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Abstract

We consider the Kolyvagin cohomology classes, associated to an elliptic curve E/Q,
from a computational point of view. We explain how to go from a model of a class as an
element of (E(L)/pE(L))Gal(L/Q), where p is prime and L is a dihedral extension of Q of
degree 2p, to a geometric model as a genus one curve embedded in Pp−1. We adapt
the existing methods to compute Heegner points to our situation, and explicitly
compute them as elements of E(L). Finally, we compute explicit equations for several
genus one curves that represent non-trivial elements ofX(E/Q)[p], for p ≤ 11, and
hence are counterexamples to the Hasse principle.

1 Introduction
Let E/Q be an elliptic curve of conductor N , with a fixed modular parametrization ϕ :
X0(N ) −→ E. Let K be an imaginary quadratic field satisfying the Heegner hypothesis:
all prime factors of N are unramified and split in K . Let H be the Hilbert class field of
K . Using the theory of complex multiplication and the modular parametrization ϕ, one
defines certain points in E(H ), known as Heegner points.
Let us fix an odd prime p. Kolyvagin [18] has used Heegner points to construct certain

elements of the p-Selmer group Sel(p)(E/Q). The images of these elements in the Tate–
Shafarevich group X(E/Q)[p], under the natural map Sel(p)(E/Q) −→ X(E/Q)[p], are
known as Kolyvagin classes. It is a standard fact, due to Cassels [4], that elements of
X(E/Q)[p] can be represented by genus one curves embedded in Pp−1.
Themain result of this paper is an algorithm (divided into Algorithm 5.1 and Algorithm

3.2) to compute such representations for the Kolyvagin classes in X(E/Q)[p], and thus
obtain explicit counterexamples to the Hasse principle. In Sect. 6 we then use these
algorithms to compute explicit equations for smooth genus one curves embedded in
Pp−1, that have points over every completion of Q, but no points defined over Q for
primes p ≤ 11.
These calculations are especially interesting if p > 5, and the curve E does not admit

a p-isogeny. The standard method to compute such counter examples to the Hasse prin-
ciple is to use the method of complete p-descent to compute the entire p-Selmer group
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Sel(p)(E/Q). However, when p > 5, this is not feasible in practice, as one runs into diffi-
culties with computing class groups of very large number fields. Ourmethod does not run
into this problem, and in particular, in Sect. 6, Example 6.3, we compute the first known
explicit realization of a non-trivial element ofX(E/Q)[7] for an elliptic curve E that does
not have a 7-isogeny.
These classes have already been studied from a computational point of view by Jetchev,

Lauter and Stein in [17]. They are able to compute representations of these classes as
elements of E(L)/pE(L), where L is a certain abelian extension of K . However, their aim is
only to test whether these classes are non-zero, for which this representation is sufficient,
whereas we compute explicit equations defining the corresponding homogeneous space.
The problem of computing these equations breaks up into two problems. First, given

a suitable elliptic curve E, an imaginary quadratic field K and a prime p, we compute
a Heegner point xK , defined over a certain dihedral extension of Q. Our method for
doing this is Algorithm 3.2. To this point we associate a Kolyvagin class c ∈ Sel(p)(E/Q).
Algorithm 5.1 then represents this class by a genus one curve C ⊂ Pp−1. The main
difficulty in our computations is caused by the fact that typically the Heegner points xK
have very large height, making themhard to compute andworkwith.We note that despite
this, the output of Algorithm 5.1 is amodel for the curveC with small integral coefficients,
i.e. a minimized and reduced model, in the sense of [7].

2 Background on Kolyvagin classes and statement of results
In this section we review basic material from the theory of Heegner points. The main
references are the articles of Gross, [15] and [14], as well as [24,25] and Chapter 8 of [9].

2.1 Heegner points onmodular curves

ForN ≥ 1 an integer, let Y0(N ) be the open modular curve, defined over Q. The C-points
of Y0(N ) classify isomorphism classes of cyclic N -isogenies E −→ E′, defined over C. Fix
an imaginary quadratic field K satisfying the Heegner hypothesis: every prime dividingN
splits completely in K . It follows that there exists an ideal N of the ring of integers OK
withNN̄ = NOK , and henceOK /N ∼= Z/NZ.
Given such an ideal N , an ideal class [a] ∈ Cl(OK ) determines a map of complex tori

C/a −→ C/aN−1. Since we have aN−1/a ∼= Z/NZ, this map is a cyclic N -isogeny, and
determines a point in Y0(N )(C). This is defined to be the Heegner point associated to the
triple xK = (OK , [a],N ).

2.2 Rationality of Heegner points

A key property of Heegner points, implied by the theory of complex multiplication, is that
they are defined over abelian extensions of the field K . More precisely, let (OK , [a],N ) be
a Heegner point on Y0(N ). This point is defined over the Hilbert class field H of K . See
	5 of [14]. The key point is that both C/a and C/aN−1 have complex multiplication by
OK . This is a consequence of the Shimura reciprocity law, as explained in Chapter 6.8 of
[21], or Chapter II of [22].
The field H is an abelian extension of K , and the Artin map provides a canonical

isomorphism F : Cl(OK ) −→ Gal(H/K ). Explicitly, by Shimura reciprocity, for an ideal
class [b] we have
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(OK , [a],N )F ([b]) = (OK , [ab−1],N ).

Suppose that τ ∈ Gal(H/Q) is a lift of complex conjugation. The action of τ is given by

(OK , [a],N )τ = (OK , [τ (a)], τ (N )).

2.3 Heegner points on elliptic curves and Kolyvagin classes

Now let E be an elliptic curve defined overQ, of conductorN . LetX0(N ) be the compacti-
fied modular curve of levelN . By the modularity theorem (see [1]), there exists a modular
parametrization map ϕ : X0(N ) −→ E. For every discriminant D that satisfies the Heegner
condition, we fix an idealN with NOK = NN̄ , and define the Heegner point xK ∈ E(H )
by setting xK = ϕ(O, [a],N ).We also define the basic Heegner point yK ∈ E(K ) by setting
yK = TrH/K xK .
Let p > 2 be a prime such that E(H )[p] is trivial, yK ∈ pE(K ) and p divides |Cl(OK )| =

|H : K | exactly once. These assumptions are fairly mild, as we will see later. Then there
exists a unique degree p subfield of H , which we denote by L. Let zK = TrH/LxK , and let
σ be a generator of G = Gal(L/K ). Define the operators Dσ and Tr in Z[G] by

Dσ =
p−1∑

i=1
iσ i, Tr =

p−1∑

i=0
σ i.

The operator Dσ is known as the Kolyvagin derivative and Tr is the trace operator. They
satisfy the identity

(σ − 1)Dσ = p − Tr,

We define the derived Heegner point P as P = Dσ · zK . The class [P] ∈ E(L)/pE(L) is
invariant under the action of G, since we have

(σ − 1)(Dσ · zK ) = pzK − Tr(zK ) = pzK − TrH/K (xK ) = pzK − yK ,

and by assumption yK ∈ pE(K ). The Kummer map δ : E(L)/p(L) −→ H1(L, E[p])
is compatible with the Galois action, and so we can define a cohomology class cL ∈
H1(L, E[p])Gal(L/K ) by cL = δ([P]). We have the inflation-restriction exact sequence

H1(L/K, E[p](L)) inf−→ H1(K, E[p]) res−→ H1(L, E[p])Gal(L/K ) −→ H2(L/K, E[p](L)).

As E[p](L) is trivial, the two outermost groups are trivial, and the restriction map defines
an isomorphism res : H1(K, E[p]) −→ H1(L, E[p])Gal(L/K ). We define c ∈ H1(K, E[p]) to
be the preimage of cL under the restriction map. The class c is in fact an element of the
p-Selmer group Sel(p)(E/K ), see [15, Prop 6.2]. Finally, let d be the image of c inH1(K, E).
Then d is an element ofX(E/K )[p].

Remark 2.1 The above definition is less general than the one Kolyvagin used—he also
usedHeegner points defined over ring class fields to define Kolyvagin classes. Ourmethod
extends to these classes as well with minor changes, but to make exposition simpler we
restrict to the case when the Heegner point is defined over the Hilbert class field. In
practice, when computing examples with p ≥ 7, these points appear to be easier to
compute.



72 Page 4 of 25 L. Radičević Res. Number Theory (2022) 8:72

2.4 Descent from K to Q

Let ε be the sign of the functional equation of E/Q. The proof of Proposition 5.4 in [15]
shows that the class c lies in the ε-eigenspace for the action of complex conjugation on
H1(K, E[p]). Thus, if E is a curve of rank 0, c is fixed by complex conjugation, and by the
same inflation-restriction argument we naturally obtain an element ofH1(Q, E[p]), which
we will also call c.
As E has no non-trivial p-torsion and rank 0, the group E(Q)/pE(Q) is trivial, and hence

if c is non-zero, its image d in H1(K, E[p]) will be a non-trivial element of X(E/Q)[p].
Tracing through the isomorphisms used to define c, we see that the class c is non-zero if
and only if the point P is not divisible by p in E(L).

