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Abstract

Let K be a cyclic number field of odd degree over Q with odd narrow class number,
such that 2 is inert in K/Q. We define a family of number fields {K (p)}p, depending on K
and indexed by the rational primes p that split completely in K/Q, in which p is always
ramified of degree 2. Conditional on a standard conjecture on short character sums, the
density of such rational primes p that exhibit one of two possible ramified factorizations
in K (p)/Q is strictly between 0 and 1 and is given explicitly as a formula in terms of the
degree of the extension K/Q. Our results are unconditional in the cubic case. Our proof
relies on a detailed study of the joint distribution of spins of prime ideals.
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1 Introduction
Given a number field K , letO, Cl, and Cl+ denote its ring of integers, its class group, and
its narrow class group, respectively. We will prove certain density theorems for number
fields K satisfying the following conditions:

(C1) K/Q is Galois with cyclic Galois group;
(C2) [K : Q] > 1 is odd;
(C3) h+ = |Cl+| is odd;
(C4) the prime 2 is inert in K/Q.

Recall that Cl+ is the quotient of the group of invertible fractional ideals of K by the
subgroup of principal fractional ideals that can be generated by a totally positive element;
in other words, Cl+ is the ray class group of conductor equal to the product of all real
places. If α ∈ K is totally positive, i.e., if σ (α) > 0 for all real embeddings σ : K ↪→ R, we
will sometimes write α � 0. If h+ is odd for a totally real field, then

O×+ := {u ∈ O× : u � 0} = (O×)2 . (1)

Notice that if K/Q is an odd degree Galois extension, then K/Q is totally real. Since
[Cl+ : Cl] is always a power of 2, the condition (C3) implies that Cl+ = Cl. Therefore the
conditions that K/Q is Galois, satisfying (C2) and (C3) together imply the following:

(P1) K/Q is Galois, K is totally real, and Cl+ = Cl.

123 © The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

0123456789().,–: volV

http://crossmark.crossref.org/dialog/?doi=10.1007/s40993-021-00295-5&domain=pdf
http://orcid.org/0000-0001-8710-1725
http://creativecommons.org/licenses/by/4.0/


1 Page 2 of 29 Chan et al. Res. Number Theory (2022) 8:1

If K is totally real, then Cl+ = Cl if and only if every totally positive unit inO is a square;
see Lemma 1. Hence, property (P1) can be restated as

(P1) K/Q is Galois, K is totally real, andO×+ := {u ∈ O× : u � 0} = (O×)2.

Number fields satisfying property (C1) and (P1) were studied by Friedlander, Iwaniec,
Mazur, and Rubin [5]. More precisely, Friedlander et al. proved that if σ is a (fixed)
generator of Gal(K/Q), then the density of principal prime ideals πO that split in the
quadratic extension K (

√
σ (π ))/K is equal to 1/2. Koymans and Milovic [6] extended the

results of Friedlander et al. in two different aspects. First, the number field K now needs
to satisfy only property (P1), i.e., K/Q need not be cyclic; second, density theorems about
the splitting behavior of principal prime ideals are proved for multi-quadratic extensions
of the form K ({√σ (π ) : σ ∈ �})/K , where � is a fixed subset of Gal(K/Q) with the
property that σ /∈ � whenever σ−1 ∈ �.
Our main goal is to further extend these results to a certain setting where � =

Gal(K/Q) \ {1}; in this setting, we in fact have σ ∈ � whenever σ−1 ∈ �, and so our work
features a new interplay of the Chebotarev Density Theorem and the method of sums
of type I and type II. In particular, the densities appearing in our main theorems are of
greater complexity than those appearing in [5] or [6].
Another innovation in our work is that by assuming property (C3), we are now also able

to study the splitting behavior of all prime ideals, and not only those that are principal.
While our generalization of “spin” to non-principal ideals may appear innocuous (see
Definition 3), it is of note that it still encodes the relevant splitting information as well as
that the study of its oscillations requires new ideas, carried out in Sect. 6.
Let K be a number field satisfying properties (P1) and (C3), and let p be a rational prime

that splits completely in K/Q. We will now define an extension K (p)/Q where p ramifies;
this extension was first studied by McMeekin [8]. Let p be an unramified prime ideal of
degree one inO. Let R+

p denote themaximal abelian extension ofK unramified at all finite
primes other than p; in other words, R+

p is the ray class field of K of conductor p∞, where
∞ denotes the product of all real places of K . There is a unique subfield K (p) ⊂ R+

p of
degree 2 over K when p is prime to 2 (see Lemma 2). Finally, we define K (p) to be the
compositum of K (p) over all primes p lying above p, i.e.,

K (p) =
∏

p|p
K (p).

As K (p)/Q is Galois, the residue field degree fK (p)/Q(p) of p in K (p)/Q is well-defined.
Our goal is to study the distribution of fK (p)/Q(p) as p varies. Note that because p splits
completely in K/Q, fK (p)/Q(p) is equal to the residue field degree fK (p)/K (p) of p in K (p)/Q

for any prime p of K lying above p. Furthermore, fK (p)/Q(p) = fK (p)/K (p) must divide 2
since [K (p) : K ] is a power of 2 and there are no cyclic subgroups of Gal(K (p)/K ) of order
greater than 2.
To state our main results, we now introduce the relevant notions of density. For sets of

primes A ⊆ B, we define the density of A restricted to B to be

d(A|B) := lim
N→∞

#A|N
#B|N .

whereA|N := {p ∈ A : N(p) < N } and B|N is defined similarly.When� consists of all but
finitely many primes, then d(A) := d(A|�) is the usual natural density ofA. (The notation
d(A|B) is chosen to highlight an analogy to conditional probability.)



Chan et al. Res. Number Theory (2022) 8:1 Page 3 of 29 1

Let P2
Q
denote the set of rational primes co-prime to 2. For a fixed sign, μ ∈ {±}, we

define the following sets of rational primes.

S :={p ∈ P2
Q
: p splits completely in K/Q},

Sμ :={p ∈ S : p ≡ μ1 mod 4Z},
F :={p ∈ S : fK (p)/Q(p) = 1},
Fμ :=Sμ ∩ F.

