 6 February 2023 Accepted: 15 February 2024
Published online: 27 March 2024

References

1. Beilinson, A.A.: Higher regulators and values of L-functions, Current problems in mathematics, vol. 24, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, pp. 181-238 (1984)
2. Cremona, J.: The elliptic curve database for conductors to 130000 . In: Hess, F., Pauli, S., Pohst, M. (eds.) Algorithmic Number Theory, pp. 11-29. Springer, Berlin (2006)
3. Frey, G., Kani, E.: Curves of genus 2 covering elliptic curves and an arithmetical application, Arithmetic algebraic geometry (Texel, Progr. Math., vol. 89, pp. 153-176. Birkhäuser, Boston (1989)
4. Gazaki, E.: On a filtration of CH_{0} for an abelian variety. Compos. Math. 151 (3), 435-460 (2015)
5. Gazaki, E., Koutsianas, A.: Weak approximation for 0-cycles on a product of elliptic curves (2021)
6. Kahn, B.: Nullité de certains groupes attachés aux variétés semi-abéliennes sur un corps fini; application. . R. Acad. Sci. Paris Sér. I Math. 314(13), 1039-1042 (1992)
7. Kahn, B., Yamazaki, T.: Voevodsky's motives and Weil reciprocity. Duke Math. J. $\mathbf{1 6 2}$ (14), 2751-2796 (2013)
8. Love, J.: Rational equivalences on products of elliptic curves in a family. J. Théor. Nombres Bordeaux 32(3), 923-938 (2020)
9. Love, J.: Isogeny Graphs, Zero-Cycles, and Modular Forms: Computations over Algebraic Curves and Surfaces, ProQuest LLC, Ann Arbor, MI, Thesis (Ph.D.)-Stanford University (2021)
10. Love, J.: Rational equivalences of zero-cycles. https://github.com/jonathanrlove/zero-cycles/ (2022). Accessed 16 March 2022
11. Langer, A., Raskind, W.: 0-cycles on the self-product of a CM elliptic curve over Q. J. Reine Angew. Math. 516, 1-26 (1999)
12. Langer, A., Saito, S.: Torsion zero-cycles on the self-product of a modular elliptic curve. Duke Math. J. 85(2), 315-357 (1996)
13. Prasanna, K., Srinivas, V.: Zero cycles on a product of elliptic curves, In preparation (2022)
14. Raskind, W., Spiess, M.: Milnor K-groups and zero-cycles on products of curves over p-adic fields. Compositio Math. 121(1), 1-33 (2000)
15. Scholten, J.: Genus 2 curves with given split jacobian, Cryptology ePrint Archive, Report 2018/1137, https://ia.cr/2018/ 1137 (2018)
16. Serre, J.-P.: Algebraic Groups and Class Fields, Graduate Texts in Mathematics, vol. 117. Springer, New York (Translated from the French) (1988)
17. Somekawa, M.: On Milnor K-groups attached to semi-abelian varieties. K-Theory 4(2), 105-119 (1990)
18. The LMFDB Collaboration, The L-functions and modular forms database. http://www.Imfdb.org (2022). Accessed 16 March 2022
19. Yamazaki, T.: On Chow and Brauer groups of a product of Mumford curves. Math. Ann. 333(3), 549-567 (2005)

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: ${ }^{1}$ Constructions of such a curve H were known prior to Scholten, for instance in [3], but we use Scholten's construction because it provides explicit equations.
 ${ }^{2}$ The authors first learned of this result by private communication in 2018

[^1]: ${ }^{3}$ There may be fewer, for example because of accidental isomorphisms, or because $\alpha \delta-\beta \gamma=0$ so that (4.9) defines a degenerate curve. There are of course many other tuples ($\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}, \delta^{\prime}$) with isomorphisms $E_{\alpha^{\prime}, \beta^{\prime}} \simeq E_{\alpha, \beta}$ and $E_{\gamma^{\prime}, \delta^{\prime}} \simeq$ $E_{\gamma, \delta}$, but one can check in each case that the resulting curve $H_{\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}, \delta^{\prime}}$ is isomorphic to one of the six curves from (4.13), and that the corresponding maps are compatible in an appropriate sense.

[^2]: ${ }^{4}$ The rational curves defined in [8] correspond to hyperelliptic curves of genus 5 .