2.5 Galois cohomology and n-diagrams

Let F be a number field, E/F an elliptic curve and n ≥ 1 an integer. We briefly recall a
few standard facts about the Galois cohomology groups H1(F, E) and H1(F, E[n]), see for
example [5].
A torsor under E is a smooth projective curve T/F , together with a regular simply

transitive action of E on T , defined by a morphism E × T −→ T . An isomorphism of
torsors C1 and C2 is an isomorphism of curves C1 and C2 that respects the action of E.
The left action of E on itself by translations makes E a torsor, which we call the trivial
torsor. There is a natural identification of the groupH1(F, E) with the set of isomorphism
classes of torsors defined over F , and the trivial torsor E corresponds to the identity
element.
We will also need the following interpretation of the group H1(F, E[n]). We define a

diagram [C −→ S] to be a morphism from a torsor C to a variety S. An isomorphism of
diagrams [C1 −→ S1] ∼ [C2 −→ S2] is an isomorphism of torsors ϕ : C1 ∼= C2 together
with an isomorphism of varieties ψ : S1 ∼= S2 making the diagram

C1 S1

C2 S2

ϕ ψ

commute. We define the trivial n-diagram to be the diagram [E −→ Pn−1] where the
morphism is induced by the complete linear system of the divisor n · 0E , and in general,
we say a diagram [C −→ S] is an n-diagram if it is defined over F , but isomorphic to the
trivial diagram over the algebraic closure F̄ , i.e. a twist of the trivial diagram. The set of
isomorphism classes is also naturally identified with H1(F, E[n]).
The group law on E induces a summation map sum : DivE −→ E, given by

∑
np · (P) 
→∑

npP. Two divisors D and D′ of the same degree are linearly equivalent if and only
sum(D) = sum(D′). The Kummer map δ : E(F )/nE(F ) −→ H1(F, E[n]) sends a class
[P] ∈ E(F )/nE(F ) to the isomorphism class of the n-diagram [E −→ Pn−1], where the map
is induced by the complete linear system of any degree n divisor D with sum(D) = P.
In this article we consider only n-diagrams of the form [C −→ Pn−1]. When n ≥ 3, such

an n-diagram is a closed embedding, and its image is a smooth projectively normal curve
C of genus one and degree n. If n = 3, C is a plane cubic. For n ≥ 4, the ideal defining C
is generated by n(n − 3)/2 quadrics, see [10, Prop. 5.3]. Finally, as a consequence of class
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field theory, under the above identification, the elements of the n-Selmer group of E can
be represented by n-diagrams of the form [C −→ Pn−1].

2.6 Summary of the setup and the statement of results

Our starting data is an elliptic curve E/Q of rank 0 and an odd prime p for which the
Birch and Swinnerton-Dyer conjecture predicts that the groupX(E/Q)[p] is non-trivial.
To construct a Kolyvagin class, we also need to find a discriminant D of an imaginary
quadratic field K with Hilbert class field H that satisfies the following: D satisfies the
Heegner hypothesis, E(H )[p] is trivial, p divides |Cl(OK )| = |H : K | exactly once, the rank
of E/K is 0, and the basic Heegner point yK is divisible by p in E(K ).

Remark 2.2 For given E and p, it is usually easy to find a discriminant D that satisfies
these conditions. In practice, a naive search will usually find plenty of discriminants that
are easily seen to satisfy all conditions but the last one, and a famous theorem of Kolyvagin
(Theorem 1.3 of [15]) then often guarantees that we must have p|yK .

Starting from the data ofE, p andD, we compute a p-diagram representing theKolyvagin
class c ∈ Sel(p)(E/Q) defined above. There are two main steps. Algorithm 3.2 computes
the Heegner point xK as an element of E(H ), and using this data Algorithm 5.1 then
computes the equations defining a genus one normal curve C ⊂ Pp−1, and the inclusion
C ⊂ Pp−1 is the p-diagram representing the class c. If this class is non-trival, the curveC is
a counter-example to the Hasse principle. We are able to succesfully use these algorithms
for various elliptic curves with p = 3, 5 and 7, and we give examples in Sect. 6. Note that
the examples with p = 3 and p = 5 can also be obtained by the method of p-descent, but
Example 6.3 with p = 7 is out of reach of p-descent at the moment, and is the first such
example with no 7-isogeny to our knowledge.

Remark 2.3 If the curve E has rank 1 over Q, then the class d is in the (−1)-eigenspace
of complex conjugation, and hence is obtained as the restriction of an element of
X(ED/Q)[p], where ED is the quadratic twist of E by D. If this quadratic twist has rank 0,
then by the same argument, the class d is non-zero if and only if the class c is.
Our method applies in this case as well, and in fact we are able to compute an example

(Example 6.5) with p = 11, i.e. a genus one normal curve C ⊂ P10 that is a counter-
example to the Hasse principle. We suspect that p could be increased even further, since
computing the Heegner point appears to be much easier in this case. As the Kolyvagin
class is naturally an element ofX(ED/Q) for the quadratic twistED of the curveE webegin
with, it seems difficult to use this version of our method as a tool to computeX(E/Q)[p]
of a given curve E.

3 Computing the Heegner point
In this section we describe the algorithm we will use to compute the Heegner points
needed to define the Kolyvagin class.

3.1 Computing the modular parametrization

Webriefly recall how to compute amodular parametrization of an elliptic curve, following
[9] and [17]. Let E/Q be an elliptic curve of conductorN , p an odd prime, and let K be an
imaginary quadratic field. We assume that the maximal orderOK of K is of discriminant
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−D �= 3, 4 and that K satisfies the Heegner hypothesis: all prime factors of N split
completely in OK . We fix an ideal N with NOK = NN̄ . Let H be the Hilbert class field
of K , and fix a modular parametrization ϕ : X0(N ) −→ E that maps the cusp ∞ to the
origin of E. We assume that H has unique subfield of degree p over K , denoted L. The
Heegner point xK is defined to be the image xK = ϕ(OK , [OK ],N ) ∈ E(H ), and we set
zK = TrH/LxK .
Following [17], we give an explicit description of the map ϕ. Let � be the period lattice

associated to E, and let f ∈ S2(	0(N )) be the newform associated to E. Let H∗ = H ∪
Q ∪ {∞} be the extended upper half plane, and identify the modular curve X0(N ) with
the quotientH∗/	0(N ). The modular parametrization map ϕ : X0(N ) −→ C/� is given by
integrating the holomorphic differential f (z)dz on X0(N ). We can compute it using the
power series

ϕ(τ ) =
∫ ∞

τ

f (z)dz =
∑

n≥1

an
n
e2π inτ , (1)

where f = ∑
n≥1 anqn is the Fourier expansion of f . To obtain a parametrizationX0(N ) −→

E, we compose with the uniformization ψ : C/� −→ E(C). The map ψ is defined using
the Weierstrass ℘-function, and is easy to compute numerically to high precision.
The Artin map provides us with an isomorphism between the class group Cl(OK ) and

the Galois group Gal(H/K ). We first compute a set of representatives a1, . . . , am for
Cl(OK ). Let σi be the image of ai under the Artin map. The Galois conjugates of the point
x corresponding to the isogeny [C/OK −→ C/N−1] are given by

σi(x) = [C/a−1
i −→ C/a−1

i N−1]. (2)

For every conjugate we compute a corresponding point τ in the upper half plane. Fix
an embedding ι of L into C. As the morphism ϕ is defined over Q, we can use the above
description of the Galois action to compute the coordinates of the Galois conjugates
σi(xK ), to whatever precision we like. We then to do same for the point zK = TrH/L(xK ).
By assumption, L is the unique degree p subfield of H , and so it is the fixed field of
the unique index p subgroup of Gal(H/K ). We enumerate the corresponding elements
[ai1 ], [ai2 ], . . . , [aim/p ] of Cl(OK ) and then compute zK numerically from the sum zK =
∑m/p

j=1 σij (xK ).

3.2 Recognizing the Heegner point using lattice reduction

We now discuss how to use the LLL algorithm to recover the point zK from the data
computed in the previous section. Recognizing an algebraic number from floating point
approximations is a well-studied problem, and in the setting of Heegner points has been
considered in [17]. An algorithm similar to the one they propose has been implemented
in MAGMA by Steve Donnelly. For our purposes however, their method is too slow to
handle the case when p ≥ 5, so in this section we propose a variant to this method that
seems to work quite well in this setting.
Let L be a number field of degree n, with n complex embeddings σ1, . . . , σn, and let

α1, . . . ,αn be a Z-basis of the ring integers OL. In our application L will be a dihedral
extension of Q of degree 2p.
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Definition 3.1 Let ε > 0, C = 10B for an integer B > 0, z ∈ L and let z1, . . . , zn ∈ C be
such that |σi(z) − zi| < ε. Let αij ∈ C be such that |σj(αi) − αij| < ε. To this data we
associate the 2n × 3n integer matrix Az,ε,C :

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0 0 �Cα1,1� . . . �Cα1,n�
...

...
. . .

...
...

... . . .
...

...
... . . .

...
... �Cαn,1� . . . �Cαn,n�

...
... . . .

...
... �Cα1,1z1� . . . �Cα1,nzn�

...
...

. . .
...

...
...

...
...

0 0 . . . 0 1 �Cαn,1z1� . . . �Cαn,nzn�

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

i.e. the left 2n× 2n-block is the 2n× 2n identity matrix, and the right 2n× n-block splits
into the upper n × n-block (�Cαij�)ij and the lower n × n-block (�Cαijzj�)ij . We define
Lz,ε,C to be the lattice in R3n spanned by the rows of Az,ε,C .

We now explain the heuristic behind our algorithm to recover z from its numerical
approximations. It is based on a standard idea used in algorithms to detect integer rela-
tions, see [16]. We look for integers u1, . . . , u2n for which we have

0 = u1α1 + u2α2 + . . . + unαn + un+1α1z + un+2α2z + . . . + u2nαnz. (3)

Such a set of integers certainly exists, since (3) is equivalent to

z = −
∑n

i=1 uiαi∑n
i=1 un+iαi

,

allowing us to recover z. Let r1, . . . , r2n denote the rows of Az,ε,C , and consider the vector
row vector u1r1 + . . . + u2nrn. The entries of this vector are

(u1, u2, . . . , u2n,
n∑

i=1
(�Cαi,1� + �Cαi,1z1�), . . . ,

n∑

i=1
(�Cαi,n� + �Cαi,nzn�))

and so if ε is small and C is large, the last n entries should be very small. If the integers
u1, . . . , u2n are chosen to be the smallest possible so that the relation (3) holds, then
u1r1 + . . . + u2nrn is a candidate for the shortest vector in the lattice Lz,ε,C . Thus we
use the LLL algorithm to find the shortest vector in this lattice and hope that it actually
corresponds to a relation (3). If it does not, we decrease ε, increase C and try again. Note
that we have not proven that this algorithm terminates, i.e. that for small enough ε the
shortest vector corresponds to a relation (3), but as we were able to compute some very
large examples with this method, it seems plausible that this is the case.
We summarise the discussion of this section in the following algorithm.

Algorithm 3.2 • INPUT: An elliptic curve E, a Heegner discriminant D, and a prime
p that divides |Cl(OK )| exactly once.

• OUTPUT: Coordinates (x, y) of a point P ∈ E(L) that is (conjecturally) the point
zK = TrH/LxK .

(i) Find a set of representatives a1, a2, . . . , an for the class group Cl(OK ), and for each
point [C/a−1

i −→ C/a−1
i N−1], compute a corresponding τi in the upper half plane.
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(ii) Compute an equation for the unique degree p subfield L of the Hilbert class field,
and compute an integral basis of the maximal orderOL.

(iii) Pick an ε > 0, and compute ϕ(τi) ∈ C to precision ε/2, using the formula (1), by
computing enough of the Fourier coefficients an.

(iv) Compute the period lattice � and hence the uniformisation map ψ : C/� −→ E
to the required precision, and hence find ψ(ϕ(τi)). Then, use the description of the
Galois action on Heegner points given in Sect. 2.2 to take the trace fromH to L, and
hence obtain z1, . . . , z2p with |σi(x) − zi| < ε.

(v) Using z1, z2, . . . , z2p and choosing a large constant C , form the matrix Az,ε,C as in
Definition 3.1. Use the LLL algorithm to find a U ∈ GL4p(Z) such that the rows of

UAz,ε,C form an LLL-reduced basis of Lz,ε,C . Then let x = −
∑2p

i=1 u1,iαi∑2p
i=1 u1,2p+iαi

and test if

x is the x-coordinate of a point in E(L). If it is, solve for the y-coordinate and return
(x, y). Otherwise, replace ε by ε/2, and return to Step 3.

Steps (i), (ii) and (iii) of the algorithm have been studied extensively in the literature, see
for example Section 8.6 of [9] or [24], so we do not provide details on how to implement
them.We have used the existingMAGMA implementations of these steps in our calcula-
tions. The algorithm has not proven that the point (x, y) is indeed the point xK , although
we believe it is highly probable that it is, nor have we proven that the algorithm always
terminates. However, in practice we have been able to use it to compute points on various
elliptic curves for p ≤ 11.
The main bottleneck is Step (iii). If the height of the Heegner point is very large, then

we need to take ε to be very small for the algorithm to return a point in E(L), and this
requires computing a very large number of the Fourier coefficients an.

Remark 3.3 The output of our algorithm, if it terminates, will be a point u = (x′, y′) ∈
E(H ), and as noted in [17], verifying that this point coincides with the Heegner point
zK = (x, y) is a nontrivial matter.We know that the point we obtain is a good archimedean
approximation of the Heegner point, in the sense that by increasing the precision in
Algorithm 3.2 we can make the absolute values |σ (x) − σ (x′)|, where σ is any embedding
L ↪→ C, as small as we like. However, without a bound on the height of zK , we can’t
actually prove that u = zK .
Since our main goal is to construct examples of non-trivial elements of the Tate–

Shafarevich group of E, it suffices to verify that the point u satisfies the same properties
as the Heegner point zK for the purpose of constructing a Kolyvagin class, as formalized
in Lemma 4.2. This also serves as a consistency check on our calculations, and in all of
the examples we have computed, we believe it is very unlikely that the resulting point is
not the Heegner point. Note that the appendix of [17] provides a method one could use to
compute a bound on the height of zK and hence make the calculations provably correct,
but we did not implement this algorithm.

Remark 3.4 The idea to use the LLL-algorithm method to recover z from the matrix
Az,ε,C is very well known. Our approach differs from the standard method explained in
Chapter 7 of [16]. Briefly, the standard method to recover an algebraic number z from a
set of complex numbers {zg : g ∈ G} that approximate the Galois conjugates of z is to
approximate the minimal polynomial f of z by

∏
g∈G(x − zg ), and try to recognize the
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coefficients of f as rationals, using continued fractions, or better yet the LLL algorithm.
However, for us this method is not efficient enough, since z is of very large height in the
examples we consider, and the coefficients of the polynomial f are symmetric polynomials
in zg , and hence are of even larger height.
Our method instead tries to recognize z directly, taking advantage of the fact that we

know that x is defined over theHilbert class fieldH .We can compute this field beforehand,
using themachinery of computational class field theory already implemented inMAGMA.

Remark 3.5 A further improvement along the same lines is to use the fact that we can
also compute numerically the y-coordinate, and look for linear relations of the form
A+Bx+Cy = 0. Recall that we have assumed that L is of class number 1, so that x = r/t2

and y = s/t3, for some r, s, t ∈ OL. Thus if A + Bx + Cy = 0, we see that t|A, and that
hence A2x ∈ OL. It is then simple to recover A2x from its floating point approximation,
and hence to compute the point (x, y). Based on experimental data we have computed, this
seems to be an improvement. A heuristic explanation might be that the minimal A, B, C
that can appear in a relation A + Bx + Cy = 0 can be a lot smaller than the minimal
u, v appearing in a relation u + vx = 0, and so it is easier to guess a short vector in the
corresponding lattice.

4 Geometric realization of the Kolyvagin class
4.1 The p-diagram associated to the Kolyvagin class

In this section we explain how to compute, given a Heegner point, equations for the
p-diagram representing the Kolyvagin class. The first step is to formalize the input we
need from Heegner points to define Kolyvagin classes. After that, we first represent the
Kolyvagin class by a p-diagram C ⊂ PPp−1 defined over a dihedral extension L/Q of
degree 2p, and give explicit formulas for the action of the Galois group Gal(L/Q) on
C ⊂ Pp−1. This action is encoded in a cocycle in Z1(Gal(L/Q),GLp(L)). We then use
Galois descent to reduce the problem of computing a p-diagram defined over Q that
represents the Kolyvagin class to linear algebra.
Throughout this section, we fix the following data. Let E/Q be an elliptic curve of rank

0, let p be an odd prime and K/Q be a quadratic field. In addition, let L/Q be a dihedral
extension, of degree 2p, that contains K , such that E(L)[p] is trivial.

Proposition 4.1 Let P ∈ E(L) be a point such that the class [P] ∈ E(L)/pE(L) is invariant
under the action of G = Gal(L/Q). Let δ : E(L)/pE(L) −→ H1(L, E[p]) be the Kummermap,
and let res : H1(Q, E[p]) −→ H1(L, E[p]) be the restriction map.
Then there exists a unique class c ∈ H1(Q, E[p]) such that res(c) = δ([P]).

Proof This is the inflation-restriction argument from Sect. 2. ��

The aim of this section is to give method to compute equations for the p-diagram
representing the class c. This is accomplished by Galois descent, and involves explicit
cocycle calculations. Let σ ∈ G be an element of order p, and let τ ∈ G be an involution.

Lemma 4.2 Let P ∈ E(L) be a point with [P] ∈ (E(L)/pE(L))G, and suppose that we also
have τ (P) = P. We then have the following.
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(i) For each g ∈ G, there exists a unique Rg ∈ E(L) with pRg = g(P) − P. The map
g 
→ Rg defines a cocycle in H1(G, E(L)), meaning that for any g, h ∈ G we have

Rgh = g(Rh) + Rg ,

(ii) For 0 ≤ k ≤ p − 1, we have Rσ k = ∑k
i=1 σ i−1(Rσ ), and Rσ kτ = Rσ k .

(iii) We have
∑p

k=1 σ k (Rσ ) = 0E and τ (Rσ k ) = Rσ p−k .
(iv) We have [P] = [DσRσ ] = [

∑p−1
i=1 iσ i(Rσ )] = [

∑p−1
i=1 Rσ i ] ∈ E(L)/pE(L).

Proof (i) Since [g(P)] = [P] as elements of E(L)/pE(L) for every g ∈ G, there exists
a point Rg ∈ E(L) with pRg = g(P) − P. As E(L)[p] is trivial, Rg is unique and the
cocycle condition follows from

pRgh = gh(P) − P = g(h(P) − P) + g(P) − P = pg(Rh) + pRg = p(g(Rh) + Rg ),

(ii) As pRσ kτ = σ kτ (P) − P = σ k (P) − P = pRσ k , we have Rσ kτ = Rσ k . By (i) we have
Rσ k = σ (Rσ k−1 ) + Rσ , so we are done by induction on k .

(iii) By (ii), 0E = Rσ p = ∑p
k=1 σ k (Rσ ). Using the identity σ p−kτ = τσ k , we compute

p · τ (Rσ k ) = τ (p · Rσ k ) = τσ k (P) − τ (P) = σ p−kτ (P) − P = p · Rσ p−kτ

and as before we conclude τ (Rσ k ) = Rσ p−kτ .
(iv) Using (ii) we see that

p−1∑

i=1
Rσ i =

p−1∑

i=1

i∑

j=1
σ j−1(Rσ ) =

p−1∑

i=1
iσ i(Rσ ) = DσRσ .

By the identity (σ − 1) · Dσ = p − ∑p
i=1 σ i and (iii), we have

σ (DσRσ ) − DσRσ = pRσ −
p∑

i=1
σ i(Rσ ) = pRσ .

Using (iii), we find that τ (DσRσ ) = τ (
∑p

i=1 Rσ i ) = ∑p
i=1 Rσ p−i = DσRσ . Let Q =

P − DσRσ . We have σ (DσRσ ) − DσRσ = σ (P) − P = pRσ , and hence σ (Q) = Q.
Since τ (DσRσ ) = DσRσ and τ (P) = P, we also have τ (Q) = Q. As σ and τ generate
G, we haveQ ∈ E(Q). But we have assumed that E(Q) is finite, soQ is a torsion point.
As E(L)[p] is trivial, the image of Q in E(L)/pE(L) is zero, and hence [P] = [DσRσ ],
as desired.

��
We now describe the p-diagram corresponding to cL and the action of the Galois group

on this diagram. For a point Q ∈ E(L), let ϕQ : E −→ E be the translation by Qmorphism.

Proposition 4.3 (i) Consider the degree p divisor D on E/L defined by D = ∑p
i=1 Rσ i .

Let l1, . . . , lp be a basis of the Riemann-Roch space L(D) and let E l−→ Pp−1 be
the embedding induced by this choice of basis. Then [E l−→ Pp−1] is the p-diagram
representing cL ∈ H1(L, E[p]).

(ii) The action of the Galois group G on the divisor D is given by

g

⎛

⎝
p−1∑

i=0
Rσ i

⎞

⎠ = ϕ∗
Rg

⎛

⎝
p−1∑

i=0
Rσ i

⎞

⎠ .
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(iii) For each g ∈ G, the translation map ϕRg induces an isomorphism of p-diagrams

g · [E l−→ Pp−1] and [E l−→ Pp−1], represented by the commutative diagram

E Pp−1

E Pp−1

g ·l

ϕRg Mg

l

(4)

where Mg ∈ PGLp(L). The map g 
→ Mg determines a cocycle class in
H1(G,PGLp(L)).

Proof By Lemma 4.2(iv), we have [sum(D)] = [DσRσ ] = [P] ∈ E(L)/pE(L), where sum :
Div(E) −→ E is the map adding up points on a divisor using the group law. Part (i) follows
from the description of the Kummer map given in Sect. 2.4. For part (ii), by Lemma 4.2(ii)
and (iii), we have σ (Ri

σ ) = Rσ i − Rσ and τ (Rσ i ) = Rσ p−i . From these identities we obtain

σ

⎛

⎝
p−1∑

i=0
Rσ i

⎞

⎠ = ϕ∗
Rσ

⎛

⎝
p−1∑

i=0
Rσ i

⎞

⎠ , τ

⎛

⎝
p−1∑

i=0
Rσ i

⎞

⎠ =
p−1∑

i=0
Rσ i .

The cocycle condition for g 
→ Rg implies the result for all g ∈ G.
To see the isomorphism of p-diagrams in (iii), note that by (ii) we have ϕ∗−Rg (D) = g(D),

and that g(l1), . . . , g(lp) and ϕ∗−Rg (l1), . . . ϕ
∗−Rg (lp) are two bases of L(g(D)). We can then

take Mg to be the matrix taking one basis to the other. Finally, to see that g 
→ Mg is a
cocycle, let CL be the image of E in Pp−1. CL is a genus one normal curve of degree p, so in
particular it spans Pp−1 (see [10, Def. 5.1.]). The restriction ofMg to CL is equal to ϕRg . As
g 
→ ϕRg is a cocycle, we deduce thatMgh = g(Mh)Mg holds on CL, and as CL spans Pp−1

andMg is an automorphism of Pp−1,Mgh = g(Mh)Mg must hold on the entire Pp−1. ��

The Galois group G acts in a natural way on the field L(E) of rational functions on E.
Explicitly, for g ∈ G and f = u/v ∈ L(E), with u, v ∈ L[x, y], we have g(f ) = g(u)/g(v),
where g acts on u and v by acting on their coefficients. Using this action, we define a
twisted action of G on L(E) by setting g � f = ϕ∗−Rg (g(f )). That this is a group action
follows immediately from the cocycle condition for g 
→ Rg . By Proposition 4.3(ii), the
action restricts to an action on the space L(D).
The action � is semilinear, meaning that we have g(v + w) = g(v) + g(w) and g(αv) =

g(α)g(v) for all v, w ∈ V , α ∈ L and g ∈ Gal(L/Q). We need the following standard result,
which is equivalent to (generalized) Hilbert’s theorem 90.

Lemma 4.4 Let V be an n-dimensional L-vector space with a semilinear action of
Gal(L/Q). The set of invariant elements V (D)G is an n-dimensional Q-vector subspace
of V . We have V ∼= VG ⊗Q L, i.e. V has a basis of G-invariant vectors.

Proof Follows immediately from Lemma 5.8.1 in Chapter II of [23]. ��

Remark 4.5 For V as in the above lemma, the trace map V −→ VG is surjective. In
other words, if α1,α2, . . . ,α2p is a basis of L over Q, then VG is spanned by the elements∑

g∈G g(αiv) for 1 ≤ i ≤ 2p, v ∈ V . This provides a simple method to compute a basis of
VG .
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Let l1, . . . , lp be a basis ofL(D), and for each g ∈ G, defineNg ∈ GLp(L) to be the matrix
representing the action of g on L(D) with respect to this basis. Then the matrix N−1

g
represents the automorphism Mg ∈ PGLp(L) defined in Proposition 4.3(iii), and slightly
abusing notation, we writeMg = N−1

g .

Remark 4.6 The semilinearity of the action � immediately implies that g 
→ Mg is a
cocycle taking values in GLp(L), i.e. we lifted the cocycle g 
→ Mg to an element of
Z1(G,GLp)(L). This can also be interpreted as showing that the obstruction [6,19] of the
class c ∈ H1(Q, E[p]) in the Brauer group vanishes.

Proposition 4.7 Let f1, f2, . . . , fp be a basis of L(D) invariant under the action �. Then the
image CQ of E under the embedding X −→ [f1(X) : f2(X) : . . . : fp(X)] can be defined over
Q, i.e. the ideal defining CQ as a projective curve has a basis consisting of polynomials with
rational coefficients. The p-diagram CQ −→ Pp−1 represents the Kolyvagin class c.

Proof Since the fi are invariant under the action �, for each g thematrixNg that represents
this action is the identity matrix. For each g ∈ G, let g(CQ) be the image of CQ under the
standard action of G on Pp−1, i.e. g · (u1 : . . . : up) = (g(u1) : . . . : g(up)). By Proposition
4.3(iii), we have g(CQ) = CQ for all g ∈ G.
Let I be the ideal defining CQ. It is generated by a set of p(p − 3)/2 quadratic forms if

p ≥ 5, and if p = 3, it is generated by a ternary cubic form. (See [10, Proposition 5.3]).
For p ≥ 5, the L-vector space of quadrics vanishing on CQ is stable under the natural
semilinear action of G, and hence, by Lemma 4.4, has a basis consisting of G-invariant
elements, i.e. quadrics with rational coefficients. Similarly, if p = 3, there exists a rational
ternary cubic defining CQ. In any case, [CQ ⊂ Pp−1] is a p-diagram defined over Q, which
represents a class in H1(Q, E[p]) that restricts to the class cL ∈ H1(L, E[p]), and hence is
a p-diagram that represents the Kolyvagin class. ��

The above proposition thus reduces our problem to computing a basis of L(D)G . Once
we compute the cocycle Mg representing the action � relative to a basis of L(D), this is
just linear algebra, see Remark 4.5.

4.2 Computing the matricesMg

We start by fixing a basis of L(D). We may assume that the points Rσ i are pairwise
distinct—if this assumption does not hold, then it follows easily from the relations estab-
lished in Lemma 4.2 that the class [P] ∈ E(L)/pE(L) is trivial. To make the formulas
simpler, we will assume E is in short Weierstrass form, defined by y2 = x3 + Ax + B. Put
Rg = (xg , yg ) for each non-trivial g ∈ G. Define lk = y+y

σk
x−x

σk
for 1 ≤ k ≤ p − 1, and set

lp = 1.
For k < p, it is clear that lk has a simple pole at 0E . We note that it has a simple pole at

Rσ , and no other poles. Indeed, x − xσ k is of degree two and vanishes at Rσ k and −Rσ k ,
and y + yRσ vanishes at −Rσ k . Now it follows easily that lk ∈ L(D), and furthermore that
l1, l2, . . . , lp−1, lp are linearly independent, and so they span the p-dimensional spaceL(D).
Note that it suffices to computeMσ andMτ , as σ and τ generate G.
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Proposition 4.8 The matrices Mσ and Mτ in GLp(L), relative to the basis l1, . . . , lp, are
given by

Mσ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 −1 0
1 0 . . . 0 −1 c2
0 1 . . . 0 −1 c3
...

...
. . .

...
...

...
0 0 . . . 1 −1 cp−1
0 0 . . . 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Mτ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0 1 0
0 0 0 . . . 1 0 0
...

...
...

. . .
...

...
...

0 1 0 . . . 0 0 0
1 0 0 . . . 0 0 0
0 0 0 . . . 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where ck = yσ +y
σk

xσ −x
σk

for 2 ≤ k ≤ p − 1.

We need the following lemma.

Lemma 4.9 Let E be an elliptic curve over a field k. For any P = (xP, yP) ∈ E(k) different
from 0E, let lP = y+yP

x−xP ∈ k(E). Let P1, P2 ∈ E(k) be points such that P1 �= −P2.

(i) Define fP1 ,P2 = ϕ∗
P2
(lP1+P2 )
lP1

∈ k(E). Then fP1 ,P2 is regular at P1 and we have fP1 ,P2 (P1) =
1.

(ii) For any R ∈ E(k), we have ϕ∗
R(lR)
l−R

= −1.
(iii) For distinct R1, R2 ∈ E(k), we have (lR1 − lR2 )(0E) = 0.

Proof (i) It is clear that fP1,P is regular at P1. We define a rational function g ∈ k(E) by
P 
→ fP1,P(P1). As

y+yP1+P2
x−xP1+P2

has a simple pole at P1 + P2, the function ϕ∗−P2 (
y+yP1+P2
x−xP1+P2

)
has a simple pole at P1, and therefore g is regular with no zeros on the open set
E \ {−P1}. But the only such rational functions are the constant ones, and since
g(0E) = 1, we deduce that g = 1, and hence fP1,P2 (P1) = 1.

(ii) Note that both ϕ∗
R(lR) and l−R have simple poles at −R and 0E . The Riemann-Roch

space L((0E) + (−R)) is 2-dimensional, and therefore there exists a cR ∈ k such that
ϕ∗
R(lR) + cR · l−R is a constant function, i.e. the function on E(k) × E(k)

(P, R) 
→ yP+R + yR
xP+R − xR

+ cR
yP − yR
xP − xR

,

depends only on R, and so can be viewed as a rational function on E. It is clearly
regular on E \ {0E}, and therefore it must be constant. Since it does not have a pole
at 0E , we have cR = 1.

(iii) We compute

lR1 − lR2 = y + yR1
x − xR1

− y + yR2
x − xR2

= (yR1 + yR2 )x − (xR1 + xR2 )y − (yR1xR2 + xR1yR2 )
(x − xR1 )(x − xR2 )

.

The numerator has a pole of order 3 at 0E , the denominator has pole of order 4, and
hence lR1 − lR2 vanishes at 0E ,

��
Proof of Proposition 4.8 ThematrixMσ is determined by the equation ϕ∗

Rσ
(l) = Mσ ·σ (l),

where l is the column vector (l1, . . . , lp)T . By Lemma 4.2, we have Rσ p−2 = ∑p−2
i=0 σ i(Rσ ) =

−σ p−1(Rσ ) and σ (Rσ k ) = Rσ k+1 − Rσ . As lp = 1, we have σ (lp) = ϕ∗−Rσ
(lp) = 1, giving

the last row ofMσ . The proposition amounts to proving that for 1 ≤ k ≤ p − 2 we have

ϕ∗
Rσ
(lk+1) = σ (lk ) − σ (lp−1) + ck lp,
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as well as

ϕ∗
Rσ
(l1) = σ (lp−1).

Suppose first that k < p − 1. Recall that we have assumed that the points Rg are distinct,
and note that ϕ∗

Rσ
(lk+1) has simple poles at Rσ k+1 − Rσ = σ (Rσ k ) and −Rσ , σ (lk ) has

simple poles at σ (Rσ k ) and 0E , and σ (lp−1) has simple poles at σ (Rσ p−1 ) = −Rσ and 0E .
Hence the function ϕ∗

Rσ
(lk+1)

σ (lk )
is regular at the point σ (Rσ k ). By Lemma 4.9, taking P1 =

σ (Rσ k ) = Rσ k+1 −Rσ and P2 = −Rσ , we see that
ϕ∗
Rσ

(lk+1)
σ (lk )

(σ (Rσ k )) = 1.. As a consequence
we see that the function ϕ∗

Rσ
(lk+1)− σ (lk ) is regular at σ (Rσ k ). By Lemma 4.9 (iii), σ (lk )−

σ (lp−1) is regular at 0E with σ (lk − lp−1)(0E) = 0. Hence the rational function ϕ∗
Rσ
(lk+1)−

σ (lk ) + σ (lp−1) has no poles except perhaps a simple one at −Rσ , and therefore must be
the constant −ck . By evaluating at 0E , we find that

ck = −(ϕ∗
Rσ
(lk+1) − σ (lk ) + σ (lp−1)) = −(ϕ∗

Rσ
(lk+1))(0E)

= −lk+1(Rσ ) = − yσ k+1 + yσ

xσ − xσ k+1
.

as desired. To prove that σ (lp−1) = −ϕ∗
Rσ
(l1), note that in the notation of Lemma 4.9,

σ (lp−1) = l−Rσ , and l1 = lRσ , and so we are done by the final assertion of Lemma 4.9.
The computation ofMτ is simpler. Note that Rτ = 0E , and so the last row ofMτ is the

assertion that τ (lp) = lp = 1. For the other rows, we need to show that τ (lk ) = lp−k . This
follows from the identity τ (Rσ k ) = Rσ p−k , which is the content of Lemma 4.2(iii). ��

The cocycle condition determines the other Mg as follows: Mσ k = Mσ σ (Mσ ) · · · σ k−1

(Mσ ), andMσ kτ = Mσ kMτ .

5 Minimization and reduction
Proposition 4.7 reduces the problemof computing ap-diagramrepresenting theKolyvagin
class to linear algebra over Q since we now only need to compute a basis for the p-
dimensional Q-vector spaceL(D)G . However, if we do not do this linear algebra carefully,
the resulting diagram C ⊂ Pp−1 will be defined by equations with enormous coefficients.
Moreover, even just doing this linear algebra can be computationally very expensive.
The reason for this is that theHeegner pointwe start with is typically of very large height.

From the theory of minimization and reduction of genus one models, as developed in
[7,12] and [20], we know that every element of the n-Selmer group of E can be represented
by a minimal model, i.e. can be defined by equations with small integral coefficients. To
make this more precise, Theorem 1.2 of [11] shows that the coefficients of these equations
are integers bounded by a power of the naive height of E, for 2 ≤ n ≤ 4. Another result
that is similar in spirit, that holds all odd n, is Theorem 1.0.1 of [20].
We are free tomodify a p-diagram [C −→ Pp−1] bymaking a linear change of coordinates

on Pp−1. In this section we explain how to choose such a coordinate change so that the
Kolyvagin class c is represented by a diagram defined by equations with small integer
coefficents. This breaks up into two steps known as minimization and reduction. The
minimization step finds a GLp(Q)-transformation so that the diagram [C −→ Pp−1] can be
represented by an integral model which has nice reduction propertiesmodulo each prime.
The approach we use differs from the algorithms developed in [7] and [12], which in any
casewould be difficult to extend to p-diagramswith p > 5.Wemake use of the fact that, by
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construction, p-diagram C ⊂ Pp−1 representing a Kolyvagin class comes with an explicit
isomorphism E −→ C defined over a number field L. This allows us to adapt the proof of
existence of minimal models ([20, Theorem 4.1.1], [7, Theorem 1.1.]) into an algorithm
for computing them. The main idea is to modify the isomorphism E −→ C ⊂ Pp−1 so
that the image is defined over Q while simultaneously making sure that the morphism
behaves nicely modulo any prime q. This amounts to doing the linear algebra of Sect.
4 over Z instead of over Q. From a computational point of view this computation is
somewhat delicate, again because of the heights of Heegner points. Tomake the algorithm
practical, we choose carefully the initial basis of the Riemann-Roch space L(D) giving rise
to E −→ C ⊂ Pp−1, so that we can remove the primes of bad reduction coming from the
denominators of Heegner points before minimizing the model.
The second step, reduction, finds a GLp(Z)-transformation to make the coefficients of

such a model as small as possible. This is simpler than minimization, and the algorithm
of [7] adapts straightforwardly to our situation.

5.1 Minimization

5.1.1 Toy example

We give first an informal overview of what goes wrong with the naive approach to com-
puting equations, and how this can be fixed. Consider the following simpler problem.
Let E/Q be an elliptic curve, let n ≥ 5 be an odd integer, let [P] ∈ E(Q)/nE(Q), and
suppose we want to compute an n-diagram representing the class δ([P]) ∈ H1(Q, E[n]).
Let y2 = x3 + ax + b be a Weierstrass equationW for E, with a, b ∈ Z.
As explained in Section 2.4, we need to choose a degreen divisorDwith sum(D) = P and

compute a basis for the Riemann-Roch spaceL(D). A natural choice would be to takeD =
(n− 1) · (0E)+ (P), and for the basis l1, . . . , ln−1 ofL(D) we can take 1, x, y, x2, xy, . . . , x

n−1
2

together with y+yP
x−xP , if P = (xP, yP) ∈ E(Q), and δ([P]) is represented by C ⊂ Pn−1, where

C is the image of E under the map Q 
→ (l1(Q) : . . . : ln(Q)). An integral model for C is
then determined by n(n− 3)/2 quadrics that form the basis for the Z-module of quadrics
in integral coefficients that vanish on C .
The problem that arises is that, if q is a prime of good reduction of E, for which the point

P maps to zero under the reduction map E −→ Ẽ, i.e. q divides the denominators of xP and
yP , then the above basis does not reduce to a basis of L(D̃), and it is not difficult to show
that this implies that the integral model for C reduces to a singular curve modulo q. If the
point P is of large height, then the primes q can be very large, and in practice this forces
the coefficients of C to be large, since the discriminant invariant of the integral model of
C , as defined in [7,12] when n ≤ 5, is a non-zero integer divisible by q, and so at least q.
In this case, the issue can be resolved as follows. We first replace (n − 1)0E + P by

the linearly equivalent divisor (n + 1) · (0E) − (−P). Then L(D) ⊂ L((n + 1) · 0E). It
follows from the Riemann-Roch theorem that 1, x, y, x2, xy, . . . , x

n−1
2 , x

n−3
2 y is a basis of

L((n + 1) · 0E). This is a nice basis, in the sense that if q is a prime that does not divide
the discriminant of W , then 1, x̃, ỹ, x̃2, x̃ỹ, x

n−1
2 , x̃

n−3
2 ỹ is a basis of L(n · 0Ẽ). For the basis

of L(D) we take l1, . . . , ln to be a Z-basis of the module of spanned by those Z-linear
combinations of 1, x, y, x2, xy, . . . , x

n−1
2 , x

n−3
2 y that vanish at−P. Then l1, . . . , ln reduces to

a basis ofL(D̃) on the reduction Ẽ. The curve C ⊂ Pn−1 defined by this embedding has an
integral model that reduces to a non-singular curve modulo any prime q with q � Disc(E),
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see [20, Lemma 7.4.5]. In fact, if the Weierstrass equation W is minimal, one can also
show that this model is a minimal genus one model, in the sense of Theorem 4.1.1 of [20].

5.1.2 Minimizing the Kolyvagin class

Let us recall the setup of Sect. 4.1.We assume thatwehave the data specified in Lemma4.2:
an elliptic curve E/Q, an odd prime p, an imaginary quadratic fieldK/Q, a cyclic extension
L/K ofdegreep, andapointP ∈ E(L) such that [P] ∈ (E(L)/pE(L))G ,whereG = Gal(L/Q).
We also assume, for simplicity, that L has class number one. This assumption holds in
most of the exampleswewere able to compute in practice. From this data one can compute
the points Rg ∈ E(L) giving rise to the cocycle g 
→ Rg defined in Lemma 4.2.
Fix a short Weierstrass equationW of E, and let Rg = (xg , yg ) for g ∈ G. Recall that we

have defined two divisors on E

D = 0E + (Rσ ) + . . . + (Rσ p−1 ),

D′ = (2p − 1) · 0E − (−Rσ ) − . . . − (−Rσ p−1 ).

As sum(D′) = sum(D) and both D′ and D have degree p, the divisors [D] and [D′]
are linearly equivalent, and the Kolyvagin class cL ∈ H1(L, E[p]) is represented by the
p-diagram [E −→ Pp−1] where the map is induced by the linear system |D′|. A choice
of a rational function f with div(f ) = D − D′ determines an isomorphism between the
vector spaces L(D) and L(D′), and we transport the action of G to OE(D′) via such an
isomorphism. The subset L(D′)G of G-invariant elements is a p-dimensional Q-vector
space. We can naturally view L(D′) as a subspace of L((2p − 1) · 0E) that consists of
functions that vanish at −Rσ ,−Rσ 2 , . . . ,−Rσ p−1 .
Note that 1, x, y, x2, xy, . . . , xp−1, xp−2y is a basis ofL((2p−1)·0E). Let S ⊂ L((2p−1)·0E)

be the free OL-module spanned by 1, x, y, x2, xy, . . . , xp−1, xp−2y and let T = S ∩ L(D′).
Then the subsetTG of invariant elements ofT is aZ-module, and sincewe haveTG⊗Q =
L(D′)G , it is a free Z-module of rank p.
Finally, let l1, . . . , lp be a basis of TG as a Z-module. Then l1, . . . , lp is also a basis of

L(D′)G as a Q-vector space, and hence, by Proposition 4.7, determines an embedding
C −→ Pp−1 that represents the Kolyvagin class c. This representation of c is sufficiently
nice for our purposes. In fact, in [20, Section 7.4], we show that the reduction of this curve
mod q is non-singular for any prime q that does not divide the discriminant of E or the
discriminant of L, and we conjecture that the resulting genus one model is minimal.

5.1.3 Practical computation of aminimalmodel

Wenowexplainhow to compute equations for thep-diagramdefined above.This amounts
to doing the linear algebra of Proposition 4.7 over Z, in a suitable sense. We need to
take some care with solving the resulting linear equations, since they have very large
coefficients.
Matrix representation of a basis of L(D′).We have an inclusion L(D′) ⊂ L((2p − 1) ·

0E). Let e1 = 1, e2 = x, e3 = y, . . . , e2p−2 = xp−1, e2p−1 = xp−3y be the standard basis of
L((2p−1) ·0E). For a basis f1, . . . , fp ofL(D′), we can then write fi = ∑2p−1

j=1 Aijej for some
Aij ∈ L, and from now on we identify the vector space L(D′) with the span of the rows of
the matrix A with entries (Aij).
Recall that we have defined a freeOL-module T as the subset of elements of L(D′) that

can be expressed as OL-integral linear combinations of e1, . . . , e2p−1. Under the above
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identification, elements of T correspond to linear combination of rows with integral
entries.
Making the action of Gal(L/Q) explicit. In Section 2 we have defined a basis of L(D)

by setting l1 = y+yσ
x−xσ

, . . . , lp−1 = y+y
σp−1

x−x
σp−1

, lp = 1. For the function f with div(f ) = D −D′,

we take f = ∏p−1
k=1(x − xσ k ). Then l′i = f · li, 1 ≤ i ≤ p, is a basis of L(D′). Let α1, . . . ,α2p

be a Z-basis ofOL, and consider L(D′) as a Q-vector space with the basis αifj , 1 ≤ i ≤ 2p,
1 ≤ j ≤ p. Recall the matricesMg ∈ GLp(L) computed in Proposition 4.8. LetNg = M−1

g .
By Proposition 4.3, we have

⎛

⎜⎜⎜⎜⎝

g(l′1)
g(l′2)
...

g(l′p)

⎞

⎟⎟⎟⎟⎠
= Ng ·

⎛

⎜⎜⎜⎜⎝

l′1
l′2
...
l′p

⎞

⎟⎟⎟⎟⎠
.

As the action of G is semilinear, by multiplying the left and right sides by g(αj) we obtain
⎛

⎜⎜⎜⎜⎝

g(αj l′1)
g(αj l′2)

...
g(αj l′p)

⎞

⎟⎟⎟⎟⎠
= g(αj)

αj
Ng ·

⎛

⎜⎜⎜⎜⎝

αj l′1
αj l′2
...

αj l′p

⎞

⎟⎟⎟⎟⎠
.

For a general basis f1, . . . , fp of L(D) we have a similar formula, with Ng represented by
g(T )NgT−1, where T ∈ GLp(L) is the matrix relating the bases l′i and fi.
Computing an integral basis of TG . Using the above formulas we can compute the

row vector representation of g(αifj) for each i and j. Let A1 ∈ Mat2p2 ,2p−1(L) be the
matrix formed by the rows corresponding to the elements

∑
g∈G g(αifj) for 1 ≤ i ≤ 2p,

1 ≤ j ≤ p. By Proposition 4.3, the space L(D′)G is spanned by the rows of A1. Note that
TG = L(D′)G ∩ T .
Next, the choice of basis α1, . . . α2p determines an isomorphism L ∼= Q2p, and hence an

isomorphism Matk,l(L) ∼= Matk,2pl(Q) for any pair k, l. To be explicit, for each entry z of
A1, write z = c1α1 + . . .+ c2pα2p for ci ∈ Q, and letA2 ∈ Mat2p2 ,2p(2p−1)(Q) be the matrix
obtained from A1 by replacing each entry of A by the associated 2p-tuple c1, . . . , c2p. We
say A2 is obtained from A1 by the restriction of scalars from L to Q.
The space TG then corresponds to the Z-sublatice of row vectors with integral entries

in the Q-span of rows of A2, and finding a basis for such a lattice is a standard problem,
which can be solved efficiently using Hermite normal form.
We summarise the above discussion in the following algorithm:

Algorithm 5.1 • INPUT: E,D, p ≥ 5 and a point P ∈ E(L) that satisfies the conditions
of Lemma 4.2.

• OUTPUT: An integral model C of the class cQ.

(i) Compute the points Rg , and then the matricesMg ∈ GLp(L) using Proposition 4.8.
(ii) Choose a basis f1, . . . , fp of L(D′), and represent it by a matrix A ∈ Matp,2p−1(L). Use

the formulas defining the Galois action to compute the matrix A1 ∈ Mat2p2 ,2p−1(L)
representing a set of generators of L(D′)G , and its restriction-of-scalars representa-
tion A2 ∈ Mat2p2 ,2p(2p−1)(Q), as described above. Let V be the Q-span of rows of A2,
and set T ′ = Z2p(2p−1) ∩ V .
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(iii) Compute a basis of T ′ as a matrix B′ ∈ Matp,2p(2p−1)(Z), and then compute the
matrix B ∈ Matp,2p−1(OL) such that B′ is the restriction of scalars of B. We recover
a basis of T by setting f Gi = ∑2p−1

j=1 Bijej for 1 ≤ i ≤ p.
(iv) Compute a basis q1, . . . , qp(p−3)/2 for the Z-module of quadrics with Z-coefficients

vanishing on the image of E in Pp−1 under the map e induced by f G1 , . . . , f Gp , and
return as the model C the subscheme of Pn−1

Z
defined by the qi.

Two steps of the algorithm need further explanation. We need to explain how to com-
pute the quadrics in Step (iv), which is straightforward andwe do first, andwe need explain
how to choose the basis in Step (ii), which is a subtler problem.
Step 4 of the algorithm. Let CQ be the image of E in Pp−1 under the embedding e and

let CL be the base change of CQ to L. As CL is a genus one normal curve, so in particular
projectively normal, the monomials f Gi f Gj , 1 ≤ i, j ≤ p, span the 2p-dimensional L-vector
space L(2D′).
Let x1, . . . , xp be the coordinates on Pp−1, and let VQ be the Q-space of all rational

quadratic forms, spanned by the monomials xixj , 1 ≤ i, j ≤ p. We then define a Q-linear
map j : V −→ L(2D′) by the rule xixj 
→ f Gi f Gj .
The kernel of this map consists of all of the quadrics that vanish on CQ. We compute

a matrix representing the map j, and then use linear algebra over Z to compute a set of
generating quadrics q1, . . . , qp(p−3)/2 of I(CQ), with the property that they generate the
Z-submodule of integral quadrics that vanish at CQ.
When p = 3, CQ is defined by a single ternary cubic, and it is simple to adapt the above

method to work in this case as well.
Picking a basis in Step 2. A natural choice of basis of L(D′), given the computation of

Proposition 4.8, would be l′1, . . . , l′p. This, however, does not lead to a practical algorithm.
With this choice, computing the basis of T ′ in Step 3 can be very time consuming, as the
dimension of matrix A2 grows quickly with p and the entries of A2 tend to be rational
numbers of large height, as they were obtained from the coordinates of the Heegner point.
We now describe a more careful way to choose a basis.
We start by rescaling the basis l′i . For legibility write xi = xσ i and yσ i = yi. As OL is a

PID, it is a standard fact that we can write xi = ri
t2i

and yi = si
t3i

for some ri, si, ti, with ri, ti
and si, ti being pairs of coprime algebraic integers. For 1 ≤ i ≤ p − 1, we put

f ′
i = ti · t21 · · · t2p−1 · l′i = (t21x − r1) · · · (t2i−1 + ri−1)(t3i y + si)

×(t2i+1x + ri+1) · · · (t2p−1x − rp−1).

Having chosen this scaling, we see that f ′
i ∈ T , i.e. the matrix A′ whose rows represent f ′

i
have integral entries, and so do the corresponding matrices A′

1 and A′
2.

Our next step ismotivated by the following heuristic. For l < k < p, we haveRσ k −Rσ l =∑k
i=1 σ i−1(Rσ ) − ∑l

i=1 σ i−1(Rσ ) = σ l(Rσ k−l ). If, for a prime p of OL, the point σ l(Rσ k−l )
reduces to 0Ẽ , then R̃σ k = R̃σ l , and hence f̃k = f̃l . Hence p will divide all entries of the
difference rk,l of rows of A′ corresponding to fk and fl . As the primes for which σ l(Rσ k−l )
reduces to zero are exactly those that divide σ l(tk−l), we expect that the entries of rk,l and
σ k−l(tl) will have a large common divisor.
To cancel out these divisors for all pairs of rowswe use the following procedure, reminis-

cent of Gaussian elimination. Let r1, . . . , rp be the rows of A′. For 1 ≤ k ≤ p− 1, consider
the 2 × (2p − 1) submatrix Ak of A′ formed by rk and rp−1, and let dk be the generator
of the ideal of OL generated by the 2 × 2 minors of Ak . We then compute ck ∈ OL such
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that the entries of rp−1 − ckrk are divisible by dk : this amounts to putting Ak in Hermite
normal form (overOL), which is possible since we assumedOL is a PID, and can be done
efficiently.
Next, compute a generator Dk of the ideal (dk , d1 · · · dk−1dk+1 · · · dp−2), and find ik ∈

OL
dk
Dk

and jk ∈ OL · dk ,d1···dk−1dk+1···dp−2
Dk

, with ik + jk = 1: this is also a standard problem,
see [8]. We then replace rp−1 with r′

p−1 = rp−1 − j1c1 · r1 − . . . − jp−2cp−2 · rp−2, and
then divide r′

p−1 by the GCD of its entries. In practice, Dk will often be a unit or at worst
divisible by a few small primes, and so this GCD will be the product d1,p−1 · · · dp−2,p−1,
up to a small factor. We then repeat this process for rows r1, . . . , rp−2, with rp−2 taking
the role of rp−1, and so on.
At the end of this process we obtain a new matrix A′′ ∈ Matp,2p−1(OL) andU ∈ GLp(L)

with A′′ = UA′. We then take f1, . . . , fp to be the basis of L(D′) that corresponds to the
rows of A′′. To account for the change of basis, we replace Mg by UMgg(U−1) for each
g ∈ G, and then compute a basis f G1 , . . . , f Gp of TG using the approach described for A.

5.2 Reduction

The final step is to find a GLp(Z)-change of coordinates making the coefficients of the
equations definingC ⊂ Pp−1 as small as possible. For this, we use themethod of reduction,
developed in Section 6 of [7]. This method extends with minimal changes to our setting,
so we give a very brief summary.
To compute a reduced p-diagram equivalent to the diagram [C ⊂ Pp−1] representing

theKolyvagin class, we first compute the reduction covariantϕ(C), according to the recipe
given in Section 6 of [7]. The reduction covariant is a certain symmetric positive definite
matrix, well-defined up to a scalar inR×, one associates to a p-diagram [C ⊂ Pp−1] defined
over R, which transforms in a natural way under linear changes of coordinates on Pp−1.
Computing it amounts to computing the set of flex points of C , i.e. points P ∈ C(C) with
the property that the tangent hyperplane at P meets C only at P. In our case this is is easy,
since we have a description of C as an embedding of E via the complete linear system
|D′|. We then use the LLL algorithm to compute a g ∈ SLp(Z) such that g−tϕ(C)g−1 is
LLL-reduced, and replace C with g(C). For more details on our implementation, see Sect.
7.4.3 of [20].

6 Examples
In this section we apply the theory we developed to concrete examples, and construct
elements of p-torsion subgroups of Tate–Shafarevich groups, for p ≤ 11 an odd prime.
As mentioned in the introduction, these computations are of the most interest when

the prime p is at least 7, since for p ≤ 5 the usual method of p-descent works quite well for
computing these examples. As a warmup, we compute an element ofX(E/Q)[3] for the
curve E labelled 681b3 in Cremona’s tables. We then follow with our main result, explicit
equations representing an element ofX(E/Q)[p] for p = 7, where E is the curve 3364c1.
Note that we can’t apply the theory we developed in Section 2 to the Kolyvagin class

cQ directly. We defined this class as the image of the class [Dσ zK ] ∈ E(L)/pE(L), and the
point Dσ zK need not satisfy the conditions of Lemma 4.2, since it is not necessarily fixed
by complex conjugation τ . However, since cQ is in the±-eigenspace ofH1(Q, E[p]), where
± is the sign of the functional equation of E, we have 2 · [Dσ zK ] = [Dσ zK ± τDσ zK ] ∈
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(E(L)/pE(L))G , and so the point P = Dσ zK ± τDσ zK satisfies the conditions of Lemma
4.2, and we compute the Kolyvagin class associated to this point. We can then recover
the Fp-line spanned by c in H1(Q, E[p]), since we can use Algorithm 5.1 to compute a
p-diagram representing the class [mP] for anym ∈ Z.
Recall that by Proposition 4.2(ii), we have [P] = [DσRσ ], with Rσ = σ (P)−P

p . In practice,
the point Rσ is of much smaller height than zK , and it is simple to adapt Algorithm 3.2 to
compute this point directly. However, a drawback is that there are p2 possible p-division
points of the point σ (P) − P in E(C), and only one of them is the point Rσ . Thus we use
Algorithm 3.2 on each division point successively, until the algorithm returns a point. If
the height of the Heegner point is very large, like in our p = 7 example, then this is worth
doing, however if p is large and the height of the point is small, like in our p = 11 example,
then we compute P first to avoid slowing down the code.

Example 6.1 Consider the elliptic curve E labelled 681b3 in Cremona’s tables. E has
no rational 3-isogeny and X(E)[3] = (Z/3Z)2. There are no elliptic curves of smaller
conductor with this property, so E is a natural first candidate for us. E is defined by the
minimal Weierstrass equation

y2 + xy = x3 + x2 − 1154x − 15345.

For our Heegner discriminant, we chooseD = −107. The conductor of E isN = 3 ·227,
and one verifies that 3 and 227 split completely in K = Q(

√−107), so D satisfies the
Heegner hypothesis.
For our field L, we take the Hilbert class field of K . As K has class number 3, by class

field theory L/Q is a dihedral extension of degree 6. We use the machinery implemented
inMAGMA to find that L = Q[α], where the minimal polynomial of α is x6 −2x5 −2x3 +
30x2 − 52x + 29, and that L has class number 1. We fix an idealN withNN̄ = NOK =
681OK . Let zK ∈ E(H ) be the Heegner point that is the image of the point (OK , [OK ],N ).
There are 4 possible choices forN , corresponding to the factorizationN = 3 ·227.Which
one we choose is not important for the purpose of constructing non-trivial Kolyvagin
classes, since changing the choice ofN replaces zK by ±zK + T , where T ∈ E(Q)tors. See
Proposition 5.3 of [15].
Using Algorithm 3.2, slightly modifed as explained above, we compute the point Rσ ∈

E(L). Its x-coordinate is

1/1741682413263770958143450(483403026915311979182787081α5+
35453825605498566073743810α4 − 137498458568104949011766487α3−
2452468960182058461987679215α2 + 9038525365115044024894770546α−
3473956084362757366189406163).

Next, we run the Algorithm 5.1 up to Step 3, computing rational functions l1, l2 and l3
that form an invariant basis of L(5 · 0E − Rσ − Rσ 2 ). Let C be the image of E in P2 under
the map (x, y) 
→ (l1(x, y) : l2(x, y) : l3(x, y)). Step 4 of Algorithm 5.1 does not apply in this
case, since C is defined by a ternary cubic rather than by quadrics. However it is easy to
compute a cubic G defining C , using the standard algorithms implemented in MAGMA:
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G = 2372x3 + 4174x2y − 3043x2z + 2340xy2 − 3457xyz + 1271xz2

+ 419y3 − 940y2z + 700yz2 − 173z3

The next step is to reduce G. Making the change of coordinates corresponding to the
matrix

⎛

⎜⎝
−1 −5 −9
0 3 4
0 1 1

⎞

⎟⎠

replaces the cubic G by

F = x3 + 2x2y − 3x2z − xy2 + 9xyz − 8xz2 + y3 − 11y2z − 5yz2 + 6z3.

The cubic F is minimal, in the sense of Definition 3.1 of [7], and is essentially as nice as of
an equation as we can hope. LetC ⊂ P2 be the curve defined by F . The diagram [C −→ P2]
is the representation of the class cQ ∈ H1(Q, E[3]) that we set out to obtain.
Note that as Algorithm 3.2 does not prove that the point we computed is the Heeg-

ner point, see Remark 3.3, we still need to prove that this class is in the 3-Selmer group
Sel(3)(E/Q), i.e. that the curve C is everywhere locally soluble. Since we have represented
c by the ternary cubic F , we can use the standard algorithms for genus one models imple-
mented in MAGMA to do so.
Finally, to check that the image of cQ is a non-trivial element ofX(E/Q), note that E has

rank 0 and E(Q)[3] is trivial. Hence E(Q)/3E(Q) is trivial, and we only need to show that
cQ is non-zero. Thus it suffices to check that the class [DσR] is non-zero in E(L)/3E(L),
i.e. that Dσ · Rσ is not divisible by 3, and it is easy to check that this is indeed the case.
Hence C(Q) is empty, and C is a counterexample to the Hasse principle.

Remark 6.2 One can easily find an equation for cQ using the method of 3-descent. How-
ever, our method gives us an additional piece of information—we know that the class cQ
capitulates over the field L, i.e. the curve C admits an L-rational point. By construction of
ourmodel for [C −→ Pn−1], we know that the images of the pointsRσ i , where 0 ≤ i ≤ p−1,
under the embedding E l−→ Pp−1, lie on the intersection of the curve C and a hyperplane
H defined over Q. We can compute an equation forH using linear algebra, since p points
uniquely determine a hyperplane in Pp−1. In our case, we find

H = 771x − 2818y + 4751z.

Hence, the binary cubic obtained by substituting z = −771/4751x + 2818/4751y in F
splits as a product of three distinct linear forms over L.

Example 6.3 Let E be the curve labeled 3364c1 in Cremona’s tables, defined by a mini-
mal Weierstrass equation y2 = x3 − 4062871x − 3152083138. Similarly to the previous
examples, we chose E because it is the smallest rank 0 curve with no rational 7-isogeny
andX(E/Q)[7] ∼= (Z/7Z)2.
For the Heegner discriminant, we takeD = −71, which has class number 7. The Hilbert

class field L of K = Q(
√−71) is a degree 14 dihedral extension of Q, defined by

f = x14 + 7x13 + 25x12 + 59x11 + 103x10 + 141x9 + 159x8 + 153x7+
129x6 + 95x5 + 58x4 + 27x3 + 10x2 + 3x + 1;
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The class group of the Hilbert class field L of K is trivial, soOL is a PID. We compute the
pointRσ directly, using 250 digits of precision in the computation ofmodular parametriza-
tion, and finding a point of height approximately 194.99. This calculation took less than a
minute with ourMAGMA implementation. Unfortunately the results of the computation
are too large to give here, as the x-coordinate of Rσ would take several pages to print, so
we refer the reader to our GitHub repository.
As before, we use the algorithm of Sect. 5.1.3 to compute the rational functions

l1, l2, . . . , l7 that define an embedding E −→ P6 over L. The image of the embedding is
a curve C , that admits over Q. We compute a basis for the 14-dimensional space of
quadrics that cut outC in P6. The coefficients of all of the equations are remarkably small.
We give the equations below:

f1 =2x1x2 − 2x1x3 + 2x1x5 − x1x6 + x22 − x2x3 − x2x4 + 2x2x5 − 4x2x6 + 2x2x7
− 3x23 − 3x3x5 − x3x6 + 4x24 − 2x4x5 + 3x4x6 − x4x7 − 3x25 − 4x5x6
− x5x7 + 2x26 − x6x7 − 2x27 ,

f2 =x1x3 + x1x4 + x1x5 + 2x1x6 − x1x7 + 4x2x4 − x2x5 + 2x2x6 − 2x2x7 − x23
+ 4x3x4 − 2x3x5 + 5x3x6 − 3x3x7 + x24 + 2x4x5 − x4x6 − 4x4x7
+ 3x5x6 − 2x5x7 + 2x26 ,

f3 =x21 + 4x1x3 + x1x5 + x1x6 − 4x1x7 − x2x3 + 3x2x4 − 2x2x5 + x2x6 − x2x7
+ x23 − 2x3x4 + x3x5 + x3x6 − x3x7 − x24 + x4x5 + x4x6 + 3x4x7 + x25
+ 2x5x6 − 2x5x7 + 5x26 − 5x27 ,

f4 =x21 + 4x1x3 + 2x1x4 + x1x5 + x1x6 − 6x1x7 + x22 + x2x3 + 2x2x4 + x2x5
+ x2x6 + 2x23 + x3x4 + x3x5 + 2x3x6 − 3x3x7 + x24 − 2x4x5 + 2x4x6 − 3x4x7
+ 2x25 + 2x5x6 + x5x7 + x26 − 4x6x7 − x27 ,

f5 =x1x2 − 3x1x3 − x1x4 − x1x5 − 2x1x6 + 5x1x7 − x22 − x2x3 − 3x2x4 − x2x5
− 2x2x6 + 3x2x7 + x3x5 − 3x3x7 + 3x24 − 3x4x6 − 2x4x7 − 2x25 − x5x6 − 5x26
− 2x6x7 − 3x27 ,

f6 =2x21 + x1x2 + x1x3 + 2x1x4 − x1x6 − 5x1x7 + 2x2x4 + x2x5 + 4x2x6 − x2x7
− x23 + 4x3x5 + 2x3x6 + 2x3x7 + 2x24 − x4x5 + 2x4x6 + 3x25 + x5x6 − 4x5x7
− 3x26 − x6x7 − 4x27 ,

f7 =x21 + x1x2 + x1x3 + 2x1x4 − 3x1x5 + x1x6 − 3x1x7 − x22 − 2x2x3 − 4x2x5
+ x2x6 − 2x2x7 + 2x23 − x3x4 − 3x3x6 − x3x7 − x24 − x4x5 − x4x6 − x4x7 − x25
− 3x5x6 + 5x5x7 − 2x26 − 3x6x7 + 5x27 ,

f8 =x21 + 3x1x2 + x1x3 + 4x1x5 + x1x7 − 2x22 + 2x2x3 + x2x4 − x2x5 + 3x2x6
+ 4x2x7 + x23 + 2x3x4 + 4x3x5 + x3x6 − x3x7 + 3x24 + 3x4x5 − x4x7 − 3x25
+ 2x5x6 − 4x5x7 + x26 − x6x7 − 4x27 ,

f9 =x21 + x1x2 + x1x3 − 2x1x4 + 3x1x5 − 2x1x6 + x1x7 − x2x4 + x2x5 − x2x6
+ 4x2x7 − x23 − 2x3x4 + 3x3x5 + 2x3x6 + 4x3x7 + x24 − 5x4x6 − x25 + 5x5x6
+ 2x5x7 − 3x26 + 3x6x7 − 2x27 ,
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f10 =2x1x2 − 3x1x3 − 2x1x5 − x1x6 + 2x1x7 − 3x22 + x2x3 − 4x2x5 + 4x2x6 + 2x2x7
+ x23 + 2x3x4 − x3x6 − 7x3x7 + 4x24 + x4x5 + x4x6 − 2x4x7 − x25 + 2x5x6
+ 2x5x7 − x26 + x6x7,

f11 =x21 + x1x2 + 3x1x3 + x1x4 + 2x1x5 − 2x1x6 − 5x1x7 + 3x22 − x2x3 + x2x4
+ x2x5 − 6x2x6 − 4x2x7 + x23 − 3x3x4 + 3x3x5 − 3x3x6 − x3x7 − 2x4x5
− 2x4x6 − x4x7 − 2x5x6 − 2x5x7 − x6x7 − 2x27 ,

f12 =x21 − 2x1x2 + 4x1x3 − x1x4 − 2x1x5 + x1x6 + x1x7 − x22 + x2x3 − 4x2x4
+ 2x2x5 − x2x6 + 4x2x7 + x23 + 5x3x6 − 2x24 − 2x4x5 − 4x4x6 − 2x4x7 + 2x25
+ x5x6 + 4x5x7 − x26 + 3x6x7 + 4x27 ,

f13 =3x1x2 − x1x3 + 2x1x4 + 3x1x5 + x1x6 + x22 + 2x2x4 + x2x5 − 2x2x7 + x23
− x3x4 + 4x3x5 − 5x3x6 + 3x3x7 + 4x24 − 5x4x5 + 2x4x6 − x4x7 − x25 − 6x5x6
− x5x7 − 2x26 − x27 ,

f14 =2x21 + 3x1x2 − x1x3 + 3x1x7 − 2x22 − 2x2x3 − x2x4 + x2x5 + 4x2x6 + 3x2x7
− 2x23 + 4x3x4 − 4x3x5 + 2x3x6 + 4x24 + x4x5 + 2x4x7 − 4x25 − 5x5x6
− 4x5x7 − 7x26 + x6x7.

We need to check that the curve C is everywhere locally soluble, and so represents an
element of the 7-Selmer group. Testing a genus one curve for local solubility is a well-
studied problem, and we use the standard method do this. For any prime q let C̃ be
the curve over Fq defined by the reduction of the above quadrics modulo q. By Hensel’s
lemma (as stated in Proposition 5, Sect. 2.3 of [3]), a smooth point in C̃(Fq) lifts to a
point Q ∈ C(Qq), and so we only need to show that C̃ has a smooth Fq-point for all q. By
Proposition 7.4.5 of [20], C̃ is non-singular if q does not divide the discriminant of E or the
discriminant of the field L. Informally, it follows from the proof of 4.4 that for such primes
the basis l1, . . . , lp of L(D′) reduces to a basis of L(D̃′) and so defines an isomorphism
Ẽ ∼= C̃ , and hence C̃ is smooth. A standard result (Lang’s theorem) then implies that
C̃(Fq) is non-empty. For the remaining primes 2, 29 and 71, we find a smooth point in
C(Fq) by a naive search.
Finally, to show that C(Q) is empty, we only need to check that cQ is non-trivial, since E

is of rank zero and E[7](Q) is trivial. It suffices to show that cL = [DσRσ ] ∈ E(L)/7E(L) is
non-trivial, i.e. that DσRσ is not divisible by 7, and to show this, it suffices to find a prime
p of L such that the reduction D̃σRσ is not divisible by 7 in Ẽ(Fp). A naive search quickly
shows that this is true if p is a prime lying above 47.
We have also computed the equation of the hyperplane H passing through the (images

of) points Rσ i on C . The largest coefficient of the equation has 213 digits.

Remark 6.4 In our previous examples, one could verify that the Jacobian of the curve C is
E by computing the invariants c4 and c6 of the associated genus onemodel. In this example
the theory of genus one models [10] does not apply, as the curve C represents a 7-torsion
element of the Tate–Shafarevich group. In its place one can compute the invariants from
a certain n×n alternatingmatrix� associated to the curve. The entries of� are quadratic
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forms in x1, . . . , xn, and it is determined uniquely, up to a scalar, by the equations of the
curve. There are explicit polynomials c4(�) and c6(�) in the coefficients of �, with the
property that

y2 = x3 − 27c4(�) − 54c6(�)

is a Weierstrass equation for the Jacobian of C . See [13] for the definition of � and a
discussion on how to compute it. An alternative, conjecturally equivalent definition of �
is given in [20, Chapter 3].

Example 6.5 Finally, another interesting example we have computed is a non-trivial ele-
ment ofX(ED/Q)[11], where ED is the quadratic twist of the curve 37a1 by D = −2731.
The curve E has rank 1, and this is the smallest value of D for which the BSD conjecture
predicts thatX(ED/Q)[11] ∼= (Z/11Z)2, the Heegner condition is satisfied, the curve ED
is of rank 0, and the class number ofQ(

√
D) is equal to 11. The 11-diagram that represents

this class is a curve in P10 defined by 44 quadrics, and so is impractical to print here, even
though the coefficients are small integers—at most 10 in absolute value. In this rank one
case, theHeegner point hasmuch smaller height, and so the precision to which we need to
compute the modular parametrization of the curve is much smaller. The class cL is given
as [DσR] ∈ E(L)/11E(L), where R is a point of height approximately 3.812. In contrast,
for the curve 8350c1, which is the smallest curve in Cremona’s tables with X(E/Q)[11]
non-trivial, no 11-isogeny and rank zero, we have not succeeded in computing a Heegner
point for any of the first few Heegner discriminants D for which p|Cl(D).
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