Our main results are conditional on the following conjecture, a slight variant of which
appears in both [5] and [6]. In the following conjecture, the real number η ∈ (0, 1] plays
the role of 1/n from [5, Conjecture Cn, p. 738-739].

Conjecture 1 (Cη [5]) Let η be a real number satisfying 0 < η ≤ 1. Then there exists a real
number δ = δ(η) > 0 such that for all ε > 0 there exists a real number C = C(η, ε) > 0
such that for all integers Q ≥ 3, all real non-principal characters χ of conductor q ≤ Q,
all integers N ≤ Qη, and all integersM, we have

∣∣
∣∣∣
∣

∑

M<a≤M+N
χ (a)

∣∣
∣∣∣
∣
≤ CQη(1−δ)+ε .

We note that Conjecture Cη is known for η > 1/4, as a consequence of the classical
Burgess’s inequality [2], and remains open for η ≤ 1/4. Moreover, for sums as above
starting at M = 0, Conjecture Cη (for any η) is a consequence of the Grand Riemann
Hypothesis for the L-function L(s,χ ). We are now ready to state our main results.

Theorem 1 Let K be a number field of degree n satisfying conditions (C1)-(C4). Assume
Conjecture Cη holds for η = 2

n(n−1) . For k �= 1 dividing n let dk be the order of 2 in (Z/k)×.
Then for a fixed sign μ ∈ {±},

d(Fμ|Sμ) = sμ
23(n−1)/2 , and d(F |S) = s+ + s−

2(3n−1)/2

where

s+ =
∏

k|n
dkodd
k �=1

(21+dk − 1)
φ(k)
2dk ,

and

s− =
∏

k|n
dkeven
k �=1

(2dk/2 + 1)
φ(k)
dk

∏

k|n
dkodd
k �=1

(2dk − 1)
φ(k)
2dk ,

where φ denotes the Euler’s totient function. In particular, when n is prime, writing d = dn,

(s+, s−) =
⎧
⎨

⎩

(
(21+d − 1)

n−1
2d , (2d − 1)

n−1
2d

)
if d is odd,

(
1, (2

d
2 + 1)

n−1
d

)
if d is even.

The density d(F |S) is determined by the product of densities d(F |R) and d(R|S) where R
is the set of primes satisfying a certain Hilbert symbol condition. Toward computing the
density d(R|S), the terms sμ arise from counting the number of solutions to this Hilbert
symbol condition over (O/4)×/((O/4)×)2.
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Table 1 Densities from Theorem 1, computed for K of degree n satisfying the necessary hypotheses

n d(F+|S+) d(F−|S−) d(F|S)
3 1/8 3/8 1/4

5 1/64 5/64 3/64

7 15/512 7/512 11/512

9 1/4096 27/4096 7/2048

11 1/32768 33/32768 17/32768

13 1/262144 65/262144 33/262144

15 1/2097152 375/2097152 47/262144

In the cubic case, we have the following unconditional theorem.

Theorem 2 Let K/Q be a cubic cyclic number field and odd class number in which 2 is
inert. Then

d(F |S) = 1
4
,

d(F+|S+) = 1
8
, and d(F−|S−) = 3

8
.

For our main results, we have assumed that K satisfies properties (C1)-(C4). To start,
we need properties (P1) and (C3) to define the extensions K (p)/K for primes p that split
completely in K/Q. Coincidentally, as mentioned above, property (C3) also allows us to
study the splitting behavior of all (not necessarily principal) prime ideals. Property (C2)
ensures that Gal(K/Q) contains no involutions. While methods to deal with involutions
do exist (see [5, Section 12, p. 745]), incorporating them into our arguments is non-trivial
and may pose interesting new challenges in our analytic arguments. Properties (C1) and
(C4) simplify our combinatorial arguments and allow us to give explicit density formulas.
Removing the assumptions of properties (C1) and (C4) would pose new combinatorial
challenges.
To end this section, we give some examples of number fields satisfying (C1)-(C4) so as

to convince the reader that our theorems are not vacuous. First, many such fields can be
foundwithin the parametric families given by Friedlander et al. in [5, p. 712] and originally
due to Shanks [14] and Lehmer [7], namely

{Q(αm) : m ∈ Z} and {Q(βm) : m ∈ Z}
where αm and βm are roots of the polynomials

fm(x) = x3 + mx2 + (m − 3)x − 1.

and

gm(x) = x5 + m2x4 − 2(m3 + 3m2 + 5m + 5)x3

+(m4 + 5m3 + 11m2 + 15m + 5)x2 + (m3 + 4m2 + 10m + 10)x + 1,

respectively. Such fields always satisfy properties (P1), (C1), and (C2). We also note that
one can use the law of cubic reciprocity to show that the fields Q(αm) always satisfy
property (C4). For smallm one can check the remaining properties using Sage or another
similar mathematical software package. For instance, if β7 is any root of

g7(x) = x5 + 49x4 − 1060x3 + 4765x2 + 619x + 1,
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then Q(β7) is a totally real cyclic degree-5 number field of class number 1451 where 2
stays inert.
More generally, we can look for special subfields of cyclotomic fields. Letm be a prime

number and ζm a primitive m-th root of unity, so that Q(ζm)/Q is a cyclic extension
of degree ϕ(m), and suppose that n is an odd integer such that ϕ(m) ≡ 0 mod 2n. For
instance, we can take n to be a Sophie Germain prime and then take m = 2n + 1 to also
be a prime. Suppose also that 2 is inert in Q(ζm), i.e., that 2 is a primitive root modulo
m. We then define K to be the unique subfield of Q(ζm + ζ−1

m ) of degree n over Q; K
readily satisfies properties (C1), (C2), (C4), while for small n the property that Cl+ = Cl
and property (C3) can be checked using Sage. For instance, the unique degree-5 subfield
of Q(ζ191) has class number 11; it is isomorphic to Q(β2) with β2 a root of the polynomial
g2 as above.

2 Two families of number fields
We say a modulus m is narrow whenever it is divisible by all real infinite places. We say a
modulus is wide whenever it is not divisible by any infinite place. We say a ray class group
or ray class field is narrow or wide whenever its conductor is narrow or wide respectively.
For m an ideal of O, let Cl+m denote the narrow ray class group of conductor m. That

is, Cl+m is the ray class group with conductor divisible by all real infinite places with finite
part m.
The following lemma leads to several equivalent formulations of property (P1).

Lemma 1 K is any number field.

1. The following are equivalent.

(a) Cl+ = Cl.
(b) Every principal ideal has a totally positive generator.
(c) All signatures are represented by units.

2. If h+ is odd, then Cl+ = Cl.
3. K is totally real with Cl+ = Cl if and only ifO×+ = (O×)2.

Here, if K is not necessarily totally real, an element is said to be totally positive when
it is positive in all real embeddings, and the signature of an element is determined by the
signs of the element in each real embedding.

Proof LetK be an arbitrary number field with r1 real embeddings and r2 pairs of complex
embeddings. That (a) and (b) are equivalent follows from the definitions of the narrow
and wide Hilbert class fields. By the exact sequence and canonical isomorphism in [10,
TheoremV.1.7] applied to the narrowmodulus with trivial finite part, condition (a) is true
exactly when O×/O×+ ∼= (Z/2)r1 . Noting that there are r1 signatures and the signatures
of two units are equal exactly when these units are equivalent modulo the totally positive
units, (a) is equivalent to (c). Since [Cl+ : Cl] is always a power of 2, if h+ is odd, then
property (a) holds.
As noted above, condition (a) is true exactly when O×/O×+ ∼= (Z/2)r1 . By Dirichlet’s

unit theorem,O×/(O×)2 ∼= (Z/2)r1+r2 . Therefore if (a) holds and in addition K is totally
real, then r2 = 0 andO×/O×+ ∼= O×/(O×)2. Containment of (O×)2 inO×+ gives equality.
Conversely, if we assume O×+ = (O×)2, then O×/O×+ ∼= (Z/2)r1+r2 by Dirichlet’s unit
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theorem. By the exact sequence and canonical isomorphism in [10, TheoremV.1.7], there
is an injection from O×/O×+ into a group isomorphic to (Z/2)r1 . Therefore r2 = 0 and
O×/O×+ ∼= (Z/2)r1 . That is, K is totally real and condition (a) holds. ��

Lemma 2 Let K be a totally real number field with odd narrow class number h+. Let p
be an odd prime of K . Then the narrow ray class field over K of conductor p has a unique
subextension that is quadratic over K .

Proof Let O×
p,1 denote the totally positive units of K that are congruent to 1 modulo p.

The exact sequence from class field theory as in [10, V.1.7] induces the following short
exact sequence on the 2−torsion subgroups, where surjectivity of the final map is due to
the assumption that h+ is odd.

1 → O×/O×
p,1[2

∞] → (Z/2)n × (O/p)×[2∞] → Cl+p [2∞] → 1.

By Lemma 1, all signatures are represented by units. Letting #(O×/O×
p,1[2∞]) = m2k

for odd m, for u any unit, um ∈ O×/O×
p,1[2∞] and um shares the same signature as

u. Therefore the first map is surjective onto the projection to (Z/2)n. Since Cl+p [2∞] is
isomorphic to the quotient of (Z/2)n × (O/p)×[2∞] by O×/O×

p,1[2∞], this shows that
Cl+p [2∞] is cyclic.
The first map in this short exact sequence is not surjective because any element of

(Z/2)n× (O/p)×[2∞] of the form (0, x) must come from a square becauseO×+ = (O×)2 by
Lemma 1. Then the size of Cl+p [2∞] is nontrivial, so since these are all 2-groups #Cl+p [2∞]
is even. ��

Wemay now define the multi-quadratic extension K (p)/K as in Sect. 1. In addition, we
define another family of number fields parameterized by prime numbers p for which our
results also hold. For both families of number fields, we consider a totally real number
field K with odd narrow class number h+. Furthermore, we now impose the condition
that K/Q is a Galois extension. Equivalently, we are assuming conditions (P1) and (C3).
In Definition 1, we apply Lemma 2 to ensure the existence of a unique quadratic subex-

tension of the narrow ray class field over K of conductor p. In Definition 2 we will use the
fact that for such K , a principal ideal always has a totally positive generator; see Lemma 1.

Definition 1 Given an odd rational prime p that splits completely in K/Q and a prime
ideal p ⊂ O lying above p, define K (p) to be the unique quadratic subextension of the
narrow ray class field over K of conductor p.
Define K (p) to be the compositum of the fields K (pσ ) as σ ranges over Gal(K/Q).

Definition 2 Given an odd rational prime p that splits completely in K/Q, a prime ideal
p ⊂ O lying above p, and a totally positive generator α of the principal ideal ph, we define

K+(p):=K (
√

α).

Define K+(p) to be the compositum of the number fields K+(pσ ) as σ ranges over
Gal(K/Q).

Since K is totally real and h+ is odd, Lemma 1 implies thatO×+ = (O×)2, so K+(p) does
not depend on the choice of totally positive generator α.
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Wenote that while each of the fieldsK (pσ ) need not beGalois overQ, their compositum
K (p) certainly is. Similarly, K+(p)/Q is Galois, and each of the extensions K+(pσ )/Q need
not be.
For an abelian extension of number fields L/E and a prime p of E, let fL/E(p) denote the

residue field degree of p in L/E and eL/E(p) the ramification index of p in L/E. In particular,
the ramification indices and residue field degrees eK (p)/Q(p), fK (p)/Q(p), eK+(p)/Q(p), and
fK+(p)/Q(p) are well-defined.
Since p is assumed to split completely in K/Q, there are n distinct primes in K lying

above p, and they are of the form pσ , where p is one such prime and σ ranges over
Gal(K/Q).
By Lemma 2, K (pσ )/K is a quadratic extension, and since α generates a prime ideal,

K+(pσ )/K is also a quadratic extension. Since K (pσ ) is a subfield of the narrow ray class
field over K of conductor pσ , the extension K (pσ )/K is unramified at pτ for all τ �= σ

in Gal(K/Q). Since h+ is odd, K (pσ )/K is ramified at pσ . Therefore eK (p)/Q(p) = 2 and
[K (p) : Q] = n2n where n = [K : Q].
Since pσ is an odd prime, pσ divides the discriminant ofK+(pσ )/K and so this extension

is ramified at pσ . Since pτ does not divide the discriminant for any τ �= σ in Gal(K/Q),
K+(pσ )/K is unramified at pτ for all such τ . Therefore eK+(p)/Q(p) = 2 and [K+(p) : Q] =
n2n.
The residue fieldZ/p is cyclic and injects intoOK (p)/PwhereP is a prime ofK (p) above

p. Therefore fK (p)/Q(p) | 2 because there are no cyclic subextensions of K (p)/K of degree
greater than 2, and p is assumed to split completely in K/Q. Similarly, fK+(p)/Q(p) | 2. We
summarise in the following Lemma.

Lemma 3 Let K be a totally real number field of degree n that is Galois over Q with odd
narrow class number and let p be a prime that splits completely in K/Q. For L = K (p) and
for L = K+(p),

1. L/Q is a Galois extension of degree n2n.
2. eL/Q(p) = 2.
3. fL/Q(p) | 2.

We will see in Corollary 1 that for a fixed odd rational prime p splitting completely in
K/Q, the residue field degrees of p in K (p)/Q and in K+(p)/Q are equal. Hence, to prove
Theorem 1, we will prove the analogous results for the family of extensions K+(p)/Q.

3 The spin of prime ideals
Throughout this section, we will assume K satisfies (P1) and (C3). By Lemma 1, this is
equivalent to assuming that K is a totally real number field that is Galois over Q with odd
narrow class number, and these conditions imply thatO×+ = (O×)2.We give the following
definition of spin, which extends the definition of spin from [5, (1.1)] in a natural way so
that it applies to all odd ideals (not necessary principal).

Definition 3 Let σ ∈ Gal(K/Q) be non-trivial. Given an odd ideal a, we define the spin
of a (with respect to σ ) to be

spin(a, σ ) =
( α

aσ

)
,



1 Page 8 of 29 Chan et al. Res. Number Theory (2022) 8:1

where α is any totally positive generator of the principal ideal ah, and where
( ·

·
)
denotes

the quadratic residue symbol in K .

The assumption O×+ = (O×)2 is important for two reasons. First, Lemma 1 ensures
that the principal ideal ah has a generator α that is totally positive. Second, any two totally
positive generators of ah differ by a square, so the value of the quadratic residue symbol
defining the spin does not depend on the choice of totally positive generator α.
If a is an odd principal ideal and α0 is a totally positive generator of a, then αh

0 is a totally
positive generator for ah. As h is odd, we have

(α0
aσ

)
=

(
αh
0

aσ

)

,

so our definition coincides with that of Friedlander et al. in [5] for odd principal ideals a.

3.1 Known results

The main result in [5] can be stated as follows.

Theorem 3 ([5, Theorem 1.1]) Suppose K is a number field satisfying properties (P1) and
(C1). Suppose n = [K : Q] ≥ 3. AssumeConjectureCη holds for η = 1/nwith δ = δ(η) > 0.
Let σ be a generator of the Galois group Gal(K/Q). Then for all real numbers x > 3, we
have

∑

p principal
prime ideal
N(p)≤x

spin(p, σ ) � x1−θ+ε

where θ = θ (n) = δ
2n(12n+1) . Here the implied constant depends only on ε and K .

Friedlander et al. also proved an analogous result for the case when the summation is
restricted to principal prime ideals p with totally positive generators satisfying a suitable
congruence condition.
By Burgess’s inequality, Conjecture Cη holds for η = 1/3 with δ = 1

48 , so Theorem 3
holds unconditionally for [K : Q] = 3 where θ = 1

10656 .
In [5, Section 11], Friedlander et al. pose some questions about the joint distribution

of spin(p, σ ) and spin(p, τ ) as p varies over prime ideals, where σ and τ are two distinct
generators of the cyclic group Gal(K/Q). In [6], Koymans and Milovic prove that such
spins are distributed independently if n ≥ 5, i.e., that the product spin(p, σ ) spin(p, τ )
oscillates similarly as in Theorem 3. In fact, they prove that the product of spins

∏

σ∈S
spin(p, σ )

oscillates as long as the fixed non-empty subset S of Gal(K/Q) satisfies the property that
σ /∈ S whenever σ−1 ∈ S. Moreover, their result holds for number fields K satisfying
property (P1) and having arbitrary Galois groups, i.e., not necessarily satisfying property
(C1).
The assumption in [6] that σ /∈ S whenever σ−1 ∈ S is made because spin(p, σ ) and

spin(p, σ−1) are not independent in the following sense. For a place v of K , let Kv denote
the completion of K at v. For a, b ∈ K coprime to v, the Hilbert Symbol (a, b)v is defined
to be 1 if the equation ax2 + by2 = z2 has a solution x, y, z ∈ Kv with at least one of x, y,
or z non-zero and −1 otherwise.
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Proposition 1 ([5, Lemma 11.1]) Suppose K is a number field satisfying properties (P1)
and (C3). Suppose p ⊂ O is a prime ideal and σ ∈ Gal(K/Q) is an automorphism such
that p and pσ are relatively prime. Then

spin(p, σ ) spin(p, σ−1) =
∏

v|2
(α,ασ )v,

where α is a totally positive generator of ph and the product is taken over places v dividing
2.

Proof This is essentially Lemma 11.1 in [5]. The proof uses the fact that
∏

v
(α,ασ )v = 1.

Since α � 0, (α,ασ )v = 1 for all infinite places v.
Consider v, a finite place not equal to p or pσ , and not dividing 2. Since v �= p, pσ , we

have α and ασ are non-zero modulo v. Consider the equation

ασ x2 ≡ 1 − αy2 mod v.

The right hand side and the left hand side each take on (N(v) + 1)/2 values, so there is
a solution by the pigeon hole principle. It can not be the case that both x and y are 0.
Suppose x �≡ 0 mod v. Since v is prime to 2 and x �≡ 0, Hensel’s Lemma implies there
exists a solution in the completion at v. Therefore (α,ασ )v = 1. If y is non-zero, a similar
argument works.
Since α and ασ are relatively prime, (α,ασ )p = spin(p, σ−1) and (α,ασ )pσ = spin(p, σ ).

Then since
∏

v(α,ασ )v = 1, we are done. ��

In this paper, we study the joint distribution of multiple spins spin(p, σ ), σ ∈ S, in a
setting where there are in fact many σ ∈ S such that σ−1 ∈ S as well. From the discussion
above, we see that this might involve combining the work of Koymans and Milovic with
the study of the products spin(p, σ ) spin(p, σ−1) for various σ .

3.2 Factorization and spin

The spin of prime ideals is related to the splitting behavior of p in both K+(p) and K (p) as
we will see in Proposition 3 and Corollary 1.
Let R+

m denote the narrow ray class field overK of conductorm. Let p be an odd prime of
K . Recall fromDefinition 1 that Lemma 2 gives the existence of a unique quadratic subex-
tension of R+

p /K , denoted by K (p). We have the following proposition for K satisfying
properties (P1) and (C3).

Proposition 2 Assume the number field K satisfies properties (P1) and (C3). Let p ⊂ O be
an odd prime ideal splitting completely in K/Q. Let α ∈ O be a totally positive generator
of ph. Then

K (p) = K (
√
uα)

for some unit u ∈ O× well-defined modulo (O×)2. We denote the unit class of u by
uK (p) ∈ O×/(O×)2. Furthermore, uK (pσ ) = uK (p)σ for any σ ∈ Gal(K/Q).
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Proof The assumptions that K satisfies (P1) and (C3) ensure that we can define K (p).
Write K (p) = K (

√
β) for β ∈ O. The polynomial discriminant d(1,

√
β) satisfies

d(1,
√

β) = 4β = disc(OL/O)(OL : O[
√

β])2.

whereOL denotes the ring of integers of K (
√

β).
If ordq(4β) is odd for some prime q of K , then ordq(disc(OL/O)(OL : O[

√
β])2) is odd

so ordq(disc(OL/O)) is odd. Then q| disc(OL/O) so q ramifies, and therefore q = p. Since
h+ is odd and K (p)/K is quadratic, p ramifies in K (p) so p| disc(OL/O). Since β is not a
square inO, ordp(disc(OL/O)) is odd. Therefore (β) = pa2 for some ideal a ofO.
Raising to the power of the class number, (β)h = pha2h. Then since ah is principal,

writing ah = (δ), we have (β)h = (α)(δ)2. Then βh = uαδ2 for some unit u ∈ O×. Since h
is odd, K (

√
β) = K (

√
βh) = K (

√
uα).

If K (p) = K (
√
vα) = K (

√
uα) for u, v ∈ O×, the Kummer pairing associates to this

field the subgroup of K×/(K×)2 given by (K× ∩ (L×)2)/(K×)2, a cyclic subgroup of order
2. Both uα and vα generate this group so they are congruent modulo (K×)2. Therefore u
and v are equivalent inO×/(O×)2. ��

Lemma 4 Suppose K is a number field and h is an odd number. Suppose a and b are
distinct odd primes of K , and suppose α and β are totally positive generators of ah and bh,
respectively, such that any prime above 2 is unramified in K (

√
β)/K. Then

(α

b

)
=

(
β

a

)
,

where (·/·) denotes the quadratic residue symbol in K .

Proof Since h is odd and b and a are coprime, we have
(α

b

)
=

(α

b

)h =
(

α

bh

)
=

(
α

β

)
. (2)

Similarly,
(

β

a

)
=

(
β

a

)h
=

(
β

ah

)
=

(
β

α

)
. (3)

By the law of quadratic reciprocity for K [12, Theorem VI.8.3, p. 415], we have
(

α

β

)
=

(
β

α

) ∏

v|2∞
(α,β)v,

where (·, ·)v is the Hilbert symbol on K and the product above is over all places v lying
above 2 and infinity.
For each infinite place v, we have (α,β)v = 1 since α is totally positive (and thus also

positive in the embedding of K into R corresponding to v). For any place v lying above 2,
we have (α,β)v = 1 since α is coprime to 2 and any even prime is unramified in K (

√
β)/K

(see [3, Exercise 2.8, p.352]). We thus deduce that
(

β

α

)
=

(
α

β

)
,

which in combination with (3) and (2) yields the desired result. ��
Given a rational prime p, fix a prime p above p and a totally positive generator α of

ph. Recall from Definition 2 that K+(p) is the composite of K+(pσ ) as σ varies over all
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elements of Gal(K/Q), where K+(pσ ):=K (
√

ασ ). As before, denote by K (pσ ) the unique
quadratic subextension of the narrow ray class field over K of conductor pσ .
The factorization of p in K+(p) or K (p) is determined by the factorizations of p in each

K+(pσ ) or K (pσ ) respectively, which is in turn determined by the spin of p with respect to
σ or σ−1, respectively.

Proposition 3 Assume K satisfies properties (P1) and (C3). For a fixed odd prime p of K
that splits completely in K/Q and σ non-trivial inGal(K/Q), the following are equivalent.

1. spin(p, σ ) = 1,
2. fK (pσ )/K (p) = 1,
3. fK+(pσ−1 )/K (p) = 1.

Proof Let q �= p be an odd prime of K with β ∈ O a generator of qh where h is the class
number of K . Let L = K (

√
β). We will prove that (β/p) = 1 if and only if fL|K (p) = 1. The

result will then be established by choosing suitable β and q.
If m > 0 is the minimal positive integer such that qm is principal and if qr is principal

for any r > 0, then we can write r = a + ml for l > 0 and 0 ≤ a < m. Then qr = qaqml

and since qr and qm are principal, so is qa. Since m is the minimal such positive integer,
a = 0 som|r. That is, any power of q that is principal must be a power of qm. In particular
since h is odd,m is odd and if q2l is principal, then ql is principal.
Write qh = qmq2l where m is the minimal positive integer such that qm is principal.

By Lemma 1, we can write (γ ) = qm for γ ∈ O with the same signature as β . Then
qh = qmq2l becomes (β) = (γ )(δ)2 for δ a generator of pl . Since the signatures of β and γ

match, β = γ δ2. Therefore L = K (
√

β) = K (√γ ).
Here O denotes the ring of integers of K and OL denotes the ring of integers of L. The

polynomial discriminant d(1,√γ ) = 4γ so

4γ = disc(OL/O)(OL : O[√γ ])2.

If q|(OL : O[√γ ]) then since (OL : O[√γ ]) is an integer, t:= ordq(OL : O[√γ ]) must be
such that qt is principal. Thenm|t but since q is odd,

ordq(disc(OL/O)(OL : O[√γ ])2) ≥ 2t > m = ordq(4γ ).

This is a contradiction, so q � (OL : O[√γ ]). Therefore (OL : O[√γ ])|2. Then since
p = N(p) is odd and O[√γ ]/p and OL/p are both vector spaces over Z/p, these two
rings are isomorphic. As the quotient of (O/p)[x] by the polynomial x2 − γ considered in
(O/p)[x] is isomorphic toO[√γ ]/p,

(O/p)[x]/(x2 − γ ) ∼= OL/p. (4)

The quadratic residue (γ /p) is equal to 1 exactly when the polynomial x2 − γ factors
in (O/p)[x]. Since p � (γ ), the polynomial x2 − γ cannot factor into the square of an
irreducible polynomial. The irreducible factors of x2−γ in (O/p)[x] correspondbijectively
to the maximal ideals of (O/p)[x]/(x2 − γ ). Then since p � (γ ), we may deduce that
(γ /p) = 1 if and only if there are exactly two maximal ideals of (O/p)[x]/(x2 − γ ).
Applying the isomorphism in line (4), this is true if and only if OL/p has exactly two
maximal ideals. Maximal ideals of OL/p correspond bijectively to the irreducible factors
of p in OL. Therefore (γ /p) = 1 if and only if fL|K (p) = 1. Since β = γ δ2, (β/p) = (γ /p).
This concludes the first part of the proof, showing that (β/p) = 1 if and only if fL|K (p) = 1.
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Setting β = (uα)σ for u in the unit class uK (p) and q = pσ , by Proposition 2, L =
K (

√
β) = K (

√
(uα)σ ) = K (pσ ). Since K (

√
(uα)σ ) is contained in R+

pσ , no prime above 2
is ramified in the extension K (

√
(uα)σ )/K , so applying Lemma 4,

(β/p) = ((uα)σ /p) = (α/pσ ) = spin(p, σ ),

proving (2.) is equivalent to part (1.).
Alternatively, if we set β = ασ−1 and q = pσ−1 , then L = K (

√
β) = K (pσ−1 ) and since

(ασ−1
/p) = (α/pσ ) = spin(p, σ ), this proves that part (3.) is equivalent to part (1.). ��

Corollary 1 For a fixed odd rational prime p splitting completely in K/Q, the residue
field degrees of p in the extensions K (p)/Q and K+(p)/Q are equal to 1 if and only if
spin(p, σ ) = 1 for all non-trivial σ ∈ Gal(K/Q) for p a prime of K above p. Otherwise these
residue field degrees are equal to 2.

Proof fK (p)/Q(p) = 1 exactly when fK (pσ )/K (p) = 1 for all σ ∈ Gal(K/Q). Similarly,
fK+(p)/Q(p) = 1 exactly when fK+(pσ−1 )/K (p) = 1 for all σ ∈ Gal(K/Q). Apply Proposition
3. If the residue field degrees are not equal to 1 then they are equal to 2 by Lemma 3. ��

4 A consequence of the Chebotarev Density theorem
In this section, we use the Chebotarev Density Theorem to prove that the primes of K
are equidistributed in M4 as defined below, where the mapping takes primes to a totally
positive generator considered inM4. This contributes toward thedensityd(R|S) of rational
primes p that satisfy the spin relation,

spin(p, σ ) spin(p, σ−1) = 1 for all non-trivial σ ∈ Gal(K/Q),

where p is a prime of K above p, restricted to the rational primes splitting completely in
K/Q. We will also give this density restricted modulo 4Z. Theorem 4 and Proposition 5
together give the density of such primes satisfying the spin relation.

Definition 4 For q a power of 2, define

Mq := (O/qO)×/
(
(O/qO)×

)2 .

Note thatMq is a group with a natural action from Gal(K/Q).

Proposition 4 Let K be a number field satisifying (C1) and (C4). Then

1. M4 ∼= (Z/2)n as a Z/2-vector space,
2. the invariants of the action of Gal(K/Q) onM4 are exactly ±1.

Proof Let Um:=(O/m)×.

1. Fix a set of representatives R for O/2 in O. Let R× be a subset of R containing
representatives for (O/2)×. Observe that {x + 2y : x ∈ R×, y ∈ R} is a set of
representatives for U4 and #U4 = 2n(2n − 1). Therefore elements of U2

4 are of the
form (x+ 2y)2 ≡ x2 mod 4O for x ∈ R× and y ∈ R. Since #(O/2)× = 2n − 1 is odd,
the squaring map on U2 = (O/2)× is surjective and so #U2

4 = 2n − 1. Therefore
#M4 = #U4/#U2

4 = 2n. Since M4 is formed by taking the quotient of U4 modulo
squares,M4 is a direct product of cyclic groups of order 2.
For any α ∈ O coprime to 2, write [α] as the projection of αO in M4. Since every
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x ∈ R× is a square in U2, we can write down the isomorphism explicitly as

M4 → O/2 ∼= F2n [x + 2y] = [1 + 2x−1y] �→ x−1y. (5)

We see thatM4 = {[1 + 2y] : y ∈ O/2}.
2. Let σ be a generator of Gal(K/Q). The action of σ on [1 + 2y] ∈ M4, simply maps y

to yσ . Then we see that y ≡ yσ mod O/2 if and only if y ≡ 0 or 1 mod O/2. These
correspond to ±1 inM4.

��
Lemma 5 Let K be a number field such that 2 is inert in K/Q. The Hilbert symbol ( · , · )2
is well-defined onM4 .

Proof We show that (α,β)2 = (α + 4B,β)2 for any B ∈ O coprime to 2, which implies
that ( · , · )2 is well-defined on (O/4O)× × (O/4O)×. Suppose B ∈ O is coprime to 2. It
suffices to show that (α,β)2 = 1 implies (α + 4B,β)2 = 1. Assuming (α,β)2 = 1, we can
take x, y, z ∈ O not all divisible by 2 satisfying x2 − αy2 = βz2 mod 8. Since all elements
of (O/2)× are squares in (O/2)×, there existsC,D ∈ O such thatC2 ≡ α−1βB mod 2 and
D2 ≡ α−1β−1B mod 2. Take X = x + 2Cz, y = Y and Z = z + 2Dx, then one can check
that X2 − (α + 4B)Y 2 ≡ βZ2 mod 8. Therefore (α + 4B,β)2 = 1 by Hensel’s lifting the
solution (X, Y, Z). ��
Lemma 6 Let K be a number field such that 2 is inert in K/Q. The Hilbert symbol ( · , · )2
is non-degenerate onM4 .

Proof Fix some α ∈ O coprime to 2. We claim that (α + 4B, 2)2 = 1 for some B ∈ O.
Since (O/2)× contains all its squareroots, there exist some γ , z ∈ O such that α ≡
γ 2 − 2z2 mod 4. Write x = γ + 2x′ for some x′ ∈ O, set B = x′γ + x′2 and y = 1. Then
x2 − (α + 4B)y2 ≡ 2z2 mod 8. This proves our claim.
Now suppose (α,β)2 = 1 for allβ ∈ O coprime to 2. Then takingB from the above claim,

(α + 4B,β)2 = 1 holds for all β ∈ O coprime to 2 by Lemma 5, and for all β ∈ O divisible
by 2, by the above claim. Since the Hilbert symbol is non-degenerate on K×

2 /(K×
2 )2 [13,

Chapter XIV, Proposition 7], this implies that α + 4B ∈ O2. Hence [α] = [α + 4B] is
trivial inM4. ��
For m an ideal of K , letPm

K denote the set of prime ideals ofO co-prime to m. For K a
totally real number field satisfying (C3), we can define the following map.

Definition 5 For q a power of 2, define the map

rq :P2
K → Mq

p �→ α

where α ∈ O is a totally positive generator of the principal ideal ph.

By Lemma 1 since K is totally real with odd narrow class number, all principal ideals
have a totally positive generator and O×+ = (O×)2. Since squares are trivial in M4 by
definition the map rq is well-defined. We also note that rq commutes with the Galois
action, i.e. rq(pσ ) = rq(p)σ for all σ ∈ Gal(K/Q).
For m an ideal ofO, let JmK denote the group of fractional ideals of K prime to m.
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Lemma 7 [ [9, Lemma 3.5]] For K totally real with h+ odd, the homomorphism J2K → Mq
induced by rq induces a surjective homomorphism,

ϕq : Cl+q → Mq.

Proof This result is proven in [9, 3.5] and while stated with more assumptions there, the
same proof holds with only the assumptions stated here. For clarity, we expand upon the
proof of surjectivity. Let

Km := {a ∈ K× : ord2(a) = 0}, and

Km,1 := {a ∈ K× : ord2(a − 1) ≥ ord2(q), a � 0}

Wehave the following commutative diagram of homomorphisms. The homomorphism
ψ0 and the isomorphism i are induced by the exact sequence and canonical isomorphism
from class field theory as given in [10, V.1.7].

(Km/Km,1)/(Km/Km,1)2 Cl+q /(Cl+q )2 Mq

(Z/2)n × Mq

ψ0 ϕq

i
ψ

Fix X ∈ Mq . Consider (0, X) ∈ (Z/2)n × Mq . Since i is an isomorphism, there exists an
element in (Km/Km,1)/(Km/Km,1)2 represented by β ∈ K× such that i(β) = (0, X). Since
i(β) maps to 0 in the projection to (Z/2)n, β is totally positive. Since β � 0, we can choose
a, b ∈ O totally positive such that β = a/b. (Writing β = a/b for any a, b ∈ O, one could
then consider β = a2/ab). Then X = [ab−1] by the canonical isomorphism in [10, V.1.7].
The map ψ0 takes β to the class in Cl+q /(Cl+q )2 represented by the fractional ideal

(a)(b)−1. Factoring the ideal (c) for any totally positive element c ∈ O and applying the
homomorphism ϕq gives [ch] ∈ Mq which is equivalent to [c] ∈ Mq since h is odd. Then
since a and b are totally positive, ϕq((a)(b)−1) = [ab−1] = X and so ϕq is surjective. ��

Let S′ denote the set of odd primes p of K with inertia degree fK/Q(p) = 1.

Lemma 8 [[9, Lemma 4.3]] Assume K satisfies (P1), (C3), and (C4).

1. For any α ∈ M4 , the density of primes p of K such that ϕ4(p) = α is 1
2n . That is,

d(r−1
4 (α)) = 1

#M4
= 1

2n
.

2. Furthermore, the density does not change when we restrict to primes of K that split
completely in K/Q. That is,

d(r−1
4 (α) ∩ S′|S′) = 1

#M4
= 1

2n
.

Proof See [9, Lemma 4.3]. There the result is stated withmore assumptions, but the same
proof holds more generally. ��
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Definition 6 Assume K satisfies (P1), (C3). Let α ∈ M4. Let p be an odd prime of K such
that r4(p) = α. The map

N : M4 → (Z/4)×

α �→ NK/Q(p) mod 4Z

is well-defined and N(α) = N(ασ ) for all σ ∈ Gal(K/Q).

Proof By Lemma 7, the map r4 : P2
K → M4 fromDefinition 5 induces a surjective group

homomorphism

ϕ4 : Cl+4 � M4 .

Define H :=Art(ker(ϕ4)) where Art denotes the Artin map from Cl+4 to Gal(R+
4 /K ) with

R+
4 denoting the narrow ray class field over K of conductor 4.
Define L to be the fixed field of H in Gal(R+

4 /K ). Then ϕ4 induces a canonical isomor-
phism

Gal(L/K ) ∼= M4 .

Then for any α ∈ M4, by applying the Chebotarev Density Theorem to the element of
Gal(L/K ) corresponding to α via this isomorphism, there exists a prime p ∈ P2

K with
ϕ4(p) = α.
Let p and q be odd primes of K such that r4(p) = r4(q). Let α be a totally positive

generator of ph and let β be a totally positive generator of qh, where h is the odd class
number of K , which is odd by assumption. Since r4(p) = r4(q), α ≡ β in M4. Then α ≡
βγ 2 mod 4O for some γ ∈ O. Since ασ ≡ βσ (γ σ )2 mod 4O for all σ ∈ Gal(K/Q), taking
normsN(α) ≡ N(β)N(γ )2 mod 4O. Since the norms are in Z,N(α) ≡ N(β) mod 4Z. ��

We now state an extended version of Lemma 8 that handles the densities restricted to
primes of a fixed congruence class modulo 4Z.
For a fixed signμ ∈ {±}, let S′

μ denote the set of primes p ∈ S′ withN(p) ≡ μ1 mod 4Z.
In other words S′

μ is the set of primes of K laying above rational primes in Sμ.

Lemma 9 Assume K satisfies conditions (C1)-(C4). For any α ∈ M4 and for a fixed sign
μ ∈ {±}, the density of p ∈ S′

μ such that ϕ4(p) = α is given by

d(r−1
4 (α) ∩ S′

μ|S′
μ) =

{
1

2n−1 if N(α) = μ1 mod 4
0 otherwise.

Proof Let K4,1:={α ∈ K× : ord2(α − 1) ≥ 2,α � 0} and O×
4,1:=K4,1 ∩ O×. Since O×+ =

(O×)2,

(O× : O×
4,1) = (O× : O×+)(O×+ : O×

4,1) = 2n((O×)2 : O×
4,1).

Therefore by [10, V.1.7], the order of Gal(R+
4 /K ) divides h2n(2n − 1).

As in the proof following Definition 6 and with L as defined there, recall that r4 induces
a canonical isomorphismGal(L/K ) ∼= M4 . Then [L : K ] = 2n by Proposition 4. Therefore
[R+

4 : L] is odd. Let F denote the composite of K and Q(ζ4). Since [K : Q] is odd,
[F : K ] = 2. Since K ⊆ F ⊆ R+

4 and [R+
4 : L] is odd, F ⊆ L and [L : F ] = 2n−1.
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For T/E a Galois extension of conductor dividing m, let p be a prime of E, and let τ ∈
Gal(T/E). Let (p, T/E) denote the conjugacy class of Gal(T/E) containing the Frobenius
of p where p is a prime of T above p. Let

AE
T |E(τ ):={p ∈ Pm

E : (p, T/E) = 〈τ 〉},
AT

T |E(τ ):={p ∈ Pm
T : p lies above p ∈ AE

T |E(τ )}.

Fix μ ∈ {±}. Let τ− denote the nontrivial element of Gal(F/K ) and let τ+ denote
the trivial element of Gal(F/K ) so that N(p) = μ1 mod 4 exactly when p ∈ AK

F |K (τμ).
Furthermore S′

μ = S′ ∩ AK
F |K (τμ).

Fix α ∈ M4 and let σ ∈ Gal(L/K ) corresponding to α via the isomorphism induced by
r4 given in the proof following Definition 6. Then r−1

4 (α) = AK
L|K (σ ).

Letting σ denote the image of σ in the natural surjection to Gal(F/K ),

AK
L|K (σ ) ∩ AK

F |K (τμ) =
{
AK

L|K (σ ) if σ = τμ,
0 otherwise.

By the Chebotarev Density Theorem, d(AK
L|K (σ )) = 1

2n . Since S
′ has density 1, restricting

densities of primes inK to those that split completely inK/Q does not change the density.
Therefore

d(r−1
4 (α) ∩ S′

μ|S′) = d(AK
L|K (σ ) ∩ AK

F |K (τμ) ∩ S′|S′)

= d(AK
L|K (σ ) ∩ AK

F |K (τμ))

=
{

1
2n if σ = τμ,
0 otherwise

and similarly d(S′
μ|S′) = d(AK

F |K (τμ) ∩ S′|S′) = d(AK
F |K (τμ)) which is equal to 1

2 by the
Chebotarev Density Theorem. Therefore

d(r−1
4 (α) ∩ S′

μ|S′
μ) = d(r−1

4 (α) ∩ S′
μ|S′)

d(S′
μ|S′)

=
{

1
2n−1 if σ = τμ,
0 otherwise.

For p ∈ r−1
4 (α), the condition that N(α) = μ1 mod 4 means that N(p) = μ1 mod 4.

This is equivalent to the condition that p ∈ AK
F |K (τμ). Since p ∈ r−1

4 (α) = AK
L|K (σ ), the

condition that p ∈ AK
F |K (τμ) is true exactly when σ = τμ. This completes the proof. ��

Recall that Proposition 1 states that for p a prime of K with totally positive generator
α ∈ O, and for σ ∈ Gal(K/Q) such that p and pσ are relatively prime,

spin(p, σ ) spin(p, σ−1) = (α,ασ )2.

This motivates the following definition.

Definition 7 ( [9, Theorem 5.1] ) Assume K is Galois with abelian Galois group and
satisfies (C4). Let α ∈ O denote a representative of [α] ∈ M4. Define the map

� : M4 → {±1}

[α] �→
{
1 if (α,ασ )2 = 1 for all non-trivial σ ∈ Gal(K/Q),
−1 otherwise.
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Observe that � is a well-defined map by Lemma 5. If (6) holds for some α ∈ O, then it
holds for ασ for any σ ∈ Gal(K/Q). Therefore �(α) = �(ασ ) for all σ ∈ Gal(K/Q).
Recall the map N : M4 → ±1 from Definition 6. Let �+ denote the restriction of � to

M+
4 :={α ∈ M4 : N(α) = 1}

and let �− denote the restriction of � to

M−
4 :={α ∈ M4 : N(α) = −1}.

Recalling that Sμ = {p ∈ S : p ≡ μ1 mod 4Z} and R = {p ∈ S :
spin(p, σ ) spin(p, σ−1) = 1 for all σ �= 1 ∈ Gal(K/Q)}, for a fixed sign μ, define
Rμ:=R ∩ Sμ.

Theorem 4 Assume K satisfies properties (C1)-(C4). Then

d(R|S) = # ker(�)
2n

,

d(R+|S+) = # ker(�+)
2n−1 and d(R−|S−) = # ker(�−)

2n−1 .

Proof That d(R|S) = # ker(�)/2n is proven in [9, Theorem 6.2], though it will also follow
from the proof that d(Rμ|Sμ) = # ker(�μ)/2n−1 since d(Sμ|S) = 1/2 and ker(�) is the
disjoint union of ker(�+) and ker(�−) and R is the disjoint union of R+ and R−.
Recall the map r4 from Definition 5. As shown in Definition 7, �(α) = �(ασ ) for any

σ ∈ Gal(K/Q) so � ◦ r4(p) = � ