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Abstract

This paper presents a fast method to compute algebraic norms of integral elements of
smooth-degree cyclotomic fields, and, more generally, smooth-degree Galois number
fields with commutative Galois groups. The typical scenario arising in S-unit searches
(for, e.g., class-group computation) is computing a �(n log n)-bit norm of an element of
weight n1/2+o(1) in a degree-n field; this method then uses n(log n)3+o(1) bit operations.

An n(log n)O(1) operation count was already known in two easier special cases: norms
from power-of-2 cyclotomic fields via towers of power-of-2 cyclotomic subfields, and
norms from multiquadratic fields via towers of multiquadratic subfields. This paper
handles more general Abelian fields by identifying tower-compatible integral bases
supporting fast multiplication; in particular, there is a synergy between
tower-compatible Gauss-period integral bases and a fast-multiplication idea from
Rader.

As a baseline, this paper also analyzes various standard norm-computation techniques
that apply to arbitrary number fields, concluding that all of these techniques use at
least n2(log n)2+o(1) bit operations in the same scenario, even with fast subroutines for
continued fractions and for complex FFTs. Compared to this baseline, algorithms
dedicated to smooth-degree Abelian fields find each norm n/(log n)1+o(1) times faster,
and finish norm computations inside S-unit searches n2/(log n)1+o(1) times faster.

Mathematics Subject Classification: Primary 11Y40, 11Y16, Secondary 68W30, 11R18

1 Introduction
Consider the element α = 3+ζ 271

2048+4ζ 828
2048 of the cyclotomic fieldK = Q(ζ2048); here ζm,

for any positive integerm, means the complex number exp(2π i/m). Write detKQ α for the
determinant of multiplication by α as a Q-linear map from K to K , i.e., for the algebraic
norm of α from K down to Q. (See Sect. 1.4 regarding notation choices.) The following
Sage commands print out detKQ α, while measuring how long the computation takes:

K.<zeta> = CyclotomicField(2048); alpha = 3+zetaˆ271+4*zetaˆ828

%time alpha.norm()

Sage 9.5 (the January 2022 version of Sage [83]) takes 61 milliseconds on one core of a
3.5GHz Intel Xeon E3-1275 v3 (Haswell) CPU, around 0.21 × 109 CPU cycles.
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One has detKQ α = ∏
c∈{1,3,5,...,2047}(3+ζ 271c

2048 +4ζ 828c
2048 ). The absolute value of the complex

number 3 + ζ 271c
2048 + 4ζ 828c

2048 is below 8, and one might guess that it is typically somewhere
around 4, i.e., that detKQ α has absolute value around 41024 = 22048. Sage computes the
exact value of detKQ α, an integer 272 . . . 618 ≈ 0.842 · 22048.
Inside Sage, PARI [76] finds detKQ α as the resultant of two polynomials in Z[x]. The

first polynomial is the minimal polynomial of ζ2048 overQ, namely x1024 + 1. The second
polynomial is 3 + x271 + 4x828. One can skip Sage’s number-field machinery and directly
compute detKQ α as a polynomial resultant:

ZZx.<x> = ZZ[]

Phi = xˆ1024+1; g = 3+xˆ271+4*xˆ828

%time Phi.resultant(g)

Sage, when asked for a resultant of two polynomials instead of a norm of a number-
field element, calls FLINT [55] instead of PARI, and now takes 1.12 × 109 cycles. The
resultant subroutine has a proof=False option allowing randomized algorithms;
this option doesn’t save time. What does save time is using NTL [87] polynomials instead
of FLINT polynomials:

ZZx.<x> = PolynomialRing(ZZ,’x’,implementation=’NTL’)

Phi = xˆ1024+1; g = 3+xˆ271+4*xˆ828

%time Phi.resultant(g)

This takes 0.15 × 109 cycles.
Why does it take so many cycles to compute a 2048-bit resultant of two input poly-

nomials that have, in dense format, a few thousand small coefficients? The issue is not
the number of cycles required per bit for basic arithmetic: for example, Sage takes about
20,000 cycles to multiply two 2048-bit integers. The issue is that standard fast-continued-
fraction techniques for computing the resultant of two polynomials in Z[x] have cost
growing as essentially the product of the number of input bits and the number of output
bits. The resultant of xn + 1 and a sparse n-coefficient input, with n1/2+o(1) coefficients
±1, will typically have �(n log n) bits; these resultant algorithms then cost n2(log n)3+o(1).
For some inputs, the output is much smaller and the algorithms are much faster, but this
is not the typical case.
It is not a new observation that one can do much better by exploiting transitivity of

determinants through a tower of subfields of K . Take F as, e.g., the field Q(ζ1024). Then
F is a subfield of K : specifically, ζ1024 = ζ 2

2048, so F is the fixed field of the unique
automorphism of K that maps ζ2048 to −ζ2048. Hence

detKF α = (
3 + ζ 271

2048 + 4ζ 828
2048

) (
3 + (−ζ2048)271 + 4(−ζ2048)828

)

= 9 − ζ 271
1024 + 24ζ 414

1024 + 16ζ 828
1024 = 9 − ζ 271

1024 − 16ζ 316
1024 + 24ζ 414

1024 .

One can then compute detKQ α as detFQ detKF α:

ZZx.<x> = PolynomialRing(ZZ,’x’,implementation=’NTL’)

g = 3+xˆ271+4*xˆ828

%time g = ZZx(list(g*g(-x))[::2]) % (xˆ512+1)

%time (xˆ512+1).resultant(g)

Here g*g(-x) gives g · g(−x) = detZ[x]
Z[x2] g , a polynomial whose value at ζ2048 is detKF α;

list(g*g(-x)) gives the list of coefficients of g · g(−x); [::2] extracts every sec-
ond coefficient; ZZx(...) produces the corresponding polynomial, a polynomial whose
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value at ζ1024 is detKF α; and %(xˆ512+1) reduces modulo x512 + 1. This is, up to sign,
also g.adams_operator(2)%(xˆ512+1) since deg g > 0, but the “Adams” naming is
questionable given that this operator on polynomials was already used (for root-finding)
by Dandelin in [39, page 49] in 1826; see generally [60].
Sage reports that the evaluation of detKF takes 0.01 × 109 cycles and that the evaluation

of detFQ takes 0.09× 109 cycles. One can save more time by recursively decomposing detFQ
via transitivity, and exploiting the special form of the power-of-2 cyclotomic polynomials
to convert each modular reduction into subtraction:

ZZx. <x> = PolynomialRing(ZZ,’x’,implementation=’NTL’)

g = 3+xˆ271+4*xˆ828

%time for d in 512,256,128,64,32,16,8,4,2,1: \

L = list(g*g(-x))[::2]; \

g = ZZx(L[:d])-ZZx(L[d:])

This reduces the total time to just 0.011 × 109 cycles. Appendix C removes more
overhead and takes just 0.0012 × 109 cycles. The important point to keep in mind is that
the typical algorithm cost has dropped from n2+o(1) to n1+o(1).

1.1 Contributions of this paper

As a baseline, Sect. 3 analyzes the costs of various standard detKQ techniques that work
for arbitrary number fields. The special case of power-of-2 cyclotomics, as in theQ(ζ2048)
example above, suffices for seeing that these techniques are not competitive asymptoti-
cally, so Sect. 3 focuses on this case. The main conclusion of Sect. 3 is that, in the typical
case of �(n log n)-bit outputs for field degree n (see Sect. 2 for why this is typical), all of
these techniques use at least n2(log n)2+o(1) bit operations.
Section 4 explores the question of which number fields allow lower-cost evaluation of

detKQ via transitivity, in particular reducing n2(log n)2+o(1) to n(log n)3+o(1). It is natural to
ask for the field degree to be smooth—a product of small primes—and for the field to have
a correspondingly long tower of subfields. The challenge addressed in Sect. 4 is to build
algorithms tomultiply efficiently on tower-compatible bases for these subfields. Note that
this is easy for power-of-2 cyclotomics: standard polynomial bases are compatible with
the tower Q ⊂ Q(ζ4) ⊂ Q(ζ8) ⊂ · · · and are well known to allow fast multiplication.
Section 5 analyzes applications to one of the standard techniques for computing class

groups, unit groups, etc. The technique is to enumerate small elements of the ring of
integers, andfilter those elements to seewhichones areS-units,whereS is the set of infinite
places and small finite places. This filtering is typically handled by an Eratosthenes-type
sieving procedure when degrees are small and discriminants are large, as in the number-
field sieve for integer factorization; but if degrees are relatively large, as in the cyclotomic
case, then it seemsbest to compute detKQ α for each elementα and then checkwhich detKQ α

factor as desired. The smooth-degree Abelian case uses fewer detKQ α computations (since
one can search for S-units modulo automorphisms of the field) and speeds up each detKQ α

computation, overall speeding up the sequence of detKQ α computations by a factor close
to n2. The Abelian case also speeds up the factorizations.

1.2 Previous work on speedups using transitivity

The fact that transitivity of determinants saves effort is standard textbook material. For
example, a standard exercise starts with the degree-4 fieldK = Q(ζ5) and the real subfield



82 Page 4 of 57 D. J. Bernstein Res. Number Theory (2023) 9:82

F = R ∩ K = Q(
√
5), and computes detKQ α as detFQ detKF α. But such small examples give

little information regarding how much effort is saved in larger examples.
For any power-of-2 cyclotomic field K , Gentry and Halevi [51, Section 4] used a tower

of power-of-2 cyclotomic subfields to compute detKQ α in essentially linear time, as in the
Q(ζ2048) example given above.Bauch,Bernstein, deValence, Lange, andvanVredendaal [9,
Section 3.4], for the case of multiquadratic fields K = Q(

√
d1,

√
d2, . . . ,

√
dt ), computed

detKQ α in essentially linear time using a tower of multiquadratic subfields.
Gentry andHalevi also computed trK

Q
(1/α) for α �= 0. One can easily obtain the inverse-

trace algorithm in [51] by applying the following simple general-purpose conversion, an
example of automatic differentiation, to the detKQ algorithm in [51]: for any K , take any
algebraic algorithm for α �→ detKQ α, tensor with the jet plane Q[ε]/ε2 over Q, and apply
the resulting algorithm to α + ε to obtain

detK [ε]/ε2
Q[ε]/ε2 (α + ε) = (detKQ α)(1 + ε trKQ(1/α)).

This conversion loses a small constant factor in performance. This is not how the inverse-
trace algorithm in [51] is described, but one can, with some effort, check that this is what
the algorithm does.

1.3 Fast-multiplication subroutines

There is a huge literature on FFT-based algorithms to multiply two elements of R[x]/ϕ,
for any monic ϕ ∈ R[x] with deg ϕ = n, using n(log n)1+o(1) operations on coefficients in
R. See generally [16].
These algorithms are faster by a constant factor when ϕ is “FFT-friendly”. This con-

stant factor is not visible in the n(log n)1+o(1) asymptotics, but it becomes visible if one
applies the same idea recursively to multiply in a ring presented as a tower such as
(· · · ((R[x1]/ϕ1)[x2]/ϕ2) · · ·)[xt ]/ϕt . In a “multidimensional FFT”, each ϕj is FFT-friendly
(e.g., a size-n Hadamard–Walsh transform has ϕj = x2j − 1 and n = 2t ), and the cost
is �(n log n) for n coefficients; see Sect. 4.12.1. For general ϕj , a constant-factor loss c at
each level of the tower turns into a loss ct for t levels, increasing costs by a factor n�(1) if
t ∈ �(log n).
As van der Hoeven and Lecerf pointed out in [59], if one modifies a tower to force

t ∈ o(log n), by replacing any constant-degree steps with superconstant-degree steps,
then the ct overhead factor mentioned above is no(1), and one obtains total cost n1+o(1)

for multiplication. There is some tension between the idea of reducing t and the idea of
exploiting towers to save time in detKQ computation; but note that if there are t levels, each
of relative degree nO(1/t), then there are nO(1/t) multiplications at each level, so reaching
total cost n1+o(1) for detKQ simply requires t to be superconstant. A closer look shows that
one can do better—as an analogy, FFTs are asymptotically better than Toom’s method for
univariate multiplication, even though both take essentially linear time—but one should
not think that short towers are useless.
Formultiquadratic fieldsQ(

√
d1,

√
d2, . . . ,

√
dt ), themultiplication algorithm in [9, Sec-

tion 3.3] selects enough moduli p for which all of d1, d2, . . . , dt are squares modulo p, and
then uses Hadamard–Walsh transforms twisted by

√
d1,

√
d2, . . . ,

√
dt modulo p.

One can, with effort, extract from a paper by Arita and Handa [6, Sections 3.3, 3.4,
and 4.3] an essentially-linear-time algorithm to multiply on Gauss-period bases of prime-
conductor Abelian fields, i.e., subfields of Q(ζp) (beyond Q) where p is prime. This algo-
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rithm can be viewed as a simple “folding” of an FFT algorithm that Rader introduced
in [82], an algorithm having a different flavor from conventional FFTs; see Sect. 4.8. Sec-
tion 4.12handlesmore generalAbelianfields, unifying the idea of foldingwith an extension
of Winograd’s generalization [96] of Rader’s idea.

1.4 Notation and terminology

Wessel [95] and independently Argand [3] introduced a geometric description of each
complex number a + bi as a line in the plane from (0, 0) to (a, b). Wessel [95, page 469]
referred to (a2 + b2)1/2 as the length of the line (“Længde” in Danish). Argand [4, page
208] referred to (a2 + b2)1/2 as the absolute size (“grandeur absolue” in French) and the
modulus (“module” in French) of a + bi. Gauss [49, page 103] referred to a2 + b2 as the
norm (“norma” in Latin) of a + bi for a, b ∈ Z. (One meaning of “norma” in Latin is a
carpenter’s square used to measure right angles.)
Subsequent literature reused the “norm” terminology for generalizations (1) to algebraic

norms, typically called just “norms”, but also (2) to 2-norms such as the �2 norm and the
L2 norm, and beyond that to further generalizations of the concept of length, also typically
called just “norms”. Algebraic norms and 2-norms coincide for a+bi, aside from quibbles
about a2 + b2 vs. (a2 + b2)1/2, but differ in general.
This wouldn’t be problematic if there were a clear dividing line between papers in

number theory saying “norm” for algebraic norms and papers in analysis saying “norm”
for those other things. The reality, however, is that those other things appear constantly
in number theory (and not just in analytic number theory): consider lattices, for example,
orWeil height. Perhaps it’s time for number theorists to consider ending the conflict: put
the “norm” word down gently and back away.
What, then, should algebraic norms be called? Nobody actually says “algebraic norms”

or “field norms” except for disambiguation. Meanwhile there is a well known, standard,
unambiguous name for a more general concept: “determinant”. We refer to the trace
of multiplication by α as the trace of α; shouldn’t we also refer to the determinant of
multiplication by α as the determinant of α?
There are parameters, of course: in the case of fields, there’s an input field and an output

field, with the input field having finite degree over the output field. We all know what the
trace map is from the input field to the output field; it’s not a big leap to talk about the
determinant map from the input field to the output field.
As for notation, Dirichlet [40, page 295] wrote N (a + bi) for a2 + b2; there were no

parameters in theN map. Subsequent literature sometimes usesNF for a norm to F (as in,
e.g., [58, page 204] and [57, page 125]) and sometimes uses NF for a norm from F (as in,
e.g., [30]). The extra effort of writingNL/K resolves the ambiguity (if L andK aren’t objects
with a quotient that could be reasonably plugged into the NF notation), but anyone who
has taken a course in differential geometry, the study of superscripts and subscripts, will
see that there’s a better place to put the input field. This is not a new idea: see, e.g., [69,
page 16] and [41].
As a separate matter, the short name “N ” is fine for local notation (notation where

brevity is prioritized over broad readability), but it doesn’t work well as global notation
given all the other common uses of “N ”. Again determinants come to the rescue: the
global notations “det” and “tr” are well established. Adding a K subscript for K -linear
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maps, and an L superscript for taking inputs in L as linear maps from L to L, gives this
paper’s notation detLK α.
This paper does not attempt to avoid the following common abbreviations: “Rings” are

commutative rings. If R is a ring and S is a set then RS is the ring of S-indexed vectors with
entries in R and coordinatewise operations. If R is a ring and H is a finite commutative
group then R[H ] is the group ring ofH over R, the ring ofH-indexed vectors with entries
in R and convolution as multiplication.
If R is a ring and m is a positive integer then a primitive mth root of 1 in R means an

element ζ ∈ R such that (1) ζm = 1; (2) ζm/p −1 is invertible in R for all primes p dividing
m; and (3) m is invertible in R (which one can deduce from the other conditions). The
notation ζm is specifically the complex number exp(2π i/m).
If B is a basis (of, e.g., a vector space) then the set of entries in B is called a “basis set”;

this is not to be confused with B itself, which is a sequence.

2 Sizes
Consider all weight-w elements α = α0 + α1ζm + · · · + αn−1ζ n−1

m of the ring of integers
R = Z[ζm] of the power-of-2 cyclotomic field K = Q(ζm). Here n = m/2, and “weight w”
means 2-norm w1/2, i.e.,

∑
j α

2
j = w. This section analyzes the distribution of sizes of the

integers |detKQ α|.
These sizes illustrate the detKQ α sizes of interest in Sects. 3 and 4; those sections include

analyses of the performance of various detKQ algorithms, and the analyses depend on the
number of bits in detKQ α. The distribution considered in this section arises naturally in
the standard S-unit search in Sect. 5, which enumerates small-weight elements α ∈ R
and checks whether detKQ α factors into small primes; presumably detKQ α is more likely to
factor appropriately if it is smaller.
One can also ask about the distribution of detKQ α for other cyclotomic fields (and other

Abelian fields), but the power-of-2 case suffices as an example of what to expect. I haven’t
found literature directly on point. There are analyses of the distribution of detKQ α inside
the number-field sieve (see, e.g., [11, eprint version, Section 5.1; journal version, Section
2.2]), but NFS considers fields of relatively low degree compared to the discriminant. The
analysis below is conceptually similar to [9, Section 8.1], which heuristically analyzes the
coefficients of a Dirichlet log vector of a small element of a real multiquadratic field K on
a unit basis obtained from fundamental units of quadratic subfields; but the details here
are more complex than in [9], since the embeddings K → C here are not embeddings
K → R.

2.1 Notation

Throughout this section, n ∈ {2, 4, 8, 16, . . .};m = 2n; w is a positive integer; K = Q(ζm);
and R = Z[ζm]. For each odd integer c, the function σc : K → C is the unique ring
morphism taking ζm to ζ c

m.

2.2 Upper bounds

One has |ζm| = 1, so |α| ≤ ∑
j
∣
∣αj

∣
∣ ≤ ∑

j α
2
j = w. (For w > n, one can do better by

replacing the inequality
∑

j
∣
∣αj

∣
∣ ≤ w with Cauchy’s inequality

∑
j
∣
∣αj

∣
∣ ≤ n1/2w1/2; but the



D. J. Bernstein Res. Number Theory (2023) 9:82 Page 7 of 57 82

case of interest in Sect. 5 is thatw is asymptotically bounded by n1/2+o(1).) More generally,
∣
∣ζ c
m

∣
∣ = 1, so

∣
∣σc(α)

∣
∣ ≤ w. Hence |detKQ α| = ∏

c∈{1,3,5,...,m−1}
∣
∣σc(α)

∣
∣ ≤ wn.

2.3 The circular approximation to the distribution

If w = 1 then the above upper bound is achieved, but for larger w one expects σc(α) =
∑

j αjζ
cj
m to have summands αjζ

cj
m pointing in different directions in C, usually with sum

considerably smaller than the upper bound.
Define the circular approximation to the distribution of log |detKQ α| as a normal dis-

tribution with mean n(logw − γ )/2 ≈ n(logw)/2 − 0.28860783245n, where γ is Euler’s
constant, and variance nπ2/24 ≈ 0.411233516712n. Notice that thismean is under half of
the upper bound n logw from Sect. 2.2, although the ratio converges up to 1/2 asw → ∞.
The following paragraphs explain how the circular approximation arises from a heuristic
analysis of the size of log |detKQ α|.
Thefirst step is tomodel eachσc(α) as

∑
j αj exp 2π iρc,j where eachρc,j is an independent

uniform random element of R/Z. The distribution of
∑

j αj exp 2π iρc,j is invariant under
rotation; the basic strategy here is to recover this distribution from its real part.
To analyze the real part of

∑
j αj exp 2π iρc,j , note that the variance of cos 2πρ for

uniform random ρ ∈ R/Z is
∫ 1
0 (cos 2πρ)2 dρ = 1/2. The variance of

∑
j αj cos 2πρc,j is

∑
j α

2
j /2 = w/2 since, by independence, the summands are uncorrelated.

Now apply the heuristic that sums are normally distributed to conclude that
∑

j αj exp 2π iρc,j has a complex normal distribution with mean 0 and variance v for some
v. By definition of the complex normal distribution, the real and imaginary parts are
independent normal random variables with variance v/2, so v = w.
If N is a complex normal random variable with mean 0 and variance 1 then log |N | has

mean−γ /2 ≈ −0.28860783245 and varianceπ2/24 ≈ 0.411233516712. IfN is a complex
normal random variable with mean 0 and variance w then log |N | has mean (logw− γ )/2
and variance π2/24. If N1, . . . , Nn are n uncorrelated complex normal random variables
with mean 0 and variance w then log |N1 · · ·Nn| has mean n(logw − γ )/2 and variance
nπ2/24. Finally, the sums-are-normally-distributed heuristic says that log |N1 · · ·Nn| is
normally distributed.

2.4 Objections to the heuristics

As m increases, the powers ζ c
m for uniform random c ∈ {1, 3, . . . , m − 1} approach a

uniform distribution on the unit circle in the following sense: for each arc A of the circle,
limm→∞ Pr[ζ c

m ∈ A] is the fraction of the circle contained in A. The same argument
applies to ζ

cj
m for any odd j. One can object, however, that this argument breaks down as

more and more powers of 2 appear in j: as an extreme case, ζ cj
m is always 1 for j = 0. If

w is small then there is a noticeable chance that α ∈ F for a proper subfield F ⊂ K , and
then detKQ α = (detFQ α)degF K , with distribution determined by the distribution of detFQ α.
(For the application to recognizing S-units, one can save time in these cases by simply
computing detFQ α and checking its factorization.)
Even for odd j, one canobject tomodeling ζ

cj
m aspointing in independentdirections as the

pair (c, j) varies. For example, if j′ = j+m/4, then the ratio ζ
cj′
m /ζ

cj
m = ζ

c(j′−j)
m = ic is limited

to the set {i,−i}. Ifα ∈ ζmF for a proper subfieldF ⊂ K then detKQ α = (detFQ(α/ζm))degF K ,
again with distribution determined by the detFQ output distribution.
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Furthermore, even with the uniform random directions in
∑

j αj exp 2π iρc,j , one can
object to the heuristic of treating this sum as having a normal distribution—especially
when w is small, since there are at most w nonzero summands. One can similarly
object to treating log |N1 · · ·Nn| as having a normal distribution. The sums-are-normally-
distributed heuristic is only a crude approximation to the central-limit theorem.
One could, with more work, remove the sums-are-normally-distributed heuristic in

favor of the following computations:

• Compute the distribution of
∑

j αj cos 2πρc,j by convolving scaled cosine distribu-
tions. A complication here is that one needs to combinatorially enumerate possibili-
ties for #

{
j :

∣
∣αj

∣
∣ = 1

}
, #

{
j :

∣
∣αj

∣
∣ = 2

}
, etc.; but, for large n and relatively small w, the

probabilities are dominated by the first few possibilities, those where
∣
∣αj

∣
∣ is rarely

above 1.
• Recover the rotationally invariant distribution of

∑
j αj exp 2π iρc,j from the distribu-

tion of
∑

j αj cos 2πρc,j . The point is that any rotationally invariant random variable
can be written in polar coordinates as r exp 2π iτ where τ is a uniform random ele-
ment of R/Z independent of r; so take the distribution of the real part r cos 2πτ ,
compute theMellin transform of the density function, divide by theMellin transform
of the density function of cos 2πτ , and compute an inverseMellin transform to obtain
the density function of r. (As noted by Epstein [43], multiplying independent random
variables corresponds to multiplying Mellin transforms of density functions.)

• Compute the distribution of log |N1 · · ·Nn| as a convolution of n copies of the r
distribution.

But this still would not handle the actual directions of ζ cj
m .

One can also object that the circular approximation to log |detKQ α| cannot be exactly
correct: for each (n, w), the distribution of log |detKQ α| is discrete, while a normal distribu-
tion is continuous; also, log |detKQ α| is bounded between 0 and n logw, whereas a normal
distribution is unbounded.

2.5 Numerical evidence

Table 1 presents, for various choices of (m,w), themean and variance of log |detKQ α| across
two sets of 65536 experiments. The set where “double” is “yes” chooses α uniformly at
random from weight-w elements where |α0| = 2 and

∣
∣αj

∣
∣ ∈ {−1, 0, 1} for all other j. The

set where “double” is “no” instead takes weight-w elements where
∣
∣αj

∣
∣ ∈ {−1, 0, 1} for all

j.
These experiments were carried out with the Sage script shown in Fig. 1. The script uses

deterministic seeds for reproducibility. The multicore.py used in the script is from
[1]. The script also checks the integrals that account for the appearance of γ /2 and π2/24
in this section.
Table 1 suggests that the actual mean divided by n is always larger than the circular

approximation (logw − γ )/2, with a gap of roughly 1/4m + 1/8w for the non-double
cases, converging down to 0 as m and w jointly increase. The variance divided by n is
consistently below the circular approximation π2/24, indicating an anti-correlation not
captured by the approximation.
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Table 1 Mean and variance of log |detKQ α| for 65,536 random choices of α in each line. See text
for details

m w Double Mean/n Circular Variance/n Circular

16 8 No 0.784449649 0.751112938 0.250840752 0.411233517

32 8 No 0.775048231 0.751112938 0.297784952 0.411233517

64 8 No 0.771626119 0.751112938 0.300073045 0.411233517

128 8 No 0.769201091 0.751112938 0.297076268 0.411233517

256 8 No 0.767971656 0.751112938 0.302569974 0.411233517

512 8 No 0.767479526 0.751112938 0.304084689 0.411233517

1024 8 No 0.767090049 0.751112938 0.303938674 0.411233517

16 8 Yes 0.818907856 0.751112938 0.225903248 0.411233517

32 8 Yes 0.812924644 0.751112938 0.230691245 0.411233517

64 8 Yes 0.806721757 0.751112938 0.237712502 0.411233517

128 8 Yes 0.804556061 0.751112938 0.248258970 0.411233517

256 8 Yes 0.803026844 0.751112938 0.253884971 0.411233517

512 8 Yes 0.802299755 0.751112938 0.254374189 0.411233517

1024 8 Yes 0.801913665 0.751112938 0.255755664 0.411233517

32 16 No 1.114195770 1.097686529 0.334337997 0.411233517

64 16 No 1.109688552 1.097686529 0.311985149 0.411233517

128 16 No 1.107739880 1.097686529 0.311517559 0.411233517

256 16 No 1.106948700 1.097686529 0.306271284 0.411233517

512 16 No 1.105902631 1.097686529 0.307222592 0.411233517

1024 16 No 1.105780026 1.097686529 0.309983682 0.411233517

32 16 Yes 1.120215430 1.097686529 0.311499371 0.411233517

64 16 Yes 1.116518517 1.097686529 0.301666920 0.411233517

128 16 Yes 1.114480430 1.097686529 0.296678360 0.411233517

256 16 Yes 1.113406893 1.097686529 0.295366668 0.411233517

512 16 Yes 1.113021383 1.097686529 0.295927515 0.411233517

1024 16 Yes 1.112847196 1.097686529 0.293394668 0.411233517

64 32 No 1.452868312 1.444260119 0.321582083 0.411233517

128 32 No 1.450717062 1.444260119 0.317665867 0.411233517

256 32 No 1.449325700 1.444260119 0.313848217 0.411233517

512 32 No 1.448456593 1.444260119 0.316434954 0.411233517

1024 32 No 1.448386058 1.444260119 0.317395974 0.411233517

64 32 Yes 1.453645761 1.444260119 0.318097521 0.411233517

128 32 Yes 1.451760998 1.444260119 0.314215624 0.411233517

256 32 Yes 1.450895244 1.444260119 0.311772454 0.411233517

512 32 Yes 1.450557535 1.444260119 0.310832695 0.411233517

1024 32 Yes 1.450065121 1.444260119 0.311119663 0.411233517

128 64 No 1.794740422 1.790833709 0.319886453 0.411233517

256 64 No 1.794126237 1.790833709 0.321972595 0.411233517

512 64 No 1.793239181 1.790833709 0.319304636 0.411233517

1024 64 No 1.792934800 1.790833709 0.319631699 0.411233517

128 64 Yes 1.794696805 1.790833709 0.320421343 0.411233517

256 64 Yes 1.794007734 1.790833709 0.318422104 0.411233517

512 64 Yes 1.793524077 1.790833709 0.317942481 0.411233517

1024 64 Yes 1.793224334 1.790833709 0.318389943 0.411233517
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Fig. 1 Sage script for experiments used in Table 1
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Fig. 2 Rows, top to bottom:m is 64, 128, 256, 512, 1024. Columns, left to right: w is 8, 16, 32, 64. Blue curve in
each graph: sorted values of log |detKQ α| for 65536 random choices of α. Black curve: circular approximation.
Vertical scale: circular ±4σ

Figure 2 plots the distribution (as a transposed cdf) of log |detKQ α| observed in the same
non-double experiments (blue curve), and, for comparison, plots the circular approx-
imation (black curve). Both curves are on a vertical scale chosen so that the circular
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approximation runs from 4 standard deviations below the mean to 4 standard deviations
above themean, so the circular approximation always has the same visual shape; note that
this scale covers an interval of length only 8

√
nπ2/24 within the interval [0, n logw].

3 Quadratic techniques
This section reviews various standard algorithms that, for arbitrary number fields K ,
evaluate α �→ detKQ α. This section analyzes the cost of these algorithms applied to power-
of-2 cyclotomicsK = Q(ζm), specifically for the scenariomotivated in Sect. 2: namely, α is
a nonzero element of Z[ζm] of weight n1/2+o(1) where n = m/2, and detKQ α has �(n log n)
bits.
In short, the modular continued-fraction approach costs n2(log n)3+o(1) bit operations,

although there are occasional inputs α where a factor log n disappears because of a short
remainder sequence. The complex-embeddings approach costs n2(log n)2+o(1) bit opera-
tions.

3.1 Why resultant computation is so slow, part 1: big integers

Recall that the Euclid–Stevin algorithm to compute polynomial gcd repeatedly replaces
(f, g) with (g, f mod g) as long as g �= 0. Tracking degrees and leading coefficients of the
remainders f, g, f mod g, . . . reveals the resultant. The point here is that

resultant(f, g) = (−1)(deg f ) deg g (leadcoeff g)deg f −deg(f mod g) resultant(g, f mod g)

if g �= 0 and f mod g �= 0. There are two base cases: one has resultant(f, g) = gdeg f if
deg g = 0, and one has resultant(f, g) = 0 if deg g > 0 and f mod g = 0.
If deg f = n > deg g then the remainder sequence f, g, f mod g, . . . inside the Euclid–

Stevin algorithm has O(n2) coefficients and the quotient sequence
⌊
f /g

⌋
, . . . has O(n)

coefficients. One can compute the quotient sequence in time at most n(log n)2+o(1); see,
e.g., [16, Sections 21–22]. Given n and the quotient sequence, one can compute the
sequence of remainder degrees, the sequence of remainder leading coefficients, and the
resultant. The total time is at most n(log n)2+o(1).
However, onemust be careful with the concept of “time” used in the previous paragraph.

This is actually a count of operations in the base field: operations in Q, if the goal is to
compute a resultant of polynomials with coefficients in Q.
If one takes f = x1024 + 1 and g = 4x828 + x271 + 3 then there are 211 Euclid–Stevin

quotients. The 100th quotient is a polynomial whose coefficients have more than 100,000
bits in each numerator and denominator. The final quotient is a linear polynomial whose
coefficients have more than 400,000 bits in each numerator and denominator. The cost of
computing these quotients is drivenmuchmore by the number of bits than by the number
of coefficients.
Collins [36] showed that simply rescaling the Euclid–Stevin remainders produces poly-

nomials with much smaller coefficient bounds. These polynomials are called “subresul-
tants”: their coefficients are determinants of various portions of Sylvester’s resultant
matrix. The determinant description shows that the subresultants are in Z[x] when
f, g ∈ Z[x]. The bounds in [36] on the coefficients of subresultants come from apply-
ing Hadamard’s determinant inequality to bounds on the coefficients of f and g .
One still cannot escape some growth of coefficients. For example, recall that the resultant

of f = x1024 + 1 and g = 4x828 + x271 + 3 has 2048 bits. This growth is not something
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that suddenly appears at the last moment in the subresultant algorithm: most algorithm
steps are, for almost all inputs, working with large integers.
A subsequent paper by Collins [37] suggested a modular approach to computing

resultant(f, g) given f, g ∈ Z[x]. If one assumes schoolbook arithmetic then the modu-
lar approach gives better cost bounds than the subresultant approach; this comparison
appears in, e.g., [86, page 449, top paragraph]. Perhaps fast arithmetic would narrow the
gap, but evaluating this would require developing a variant of fast-continued-fraction
algorithms that controls coefficient sizes, and the literature does not give any reason to
think that this effort would end up with a faster algorithm than the modular approach. So
let’s look at the performance of the modular approach.

3.2 Why resultant computation is so slow, part 2: manymoduli

The modular approach reconstructs resultant(f, g) from the image of resultant(f, g) in Fp
for enough primes p. This image is the same as the resultant of the images of f, g in Fp[x],
as long as one avoids “bad” primes p, meaning primes that divide the leading coefficients
of f and g .
Howdoes onefigure out howmanyprimes are enough?One answer is to useHadamard’s

inequality to quickly bound the resultant. Another answer, suggested by Monagan [71], is
to guess that a few primes suffice, then more primes, and so on, stopping when the output
is sufficiently stable; this fails with negligible probability if there is enough randomness in
the primes. The Sage resultant documentation says that proof=False “may use a
randomized strategy that errors with probability no more than 2−80”.
In the scenario studied in this section, resultant(f, g) has �(n log n) bits. One can simply

choose primes having enough bits for the explicit upper bounds from Sect. 2.2, although
the analysis of Sect. 2 suggests that one can usually save a factor above 2 by tuning
the number of primes appropriately. Either way,

∏
p p has �(n log n) bits. The following

analysis concludes that the modular approach then costs n2(log n)3+o(1), provided that
one takes each log log p in (log n)o(1).
Note first that one can take each log log p in (log n)o(1). For example, choose a parameter

y, and take all odd primes p ≤ y. By the prime-number theorem,
∏

p≤y p reaches the
desired �(n log n) bits for a suitable choice of y ∈ �(n log n). One has to skip bad primes,
but one can compensate by multiplying 1 + ∣

∣leadcoeff fg
∣
∣ into the target for

∏
p≤y p; the

limited coefficient size for f and g implies that the target still has �(n log n) bits. Now
each p ∈ O(n log n), implying log log p ∈ (log n)o(1). There is considerable slack in this
argument: one can take much larger p and still have log log p ∈ (log n)o(1).
Each continued-fraction computation inFp[x] involves atmostn(log n)2+o(1) operations

in Fp (including initial reduction of f and g modulo p; f and g have small coefficients,
so one does not need to batch this reduction across p). The cost of each operation in
Fp is at most (log p)(log log p)1+o(1), i.e., (log p)(log n)o(1), and summing across all p gives
n(log n)1+o(1) since

∑
p log p ∈ �(n log n). The total cost is thus at most n2(log n)3+o(1).

Could the cost actually be lower than this? Strassen [92] pointed out that one log n
factor in the cost of continued-fraction computation actually arises as the entropy of the
list of quotient degrees in the Euclid–Stevin algorithm. The case of sparse f and sparse
g should not be confused with the “normal” case of all quotient degrees 1 (for example,
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if f = x1024 + 1 and g = x999 + x + 1 then there are just 28 divisions), but experiments
suggest that the entropy is usually �(log n) once g has at least 3 terms.

3.3 Complex embeddings

Another way to compute detKQ α for any degree-n number field K and any α ∈ K is as
∏

σ σ (α), where σ runs through all ring morphisms K → C. If each complex number
σ (α) is represented as a floating-point number with �(n log n) bits of precision then the
product

∏
σ σ (α) also has �(n log n) bits of precision—the n − 1 multiplications lose, in

total, just �(log n) bits of precision—and if the � constant is adjusted appropriately then
this is enough precision to recover the integer detKQ α.
Belabas [10, Section 5.2] recommended using complex embeddings to compute detKQ α

whenever detKQ α is “relatively small”. The following paragraphs quantify the cost of this
approach, including the quantification from [10] but also including speedups beyond [10].
The input α ∈ K is given in what Cohen [34, Section 4.2] calls the “standard represen-

tation” of K : α is represented as a polynomial g ∈ Z[x] with g(θ ) = α and deg g < degK .
Here θ is a fixed integral primitive element of K , a root of a monic irreducible polynomial
f ∈ Z[x]; one can think of the complex-embedding approach as another way of comput-
ing resultant(f, g). For the power-of-2-cyclotomic case K = Q(ζm), one takes θ = ζm and
f = xn + 1.
The first step is to compute σ (α) = g(σ (θ )) for each embedding σ . Belabas views this

as multiplying the vector of coefficients of g by a precomputed matrix with complex
entries σ (1), σ (θ ), σ (θ2), . . . ; this is, e.g., the matrix of powers ζ

cj
m in the case of power-of-2

cyclotomics, where c runs through {1, 3, . . . , m − 1}. Belabas says that this multiplication
costsO(n2M(B)) where n is the field degree, B is the number of bits of precision required,
andM(B) is the cost of B-bit multiplication.
Three speedups noted in [10] are as follows. First, often one already knows a divisor

of detKQ α, so one can reduce the required precision accordingly. Second, in multiplying
complex numbers to obtain detKQ α, one should begin by multiplying the numbers for
complex-conjugate σ , so that subsequent multiplications are in R; see Sect. 3.4 below.
Third, low-precision complex computations suffice to determine the approximate value
of detKQ α, pinpointing how much precision is required for an exact computation—in
particular, recognizing cases where detKQ α is unusually small. (One can also use this
to avoid the guesswork described above regarding how many primes are required for a
modular computation of a resultant.)
Beware that small detKQ α does not immediately imply that small B suffices: if any partic-

ular σ (α) is close to 0 then the precision obtained for σ (α) is lower than the initial precision
of σ (1), σ (θ ), σ (θ2), . . . , so one needs to recompute σ (α) in higher precision. The main
case of interest in this section is that detKQ α has �(n log n) bits, and then one can see that
B ∈ �(n log n) suffices as follows: each

∣
∣σ (α)

∣
∣ is nO(1) as in Sect. 2.2, but |detKQ α| is at least

1 (since α �= 0), so each
∣
∣σ (α)

∣
∣ is at least 1/nO(n). So assume B ∈ �(n log n); the n2M(B)

from [10] is then n3(log n)2+o(1).
An asymptotically better way to compute g(σ (θ )) for all σ , not noted in [10], is by

multipoint evaluation, precomputing a tree of products of x − σ (θ ) and then comput-
ing a tree of remainders of g modulo those products. Schönhage [84, Section 2] used
segmentation to reduce multiplication in C[x] to multiplication in Z, obtaining a cost
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bound nB(log nB)1+o(1) for n-coefficient polynomials with B bits in each coefficient and
all coefficients on the same scale; this cost bound is n2(log n)2+o(1) for B ∈ �(n log n).
Schönhage [84, Section 4] obtained the same cost bound for division in C[x], assuming
that one is dividing by polynomials whose roots in C are O(1). A multipoint-evaluation
tree has �(log n) layers, for total cost n2(log n)3+o(1).
A particularly efficient form of remainder tree is an FFT tree—exactly what is needed

here, since K is assumed to be a power-of-2 cyclotomic. Even simpler than building a
tree is using Bluestein’s trick from [24,25] to reduce DFT to convolution. Schönhage [84,
Section 3] used Bluestein’s trick to obtain a cost bound nB(log nB)1+o(1) for a size-n DFT
with B bits of precision; i.e., cost n2(log n)2+o(1) for B ∈ �(n log n).
The subsequent n − 1 multiplications of σ (α) values, each to B bits of precision, cost

nB(log B)1+o(1). If B ∈ �(n log n) then the overall cost is n2(log n)2+o(1). This is, for most
inputs, asymptotically better than the continued-fraction approach: it avoids an extra
(log n)1+o(1) factor.

3.4 Complex conjugation on complex embeddings

As noted above, inside the complex-embeddings approach, Belabas suggested first multi-
plying complex-conjugate pairs of complex numbers. In the 3 + ζ 271

2048 + 4ζ 828
2048 example,

this means computing the real number (3+ ζ 271c
2048 +4ζ 828c

2048 )(3+ ζ−271c
2048 +4ζ−828c

2048 ) for each
pair {c,−c}. Then the subsequent multiplications are multiplications in R, which, for any
given precision, one expects to be at least twice as fast as multiplications in C.
A 2× speedup is not visible at the level of detail of the analyses in this section. However,

it is useful to consider what this speedup is accomplishing algebraically, for comparison
to the transitivity of determinants exploited in Sect. 4.
The original problem is to evaluate detQ[x]/f

Q
. Complex embeddings tensor with C over

Q, reducing the original problem to the problem of evaluating detC[x]/f
C

. The ring C[x]/f
factors as

∏
c C[x]/(x−ζ c

m), and det
C[x]/f
C

factors correspondingly as
∏

c det
C[x]/(x−ζ cm)
C

. The
image inC[x]/(x−ζ c

m) of g ∈ C[x]/f is simply g(ζ c
m), with determinant g(ζ c

m). Multiplying
these n complex numbers g(ζ c

m) produces the desired detC[x]/f
C

g = detQ[x]/f
Q

g .
The complex-conjugation speedup instead tensors with R overQ. The ring R[x]/f fac-

tors as a product of ringsR[x]/((x− ζ c
m)(x− ζ−c

m )), and detR[x]/f
R

g factors correspondingly
as a product of detR[x]/((x−ζ cm)(x−ζ−c

m ))
R

g , exactly the real numbers multiplied above.
These real numbers, in turn, are computed as follows: tensor with C over R, and

then compute the desired detC[x]/((x−ζ cm)(x−ζ−c
m ))

C
g as the product of detC[x]/(x−ζ cm)

C
g and

detC[x]/(x−ζ−c
m )

C
g , i.e., the product of g(ζ c

m) and g(ζ−c
m ). One can, alternatively, suppress

the role of C here: reduce g modulo (x − ζ c
m)(x − ζ−c

m ) ∈ R[x] and directly compute a
determinant down to R.

3.5 Complex conjugation on the original field

Complex conjugationwas used above as an automorphismofCwith fixed fieldR. A differ-
ent way to use complex conjugation is to restrict it to the fieldK = Q(ζm). This restriction
is an easy-to-compute automorphism of K , namely the ring morphism that maps ζm to
ζ−1
m . The corresponding automorphism x �→ x−1 ofQ[x]/f maps 1, x, x2, x3, . . . , xn−1, the
usual basis forQ[x]/f as aQ-vector space, to 1,−xn−1,−xn−2,−xn−3, . . . ,−x respectively.
This automorphism is an easy linear map to apply.
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The field R ∩ K is the fixed field of complex conjugation on K , since R is the fixed field
of complex conjugation on C. This field R ∩ K has degree n/2 if m ≥ 4, with Q-basis
1, ζm+ζ−1

m , ζ 2
m +ζ−2

m , . . . , ζ n/2−1
m +ζ

−(n/2−1)
m . The corresponding subfield F ofQ[x]/f has

Q-basis 1, x− xn−1, x2 − xn−2, . . . , xn/2−1 − xn/2+1. This is the subfield ofQ[x]/f fixed by
the automorphism x �→ x−1 of Q[x]/f ; the latter automorphism is also called complex
conjugation.
Given g ∈ Q[x]/f , write h for the product of g and its complex conjugate g(x−1). Then

h = detQ[x]/f
F g ∈ F . One can use transitivity of determinants to compute detQ[x]/f

Q
g as

detFQ h, which in turn is a product of various values h(ζ c
m) = g(ζ c

m)g(ζ−c
m ).

This is the same as the product of g(ζ c
m)g(ζ−c

m ) values in Sect. 3.4. The difference is in
how the values g(ζ c

m)g(ζ−c
m ) are computed: as detCR g(ζ c

m), or as a real embedding h(ζ c
m) of

h = detQ[x]/f
F g .

Beware that subfields of general number fields do not capture the full power of multi-
plying complex conjugates. For example, the field Q( 3√2) is isomorphic to Q[x]/(x3 − 2)
and has no subfields other thanQ and itself; but tensoring withC producesC[x]/(x3 −2),
which has two complex-conjugate factors. Conversely, multiplying complex conjugates
does not capture the full power of subfields; see Sect. 4.

3.6 More morphisms

A common theme in computational number theory is avoiding the hassle of Archimedean
precision tracking by switching to thep-adics for a suitable primep, or a product ofp-adics.
Let p be a prime number that is totally split in K , i.e., a prime number for which f has n

distinct roots inFp. One can rapidly recognize this case by seeing that xp−xmodulo f is 0.
Standard root-finding algorithms—or multipoint evaluation of f on Fp if p is small—then
find the roots. One can do even better for special types of f : in particular, for K = Q(ζm),
one can take any prime number p ∈ 1+mZ, and there are very fast algorithms to find all
primitivemth roots of 1 in Fp.
The set of ring morphisms x �→ ρ from Z[x]/f to Fp, as ρ runs through roots of f

in Fp, is analogous to the set of complex embeddings σ used above. Evaluating all these
ring morphisms on a given input g ∈ Z[x]/f is a simple matter of multipoint evaluation,
assuming the roots have been precomputed; the vector of outputs can be viewed as a
limited-precision representation of the input. The product of outputs is the image in Fp of
detZ[x]/f

Z
g = detKQ g(θ ), where as before θ is a root of f in K . Repeating for enough primes

p (or one large enough p or any intermediate possibility) then determines detKQ g(θ ).
Overall this approach has similar asymptotics to the continued-fraction approach.

Montgomery noted in [72, Section 4.2] that remainder trees seem to be a constant factor
more efficient than continued-fraction computations for most inputs.
More generally, to compute resultant(f, g) where f has a known factorization, one can

use a remainder tree to reduce g modulo each factor, and then compute resultant(f, g) as a
corresponding product.Whether one should take the time to search for factors of f (or for
primes p where f factors better) is a different question: this depends on the distribution
of f and on how often f will be reused for resultants. In the applications motivating
this paper (see Sect. 5), detKQ is evaluated on many inputs in K , so many K -dependent
precomputations are worthwhile.
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3.7 The Galois case: exploiting automorphisms

Another convenient field where f splits completely is K itself—assuming that K is Galois.
Say f = (x−ρ1) · · · (x−ρn) in K [x]. One can evaluate g(ρ1), . . . , g(ρn) with a remainder

tree, and then use a product tree to compute the product g(ρ1) · · · g(ρn), which is exactly
detKQ g(θ ).
In the case of a power-of-2 cyclotomic K = Q(ζm), one has {ρ1, . . . , ρn} =

{
ζm, ζ 3

m, . . . , ζm−1
m

}
with n = m/2, since xn + 1 = (x − ζm)(x − ζ 3

m) · · · (x − ζm−1
m ). Com-

puting g(ζ c
m) is simply rearranging and negating coefficients. There are still n choices of c,

with n coefficients to handle for each c, and then more work is required for a product.
Consider a 4-factor product g(ρ1)g(ρ2)g(ρ3)g(ρ4). By assumption g has weight n1/2+o(1),

so one expects the maximum coefficient of this product to have �(log n) bits, so com-
puting this product costs n(log n)2+o(1). There are �(n) such products, together costing
n2(log n)2+o(1). There are then �(log n) layers in the product tree, but one can achieve
total cost n2(log n)2+o(1) by arranging the tree to have inputs in Q(ζ4) for the final multi-
plication, Q(ζ8) for the multiplications on the previous layer, etc.
This approach is using someof the structure thatwill be exploited in Sect. 4, but still costs

n2+o(1) because of the computations—and thenmultiplications—of n different conjugates
of the input.

4 Linear techniques
The fast detKQ α computation in Sect. 1 started with an element α of a power-of-2 cyclo-
tomic field K = Q(ζm) with m/2 small coefficients, computed a product β = ασ (α) in
Q(ζm/2)withm/4 double-size coefficients, computed a productβτ (β) inQ(ζm/4)withm/8
quadruple-size coefficients, etc. The amount of data at each layer is essentially linear—
unlike the techniques in Sect. 3, which expand each of the m/2 input coefficients to a
volume of data comparable to the number of output bits. This section explores the ques-
tion of how general this speedup is.

4.1 Towers

Consider any tower Q = K0 ⊆ K1 ⊆ · · · ⊆ Kt of number fields, with absolute degrees
n0, n1, . . . , nt and relative degrees d1, . . . , dt . Then n0 = 1, n1 = d1, n2 = d1d2, and so on
through nt = d1d2 · · · dt . For simplicity assume dj ≥ 2 for all j, eliminating trivial steps in
the tower.
Consider an algorithm that, given α ∈ Kt , computes successively

αt = detKt
Kt

α as α,

αt−1 = detKt
Kt−1

α as detKt
Kt−1

αt ,

αt−2 = detKt
Kt−2

α as detKt−1
Kt−2

αt−1,
...

α1 = detKt
K1

α as detK2
K1

α2,

α0 = detKt
K0

α = detKt
Q

α as detK1
K0

α1.

I’ll assume from now on that the desired input field K is exactly Kt , so the output α0 is
detKQ α. Also write n = nt .
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(One could, more generally, take K to be any subfield of Kt . If α ∈ K then one can
compute±detKQ α as α

1/e
0 where e = (degKt )/degK . The sign of detKQ α is clear if e is odd;

one can use low-precision complex embeddings to recover the sign in the general case,
if the sign matters for the application. However, so far I haven’t found any cases where
allowing e > 1 saves time compared to reducing to the case e = 1, i.e., replacing each Kj
with Kj ∩ K , obtaining a tower for K .)
To analyze how costs scale, let’s postulate the following scenario: each αj hasO(n log n)

bits across its nj coefficients, withO((n/nj) log n) bits in each coefficient; αj has �(n log n)
bits whenever nj < n/2; α0 has �(n log n) bits. The idea that this is a typical scenario is an
extrapolation from Sect. 2.
One might now hypothesize, extrapolating from Sect. 3, that computing αj−1 from αj

has cost growing as d2j times the number of bits in αj−1 times (log n)e+o(1), where e = 1
for “FFT-friendly” choices of K and e = 2 for other choices of K . The total cost in the
above scenario is then at most (d21 + · · ·+ d2t )n(log n)e+1+o(1). (The only reason for saying
“at most” under these hypotheses is that not all αj are assumed to have �(n log n) bits; in
particular, αt is merely assumed to have O(n log n) bits.)
The sum d21 + · · · + d2t is at least tn2/t . It is exactly tn2/t if d1 = · · · = dt . For example,

it is 4 log2 n if d1 = · · · = dt = 2; 8 log2 n if d1 = · · · = dt = 4; and 64 log2 n if
d1 = · · · = dt = 16.On the other hand, it is 4(t−1)+n2/4t−1 ifd1 = d2 = · · · = dt−1 = 2
and dt = n/2t−1.
Define a smooth tower as one where dj ∈ (log n)o(1) for each j. This does not require

t to grow as �(log n): for example, one could have dj ∈ (log n)�(1/log log log n) for each
j, and t ∈ �((log n)(log log log n)/log log n). For a smooth tower, the total cost above—
assuming the scenario described above, and assuming the hypothesized cost of each step
of the computation—is n(log n)e+2+o(1).

4.2 Whymultiplication is perceived to be fast

Let’s see whether it’s possible to justify the above hypothesis regarding the cost of comput-
ingαj−1 fromαj . Note that, for a smooth tower, d2j is aminor cost factor, and larger powers
of dj in the cost would contribute at most (log n)o(1). The main cost factors to worry about
are the nj−1 coefficients in αj−1 and the number of bits per coefficient, typically giving
�(n log n) bits overall.
Consider the case that Kj has the form Kj−1(

√
δ), with dj = 2, where δ is a non-square

in Kj−1. Write σ for the unique automorphism of Kj fixing Kj−1 and mapping
√

δ to−√
δ.

Then Kj−1 is the fixed field of σ , and one can compute αj−1 as αjσ (αj), as in the power-
of-2-cyclotomic example in Sect. 1. How quickly can one multiply two elements of Kj ,
namely αj and σ (αj)?
As in Sect. 3.3, let’s use the “standard representation” of a number field as Q[x]/ϕ for

some monic irreducible polynomial ϕ ∈ Z[x], with elements of Q[x]/ϕ in turn expressed
as elements of Q[x] of degree below deg ϕ. One of the reasons for the popularity of this
representation is that it reduces number-field computations to polynomial computations,
which in turn are well known to have fast algorithms.
In particular, multiplying two elements of Z[x]/ϕ—let’s not get distracted here by the

possibility of integral elements having denominators in this representation—means mul-
tiplying two integer polynomials and then reducing the product modulo ϕ. There are
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well-known fast algorithms for each step, and it is easy to prove bounds on the output
coefficients.
Specifically, let n andH be positive integers. The product of two n-coefficient polynomi-

als g, h ∈ Z[x], with each coefficient of g, h in the interval [−H,H ], is a (2n− 1)-coefficient
polynomial with each coefficient in [−nH2, nH2]. One way to compute this product is
by segmentation: multiply the integers g(2e) and h(2e) where e = ⌊

log2(4nH2)
⌋
, and

recover gh from g(2e)h(2e). The integers g(2e) and h(2e) have O(n log 2nH ) bits. Standard
integer-multiplication algorithms take time essentially linear in n log 2nH . This approach
of combining segmentation with fast multiplication was used by Schönhage [84, Section
2], as noted in Sect. 3.
For reduction, one can multiply gh by a sufficiently precise approximation of the power

series 1/ϕ ∈ Z[[x−1]], round down to obtain
⌊
fg/ϕ

⌋
, multiply by ϕ, and subtract from fg

to obtain fg mod ϕ. All of this is fast when ϕ and the approximation to 1/ϕ have small
coefficients. For example, if ϕ is the 1009th cyclotomic polynomial (x1009−1)/(x−1), then
a sufficiently precise approximation to 1/ϕ is x−1008 + x−1009. As a variant, rather than
reducing gh after recovering it from g(2e)h(2e), one can first reduce g(2e)h(2e) modulo
ϕ(2e) and then recover gh mod ϕ, provided that e is chosen large enough; see, e.g., [44,
Proposition 1].
There aremore details to fill in regarding the cost of computing σ , how to handle dj > 2,

etc., but the above description might make it seem plausible that one can use any smooth
tower for K to quickly compute detKQ α. A closer look shows, however, that multiplication
is not so easy.

4.3 The challenge of multiplying quickly in subfields

The computation at hand isn’t simply multiplying in one field Q[x]/ϕ. It’s computing
an element of a subfield of, say, half degree, and then continuing recursively with fast
operations in that subfield.
Write K = Q[x]/ϕ. Assume that θ ∈ K generates a subfield F with deg F = (degK )/2.

Write ψ for the minimal polynomial of θ , and write E for the field Q[y]/ψ . The ring
morphism y �→ θ from Q[y] to F induces an isomorphism from E to F . Applying the
inverse of this isomorphism to detKF g ∈ F produces an element ofE, reducing the problem
of evaluating detKQ to the half-degree problem of evaluating detEQ. But how fast is this
inverse isomorphism?
Cohen’s second textbook [35, page 65, top paragraph] considers this problem (mention-

ing, as an example, taking a “relative trace or norm” from Q[x]/ϕ down to F and repre-
senting it as an element ofQ[y]/ψ) and suggests falling back to linear algebra, treating the
isomorphism as aQ-module isomorphism and inverting the matrix for this isomorphism.
Simply looking at the matrix inverse already involves a quadratic number of matrix

entries. Onemight hope for a fast inversionmethod exploiting the structure of thismatrix;
but, no, the situation is even worse.
Take, for example, ϕ = (x1009 − 1)/(x − 1), and consider the subfield F of K = Q[x]/ϕ

generated by x + 1/x. The minimal polynomial ψ ∈ Q[y] of x + 1/x is
y504 + y503 − 503y502 − . . .

− 91728558855094562166903996595485819919819158847006587897135695049090346490842276029300596063250047752380 y226

− · · · + 2667126y3 − 31878y2 − 252y + 1

with coefficients as large as 346 bits.
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The effects that force large coefficients in this polynomial ψ also force the inverse
matrix mentioned above to have many large entries. The typical outputs of the inverse
isomorphism are correspondingly large, nomatter whatmethod is used to compute them.
Take, e.g., the small element x500 + 1/x500 = x500 + x509 of K . This has, under the
isomorphism, preimage 2T500(y/2) where Tj is the jth Chebyshev polynomial of the first
kind; 102 coefficients of this polynomial have more than 300 bits each, including 344-bit
coefficients of y220, y222, y224 , y226.
To summarize, the elements of Q[y]/ψ being multiplied won’t normally have small

coefficients, and ψ doesn’t have small coefficients. This breaks multiple steps in the argu-
ment that arithmetic in this field is fast. If the original input g ∈ Q[x]/ϕ has very large
coefficients, then there isn’tmuch impact from the extra size ofψ etc., but the applications
motivating this paper (see Sect. 5) start with very small coefficients.

4.4 The superfield representation

The inconvenience of working with “the standard representation” of a real-cyclotomic
field R ∩ Q(ζm) = Q(ζm + ζ−1

m ), such as working with Q[y]/ψ for the degree-504 poly-
nomial ψ shown above in the casem = 1009, is not a new observation. The literature on
computations in R ∩ Q(ζm) typically represents field elements as elements of the larger
field Q(ζm), which in turn is represented as Q[x]/�m where �m is the mth cyclotomic
polynomial.
However, this representation is redundant, for examplewithonly 504degrees of freedom

in the 1008 coefficients for m = 1009. Multiplying elements represented in this way is
correspondingly redundant. One cannot simply dismiss this effect as a constant-factor
slowdown: if elements of a degree-nj field Kj are represented as elements of a degree-nt
field Kt then there are nt/nj times as many coefficients as desired, and nt/nj can be on the
scale of n.

4.5 Relative representations

Cohen’s second textbook includes a chapter [35, Chapter 2] on “basic relative number
field algorithms”, saying [35, Section 2.1.1] that, compared to representing a number field
L as an extension ofQ, representing L as an extension of a nontrivial subfield K is “usually
preferable”. Two reasons stated in [35] for this preference are that

• the defining polynomial of L over K is of “lower degree” and
• “the K -structure on L gives considerably more arithmetical information than consid-

ering L on its own”.

For example, consider again the case that Kj = Kj−1(
√

δ), where δ is a non-square in
Kj−1. The Kj−1-relative representation of Kj (to be more precise, of the pair (Kj,

√
δ)) is as

Kj−1[x]/(x2 − δ): the polynomial α0 + α1x in Kj−1[x] represents the element α0 + α1
√

δ

of Kj . The specified generators of Kj as aQ-vector space are simply the generators of Kj−1
followed by

√
δ times the same generators. Extracting α0,α1 from this representation is

simply extracting the first half and the second half of the coefficients.
How quickly can one multiply two elements in the relative representation of Kj? A

standard Karatsuba-type multiplication of α0 + α1x by β0 + β1x in Kj−1[x] involves three
multiplications in Kj−1. One also incurs a multiplication by δ to reduce modulo x2 −
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δ, although often one can choose δ to make this multiplication very fast. At best this
algorithm reduces a multiplication problem to three half-size multiplication problems. If
this is applied recursively in a 2-power tower then degree-nmultiplication involves nlog2 3

multiplications in Q, not counting the δ multiplications.
As noted in Sect. 1, van der Hoeven and Lecerf [59] suggested choosing towers with

superconstant relative degrees dj so as to reduce the number of base-field multiplications
to n1+o(1). One can obtain cost n(log n)O(1) for multiplications in a tower represented in
this way by requiring each layer to have multiplication overhead (log n)O(1/t) for relative
degree n�(1/t); this is easy for t ∈ �(1), but seems hard for t ∈ �((log n)/log log n). See
also the discussion of open problems in [59, Conclusion]. I don’t see how this approach
can obtain cost n(log n)O(1) for computing detKQ α with �(n log n) bits.

4.6 The Abelian case

From now on, let’s focus on Abelian number fields, i.e., Galois number fields with com-
mutative Galois groups, and see whether this added structure gives faster algorithms.
The Kronecker–Weber theorem states that each Abelian number field is a subfield

of some cyclotomic field Q(ζm); see, e.g., [94, Theorem 14.1]. Conversely, subfields of
cyclotomic fields are certainly Abelian. The smallest positive integer m such that K ⊆
Q(ζm) is called the conductor of K .
(In this paper, as in [69, page 9], a “number field” is a subfield ofChaving finite dimension

as a Q-vector space. Often the literature defines “number field” more broadly as a field
containingQ and having finite dimension as aQ-vector space; but this broader definition
breaks typical statements of the Kronecker–Weber theorem, such as [94, Theorem 14.1].
As a workaround, one could say that each number field in this broader sense is isomorphic
to a number field in the strict sense, so each Abelian number field in this broader sense
is isomorphic to a subfield of Q(ζm) for some m; or, as in [61, Theorem 5.9], one could
say that each Abelian number field in this broader sense has a superfield of the formQ(ζ )
where ζ is a root of unity.)
In analyses of the costs of algorithms below, I’ll ignore the cost of various per-field

precomputations. Formally, this is most easily described as existence of an algorithm
AK for each suitable field K ; the cost of evaluating K �→ AK is irrelevant to the cost
of evaluating α �→ AK (α). In reality, optimizing the precomputation cost could be of
interest, but only in corner cases where m is much larger than n or where there are not
many computations for each K . Specifically, all of the precomputations below take time
mO(1); I’ll assume that m is nO(1), so the precomputation time is also nO(1), which is, at
least asymptotically, outweighed by the number of detKQ evaluations in Sect. 5.

4.7 The Gauss-period representation for prime conductor

Within the set of Abelian fields, let’s start with the case of odd prime conductor p, specif-
ically by reviewing a standard construction of all of the subfields of Q(ζp); these all have
conductor p, except for Q, which has conductor 1.
This construction is due toGauss. The proof that each subfield ofQ(ζp) is one of Gauss’s

fields is typically presented today as an application of Galois theory, but my impression is
that this application is merely a restatement in different language of facts that Gauss had
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proven in [48]. Gauss stated facts without proof for more general cyclotomic fields (see
[2]); I’ll return later to the difficulties that appear in the general case.

4.7.1 Example: the Gauss periods for p = 17

Gauss’s ruler-and-compass construction of a 17-gon [48, Section 354] exhibited, in
essence, a tower of number fields Q = K0 ⊂ K1 ⊂ K2 ⊂ K3 ⊂ K4 = Q(ζ17) with
degKj = 2j . Explicitly, with ζ17 abbreviated as ζ :

• K4 has Q-basis ζ±1, ζ±2, ζ±3, ζ±4 , ζ±5, ζ±6, ζ±7, ζ±8.
• K3 hasQ-basis ζ +ζ−1, ζ 2+ζ−2, ζ 3+ζ−3, ζ 4+ζ−4 , ζ 5+ζ−5, ζ 6+ζ−6, ζ 7+ζ−7, ζ 8+

ζ−8. Each basis element displayed here has exponents c,−c modulo 17 for some c;
note that {1,−1} is the unique subgroup of (Z/17)∗ of order 2.

• K2 has Q-basis ζ + ζ 4 + ζ−4 + ζ−1, ζ 2 + ζ 8 + ζ−8 + ζ−2, ζ 3 + ζ−5 + ζ 5 + ζ−3,
ζ 6 + ζ 7 + ζ−7 + ζ−6. Each basis element displayed here has exponents c, 4c,−4c,−c
modulo 17 for some c; note that {1, 4,−4,−1} is the unique subgroup of (Z/17)∗ of
order 4.

• K1 has Q-basis ζ + ζ 2 + ζ 4 + ζ 8 + ζ−8 + ζ−4 + ζ−2 + ζ−1, ζ 3 + ζ 6 + ζ−5 + ζ 7 +
ζ−7 + ζ 5 + ζ−6 + ζ−3. These are (−1 + √

17)/2 and (−1 − √
17)/2; the field K1 is

Q(
√
17).

These basis elements are called “Gauss periods” (or “Gaussian periods”), not to be con-
fused with “Gauss sums”, which are Fourier transforms of Gauss periods. Beware that the
literature sometimes uses the terminology “Gauss sums” for Gauss periods; see, e.g., [12].

4.7.2 Constructing Gauss periods for any odd prime p

Let p be an odd prime number. The field Q(ζp) has Galois group isomorphic to (Z/p)∗;
each element c ∈ (Z/p)∗ corresponds to the unique automorphism σc of Q(ζp) mapping
ζp to ζ c

p . Note that this automorphism permutes the Q-basis ζp, ζ 2
p , . . . , ζ

p−1
p of Q(ζp).

The group (Z/p)∗ is a cyclic group with #(Z/p)∗ = p− 1, so, for each divisor d of p− 1,
there is a unique subgroupH of (Z/p)∗ with #H = d. The fixed field of the corresponding
group of automorphisms is the unique subfield F of Q(ζp) of degree (p − 1)/d.
Explicitly, the Gauss period ζ

j
p + ζ

cj
p + ζ

c2j
p + · · · + ζ

cd−1j
p , where j ∈ (Z/p)∗ and

d is the order of c in (Z/p)∗, is in the fixed field F of σc ; it is exactly trQ(ζp)
F ζ

j
p.

The set {trQ(ζp)
F ζ

j
p : j ∈ (Z/p)∗} is a Q-basis set for F . This follows from the fact that{

ζ
j
p : j ∈ (Z/p)∗

}
is a Q-basis set for Q(ζp). The point is that σc maps α = ∑

j∈(Z/p)∗ αjζ
j
p

to
∑

j∈(Z/p)∗ αjζ
cj
p = ∑

j∈(Z/p)∗ αj/cζ
j
p, so σc fixes α exactly when αj = αj/c for each j, i.e.,

exactly when j �→ αj is constant on orbits of multiplication by c.
The Q-basis ζp, ζ 2

p , . . . , ζ
p−1
p of Q(ζp) is an integral basis: its Z-span is Z[ζp], the ring

of integers of Q(ζp). Consequently the Gauss-period basis for each subfield of Q(ζp) is an
integral basis for that subfield.
Another important feature of the Gauss-period basis is that one can efficiently compute

conjugates of field elements represented as Q-linear combinations of Gauss periods. For
the same reason, the representation is subfield-compatible (andhence compatiblewith any
given tower of subfields): ifK ⊆ L are subfields ofQ(ζp) then one can efficiently (1)map an
element of K from K ’s Gauss-period representation to L’s Gauss-period representation,
and (2) invert this map on its image.
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4.8 Multiplication algorithms for the Gauss-period representation for prime conductor

Bach and Shallit [7, Section 4, “period basis”], crediting Lenstra, used the Gauss-period
basis for computations in an Abelian field K of prime conductor p. The multiplication
algorithm in [7] for this basis has cost cubic in the degree of K .
Gao, von zur Gathen, and Panario [47, Section 3] instead used the superfield represen-

tation of elements of K as elements of Q(ζp), giving multiplication cost essentially linear
in p. This cost can be much smaller than cubic in the degree of K , but can also be much
larger: consider, as an extreme example, the quadratic field K = Q(√p).
The general issue here was noted in [7, page 206, “we would like to avoid using the larger

field”]; the issue for Q(√p) was noted in [29, Section 7, first paragraph]. This was not a
big issue for [47]. The goal of [47] was to multiply in Fq for a given prime power q; the
strategy in [47] was to represent Fq as a quotient of a degree-n subring of Q(ζp); in this
context, one can safely restrict attention to the case that p − 1 is not much larger than n.
However, if the goal is instead to evaluate detQ(ζp)

Q
via a smooth tower of subfields ofQ(ζp)

then one ends up considering subfields of many degrees, with similar data volume in each
degree, so one cannot ignore the gap between the degree and p − 1.
Let’s look more closely at known essentially-linear-time multiplication algorithms for

Q(ζp). A conventional FFT modulo xm − 1, wherem is a power of 2 above 2p, works with
the additive structure of the exponent groupZ/m. A different essentially-linear-timeDFT
algorithm, introduced by Rader in [82], instead works with the multiplicative structure of
(Z/p)∗—and we’ll see in a moment that Rader’s algorithm can easily take advantage of the
symmetries of the Gauss-period basis for a subfield of Q(ζp).
See Appendix A for software to double-check the main algorithms presented here.

4.8.1 Rader’s FFT

The goal is to compute a size-pDFT over a ring Rwhere p is an odd prime: i.e., to compute
g(1), g(ζ ), . . . , g(ζ p−1) given g ∈ R[x] with deg g < p, where ζ is a primitive pth root of 1
in R.
Write g as g0 + g1x + · · · + gp−1xp−1. Rader handles g0 separately (simply adding g0 to

each output), and handles g(1) separately, easily reducing to the problem of computing
g(ζ ), . . . , g(ζ p−1) where g = g1x + · · · + gp−1xp−1. Let’s now focus on that problem.
View g as an element of the group ring R[Z/p]; i.e., view the indices of g as elements of

Z/p. Let ω be a generator of (Z/p)∗. Then

g(ζωb
) =

∑

j∈(Z/p)∗
gjζωbj =

∑

a∈{0,1,...,p−2}
gω−aζωb−a

.

In other words, Ob = ∑
a IaZb−a, where Ia = gω−a , Zb = ζωb , and Ob = g(ζωb ): the

output sequence O is a length-(p − 1) cyclic convolution of the input sequence I and the
constant sequence Z, i.e., a product in the group ring R[Z/(p − 1)]. Rader concludes by
pointing to essentially-linear-time subroutines for cyclic convolution.

4.8.2 Inverting Rader’s FFT

The standard principle that a DFT with exponents negated is an inverse DFT, aside from
scaling by a constant factor, means that one can use a DFT algorithm for an inverse
DFT without inspecting the details of the algorithm. However, seeing how to merge this
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principle into the details of Rader’s algorithm turns out to be useful for the generalized
algorithms in Sects. 4.8.4 and 4.12.4.
The details are as follows. Again handle g0 and g(1) separately, easily reducing to the

problem of recovering g = g1x + · · · + gp−1xp−1 given g(ζ ), . . . , g(ζ p−1), i.e., recovering
the above sequence I from the above sequence O. Define Z′

b = (Z(p−1)/2−b − 1)/p. The
following calculation, where the indices a, b range over Z/(p − 1), shows that Z has a
convolution inverse, specifically Z′:

p
∑

a
ZaZ′

b−a =
∑

a
ζωa

(
ζω(p−1)/2+a−b − 1

)

=
∑

a
ζωa

ζ−ωa−b −
∑

a
ζωa =

∑

a
ζ (1−ω−b)ωa −

∑

a
ζωa

.

This last quantity is, as desired, p if b = 0, else 0; the point is that
∑

a ζ sωa is p − 1 if
s = 0, else −1. Hence convolution with Z′ is deconvolution with Z; in particular, I is the
convolution of O and Z′.

4.8.3 Exploiting input symmetries in Rader’s FFT

If g is real, meaning that gj = g−j for each j ∈ (Z/p)∗, then g(ζ c) = g(ζ−c). In other words,
if the input sequence I is periodic with period (p − 1)/2, then the output sequence O is
also periodic with period (p− 1)/2. One can exploit this twofold symmetry by folding the
Z sequence: one has

Ob =
∑

a
IaZb−a =

∑

0≤a<(p−1)/2
IaZb−a +

∑

(p−1)/2≤a<p−1
IaZb−a

=
∑

0≤a<(p−1)/2
Ia(Zb−a + Zb−a+(p−1)/2) =

∑

0≤a<(p−1)/2
IaYb−a

where Yb = Zb+Zb+(p−1)/2. This expresses the first half ofO as a length-((p−1)/2) cyclic
convolution of Y and the first half of I .
More generally, fix a positive integer d dividing p−1, and say gj = gjωd for all j ∈ (Z/p)∗.

(The previous paragraph is the case d = (p− 1)/2.) Then the input and output sequences
are periodic with period d, and are determined by their first d entries, i.e., the entries
at positions 0 through d − 1. The first d entries of the output O are a length-d cyclic
convolution of Y and the first d entries of I , where now Yb = Zb+Zb+d +· · ·+Zb+p−1−d .
The number of operations in this convolution, after precomputation of the Y sequence,
is essentially linear in d: more precisely, d(log d)1+o(1).
This folded generalization of Rader’s FFT algorithm is not new. Arita andHanda [6, Sec-

tions 3.3-−3.4] considered the Gauss-period basis of a subfield of Q(ζp) (not mentioning
that these are Gauss periods), considered DFTs (under another name) of elements of the
subfield, and expressed these DFTs as convolutions (not mentioning Rader’s algorithm).

4.8.4 Inverting a folded Rader FFT

Define Y ′
b = Z′

b + Z′
b+d + · · · + Z′

b+p−1−d = (Y(p−1)/2−b − (p − 1)/d)/p. Then Y ′ is the
convolution inverse of Y : the folding map from the group ring R[Z/(p − 1)] to R[Z/d]
maps Z to Y , maps Z′ to Y ′, and maps the equation ZZ′ = 1 to the equation YY ′ = 1.
Convolution with Y ′ thus inverts the folded Rader algorithm from Sect. 4.8.3.
In other words: Consider the problem of recovering, from the input described in a

moment, a polynomial g ∈ R[x] with deg g < p, with g(0) = 0, and with the periodicity
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gj = gjωd for all j ∈ (Z/p)∗, where indices are again interpreted as elements of Z/p. The
input consists of the first d entries of the d-periodic sequence O defined by Ob = g(ζωb );
i.e., the values of g at ζ , ζω , ζω2 , . . . , ζωd−1 .
To solve this problem, simply apply a length-d cyclic convolution of the input sequence

with Y ′, obtaining the first d entries of the sequence I defined by Ia = gω−a . These entries
are the coefficients of g on the R-basis

xω0 + xωd + xω2d + · · · + xωp−1−2d + xωp−1−d
,

xω−1 + xωd−1 + xω2d−1 + · · · + xωp−2−2d + xωp−2−d
,

...

xω1−d + xω1 + xωd+1 + · · · + xωp−3d + xωp−2d
.

Note that replacing x with ζp in these formulas produces the Gauss periods.
Combining the folded Rader FFT with the inverse folded Rader FFT produces a fast

multiplication algorithm for this type of periodic polynomial. One is given two peri-
odic polynomials f, g ; one uses the folded Rader FFT to evaluate the polynomials at
ζ , ζω , ζω2 , . . . , ζωd−1 ; one then multiplies pointwise and uses the inverse folded Rader
FFT to interpolate, obtaining a periodic polynomial h with the same values as f, g . The
periodicity implies that h has the same values as fg at all powers of ζ , so h = fg in
R[x]/((xp − 1)/(x − 1)). All of this takes just d(log d)1+o(1) operations in R, after precom-
putation of the Y sequence.

4.8.5 Integers as a base ring

Again fix a positive integer d dividing p − 1. Consider d-periodic polynomials g ∈ Z[x],
defined as polynomials g ∈ Z[x] satisfying deg g < p, g(0) = 0, and gj = gjωd for all
j ∈ (Z/p)∗, with indices interpreted as elements of Z/p. As above, represent d-periodic
polynomials on the period basis: i.e., represent g as the sequence g1, gω−1 , . . . , gω1−d . Con-
sider the problem of multiplying d-periodic polynomials: given d-periodic f, g , find d-
periodic h with h = fg in Z[x]/((xp − 1)/(x − 1)).
This problem for Z reduces immediately to the same problem for Z/M, if the modulus

M is chosen large enough to ensure that the coefficients of h in Z can be recovered from
their images inZ/M. An easy way tomeasure “large enough” is to note that the maximum
possible coefficient of h in absolute value is 2p − 3 times the maxima for f and g ; the
factor 2p−3 fits into�(log p) bits, and the same factor across allO(p) coefficients fits into
O(p log p) bits, a bound sufficiently small for this paper’s analyses. One can, with more
work, compute bounds that are better for most inputs—for example, one can evaluate f
and g at 1, andmore generally use low-precision complex embeddings to estimate sizes, as
mentioned in Sect. 3.3—but a logarithmic factor is to be expected, as explained in Sect. 2.
The reason to reduce to Z/M is that one can also chooseM to ensure that Z/M has the

primitive roots of 1 needed for the folded Rader FFT. Concretely, takeM as a product of
distinct primes q ∈ 1 + pdZ. Then Z/M contains a primitive pth root of 1 for defining
the DFT in the first place, and, less importantly, contains a primitive dth root of 1 so
that the length-d cyclic convolutions inside a folded Rader FFT can in turn be handled
by traditional FFTs when d is smooth. Given the goal of using folded Rader FFTs, this
reduction is the obvious adaptation of a widely used reduction suggested by Pollard [78],
independently Nicholson [74, page 532], and independently Schönhage–Strassen [85],
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namely reducing modulo products of primes q ∈ 1 + 2kZ to support traditional size-2k

FFTs.
There is a logarithmic inefficiency in this reduction when d and M are both large.

Specifically, there are d(log d)1+o(1) multiplications in Z/M, and each multiplication in
Z/M uses b(log b)1+o(1) bit operations ifM has b bits, so there are two logarithmic factors
in the total cost on top of the output size bd. Recall that the usual scenario consid-
ered in this paper is bd ∈ �(n log n); very often d is between n0.1 and n0.9, implying
bd(log b)1+o(1)(log d)1+o(1) = n(log n)3+o(1). Let’s see how to do better, saving a logarith-
mic factor and reaching cost bd(log bd)1+o(1) = n(log n)2+o(1).
What does not seem to save this logarithmic factor is working separately modulo each

prime factorq ofM, alongwith choosing eachq small enough tohave log log q ∈ (log n)o(1),
as in Sect. 3.2. This would reduce the total cost of the folded Rader FFTs across each Z/q
to n(log n)2+o(1); but how does one reduce Z/M to

∏
q(Z/q) in the first place? Standard

algorithms for this reduction, and for the corresponding interpolation at the end of the
multiplication, have two logarithmic factors, one formultiplications and one for the height
of a product tree. See, e.g., [16, Sections 18 and 23]. This issue did not arise in Sect. 3.2:
each reduction there started from small input coefficients, and interpolation used only
one large coefficient.
What does save a logarithmic factor, as in Sects. 3.3 and 4.2, is segmentation. It is impor-

tant here that the folded Rader FFT is simply carrying out a convolution. Segmentation
converts length-d convolution over Z/M, where M has b bits, into O(bd)-bit multipli-
cation, costing bd(log bd)1+o(1) bit operations. It suffices here to take M as a product of
distinct primes q ∈ 1 + pZ.

4.8.6 Application to det evaluation

If K is a degree-n subfield ofQ(ζp), and if K has a smooth tower (i.e., if n factors into small
enough primes), then computing detKQ α costs n(log n)3+o(1) in the same �(n log n)-bit
scenario. Each step through the tower costs n(log n)2+o(1) (see Sect. 4.8.5), and there are
(log n)1−o(1) steps.
As a concrete example, the prime p = 1009 has p − 1 = 2 · 2 · 2 · 2 · 3 · 3 · 7, so

one can compute detKQ α for K = Q(ζ1009) by a series of multiplications in subfields of
K of degrees 1008, 504, 252, 126, 63, 21, 7, using the Gauss-period representation of each
subfield, using cyclic convolutions of lengths 1008, 504, 252, 126, 63, 21, 7 respectively to
compute the underlying DFTs.
(In this example, one could also use the prime factors of p − 1 in the opposite order, or

any other order. In general, for eachK , all smooth towers forK have the sameperformance
at the level of detail of this paper’s analysis. This is not saying that the towers have exactly
the same performance; the analysis absorbs all (log n)o(1) factors.)
This application of folded Rader FFTs to fast detKQ α computation seems to be new. A

helpful speedup in this context is to push conjugation and subfield extraction through the
DFTs: to compute detKj

Kj−1
αj , apply a Kj-folded DFT to αj , fold the result dj times, and

apply a Kj−1-folded inverse DFT.
If one is starting from a very large p and a relatively small subfield of Q(ζp) then the Y

precomputation stated above could be a bottleneck. Each Yb is a Gauss period, with ζ ∈ R
substituted for ζp; presumably it is possible in time nO(1) to identify the defining equation



D. J. Bernstein Res. Number Theory (2023) 9:82 Page 27 of 57 82

of the subfield in question and solve for a suitable system of Yb values (a weak form of
reciprocity)without even computing ζ . But such speedups are not necessary for this paper:
recall from Sect. 4.6 thatm is assumed to be nO(1), and that per-field precomputation cost
is not included.

4.9 Arbitrary conductor: difficulties and desiderata

What about arbitrary Abelian number fields, i.e., subfields of arbitrary cyclotomic fields
Q(ζm), without the constraint ofm being prime?
The general case is not as easy as the prime case. The group (Z/m)∗ is not cyclic in

general, although if one splits m into prime-power components then non-cyclic compo-
nents can appear only for the power of 2. More fundamentally, there are many m for
which {ζ j

m : j ∈ (Z/m)∗} is not a Q-basis set for Q(ζm): for example, ζ4 = i and ζ 3
4 = −i

do not form a Q-basis for Q(ζ4), and ζ8, ζ 3
8 , ζ

5
8 , ζ

7
8 do not form a Q-basis for Q(ζ8). If one

starts with a basis 1, ζ8, ζ 2
8 , ζ

3
8 for Q(ζ8) and takes traces down to Q(ζ4) then one obtains

2, 0, 2ζ4 , 0; the nonzero traces 2, 2ζ4 form a Q-basis for Q(ζ4) but not an integral basis.
Traces fromQ(ζm) to K can behave suboptimally even when K has conductorm. Take,

for example, m = 8 and K = R ∩ Q(ζ8). The integral basis 1, ζ8, ζ 2
8 , ζ

3
8 of Q(ζ8) has trace

2, ζ8 + ζ−1
8 , ζ 2

8 + ζ−2
8 , ζ 3

8 + ζ−3
8 , which is not exactly an integral basis of K . On the other

hand, replacing each trace with the sum of distinct conjugates replaces 2 with 1, giving
an integral basis. Breuer [29], crediting Hiss and Lenstra, gave an explicit integral basis
for every Abelian number field; see [29, Corollary 2] for cases handled by the trace, [29,
Lemma 4] for cases handled by sums of distinct conjugates (and not by the trace), and
[29, Lemma 3] for the the fact that these cover all cases. See Sect. 4.12 for more on this
construction.
Breuer’s stated objective [29, Section 1] was to find an integral basis of each Abelian

field that allows efficient arithmetic and efficiently finding “for an arbitrary element of a
cyclotomic field the basis representation in the smallest possible field”. This description
considers only moving fromQ(ζm) to a subfield, but it is natural to consider moving more
generally from K to L and from L to K whenever K ⊆ L are subfields of Q(ζm). In detKQ
evaluation via towers, it is important to be able to efficiently move from a subfield Kj to a
smaller subfield Kj−1.

4.10 A sub-cyclotomic-field-compatible integral basis for each cyclotomic field

This subsection reviews one component of the construction from [29]: an integral basis
for Q(ζm) introduced by Zumbroich [97] and independently Bosma [26]. As Bosma
put it [26, Section 1], this basis allows one to efficiently find “the smallest cyclotomic
field in which a given sum of roots of unity lies”. Arithmetic using this basis was
implemented in, respectively, CAS, which was later superseded by GAP, and Cayley,
which was later superseded by Magma. The GAP implementation is available in Sage as
UniversalCyclotomicField.
For each prime p and each positive integer e, choose a set Ip,e of pe−1 consecutive

integers: e.g., the set {1, 2, . . . , pe−1}. Define Spe ⊆ Z/pe as the complement of the image
of Ip,e in Z/pe. The specified integral basis set for Q(ζpe ) is {ζ j

pe : j ∈ Spe }. In other words,
starting from ζZ

pe , one removes some arc consisting of 1/p of the circle.
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More generally, for each positive integer m, define Sm ⊆ Z/m as the set of images
in Z/m of all j ∈ Z such that, for each prime divisor p of m, the set j − (m/pe)Ip,e =
{
j − (m/pe)s : s ∈ Ip,e

}
is disjoint from peZ, where e = ordp m (i.e., m ∈ peZ and m /∈

pe+1Z). The specified integral basis set for Q(ζm) is {ζ j
m : j ∈ Sm}. This no longer has the

arc description.
For example, take m = 12, and choose Ip,e = {

0, 1, . . . , pe−1 − 1
}
; in particular, I2,2 =

{0, 1} and I3,1 = {0}. The allowed exponents j then avoid 4Z + 3I2,2 = 4Z + {0, 3}, and
avoid 3Z + 4I3,1 = 3Z, so S12 = {1, 2, 5, 10}.
There are two steps in showing that this is an integral basis set. First, this set has the

right number of elements. To see this, observe that if p is a prime divisor of m and
e = ordp m then the set (m/pe)Ip,e consists of pe−1 distinct integers modulo pe. The
condition peZ ∩ (j − (m/pe)Ip,e) = {} thus excludes exactly pe−1 choices of j modulo pe.
These conditions are independent across p, leaving exactly

∏
p(pe − pe−1) = #(Z/m)∗

choices of j ∈ Sm; and the map j �→ ζ
j
m on Sm is injective.

Second, one can express any element of Z[ζm] as a Z-linear combination of ζ
j
m for

j ∈ Sm. The proof is constructive. Write the input as
∑

a∈Z/m αaζ a
m. For each prime

divisor p of m (in, say, increasing order), define e = ordp m, and eliminate all a ∈ Z/m
such that a − (m/pe)Ip,e includes a multiple of pe as follows: use the identity 1 = −ζp −
· · · − ζ

p−1
p , together with ζp = ζ

m/p
m , to rewrite ζ a

m as −∑
b ζ b

m where b ranges over
{
a + m/p, . . . , a + (p − 1)m/p

}
. Here is why this works:

• The set b − (m/pe)Ip,e cannot include a multiple of pe for any of the new exponents
b. (If it does then the difference (b− a)− (m/pe)(Ip,e − Ip,e) includes a multiple of pe,
say (b − a) − (m/pe)� where � ∈ Ip,e − Ip,e. This is also a multiple of m/pe—since
by construction b− a is a multiple ofm/p—and hence a multiple ofm, i.e., 0 in Z/m.
Hence (m/pe)� is a multiple ofm/p, so � is a multiple of pe−1; but the only multiple
of pe−1 in Ip,e − Ip,e = {−pe−1 + 1, . . . , pe−1 − 1

}
is 0, so � = 0, so b = a, but by

construction b �= a, contradiction.)
• This property is preserved by any subsequent rewrites, i.e., replacements of ζ b with

ζ c where c − b is a multiple of m/p′ for a prime p′ �= p. (Indeed, c − b is a multiple
of pe, so if c − (m/pe)Ip,e includes a multiple of pe then b − (m/pe)Ip,e also includes a
multiple of pe.)

For each p, there are m/p exponents a ∈ Z/m that require rewrites (if they appear in
the input), and each rewrite takes O(p) operations, for a total of

∑
p O(m) operations;

this isO(m(logm)/log logm) by the prime-number theorem. Also, each layer of rewriting
converts B-bit coefficients into at most (B + 1)-bit coefficients, and there are at most
log2m layers of rewriting.
The choice Ip,e = {

1, 2, . . . , pe−1} has the properties Ip,e ∩ peZ = {} and pIp,e = pZ ∩
Ip,e+1. One can then see that the basis for any divisor of m is included in the basis for m,
making it trivial to recognize elements of smaller cyclotomic fields. These bases are what
Bosma [26] calls “canonical bases for cyclotomic fields”.
GAP instead takes Ip,e as

{−(pe−1 − 1)/2, . . . , (pe−1 − 1)/2
}

for odd p, and
{
2e−1, . . . , 2e − 1

}
for p = 2. The choice 0 ∈ Ip,1 for odd p gives, e.g., basis ζp, ζ 2

p , . . . , ζ
p−1
p

forQ(ζp). This does not include a basis element forQ: recognizing the subfieldQ requires
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checking for equal coefficients as in [29, Corollary 3]. The advantage of this basis, as in
Sect. 4.8, is that conjugation is as easy as possible.
One can freely use one choice of Ip,e to simplify conjugation and another choice of Ip,e to

simplify subfield detection, since it is efficient to rewrite any input using any given choice
of Ip,e. Also, given a rewriting function for one choice of Ip,e, one can conjugate the input
by a power of ζm to obtain a rewriting function for a rotated basis, i.e., a rotated choice of
Ip,e.

4.11 Cyclotomic fields of smooth conductor

Consider computing detKQ via a smooth tower of cyclotomic fields Q = Q(ζm0 ) ⊂
Q(ζm1 ) ⊂ · · · ⊂ Q(ζmt ) = K . This setup requires mt to be smooth, which is more
restrictive than merely requiring Q(ζmt ) to have smooth degree; on the other hand, this
avoids the prime-conductor requirement from Sect. 4.8.
If each Kj = Q(ζmj ) is represented as in Sect. 4.10 then it is easy to convert elements of

Kj−1 from the Kj representation to the Kj−1 representation. It is also easy to convert the
input, a small element of Z[ζmt ], to the Kt representation. One obvious way to compute
detKj

Kj−1
αj , given αj ∈ Kj , is to multiply σ (αj) across the automorphisms σ of Kj that fix

Kj−1, as in Sect. 3.7. The remaining question is how long conjugation and multiplication
take in this Kj representation.
Expanding the allowed set of exponents from Sm in Sect. 4.10 toZ/mmakes conjugation

easy, simply permuting Z/m, and reduces multiplication to the problem of multiplying
modulo xm−1, usingm(logm)1+o(1) coefficient operations. The rewriting operation from
Sect. 4.10, reducing the set of exponents from Z/m to Sm, uses at most m(logm)1+o(1)

coefficient operations.
In terms of the degree n of Q(ζm), these costs are n(log n)1+o(1), since the ratio n/m is

(log n)o(1). (More precisely, n/m ≥ �(1/log log n). This is a standard calculation that runs
as follows. First, n/m is the product of 1−1/p over prime divisors p ofm. Choose a positive
integer y so that the number of primes p ≤ y is the number of prime divisors of m; then
n/m is at least the product of 1− 1/p over primes p ≤ y, which is �(1/log y) by Mertens’s
theorem,whilem is at least

∏
p≤y p, so logm is at least�(y) by the prime-number theorem.

This gives n/m ≥ �(1/log logm), also implying �(log log n) = �(log logm).)
As before, this gives total cost n(log n)3+o(1) in the �(n log n)-bit scenario. This case

does not need Rader’s FFT.

4.12 Using more subgroups

Let’s now unify the ideas of Sects. 4.8 and 4.11: handling K = Q(ζm) for any m using
any tower of subgroups of (Z/m)∗, without requiring the subgroups to correspond to
cyclotomic subfields.

4.12.1 Multicyclic convolution

The following paragraphs review a standard unification of conventional FFTs with fast
Hadamard–Walsh transforms.
Let R be a ring. Let t be a nonnegative integer. Let d1, d2, . . . , dt be integers with dj ≥

2. Write n = d1d2 · · · dt . Let ζ ∈ R be a primitive nth root of 1. Let e1, e2, . . . , et be
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nonnegative integers. Assume that e1 ∈ nZ if t ≥ 1. Let x0 be a unit in R. The goal here is
to multiply quickly in the ring

Rt = R[x1, x2, . . . , xt ]/
(
xd11 − xe10 , xd22 − xe21 , . . . , xdtt − xett−1

)
,

with the conventional representation of ring elements as polynomials of degree below dj
in xj .
If dj has a prime factor p < dj then one can replace the modulus xdjj − xejj−1 with the

moduli yp − xejj−1, x
dj/p
j − y where y is a new variable, obtaining a problem of the same

form with dj replaced by p, dj/p. So it suffices to consider the case that d1, d2, . . . , dt are
primes. Primality does not matter for the algorithm statement, but the cost analysis says
that smaller dj is better.
The multicyclic case, which is the case used in subsequent sections, is the case that

ej = 0 for all j; in other words, multiplication in the group ring R[G], whereG is any finite
commutative group. But it is also important to consider non-multicyclic cases to enable
the speedup from the previous paragraph.
The algorithm applies an FFT, a fast isomorphism from Rt to Rn; multiplies in Rn, which

is simply n separatemultiplications inR; and applies an inverse FFT to recover the product
in Rt .
For t = 0, there is nothing to do, so assume t ≥ 1. The first layer of the FFT algorithm

proceeds as follows.
Consider the ring morphism R[z]/(zd1 − 1) → Rd1 where coordinate c of the output,

for 0 ≤ c < d1, maps z to ζ cn/d1 . This is a textbook size-d1 DFT, straightforwardly
computable using �(d21) operations in R. This is also straightforwardly invertible using
�(d21) operations in R, since d1 is invertible in R by definition of primitive roots.
(One can improve these�(d21) operation counts by substituting more complicated DFT

algorithms. However, this paper will apply multicyclic convolution to smooth towers, and
then d1 is (log n)o(1), so d21 is also (log n)o(1). At that level of detail, the exponent of d1 in
the operation count does not matter.)
By assumption e1 ∈ nZ, so in particular e1 ∈ d1Z. The ring morphism R[x1] →

R[z]/(zd1 − 1) mapping x1 to xe1/d10 z is invertible since x0 is a unit, and induces a ring
morphism R[x1]/(xd11 − xe10 ) → R[z]/(zd1 − 1), straightforwardly computable and invert-
ible using�(d1) operations in R once the necessary powers of x0 have been precomputed.
Composing this morphism with the DFT gives a ring morphism R[x1]/(xd11 − xe10 ) → Rd1

that maps x1 to xe1/d10 ζ cn/d1 in the cth coordinate.
Applying this layer to the whole ring

Rt = R[x1, x2, . . . , xt ]/
(
xd11 − xe10 , xd22 − xe21 , xd33 − xe32 , . . . , xdtt − xett−1

)
,

uses �(d1n) operations and gives a product of d1 rings of the form

R[x2, . . . , xt ]/
(
xd22 − xe2e1/d10 ζ e2cn/d1 , xd33 − xe32 , . . . , xdtt − xett−1

)
.

Each of these rings now has the same structure as Rt , except for t being reduced by 1.
The point is that xe2e1/d10 ζ e2cn/d1 can be expressed as a d2 · · · dt th power, since e2e1/d1
and e2cn/d1 are multiples of d2 · · · dt ; also, ζ d1 is a primitive d2 · · · dt th root of 1. The rest
of the DFT proceeds recursively, using a total of �((d1 + · · · + dt )n) operations in R. The
inverse also uses �((d1 + · · · + dt )n) operations in R.
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The cost is at least�(n log n). If each dj is bounded by, say, s then the cost isO(sn log n).
In particular, multiplication in R[G], where G is any finite commutative group whose
cardinality n = #G factors into primes at most s, uses O(sn log n) operations in R.
Often a primitive nth root of 1 is overkill; it is easy to compute the roots that are

actually required given the sequence d1, d2, . . . , dt , e1, e2, . . . , et . In the multicyclic case,
the algorithm uses only a primitive rth root of 1 for r = lcm

{
d1, d2, . . . , dt

}
. In the

balanced multicyclic case, where d1 = d2 = · · · = dt , one has r = d1, usually much
smaller than n = dt1. The Hadamard–Walsh transform is a multicyclic transform with
d1 = d2 = · · · = dt = 2, and needs only a primitive 2nd root of 1: i.e., the root −1, with 2
invertible in R.

4.12.2 Multicyclic convolutionwith large coefficients

Consider now the problem of multicyclic convolution over Z, i.e., the problem of multi-
plying in Z[x1, . . . , xt ]/(xd11 − 1, . . . , xdtt − 1). Again write n = d1 · · · dt .
One can reduce multicyclic convolution over Z/M to this problem of multicyclic con-

volution over Z, at the expense of reducing each output coefficient separately moduloM,
which costs O(nb log b) if M has b bits. Conversely, one can reduce multicyclic convolu-
tion over Z to multicyclic convolution over a quotient Z/M selected (1) to be sufficiently
large to recover the output coefficients in Z and (2) to have appropriate primitive roots of
1 for the standard multicyclic FFTs from Sect. 4.12.1.
However, even in the smooth case, those multicyclic FFTs involve n(log n)1+o(1) opera-

tions in Z/M. Many of those operations are multiplications (except in extreme cases such
as Hadamard–Walsh transforms), each taking b(log b)1+o(1) operations if M has b bits.
As in Sect. 4.8.5, there is an inefficiency here when both b and n are large. A straight-
forward use of segmentation replaces the two logarithmic factors with one logarithmic
factor times something exponential in t; this was satisfactory in Sect. 4.8.5, with t = 1,
but is not satisfactory in general. One can try to reduce t by replacing d1, . . . , dt with the
elementary divisors of the group Z/d1 × · · · × Z/dt , but this is not helpful for, e.g., the
case d1 = · · · = dt = 3.
To do better, one can inspect standard algorithms for fast integer multiplication (see,

e.g., [13]) and observe that many, if not all, of the same ideas naturally support multicyclic
convolution. State-of-the-art multicyclic convolution as in [56] is generally more compli-
cated than necessary for this paper, since this paper, unlike [56], freely allows (log n)o(1)

factors; the following paragraphs explain a simpler algorithm. No claims of novelty are
made here.
One of the Schönhage–Strassen [85] algorithms to multiply in Z is as follows. There are

three parameters: a positive integer κ , a positive integer c ∈ �(log κ), and a prime number
p ∈ 1+κZ having�(log κ) bits.MapZ toZ[y]/(2c−y) and lift toZ[y], splitting each input
into coefficients between−2c−1 and 2c−1; map to Z[y]/(yκ − 1); map to (Z/p)[y]/(yκ − 1);
use a length-κ FFT to multiply in (Z/p)[y]/(yκ − 1). Each product coefficient has absolute
value at most 22c−2κ , so if p > 22c−1κ (which is compatible with p having �(log κ) bits)
then one easily recovers the product inZ[y]/(yκ −1), and if the output polynomial needed
y-degree at most κ − 1 then one easily recovers the original product in Z.
Typically κ is chosen as a power of 2, so that a traditional power-of-2 FFTuses�(κ log κ)

operations in Z/p. Each operation in Z/p uses (log κ)1+o(1) bit operations, since p has
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�(log κ) bits. The overall cost is thus κ(log κ)2+o(1) for outputs fitting into �(κ log κ) bits;
i.e., b(log b)1+o(1) for outputs fitting into b bits.
To handle multicyclic convolution in the same way, take a positive integer κ , a positive

integer c ∈ �(log κn), and a prime number p ∈ 1 + κnZ having �(log κn) bits, with
p > 22c−1κn. Map the ring Z[x1, . . . , xt ]/(xd11 − 1, . . . , xdtt − 1) to the ring (Z[y]/(2c −
y))[x1, . . . , xt ]/(xd11 −1, . . . , xdtt −1) and lift to the ringZ[y, x1, . . . , xt ]/(xd11 −1, . . . , xdtt −1),
splitting each of the input coefficients into polynomials in y with coefficients between
−2c−1 and 2c−1. Then map to the ring Z[y, x1, . . . , xt ]/(yκ − 1, xd11 − 1, . . . , xdtt − 1) and
further to the ring

(Z/p)[y, x1, . . . , xt ]/
(
yκ − 1, xd11 − 1, . . . , xdtt − 1

)
.

Each product coefficient has absolute value at most 22c−2κn, so one recovers the
product in Z[y, x1, . . . , xt ]/(yκ − 1, xd11 − 1, . . . , xdtt − 1), and thus the product in
Z[y, x1, . . . , xt ]/(xd11 − 1, . . . , xdtt − 1) assuming it has y-degree at most κ − 1, and thus
the product in Z[x1, . . . , xt ]/(xd11 − 1, . . . , xdtt − 1).
The product in (Z/p)[y, x1, . . . , xt ]/(yκ − 1, xd11 − 1, . . . , xdtt − 1) can be handled as

explained in Sect. 4.12.1 if p ∈ 1 + κnZ. This uses O(sκn log κn) operations in Z/p if κn
factors into primes at most s. Each operation in Z/p uses (log κn)1+o(1) bit operations,
so the overall cost is at most sκn(log κn)2+o(1) bit operations for n output coefficients
each fitting into �(κ log κn) bits. For this paper, one should think of s as being small: the
smooth case emphasized in this paper is that n factors into small primes, and one can
easily choose κ within any desired range to also factor into small primes.
The applications below focus on reducing various types of FFTs over rings R to mul-

ticyclic convolutions, generalizing Sect. 4.8. The application to det computation takes
rings R of the form Z/M, where M is generally chosen larger and larger as one moves
down a tower; one always has b ≥ �(log n), where b is the number of bits in M. One
can handle the multicyclic convolutions by the algorithm in the previous two paragraphs,
taking κ as b/�(log bn), so κn is bn/�(log bn) = bn/�(log κn). The overall cost is then
sbn(log bn)1+o(1) bit operations for n output coefficients each fitting into �(b) bits. This
saves a log factor as desired.

4.12.3 A primitive size-m FFT

Letmbe a positive integer. LetR be a ring. Let ζ be a primitivemth root of 1 inR.WriteG =
(Z/m)∗. Consider the ringmorphismR[x] → RG thatmaps g to the vector b �→ g(ζ b). The
main objective here is to efficiently apply this morphism to g = g0+g1x+· · ·+gm−1xm−1,
given g0, g1, . . . , gm−1 ∈ R.
This morphism is a “primitive DFT”. This is, form > 1, different from a traditional “full

DFT”. The difference is that a full DFT evaluates g at ζ b for all b ∈ Z/m, while a primitive
DFT evaluates g at ζ b only for b ∈ (Z/m)∗, i.e., only for b coprime tom.
Note that multiplication in Z/m restricts to an action of the group G on Z/m, with one

orbit (m/d)(Z/d)∗ for each positive divisor d of m: for example, this orbit is (Z/m)∗ for
d = m, and {0} for d = 1. The notation (m/d)(Z/d)∗ here uses multiplication bym/d as
notation for the map from Z/d to Z/m induced by multiplication bym/d as a map from
Z to Z.
For each positive divisor d of m, define Id as the element

∑
a∈(Z/d)∗ g(m/d)aa−1 of the

group ring R[(Z/d)∗], and Zd as the element
∑

b∈(Z/d)∗ ζ (m/d)bb of the group ring; i.e.,
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these are the vectors a �→ g(m/d)a−1 and b �→ ζ (m/d)b. Write Od for the product IdZd .
Then

Od =
∑

a∈(Z/d)∗

∑

b∈(Z/d)∗
g(m/d)aa−1ζ (m/d)bb =

∑

a∈(Z/d)∗

∑

b∈(Z/d)∗
g(m/d)aa−1ζ (m/d)baba

=
∑

b∈(Z/d)∗

∑

a∈(Z/d)∗
g(m/d)aζ

(m/d)bab =
∑

b∈(Z/d)∗

∑

j∈(m/d)(Z/d)∗
gjζ bjb;

i.e., the entry (Od)b in the vector Od is
∑

j∈(m/d)(Z/d)∗ gjζ bj .
Now g(ζ b) = ∑

j gjζ bj = ∑
d

∑
j∈(m/d)(Z/d)∗ gjζ bj = ∑

d(Od)b where d runs through
positive divisors ofm. The desired vector b �→ g(ζ b) is thus the sum of Od across d. Care
is required in the details of this vector addition, for two reasons:

• Od is represented as a compressed vector, indexed by elements of (Z/d)∗. One thus
needs to synchronize indices for additions.

• There can be many divisors d of m, and adding each Od directly into Om would
incur #(Z/m)∗ additions for each d. To more efficiently handle all Od , work upwards
through d < m, adding each Od into Odp for the smallest prime p dividingm/d and
then forgetting about Od . Each d then incurs #(Z/dp)∗ ≤ dp additions, and the sum
of dp across divisors d ofm is bounded bym(logm)1+o(1).

These additions require computingOd in the first place for each positive integer d ofm,
i.e., multiplying Id by Zd in R[(Z/d)∗]; this is a multicyclic convolution as in Sects. 4.12.1
and 4.12.2. For example, if m is prime then these are multiplications in R[(Z/m)∗] and
R[(Z/1)∗], which are cyclic convolutions of lengths m − 1 and 1 respectively; this special
case matches Rader’s original FFT.
If n = #(Z/m)∗ is smooth, meaning all prime factors in (log n)o(1), then #(Z/d)∗, a divi-

sor of n, also has all prime factors in (log n)o(1). The convolution algorithm of Sect. 4.12.1
thus usesO((log n)o(1)#(Z/d)∗ log #(Z/d)∗) operations in R, henceO((log n)1+o(1)#(Z/d)∗)
operations in R. The total cost, the sum of costs over d, is O(m(log n)1+o(1)) since
∑

d #(Z/d)∗ = m, hence O(n(log n)1+o(1)) as in Sect. 4.11, hence n(log n)1+o(1) since the
cost for d = m is at least �(n log n).
When m is a power of an odd prime, this generalization of Rader’s FFT matches the

primitive part of a DFT algorithm by Winograd [96, Section 4]. For m = 2e, Winograd
uses a conventional size-2e additive FFT to directly solve the original DFT problem, rather
than using convolutions to compute primitive DFTs for the multiplicative group (Z/m)∗.
For general m, Winograd first decomposes a size-m DFT into prime-power DFTs, and
then reduces each odd-prime-power DFT to its primitive part. The advantage of working
directly with the primitive part of a size-mDFT is that it allowsmore choices of subgroups,
not requiring the subgroups to align with the prime-power decomposition ofm.

4.12.4 Inversion

Looking only at the primitive part of a DFT—evaluating g(ζ b) only for b ∈ (Z/m)∗, rather
than for all b ∈ Z/m—raises the question of how to recover g from these values. One
cannot hope to recover m coefficients of g from only #(Z/m)∗ values for m > 1, but if
one restricts the allowed g indices as in Sect. 4.10 then there is no obvious obstacle to
recovering g .
Recall the principle that a full DFT with exponents negated is an inverse full DFT. This

implies the sameprinciple for a primitiveDFT.Given v ∈ RG , definehj = ∑
a∈G vaζ−aj for
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each j ∈ Z/m; then
∑

j∈Z/m hjζ bj = ∑
a∈G va

∑
j∈Z/m ζ (b−a)j = mvb for b ∈ G. Hence the

polynomial (
∑

j hjxj)/m has values vb as desired; note thatm is invertible inR since there is
a primitivemth root of 1. Among the preimages of v under the map R[x]/(xm − 1) → RG ,
this polynomial is characterized by having value 0 at ζ b if b /∈ G.
The inverse primitive DFT has a different shape from the forward primitive DFT: it

computes m values from #(Z/m)∗ values, rather than the other way around. The inverse
can again be reduced to a convolution in the group ringR[(Z/d)∗] for each positive integer
d dividing m: the element Hd = ∑

b∈(Z/d)∗ h(m/d)bb of the group ring is the product of
Zd = ∑

b∈(Z/d)∗ ζ (m/d)bb and Vd = ∑
a∈G v−1/a(a mod d), where a mod d means the

image of a in (Z/d)∗.
To efficiently compute Vd for all d, work downwards through d (reversing how Od was

handled in the forward transform), obtaining Vd for each d < m via Vdp for the smallest
prime p dividingm/d. The sum of dp is again bounded bym(logm)1+o(1). This procedure
computes all hj at similar speed to the forward transform.
The following paragraphs explain how to tweak the above procedure to produce an out-

put polynomial where all exponents j are guaranteed to have gcd
{
m, j

}
dividingm/radm;

here radmmeans the radical ofm, the product of prime divisors p ofm. One can then skip
any d not divisible by radm, rather than subsequently eliminating exponents for those d
as in Sect. 4.10. For example, when m is prime, the tweaked inversion procedure uses a
convolution only for (Z/m)∗ (skipping a convolution for (Z/1)∗), and produces exponents
1, . . . , m − 1 (skipping 0), exactly as in Sect. 4.8.4.
Consider any positive integer r dividing radm. Abbreviate gcd{m, r∞} asmr , and choose

sr ∈ mrZ ∩ (1 + (m/mr)Z). These quantities sr have three critical properties:

• If r = 1 then sr ∈ 1 + mZ.
• If r > 1 then gcd{m, sr} > 1.
• If a prime divisor p ofm does not divide r then the difference sr−srp is in (m/pordp m)Z.

(Both sr and srp are inmrZ and in 1+(m/mrp)Z, so sr −srp is inmrZ and in (m/mrp)Z;
mr is coprime tom/mrp, so sr − srp is in (mmr/mrp)Z; andmrp/mr = pordp m.)

Define h′
j,r = ∑

a∈G vaζ−ajsr . Then h′
j,1 = ∑

a∈G vaζ−aj = hj since s1 ∈ 1 + mZ, so
∑

j∈Z/m h′
j,1ζ

bj = mvb for b ∈ G. If r > 1 then
∑

j∈Z/m h′
j,rζ

bj = 0 for b ∈ G since
gcd{m, sr} > 1.
Define h′

j = ∑
r μ(r)h′

j,r whereμ is theMöbius function. (For example, h′
j = h′

j,1−h′
j,p −

h′
j,q + h′

j,pq if radm is the product of primes p, q.) Then
∑

j∈Z/m h′
jζ

bj = mvb for b ∈ G.
The polynomial (

∑
j h′

jx
j)/m, like the previous polynomial (

∑
j hjxj)/m, thus has the

desired values vb. This polynomial also has the extra feature described above: h′
j can be

nonzero only if gcd
{
m, j

}
divides m/radm. (Indeed, consider any j for which gcd

{
m, j

}

does not dividem/radm, i.e., for which ordp j ≥ ordp m for some prime p dividingm. If p
does not divide r then sr − srp ∈ (m/pordp m)Z, so jsr − jsrp ∈ mZ, so ζ−ajsr = ζ−ajsrp for
each a ∈ G, so h′

j,r = h′
j,rp; hence h

′
j = 0.)

Fast computation of this polynomial works the same way as fast computation of the
previous polynomial: the desired H ′

d = ∑
b∈(Z/d)∗ h′

(m/d)bb is the product of Z
′
d and Vd in

the group ring R[(Z/d)∗], after a precomputation of Z′
d = ∑

r μ(r)
∑

b∈(Z/d)∗ ζ sr (m/d)bb.
If d is not divisible by radm then Z′

d = 0; again, the point of this tweak is to skip such
values of d.
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4.12.5 Folding: the symmetric case

Now letH be a subgroup ofG, and write K for the subfield ofQ(ζm) fixed by {σc : c ∈ H}.
The objective here is to save a factor essentially #H for arithmetic on elements of this
subfield. The special case of primemwas handled by the folded Rader FFT from Sect. 4.8.
As a starting point, if K has conductor smaller thanm, then one can replacem with the

conductor, and replace H with the corresponding subgroup for the new conductor. For
each change of conductor, one also needs to correspondingly change the input represen-
tation; Sect. 4.10 explained how to do this for full cyclotomic fields, and this conversion
is compatible with the symmetries described below. So assume from now on that K has
conductorm.
DefineH0 = H∩(1+(radm)(Z/m)). Section 4.12.7 explainshow tohandle thepossibility

that #H0 > 1. Assume for now that #H0 = 1. For example, if m is squarefree, then
radm = m, so #H0 = 1.
By [29, Lemma 3(1) and Corollary 2], Q(ζm) has an integral basis set B ⊆ ζZ

m such that
the usual action of H on ζZ

m restricts to a free action of H on B. This implies, as noted in
[29, page 281, top paragraph], that {trQ(ζm)

K β : β ∈ B} is an integral basis set for K .
These traces trQ(ζm)

K β for β ∈ B generalize the Gauss periods from Sect. 4.7. It seems
reasonable to refer to these generalized basis elements as Gauss periods: the periodicity is
immediately visible in the coefficients of each trace, thanks to H acting freely on B.
Now represent elements ofK as linear combinations of theseGauss periods, generalizing

the case of prime m. So far this matches what is proposed in [29, Section 5]. What is not
addressed in [29] is how to multiply quickly.
Each input to multiplication is a polynomial g = g0 + g1x + · · · + gm−1xm−1 in

Z[x]/(xm − 1) representing g(ζm). This polynomial is not represented on the length-
m basis 1, x, . . . , xm−1, but rather on a basis of length just #(Z/m)∗/#H representing the
Gauss periods: the basis set is

{∑
c∈H xbc : b ∈ Z/m, ζ b

m ∈ B
}
. In other words, gj = gjc for

all j ∈ Z/m and all c ∈ H , and gj = 0 when ζ
j
m is outside B.

Move as usual fromZ to a quotient ring R containing the primitive roots of 1 needed for
all FFTs that appear. Each input to multiplication is then a polynomial in R[x]/(xm − 1),
again represented on the basis set

{∑
c∈H xbc : b ∈ Z/m, ζ b

m ∈ B
}
.

The critical point here is that theH symmetry in the x exponents passes directly through
every step in the generalization of Rader’s algorithm from Sect. 4.12.3, producing a gen-
eralized folded Rader FFT. For each positive divisor d ofm, the input group-ring element
Id = ∑

a∈(Z/d)∗ g(m/d)aa−1 has entries invariant under the action ofH on (m/d)(Z/d)∗, so
one replaces (Z/d)∗ with the corresponding quotient group, precomputing a folded ver-
sionofZd in that group. Similar comments apply to the inverse transform fromSect. 4.12.4.

4.12.6 Folding: cost analysis of the symmetric case

Note that sometimes B ∩ ζ
(m/d)(Z/d)∗
m = {} so d can simply be skipped in the forward

transform. For example, for a prime power m = pe, the basis B in Sect. 4.10 skips some
arc of 1/p of the circle; if the arc is chosen to contain 1 then d = 1 can be skipped.
For the casem = p, this leaves just d = p, which is why the folded Rader FFT in Sect. 4.8

works exclusively with (Z/p)∗. On the other hand, skipping the arc is somewhat deceptive
when one tries to generalize; if e > 1 then one encounters powers of ζpe having different
orders. From this perspective, for the casem = p there is expository value in considering
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the entire circle—as in Rader’s original algorithm, which allows g0 �= 0, doing extra work
for a Rader of the lost arc.
For generalm, the construction of B in [29, Section 3] avoids any exponent divisible by

pordp m for any prime divisor p ofm; the construction reviewed in Sect. 4.10 also works this
way if one chooses the sets Ip,e in that section to contain 0. This ensures that the divisors
d ofm that appear are all divisible by radm. The tweaked inverse transform in Sect. 4.12.4
makes the same guarantee.
If the starting conductor-mfieldK is a proper subfield ofQ(ζm) then requiring thedegree

n ofK to be smooth does not necessarilymean that the degree #(Z/m)∗ ofQ(ζm) is smooth.
Fortunately, what appears in convolution is not the group (Z/m)∗, but the quotient group
(Z/m)∗/H , which has cardinality n, and, more generally, quotients ((m/d)(Z/d)∗)/H hav-
ing cardinality dividing n, so each cardinality is smooth, giving fast convolution by the
algorithm of Sect. 4.12.1.
One also has to check that the total size of the groups ((m/d)(Z/d)∗)/H that appear is

n(log n)o(1). The point here is that the action of H on (m/d)(Z/d)∗ is free for d = radm
(since by assumption #H0 = 1 where H0 = H ∩ (1 + (radm)(Z/m))), and thus for each
positive divisor d ofm divisible by radm. Each element of the quotient ((m/d)(Z/d)∗)/H
thus corresponds to #H elements of (m/d)(Z/d)∗, and the sets (m/d)(Z/d)∗ are disjoint
subsets of Z/m as d varies, so the total size of the groups is at most �m/#H�. One has
m/#(Z/m)∗ ∈ (log n)o(1) as in Sect. 4.11, and #(Z/m)∗/#H = n.
Moving down through a tower of subfields with conductor m corresponds to moving

up through a tower of subgroups H of (Z/m)∗. If B is chosen so that the largest subgroup
H in the tower acts freely on B then the smaller subgroups in the tower will also act
freely on B. Moving from the basis for a smaller field to the basis for a larger field is
then simply repeating coefficients, and moving the other way (as in detKQ evaluation) is
removing redundant coefficients.

4.12.7 Folding: the almost-symmetric case

What happens if instead #H0 > 1? One then has #H0 = 2 by [29, Lemma 3(2)], with H
factoring as a direct product of H0 and another group H1, and [29, Lemma 4] constructs
a basis of K that is almost as symmetric as the Gauss periods. Part of the basis consists
of traces of the form trQ(ζm)

K ζ b; the other part consists of traces of the form trQ(ζm)
K1

ζ b =
(1/2) trQ(ζm)

K ζ b, where K1 is the fixed field of H1 and b is chosen to have trQ(ζm)
K1

ζ b ∈ K .
All of this relies on K having conductorm.
The easy approach to fast multiplication here is to represent the elements of K as

elements of the superfield K1, using only theH1 symmetry. This reduces to the symmetric
case handled above. This loses a factor 2 compared to the desired H symmetry, but this
loss is not visible at the level of detail of this section’s cost analyses; �(#H1) is the same as
�(#H ).
This approach shouldnotbe confusedwith representing the elements ofK as elements of

Q(ζm), losing the variable factor contemplated in Sect. 4.4. These representations coincide
only when K1 = Q(ζm), i.e., when K has half the degree of Q(ζm), i.e., when #H1 = 1.
It is instructive to look at the case #H1 = 1 more closely. The archetypal examples

are the following two half-degree subfields of a power-of-2 cyclotomic field Q(ζm) where
m ≥ 8:
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• The subfield fixed by σ−1, i.e., the real-cyclotomic field R ∩ Q(ζm).
• The subfield fixed by σm/2−1.

Both of these have conductorm, unlike the half-degree cyclotomic subfieldQ(ζm/2), which
is the subfield fixed by σm/2+1.
In the power-of-2 real-cyclotomic case, the almost-symmetric basis in [29, Lemma 4]

consists of the H-traces ζm + ζ−1
m , . . . , ζm/4−1

m + ζ
−m/4+1
m and one H1-trace ζ

m/2
m = −1.

Because the H1 part of the basis is so short, one can productively use H-folded DFTs to
multiply the H-symmetric part of the first input by the H-symmetric part of the second
input, and then use schoolbook multiplication to handle the missing products.

4.13 Open questions

Multiquadratic fieldsK = Q(
√
d1,

√
d2, . . . ,

√
dt ) are Abelian. One can apply themachin-

ery fromSect. 4.12 to this case, starting bywriting
√
d1, . . . ,

√
dt in terms ofGauss periods.

However, themultiplication algorithm in [9, Section 3.3] is considerably simpler, mapping
Z to quotient rings Fp for which Fp[x1, . . . , xt ]/(x21 − d1, . . . , x2t − dt ) splits into 2t copies
of Fp. Can one efficiently handle arbitrary towers by the same technique?
(Note that [59] studied tower performance but did not specifically consider the base

ring Z, and in particular did not consider switching from Z to Fp for a suitably selected p.
It would also be interesting to investigate a switch to R or C, but using Fp has the virtue
of avoiding precision questions.)
One might think that the answer is “Yes, of course”. Start with R0 = Z and K0 = Q.

For j ∈ {1, 2, . . . , t}, select a monic irreducible polynomial ϕj ∈ Rj−1[xj], define Rj =
Rj−1[xj]/ϕj , and define Kj = Kj−1[xj]/ϕj . There are infinitely many primes p for which

• ϕ1 splits into linear factors in Fp[x1];
• ϕ2, with each of the roots of ϕ1 in Fp substituted for x1, splits into linear factors in

Fp[x2];
• etc.;

and then Fp[x1, . . . , xt ]/(ϕ1, . . . ,ϕt ) is isomorphic to Fn
p, where n = ∏

j deg ϕj . To com-
pute detKQ α for a small element α of the ring of integers O of K = Kt , multiply α by a
denominator D known to have DO ⊆ Rt , and then divide Dn out of detKQ Dα.
One obvious question is how large the denominator D is. For multiquadratics with

coprime squarefree d1, . . . , dt , denominator n = 2t suffices; what about other fields? But
this question doesn’t seem to matter much for performance, even though D appears to
an nth power in detKQ Dα: in deciding how large

∏
p p needs to be, one can disregard

the known divisor Dn of detKQ Dα and consider only the size of detKQ α. This is the non-
Archimedean version of a suggestion fromBelabas [10, Section 5.2]mentioned in Sect. 3.3,
namely using known divisors to limit the precision of complex embeddings.
Amoreworrisome question is how large p is. The standard proof that there are infinitely

many suitable primes p runs via Chebotarev’s density theorem. This theorem includes the
statement that the primes splitting completely in K have density 1/#G, where G is the
Galois group ofK . (An older density theorem due to Frobenius suffices here; see generally
[89].) Since the density is nonzero, there are infinitely many such primes. One might have
to skip primes that divide D, but there are only finitely many such primes. The density
provides enough information to formulate reasonable conjectures regarding the size of p.
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Fig. 3 Sage script to build a random-looking tower of fields of degrees 2, 4, 8, 16 and find the first 3
completely split primes in each field

The reason this question is worrisome is that Galois groups are generally huge. For
example, if n is prime then one expects degree-n fields to have #G = n!, and then one
expects p to have�(n log n) bits—which (1) raises the question of how to find such a p and
(2) forces cost n2+o(1) for n-coefficient multiplications. Requiring a smooth tower should
bias #G downwards, but how much?
One might guess that usually #G = 2n−1 for a degree-n field having a power-of-2

tower. As a data point, Fig. 3 builds a random-looking tower of fields of degrees 2, 4, 8, 16
and prints out the first 3 primes that split completely in each field. These primes are
11, 13, 23 for degree 2; 61, 157, 181 for degree 4; 181, 647, 1907 for degree 8; and 1331339,
1384861, 1570633 for degree 16. For comparison, 97, 193, 257 split completely in Q(ζ32),
a cyclotomic field of degree 16.
For the case of K being Galois (whether or not Abelian), one has #G = n, so completely

split primes p appear with density 1/n. If the goal is to find n1+o(1) such primes, enough
primes to have �(n log n) bits in the product, then one can reasonably conjecture that the
maximum prime has only (2 + o(1)) log2 n bits. For weaker bounds assuming GRH, see,
e.g., [54, Section 2].
More needs to be done even in the Galois case: fast multiplication in each subfield

requires a tower representation that keeps coefficient sizes under control, avoiding the
blowups illustrated in Sect. 4.3. For the Abelian case, generalizing Gauss periods as in [29]
provides explicit small-coefficient integral bases for each field, and generalizing Rader’s
FFT as in this paper provides fast multiplication directly on these bases. Are there explicit
subfield-compatible integral bases supporting fast multiplication for Galois number fields
beyond Abelian fields?
Another open question is whether one can do better than n2+o(1) for a degree-nAbelian

field when n is prime. Perhaps one can achieve n1.5+o(1), analogously to how group struc-
ture is used to save an n0.5+o(1) factor in [79], [90], [28], and, in the elliptic case [20].

5 Enumerating small S-units
The primary motivation for this paper comes from the role of detKQ α computation inside
one of the fundamental tools in computational algebraic number theory: namely, passing
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all small elements α ∈ O, whereO is the ring of integers ofK , through a filter that outputs
the S-units α.
This section reviews parameter choices for this tool, applications of this tool, and the

conjectured performance of standard algorithms that work for arbitrary number fields
K . This section then analyzes the impact of speedups for the case of smooth-degree
cyclotomic fields K = Q(ζm).

5.1 Parameter choices

Beyond the choice of number fieldK , there is a choice of the set S. Typically an application
specifies K , whereas S is something for the algorithm designer to optimize.
The traditional objective in choosing S is to minimize the time required to find filtered

S-units that generate the S-unit group, i.e., the time required for a search of all small
elements of O to identify small S-units in O that generate the S-unit group. For each S,
the group generated by the filtered S-units is the full S-unit group once the search space
is large enough, i.e., once the bound on “small” elements of O is large enough; but this
raises a quantitative question of how large.
For simplicity, let’s take S specifically as ∞ ∪ {

P : #(O/P) ≤ y
}
, where ∞ is the set of

infinite places, P runs through nonzero prime ideals of O, and y is a parameter to be
optimized. For algorithms to compute S, see, e.g., [34, Sections 4.8.2 and 6.2].
A nonzero element α ∈ O is an S-unit if and only if the ideal αO has the form

∏
P:#(O/P)≤y Pe(P) for some function e :

{
P : #(O/P) ≤ y

} → N. The S-unit group is the set
of nonzero elementsα ∈ K such that the fractional idealαO has the form

∏
P:#(O/P)≤y Pe(P)

for some function e :
{
P : #(O/P) ≤ y

} → Z.
For example, in the case K = Q, a nonzero rational number is an S-unit if and only

if it is y-smooth, i.e., has the form ±∏
p≤y pe(p). There is an extensive literature on the

distribution of y-smooth integers; for surveys see, e.g., [75], [73], and [53]. If integers
are chosen independently and uniformly at random from the interval [1, H ] then (log y)2

is conventionally chosen as (1/2 + o(1))(logH ) log logH , giving chance 1/y1+o(1) of y-
smoothness and giving total time

y2+o(1) = exp
((√

2 + o(1)
)
(logH )1/2 (log logH )1/2

)

to find y1+o(1) integers that are y-smooth. See, e.g., [31, Theorem 10.1].
For general number fields, much less has been proven. It is still conventional to choose

(log y)2 ∈ (1/2 + o(1))(logH ) log logH , where now H is an estimate for the typical size
of detKQ α. Various applications are then conjectured to find y1+o(1) S-units in total time
y2+o(1). See [31, Section 10] for a review of several such conjectures. These conjectures
start from the heuristic that, in the words of [31, Section 10], “the auxiliary numbers
that ‘would be smooth’ are just as likely to be smooth as random integers of the same
approximate magnitude”.
The reason for asking for y1+o(1) S-units is that the rank of the S-unit group is #S − 1,

which, for reasonably large y, consists mainly of the number of finite places P in S. By
Landau’s prime-ideal theorem [65, Section 5], the number of P with #(O/P) ≤ y is (1 +
o(1))y/log y.
Some caution is required here. First, Landau’s theorem is a statement as y → ∞ for a

fixed K , not a statement regarding the conventional choice of y as K varies. Furthermore,
finding y1+o(1) S-units is not a guarantee of generating the full S-unit group. For the
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number field Q(
√
2,

√
3,

√
5,

√
1000003), a small search with some notions of smallness

will find only elements of Q(
√
2,

√
3,

√
5); Cohen gives a warning in [34, page 354, item

(3), last sentence] about small S-units not being “random”.
On theotherhand, experiments suggest that, for “balanced”numberfields suchasQ(ζm),

small filtered S-units avoid such conspiracies. See, e.g., Miller’s S-unit computation [70]
proving under GRH that R ∩ Q(ζ512) has class number 1.
The circular approximation in Sect. 2 says that weight-w elements of degree-n power-

of-2 cyclotomics have logH ≈ n(logw − γ )/2. The conventional choice of y then has
(log y)2 ∈ n1+o(1) under the mild assumption w ∈ nO(1). To understand more precisely
how large w should be, start from the standard conjectures mentioned above, which say
that one needs to search exp(n1/2+o(1)) ring elements to find enough S-units; and then
match this to the number of weight-w elements to see that w ∈ n1/2+o(1). Generating all
small ring elements means also using smaller values of w, but almost all of the filtered
S-units will be found with w ∈ n1/2+o(1), and almost all of the computation time is spent
with w ∈ n1/2+o(1). See also [1] for experiments with prime cyclotomics.

5.2 Applications

Filtering small ring elements to find small S-units has a long history. The traditional
application is to find fundamental invariants of O, such as the class group ClO and the
unit group O∗. If the filtered S-units generate the S-unit group then linear algebra on
the exponent vectors of the factorizations of S-units (the vectors e above) reveals the unit
group (S-units with trivial factorization, i.e., with e = 0) and, if S is large enough, the
class group (all integer vectors modulo the subgroup of “class-group relations”, i.e., the
subgroup of S-unit exponent vectors).
For details of this application, see, e.g., Cohen’s description in [34, Section 6.5]. Cohen

starts with a more general search that filters small elements of any ideal I to find S-
generators of I , and applies this to ideals I obtained as random products of small prime
ideals, but also, in [34, page 354, item (3)], mentions taking I = O as an “important
speedup”. For simplicity this section focuses on filtering small elements of O to find S-
units, but the speedups described below generalize easily to filtering small elements of any
I to find S-generators of I .
Starting a few decades ago (see [67]), filtering ring elements to find S-units took on

new importance as a critical subroutine inside NFS, the number-field sieve for integer
factorization. The number-field sieve is conjectured to factor any positive integer N into
primes in time at most exp((logN )1/3+o(1)); in this context logH ∈ (logN )2/3+o(1).
A much newer application is “filtered-S-unit attacks” against a problem that has arisen

in cryptography, namely finding very short elements of a “worst-case” ideal I , not just the
moderately short elements that one finds with, e.g., LLL. See generally [17], [23], and [1].
The simplest S-unit attacks start with an S-generator g of I with g ∈ I , and search for
shorter S-generators gu/v ∈ I where u and v come from a database of S-units. Filtered-
S-unit attacks build the database by filtering small elements of O, and are conjectured in
[17, page 47] to find very short elements (to be precise, “Hermite factor” at most n1/2+o(1);
this is overkill for the cryptographic applications) in subexponential time.
Class-group computations, unit-group computations, and NFS carry out linear algebra

on the S-unit exponent vectors. The conventional choice of y mentioned above tries to
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minimize the cost of finding S-units in the first place, without regard to the cost of linear
algebra. If linear algebra turns out to be the main bottleneck then algorithm designers
can and do improve overall algorithm performance by reducing y; see, e.g., [81, page 115,
bottomparagraph]. The cost of finding S-units is then easily visible in the overall algorithm
run time.

5.3 The standard filtering procedure

It is straightforward to enumerate all small elements of O for various reasonable notions
of “small”. For example, in Sect. 2, one can try all w up to some bound; for each w,
enumerate possibilities for a partition of w as a sum of n squares in nonincreasing order;
and, for each possibility, enumerate ways to assign the (positive and negative) square roots
to α0,α1, . . . ,αn−1. This rapidly generates small elements α ∈ O. The big problem is to
figure out which of these elements α are S-units.
The standard procedure (see, e.g., [34, page 491, step (6)]) computes N = |detKQ α| and

throws α away if N is not y-smooth. The point here is that if αO = ∏
P:#(O/P)≤y Pe(P)

then N = ∏
P:#(O/P)≤y #(O/P)e(P); each #(O/P) is a prime power bounded by y, so N is

y-smooth.
As mentioned above, standard conjectures say that α is an S-unit with probability

1/y1+o(1) for the conventional choice of y, and thatN is y-smoothwithprobability 1/y1+o(1)

for the conventional choice of y. This does not mean that these events are identical: if N
is y-smooth then the standard procedure still has to check whether α is in fact an S-unit.
Specifically, ifN is y-smooth, then, for each prime p dividingN , the standard procedure

runs through each P above p (each nonzero prime ideal P of O with p ∈ P) having
#(O/P) ≤ y, computes ordP α as in [34, Section 4.8.3], and checks whether this accounts
for the power of p in N . (The check is simpler if K is Galois: each P above p then has
the same #(O/P), so α is an S-unit if and only if, for each prime p dividing N , some P
above p has #(O/P) ≤ y.) Because N is y-smooth with probability only 1/y�(1), this is not
a bottleneck asymptotically; as Cohen puts it in [34, page 491], “this will be done quite
rarely and does not really increase the running time”.

5.4 Exploiting automorphisms

If α is an S-unit and σ is an automorphism of K then σ (α) is also an S-unit. Rather than
searching all small elements of O, one can search orbits of small elements under the
automorphism group of K . Typically “small” is defined in a way that is invariant under
automorphisms: for example, in Sect. 2, σ (α) has weight w if and only if α has weight w.
In particular, if K is Galois, then the automorphism group coincides with the Galois

group and has cardinality n = degK . There are two reasons that this does not imply a
speedup factor n; on the other hand, for typical examples, the speedup factor does end up
as �(n).
The first reason is that, for n > 1, some elements of K are in proper subfields and thus

have smaller orbits. For example, in Sect. 2, α = ∑
0≤j<n αjζ

j
m is in a proper subfield of K

if and only if αj = 0 for all odd j. However, this is increasingly rare as w grows.
The second reason is that one has to account for the cost of enumerating orbits. The

naive approach is to enumerate all small ring elements and then, for each element, try
applying automorphisms to see whether the element is an orbit leader (say, first in its orbit
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in lexicographic order as a vector on a specified basis). One expects to try only �(log n)
automorphisms on average for recognizing that an element isn’t an orbit leader. This
might sound fast enough for fields where applying an automorphism costs only n1/2+o(1)

in sparse representation—but one wants small costs per orbit, not just small costs per
element. Simply writing down an element in sparse form usually costs n1/2+o(1), so writing
down all n elements in a size-n orbit usually costs n3/2+o(1). Evaluating detKQ α for the orbit
leader α costs more than this in Sect. 3 but less than this in Sect. 4.
In various concrete examples of interest, one can easily modify the generation of small

ring elements to more efficiently generate orbit leaders. For example, for power-of-2
cyclotomics, an element α = ∑

0≤j<n αjζ
j
m outside all proper subfields can always be

conjugated to have α1 �= 0, so one can handle the degree-n/2 subfield recursively and then
limit the generation procedure to force α1 �= 0. This reduces the orbit-enumeration cost
by a factor n1/2+o(1) for w ∈ n1/2+o(1): each element has at most w nonzero positions, and
position j is moved to position 1 by at most two automorphisms. One can impose further
restrictions to further reduce the orbit-enumeration cost; see, e.g., how the cycloshort
module in [1] generates orbit leaders in the case of prime m, for orbits not just under
automorphisms but also under multiplications by ζm.

5.5 Exploiting subfields

Take again a weight-w integral element α in a degree-n power-of-2 cyclotomic field
K , and assume w ∈ n1/2+o(1). The circular approximation in Sect. 2 says that detKQ α

almost always has �(n log n) bits. Section 1 already explained how to compute detKQ α

in time n(log n)3+o(1) in this case using a tower of cyclotomic subfields, and Sect. 4
explained how to reach this cost for any Abelian field whose degree is (log n)o(1)-smooth,
whereas the best non-subfield methods from Sect. 3 take time n2(log n)2+o(1). Combin-
ing this n/(log n)1+o(1) speedup with the �(n) automorphism speedup gives an overall
n2/(log n)1+o(1) speedup in the sequence of detKQ α computations.
Note that this is a speedup fromone type of algorithm to another,with both types applied

to power-of-2 cyclotomics: namely, a speedup from (1) general-purpose algorithms to (2)
algorithms exploiting automorphisms and subfields. The subroutines used for the general-
purpose algorithms to reach n2(log n)2+o(1) include complex FFTs exploiting the structure
of the roots of xm − 1; see Sect. 3.3. For a field such as Q[x]/(xn − x − 1) without this
structure, the best techniques in Sect. 3 cost n2(log n)3+o(1) except when the polynomial-
remainder sequence is particularly short, so moving from such a field to a power-of-2
cyclotomic of the same degree gives an n2(log n)o(1) speedup. This speedup factor drops
to n2/(log n)1+o(1) if there is some way to reach cost n2(log n)2+o(1) for detQ[x]/(xn−x−1)

Q
. In

any case, given known techniques, it is clear that one should check the field structure, and
in particular should take advantage of automorphisms and subfields.

5.6 Better alternatives for limited-dimension search spaces

NFS uses number fields that, compared to cyclotomics with the same size of H and the
same size of y, have relatively low degree and relatively high discriminant. Quantitatively,
the NFS field degree is only (log y)1+o(1) rather than (log y)2+o(1). Furthermore, small ring
elements in NFS are tilted towards having a small number of coefficients. Most of the NFS
literature considers just two integer coefficients (α0,α1) of an element α = α0 + α1θ of
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a selected number field Q(θ ), with a search space of y2+o(1) elements defined by a range
of y1+o(1) choices of α0 and a range of y1+o(1) choices of α1; see, e.g., [31, Algorithm 11.1,
Step 3].
In this setting, one can fix α1 and view detKQ α as a polynomial in the integer α0. One can

write down successive polynomial values using repeated differences or using asymptot-
ically faster multipoint-evaluation subroutines. NFS algorithm statements usually avoid
writing down these values in the first place: instead they observe that the values of α0
for which detKQ α is divisible by p consist of a small number of arithmetic progressions
modulo p, and simplymark those positions in an array indexed by α0, assuming free access
to RAM. See, e.g., [31, page 57]. This Eratosthenes-like sieving procedure accounts for the
“sieve” part of the name of NFS.
To limit RAM usage, more advanced versions of NFS limit the size of p found in this

way; they then write down detKQ α and switch over to “cofactorization” to find larger p.
This does not mean that detKQ evaluation is a bottleneck: these versions of NFS carry
out cofactorization only on the occasions that the product of small p found is above a
specified cutoff. With this type of “early abort”, NFS is not carrying out a full search for
all small S-units; but the requirement of having many small p, like the requirement of
having small coefficients, is algebraically compatible with finding the full S-unit group,
and analytically is conjectured to have similar smoothness probabilities. Such conjectures
are again provable for Q; see Pomerance’s early-abort analysis in [81, Section 4].
Sometimes theNFS literature considers two-dimensional lattices of integer pairs (α0,α1)

for which detKQ α is divisible by p; see, e.g., [80]. One can also consider NFS variants with
three ormore coefficients in α, but normally NFS takes fields where the size of θ j increases
rapidly with j, so one would expect the optimal lattice dimension to be small; the question
of whether three coefficients are useful in NFS appears in, e.g., [15, fourth slide, bottom
two lines].
The literature on class-group computation often considers fields of low degree with

large coefficient ranges as in NFS, but it also considers fields of high degree with small
coefficient ranges such as cyclotomics. The literature on S-unit attacks focuses on high-
degree fields such as cyclotomics. As the lattice dimension increases and the allowed
coefficient size decreases, it seems to become more and more difficult to quickly identify
small ring elements in a lattice of ring elements divisible by p, except when p is very small.
Fast detKQ evaluation plays an obvious role in these applications when K has high degree.

5.7 Exploiting more cyclotomic structure

A useful step in computing the structure of the cyclotomic field Q(ζm) is to compute the
structure of the real-cyclotomic field R ∩ Q(ζm), which has half the degree ifm ≥ 3.
For the unit group of R ∩Q(ζm), one can instantly write down generators of a full-rank

subgroup, the group of “cyclotomic units”. These generators are also rapidly found by a
search of small ring elements.
For example, the set of cyclotomic units is ζZ

m
∏

c∈{1,3,...,m−1}(1 + ζ c
m + ζ−c

m )Z in the
power-of-2 case. The group of cyclotomic units is conjectured to be the full unit group in
this case. See [23, Appendix C] for a review of evidence for this conjecture.
For general m, there is often a gap between the group of cyclotomic units and the full

unit group. To test whether the index is divisible by a given prime �, one can use order-�
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characters to see whether there are products of powers of generators of the known group
that are �th powers of units outside the group; if so, one can adjoin the �th roots and repeat.
(This procedure is often called “�-saturation” in the context of unit-group computation.)
After checking all small primes �, one can reasonably hope that the full unit group is
known.
To confidently obtain the class group of R ∩ Q(ζm), the literature uses filtered S-units,

as in [70]. For any number field, confirming the class number also confirms the full unit
group by analytic techniques. For R ∩ Q(ζm) wherem is a prime power, these techniques
boil down to Kummer’s theorem that the class number of R ∩ Q(ζm) is the index of the
cyclotomic units inside the full group of units. See, e.g., [94, Theorem 8.2], and see [88]
for a generalization to anym.
Starting from the units of R ∩ Q(ζm), one obtains the units of Q(ζm) by adjoining ζm

and, form not a prime power, 1 − ζm; see [94, page 40]. There is also a standard easy-to-
compute formula for the class number ofQ(ζm) in terms of the class number ofR∩Q(ζm);
see [94, Theorem 4.17]. For p-units, meaning S-units where the finite places in S are the
prime ideals over p, one can efficiently move from the p-units of R∩Q(ζm) to the p-units
of Q(ζm) by adjoining Jacobi sums and then taking square roots (2-saturation); see [17].
For further S-units of Q(ζm), filtering appears in [17, page 47] and [1].
In short, cyclotomics makemany computations easier, but filtering continues to play an

important role: filtering gives S-units of R ∩ Q(ζm), cyclotomic structure then gives the
p-units of Q(ζm), and further filtering gives further S-units of Q(ζm).

5.8 Comparison to the cost of smoothness detection

Onemight think that checking the y-smoothness ofN = detKQ α is, at least asymptotically,
much more expensive than computing N in the first place. ECM is conjectured to use
exp((

√
2+o(1))(log y)1/2(log log y)1/2) multiplications modN ; early-abort ECM from [22,

Section 3] is conjectured to replace
√
2 with

√
8/9; either way, the cost is exponential in

n1/4+o(1) when log y ∈ n1/2+o(1).
However, one can merge smoothness tests of many integersN , even without the visible

structure from Sect. 5.6. Specifically, if Y is a finite set of primes and S is a finite sequence
of positive integers then the batch smoothness-detection algorithm from [14] uses—
assuming free RAMaccess—O(B(log B)2+o(1)) bit operations to find all Y -smooth integers
in S (integers that factor into the primes in Y ), where B is the total number of bits in Y
and S. A closer look shows that if one plugs in the Harvey–van der Hoeven integer-
multiplication algorithm [56] then the number of bit operations is O(B(log B)2).
In particular, take Y = {

p : p ≤ y
}
; then Y has �(y) bits. Assume that S has �(y)

integers, each having �(n log n) bits. Then B ∈ �(yn log n). The conventional choice of y
has log y ∈ �(n1/2 log n), so the cost O(B(log B)2) is O(yn2(log n)3), i.e., O(n2(log n)3) per
integer.
This analysis suggests that, with optimized subroutines for general number fields, detKQ

evaluation and batch smoothness detection are balanced—up to a constant factor, which
could point in either direction—in the number of bit operations. Saving a constant factor
in detKQ evaluation thusmakes the entire S-unit search faster by a constant factor. This does
not require the work in Sect. 4—the improvement in Sect. 3.3 from n2(log n)3 to n2(log n)2
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for cyclotomics is enough—but further speedups in detKQ evaluation, as in Sect. 4, make it
easier to see speedups in batch smoothness detection.
Understanding the real-world impact of these speedups for concrete sizes requires a

much more detailed analysis and optimization of S-unit searches. As an example of the
issues that will arise, the real costs of RAM are a bigger problem for batch smoothness
detection than for detKQ evaluation.On the other hand, rather than takingY = {

p : p ≤ y
}
,

one can take Y as the set of primes p where some P over p has #(O/P) ≤ y. This is
particularly effective in theGalois case, reducing #Y by a factorn+o(n), which also reduces
RAM requirements by a factor n + o(n). The same change of Y speeds up conventional
trial division. Cyclotomics also provide some speedup for Pollard’s ρ method (use the
iteration polynomial xm + c) and Pollard’s p−1 method (if p ∈ 1+mZ then p−1 is more
likely to factor appropriately), although much less speedup for ECM.
Finally, note that working with orbits under the Galois group as in Sect. 5.4 speeds up a

sequence of smoothness tests by the same�(n) factor that it speeds up a sequence of detKQ
evaluations: there are thatmany fewerN values to handle. It is clear that known algorithms
for S-unit searches are much faster for cyclotomics than for unstructured number fields;
the only question is how much.
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Appendix A: software to check the Gauss-period algorithms
An open-source software package abelianfields is available from [18] for various
tests that the main algorithms described in this paper work as specified. This appendix
describes the software.

A.1: software readability

The idea that a test of software S is also a test of algorithm A relies implicitly on the
idea that there is a match between S and A. Helping readers check this match was a high
priority in the development of the abelianfields software package. This has three
important consequences.
First, this software is written in a high-level language, specifically Sage. This has the

disadvantage of incurring Sage overhead for each step. This is a large slowdown when
one step is an arithmetic operation in a small finite field, as in Sect. 4.12.2. The software
does not attempt to show what can be done in reducing overhead per ring operation. See
Appendix C for further software illustrating ways to streamline detKQ evaluation in the
case of power-of-2 cyclotomic fields K , using a lower-level language.
Second,abelianfieldsuses straightforward subroutines for precomputations.Here

“precomputations” refers to algorithm steps that depend only on the number field and the
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number of input bits, independently of the specific input at hand. The paper’s performance
evaluation assumes that the results of these precomputations are cached, and that there are
enough inputs that the cost of the precomputations does notmatter; consequently, various
speedups in the precomputations, such as known techniques to accelerate the search
for prime fields with appropriate primitive roots of 1, are simply ignored. The software
makes a few exceptions for subroutines that seemed likely to cause scaling problems for
experiments and that were easy to rewrite in faster ways.
Third, within themain computation, various standard speedups are suppressed because

they would compromise readability. For example, FFTs are not cached; software prioritiz-
ing speed would include FFT caching, even though this does not affect the n(log n)3+o(1)

asymptotic. As another example, the software includes not just tests of its main functions,
but also many assertions inside the functions to highlight assumptions and conclusions;
eliminating assertions is a standard speedup.

A.2: basic subroutines

The following low-level functions insideabelianfields are used in variousways inside
the convolution functions described in Appendix A.3, the prime-conductor det func-
tions described in Appendix A.4, and the general-conductor det functions described in
Appendix A.5:

• primitive.root_remember, given a ring R, a positive integer n, and a primitive
nth root of 1 inR, caches that root for future reference. The caching does not currently
move across pairs (R, n), for example to obtain a primitive nth root by squaring a
previously cached primitive 2nth root.

• primitive.root returns a primitiventh root of 1 inR, givenR andn. This function
tries to find and cache a primitive nth root if one has not been previously specified by
primitive.root_remember; this search is fast when R is a prime field.

• units.generator, given m, returns a deterministically selected generator of
(Z/m)∗, if (Z/m)∗ is cyclic.Note that applyingprimitive.root to inputsR = Z/m
and n = #(Z/m)∗ often differs from this: for example, (Z/4)∗ has a generator 3, but
Z/4 does not have a primitive 2nd root of 1.

• tree.producttree and tree.remainders are product-tree/remainder-tree
subroutines. These are copied from [21], except for minor tweaks to upgrade to
Python 3.

• tree.interpolate is an analogous interpolation-tree subroutine. (Sage’s built-in
CRT function provides the same results as tree.interpolate aside from details
of how inputs are arranged, but uses an algorithm that scales quadratically in most
cases. This difference is outside this paper’s algorithm analysis, since interpolation is
used only in precomputation.)

• auxmodulus.prime, given B and n, returns the smallest prime number in
{B, B + 1, B + 2, . . .} ∩ (1 + nZ).

• auxmodulus.product, given B and n, returns an integer M ≥ B and a sequence
P of distinct prime numbers in 1 + nZ having product M. This function also uses
primitive.root_remember to remember a primitive nth root of 1 in Z/M,
obtained from interpolating (via tree.interpolate) primitive nth roots of 1 in
Z/p across p in P. Currently the prime numbers in P are chosen as the smallest prime
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numbers in 1 + nZ, with the search stopping once the number of bits in the prime
numbers minus the number of primes is at least the number of bits in B. More work
would usually bringM somewhat closer to B.

The general-conductor det functions also rely on various further manipulations of sub-
groups and quotient groups of (Z/m)∗, which are abstracted by units as follows:

• units.group, given m, returns the group (Z/m)∗. This group supports elements
(see units.element below), iteration, and the following functions:

– cardinality returns #(Z/m)∗.
– modulus returnsm.
– gens returns a vector of independent generators of (Z/m)∗. Calling this function

repeatedly always returns the same vector.
– ngens returns the number of generators returned by gens.
– gens_orders returns a vector showing the order of each generator returned

by gens.
– ring returns Z/m, represented as Sage’s Zmod(m).
– subgroup_1mod, given apositivedivisord ofm, returns thekernel (represented

as a units.subgroup; see below) of the natural map from (Z/m)∗ to (Z/d)∗.
Internally, this uses a trivial enumeration of (Z/m)∗ for simplicity; one can do
better for largem.

• units.element, given (Z/m)∗ (represented as a units.group) and an element
of Sage’s Zmod(m) or ZZ coprime to m (or, alternatively, an exponent vector on
units.group(m).gens()), returns an element of (Z/m)∗, with support for all
of Sage’s AbelianGroupElement features (e.g., multiplication and exponents)
and the following extra functions:

– modulus returnsm.
– inring returns the corresponding element of Zmod(m).
– reduce, given a positive divisor d ofm, returns the element of (Z/d)∗ obtained

by feeding this element of (Z/m)∗ through the natural map from (Z/m)∗ to
(Z/d)∗.

• units.subgroup, given m and g1, g2, . . . ∈ (Z/m)∗, returns the subgroup H of
(Z/m)∗ generated by g1, g2, . . . . This subgroup supports elements (as elements of
(Z/m)∗), iteration, and the following functions:

– cardinality returns #H .
– modulus returnsm.
– gens, ngens, and gens_orders are as above, but for independent generators

of H rather than independent generators of (Z/m)∗.
– fullgroup returns (Z/m)∗.
– quotient returns the quotient group (Z/m)∗/H , represented as a

units.quotient (see below).
– reduce, given a positive divisor d ofm, returns the subgroup of (Z/d)∗ obtained

by feeding H through the natural map from (Z/m)∗ to (Z/d)∗.
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– extend, given a vector of elements of (Z/m)∗, returns the subgroup generated
by H and those elements.

– intersect, given a subgroup H ′ of (Z/m)∗, returns H ∩ H ′.
– is_subgroup_of, given a subgroup H ′ of (Z/m)∗, returns True if H is a sub-

group of H ′, else False.
– representatives_mod, given a subgroupH ′ ofH (as a subgroup of (Z/m)∗),

returns representatives in (Z/m)∗ of the quotient H/H ′.
– conductor returns the conductor of H .
– is_radfree returns True if H is rad-free, meaning that H acts freely on

(Z/radm)∗.
– is_friendly returns True ifH is friendly, meaning that (1)m is divisible by 8

and all elements of H are 1 modulo 4 or (2)m is not divisible by 8.

• units.quotient, givenm and a subgroupH of (Z/m)∗, returns the quotient group
Q = (Z/m)∗/H . This quotient group supports elements (see
units.quotientelement below), iteration, and the following functions:

– cardinality returns #Q.
– modulus returnsm.
– gens, ngens, gens_orders are as above, but for independent generators of

Q.
– fullgroup returns (Z/m)∗.
– denominator returns H .

• units.quotientelement, given Q = (Z/m)∗/H as above and an element of
(Z/m)∗ (or, alternatively, an exponent vector on Q.gens()), returns an element of
Q, with support for all of Sage’sAbelianGroupElement features and the following
functions:

– lift returns a preimage of this element under the natural map from (Z/m)∗ to
Q.

– reduce, given a positive divisor d of m, returns the element of (Z/d)∗/H
obtained by feeding this element of Q through the natural map from (Z/m)∗/H
to (Z/d)∗/H .

Sage has a built-in Zmod(m).unit_group() that supports some of the above fea-
tures; abelianfields uses Zmod(m).unit_group() for some tests, and also tests
units.subgroup.conductor against PARI’s computation of conductors of fixed
fields of subgroups of the Galois group ofQ(ζm).

A.3: convolution functions

The convolutionmodule inside abelianfields handles the standard convolution
techniques from Sects. 4.12.1 and 4.12.2:

• convolution.multi_fft evaluates an isomorphism to Rn from the ring S =
R[x1, x2, . . . , xt ]/(xd01 − xe00 , . . . , xdt−1

t − xet−1
t−1 ), given a ring R, a primitive nth root ζ

of 1 in R, a unit x0 in R, a list d of t positive integers with product n, and a list e of



D. J. Bernstein Res. Number Theory (2023) 9:82 Page 49 of 57 82

t nonnegative integers where n divides e0 if t ≥ 1. This function also supports an
optional reverse=True argument that inverts the isomorphism.

• convolution.multimultiplies in the above ring S.
• convolution.multi_cyclicmultiplies in S in the case e0 = e1 = · · · = et−1 =

0.
• convolution.cyclic is the case t = 1, multiplying in R[x]/(xd − 1).

The convolution.multi_fft and convolution.multi functions leave it to the
caller to handle replacing di with p, di/p for speed when di is composite and p is a
prime divisor of di. The *cyclic* functions, which are the functions used elsewhere in
abelianfields, handle this replacement automatically.
By default, the *cyclic* functions require R to be Z or Z/M, and do not require R to

contain a primitive nth root of 1. These functions automatically decompose large coeffi-
cients into elements of a small prime field Z/p, saving a logarithmic factor as described
in Sect. 4.12.2. Presumably handling this by segmentation, as in Sect. 4.8.5, would be
noticeably faster for small t, and in particular for convolution.cyclic.
The *cyclic* functions also support a guaranteed_primitive=True option

that requires R to contain a primitive nth root of 1; in this case R is not required to be Z
or Z/M. Currently guaranteed_primitive=True also disables decomposing large
coefficients into elements of a small prime field.

A.4: functions for prime-conductor fields

The prime module inside abelianfields handles number fields of odd prime con-
ductorp, alongwithQ. Someof the functions in thismodule provide size-pFFTalgorithms
and, more generally, folded Rader FFTs for positive divisors d of p − 1:

• prime.complete is a size-p DFT. This function is given a ring R, an odd prime
number p, a primitive pth root ζ of 1 in R, and the coefficients g0, g1, . . . , gp−1
of a polynomial g = g0 + g1x + · · · + gp−1xp−1 ∈ R[x]; this function returns
g(1), g(ζp), . . . , g(ζ

p−1
p ). Internally, this function implements Rader’s original FFT

algorithm reviewed in Sect. 4.8.1. This function is not used elsewhere; it is provided
as a baseline algorithm for comparison.

• prime.folded takes R, p, ζ , a positive integer d dividing p − 1, and d coef-
ficients g0, g1, . . . , gd−1 representing the d-periodic polynomial g = ∑

j gj(xω−j +
xωd−j + · · · + xωp−1−d−j ) where ω is units.generator(p). This function returns
g(ζω0 ), . . . , g(ζωd−1 ). Internally, this function uses the folded Rader algorithm
reviewed in Sect. 4.8.3, so it is simply a length-d cyclic convolution with a pre-
computed vector. The largest case, d = p − 1, is close to prime.complete, but
prime.complete allows nonzero constant coefficient, also evaluates at 1, and has
a different order of inputs and outputs.

• prime.folded_inverse inverts prime.folded for any particular (R, p, ζ , d).
See Sect. 4.8.4 for the algorithm.

All of these functions currently require R to be Z or some Z/M, and internally use
convolution.cyclic.
Further prime functions operate on elements of Zd , representing d-periodic polyno-

mials over Z, representing (integral) d-periodic elements of Q(ζp), meaning elements of
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the degree-d subfield of Q(ζp). Note that, in particular, the element (z, z, . . . , z) ∈ Zd

represents the element −z ofQ(ζp). Each function is given p and d along with the further
inputs described below:

• prime.multiply takes two elements of Zd representing d-periodic elements
α,β ∈ Q(ζp), and returns an element of Zd representing αβ . Internally,
prime.multiply computes an easy bound on the absolute coefficients of αβ ;
uses auxmodulus.product to choose a modulus M above twice this bound with
a primitive pth root of 1 in Z/M; and finishes with two length-d folded DFTs over
Z/M, d multiplications in Z/M, and one length-d inverse folded DFT over Z/M.
Each folded DFT boils down to one length-d cyclic convolution with a precomputed
sequence.

• prime.subfield takes a positive integer d2 dividing d, and an element of Zd rep-
resenting a d-periodic elementα ∈ Q(ζp). It returns an element ofZd2 representingα,
if α is d2-periodic. In other words, it extracts the first d2 entries of the input sequence,
if the input sequence is d2-periodic.

• prime.conjugate takes an integer e, and an element of Zd representing a d-
periodic element α ∈ Q(ζp). It returns an element of Zd representing σ (α), where
σ is the unique automorphism of Q(ζp) mapping ζp to ζωe

p , where again ω is
units.generator(p). In other words, prime.conjugate rotates the input
sequence to the left by e positions.

• prime.det_relative evaluates the determinant map from the degree-d sub-
field of Q(ζp) down to the degree-d2 subfield of Q(ζp), where d2 is a positive inte-
ger dividing d. This function takes d2 and an element of Zd representing a d-
periodic element α ∈ Q(ζp), and returns an element of Zd2 . Internally, this function
includes two implementations (tested against each other): the default implementa-
tion saves time by pushing conjugation and subfield extraction through the DFTs
as explained in Sect. 4.8.6, but there is also a simpler reference implementation,
enabled by ref=True, that multiplies conjugates by calling prime.conjugate

and prime.multiply as black boxes.
• prime.det_absolute evaluates the determinant map from the degree-d subfield

of Q(ζp) down to Q. Internally, this function automatically factors d into primes
and repeatedly applies prime.det_relative. One could alternatively modify
prime.det_relative to internally perform this factorization; either way, the
factorization is essential for the speed of this paper’s algorithms.

A.5: functions for arbitrary-conductor fields

The general module inside abelianfields has a similar structure to the prime

module but supports arbitrary conductor. Some of the functions provide the construction
from [29, Section 5] of an H-normal basis:

• general.normalbasis, given a rad-free subgroup H of (Z/m)∗, returns B/H
and a list of rewrite rules. Here B is anH-normal integral basis ofQ(ζm) consisting of
roots of 1, and the rewrite rules specify how to rewrite arbitrary roots of 1 in terms
of B. Internally, the rewriting follows the construction from [97] and [26] reviewed in
Sect. 4.10.
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• general.canonicalize expresses an H-periodic polynomial as an H-periodic
polynomial on the basisB fromgeneral.normalbasis, rewriting any other expo-
nents that appear. The input and output use exponents in (Z/m)/H having additive
order divisible by radm; the output is guaranteed to be supported on B, which is
automatic ifm is squarefree but not for generalm.

• general.from_conventional also produces an H-periodic polynomial on the
basisB, but takes input in its conventional (notH-folded) formas a list ofm exponents,
with no requirements on the additive order.

Some of the functions provide generalized Rader FFTs and generalized folded Rader FFTs:

• As awarmupwithout folding,general.primitive is a primitive size-mDFT.This
function is given a ring R, a positive integerm, a primitivemth root ζ of 1 in R, and the
coefficients g0, g1, . . . , gm−1 of a polynomial g = g0+g1x+· · ·+gm−1xm−1 ∈ R[x]. This
function returns g(ζ c) for each c ∈ {0, 1, . . . , m − 1} with gcd{c,m} = 1. Internally,
this function uses the generalized Rader FFT from Sect. 4.12.3.

• general.primitive_inverse is an inverse primitive size-m DFT. Internally,
this uses the inversion algorithm (and tweak) from Sect. 4.12.4.

• general.folded is an H-folded DFT, as in Sect. 4.12.5. This function is given
R, m, ζ , a subgroup H of (Z/m)∗, and an H-periodic polynomial; it evaluates the
polynomial at ζ c for each c in (Z/m)∗/H . The subgroup H is required to be rad-free.

• general.folded_inverse is an inverse H-folded DFT.

Finally, as in prime, there are further functions to operate on H-periodic polynomials
over Z, representing elements of the subfield of Q(ζm) fixed by H . Each function is given
m and H along with the further inputs described below:

• general.multiply takes two H-periodic polynomials f, g and returns fg . Inter-
nally, this uses H-folded DFTs.

• general.conjugate takes an element c ∈ (Z/m)∗ and anH-periodic polynomial
f , and returns σc(f ), where σc is the unique automorphism of Q(ζm) mapping ζm to
ζ c
m.

• general.subfield changes representation from the subfield K ofQ(ζm) fixed by
H to the subfield F ofQ(ζ�) fixed by a subgroup S of (Z/�)∗, where F ⊆ K , assuming
the input represents an element of F . This function takes as input a subgroup H2 of
(Z/m)∗ containing H ; the function defines � as the conductor of H2, and S as the
reduction ofH2 to (Z/�)∗. This function also takes as input anH-periodic polynomial
f , and produces as output an S-periodic polynomial. The exact set of pairs (H, S)
supported by this function has a complicated description from details of how the
function steps through conductors and subgroups; both H and S are required to be
rad-free, and none of the default abelianfields tests include any cases where this
condition is insufficient.

• general.det_relative has the same input–output format as
general.subfield but evaluates detKF rather than evaluating the identity map on
F . Internally, this function simplymultiplies conjugatesusinggeneral.conjugate
and general.multiply.
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• general.det_absolute takes an H-periodic polynomial representing an ele-
ment α of the subfield K of Q(ζm) fixed by H , and returns detKQ α. This function
requires H to be friendly.

A subroutinegeneral.tower constructs the towerused ingeneral.det_absolute.
Internally, general.tower starts with (Z/m)∗ and builds a chain of subgroups down
towards H . It tries to insert one prime at a time into the field degree so as to obtain a
maximum-length tower, but, form ∈ 8Z, sometimes intersects the current subgroup with
1 + 4Z to preserve the rad-free condition, in effect losing one degree-2 step in the tower.
There is no attempt in general.tower to search for alternative chains.

A.6: output of the tests

Running all internal abelianfields tests on Linux systems with Sage installed is a
simplematter of typingmake in thepackagedirectory.Variousnotes are printed regarding
which test size is in progress, but not regarding all the individual tests.Any failure is printed
as a Sage assertion failure.
Along with correctness tests, the tests of the primemodule include reporting, for each

small prime p, the sizes of convolutions used in computing determinants down toZ of five
random small elements of Z[ζp], specifically elements with

⌈
(p − 1)1/2

⌉
coefficients ±1

and all remaining coefficients 0. For example, a typical computation for p = 29 involved
convolutions of lengths 28 (for a forward DFT) and 14 (for an inverse DFT) over Z/M
where M has 14 bits, convolutions of lengths 14 and 7 over Z/M where M has 23 bits,
and convolutions of lengths 7 and 1 over Z/M where M has 83 bits, as reflected by the
following output line:

p 29 totalbits 1735 Mbits,n: 14,28 14,14 23,14 23,7 83,7 83,1

The product ofM bits and n adds up to 1735 in this example. Sizes can vary from one ele-
ment to another; see generally Sect. 2. To skipmost tests and simply see these convolution
sizes, one can run make sagelibs and then, inside Sage, run the following, although
this still tests the results against Sage’s resultant subroutine:

import prime

prime.test_sizes(29)

The totalbits quantity is not monotonic in p: for example, the quantity is typically
9090 or 9480 for p = 59 and typically just 3099 or 3177 or 3249 for p = 61, reflecting the
fact that Q(ζ61) has a much nicer tower than Q(ζ59) does.
Five experiments with p = 193 = 1+3 ·26 had totalbits being 16739, 17157, 17168,

17228, 16859; five experiments with p = 769 = 1 + 3 · 28 had totalbits being 83286,
83368, 82804, 82962, 82964. The 5× growth in totalbits from p = 193 to p = 769 is,
as expected, slightly larger than the 4× growth in p: the number of tower levels is growing
logarithmically, and one expects another near-logarithmic factor for reasons explained in
Sect. 2.
(Similar comments apply to the general module, with larger sizes since general

does not push conjugation and folding throughDFTs. For example, five experiments from
general.test_sizes(193) had totalbits being 36981, 36711, 38196, 36981,
35703, and five experiments from general.test_sizes(769) had totalbits

being 176103, 212355, 176922, 176103, 176067.)
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Beyond totalbits, there is a third logarithmic factor in the run time of this paper’s
algorithm, reflecting the cost of convolution per bit. However, one cannot expect to see
this logarithmic factor in wall-time measurements for this software. Operations in the
small prime fields in Sect. 4.12.2 have inherent cost growing with the size of the prime
(which is also roughly logarithmic, with some bumps for the distribution of primes), but
in Sage the cost is instead dominated by prime-independent overhead. Wall time was
monitored experimentally as a sanity check (with repeated runs so that precomputations
were cached) and grew approximately 5× from p = 193 to p = 769, but this should not
be taken as a predictor of the wall-time ratio for optimized software.

Appendix C: faster software for the case of power-of-2 cyclotomics
For the numerical example α = 3 + ζ 271

2048 + 4ζ 828
2048 with K = Q(ζ2048), Sect. 1 compared

the performance of traditional detKQ α computation—namely 0.21 × 109 cycles via PARI,
or 0.15 · 109 cycles via NTL—to the performance of exploiting a tower of subfields of
K—more than 10× faster, namely 0.011 × 109 cycles.
A closer look shows that this underestimates the speed advantage of exploiting a tower of

subfields. The overhead in Python and Sage for computing g(−x), extracting coefficients,
etc. turns out to account for most of the 0.011 × 109 cycles. This issue is essentially
nonexistent for the scripts usingPARI andNTL: those scripts are bottleneckedby resultant
subroutines written in C.
This appendix describes cyclo2power (available from [19] as an accompaniment to

this paper), an open-source library to compute detKQ α for integral elements α of power-
of-2 cyclotomic fields K . The library is written in C and, like NTL and PARI, uses GMP
[52] for integer arithmetic. For the numerical example from Sect. 1, cyclo2power uses
just 0.0012 × 109 cycles on the same machine, more than 100× faster than NTL.

C.1: representing polynomials as integer values

Segmentation (sometimes called “Kronecker substitution”), also used in Sects. 3.3, 4.2,
and 4.8.5, multiplies two polynomials f, g ∈ Z[x] by multiplying the integers f (ρ), g(ρ).
Here ρ ∈ Z is chosen to be a power of 10 for traditional hand computation or a power of
2 for software, so it is easy to read off the coefficients of h = fg from the digits or bits of
h(ρ). One can think of the integers f (ρ), g(ρ), h(ρ) as representations of the polynomials
f, g, h respectively.
For example, one way to multiply 3x2 + x+4 by 2x2 +7x+1 is to choose ρ = 1000 and

multiply the integers 3001004 and 2007001, obtaining the integer 6023018029004, from
which one easily reads off the polynomial product 6x4 +23x3+18x2+29x+4. Of course,
for this to work, ρ has to be large enough compared to the polynomial coefficients.
It might seem pointless to reduce polynomial arithmetic to integer arithmetic given that

integers, in turn, are normally represented as values of polynomials—for example, the
notation “6023018029004” above refers, by definition, to the value at 10 of the polynomial
6y12+2y10+3y9+y7+8y6+2y4 +9y3+4. But if one is given GMP for integer arithmetic
then segmentation is well known to be an easy way to carry out polynomial arithmetic.
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C.2: tower compatibility of segmentation

Let n ≥ 2 be a power of 2.Writem = 2n. As usual, represent each α ∈ Z[ζm] as the unique
g ∈ Z[x]/(xn + 1) with g(ζm) = α. As above, represent g by its value g(ρ) ∈ Z/(ρn + 1)
where ρ is a power of 2. One can recover g and thus α from this value if the coefficients of
g are small enough compared to ρ.
Theproduct g(ρ)g(−ρ) nowrepresents g ·g(−x),which in turn representsdetZ[x]/(x

n+1)
Z[x]/(xn/2+1) α.

This product g(ρ)g(−ρ) is the same as G(ρ2) for the unique G ∈ Z[x]/(xn/2 + 1) with
G(x2) = g · g(−x). Now replace (g, ρ) with (G, ρ2) and repeat.
This is how cyclo2power works, with ρ chosen as the smallest power of 216 such

that the maximum absolute value of the coefficients of the input g is below ρ/2n. Each
coefficient of G is a sum of n products (sometimes negated) of coefficients of g , and is
thus below ρ2/4n in absolute value. Taking ρ/2n instead of ρ/n simplifies the negative-
coefficient rewriting described below, and requiring a power of 216 rather than just a
power of 2 simplifies the coefficient handling more broadly.
For example, if n = 1024 and g has small coefficients then cyclo2power chooses

ρ = 216, so ρn = 216384. This is several timesmore bits than necessary to represent typical
outputs; see Sect. 2. Presumably one could obtain some further speed by (1) allowing the
initial ρ to be, e.g., 24, despite the cost of handling unaligned data, and (2) reducing
ρ partway through the computation, despite the cost of having to switch to a different
representation.
Note that multiplying g(ρ) by g(−ρ) is multiplying in Z/(ρn + 1). Many integer-

multiplication methods benefit from moduli of the special form ρn + 1 (see generally
[16, Section 3]), gaining about a factor 2 in performance compared to multiplying the
same inputs in Z. However, the documented GMP interface does not provide any of these
special multiplication functions.

C.3: negative coefficients

Consider the polynomial f = 5x3 + 6x2 − 7x − 8. The value of f at ρ = 1000 is f (ρ) =
5005992992. One can recover the coefficients of f from f (ρ) by rewriting the bottom
992 as 1000 − 8, producing coefficient −8 and quotient 5005993; then rewriting 993 as
1000 − 7, producing coefficient −7 and quotient 5006; etc.
This rewriting is a considerable part of thecyclo2power code.One cannot reasonably

avoid negative coefficients in the context of this paper: this would limit the pool of inputs
α in the applications in Sect. 5, and would almost always prohibit converting g into g(−x).
This complication disappears if one instead represents integers using a balanced digit

set, such as the redundant digit set {−5,−4, . . . , 4, 5} in radix 10: one can then simply
negate each coefficient. However, GMP does not represent integers in this way.

C.4: speedups over NTL

For small n (e.g., n = 4) and small coefficients (e.g., {−1, 0, 1}), cyclo2power is about
twice as fast as NTL’s resultant computation applied to xn + 1. The cyclo2power

advantage grows rapidly as n increases. For example, for n = 1024 and coefficients
−1, 0, 1 with probability 1/4, 1/2, 1/4 respectively, NTL takes about 0.66 × 109 cycles
while cyclo2power takes about 0.0014 × 109 cycles, more than 400 times faster. The
cyclo2power advantage also grows somewhat as the number of bits per coefficient
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increases, although this is less striking than the growth with n and less relevant to the
applications considered in this paper.
There are also functions in cyclo2power for handling power-of-2 real-cyclotomic

fields instead of power-of-2 cyclotomic fields. This boils down to skipping a final squaring.
This speedup is most noticeable for small n.
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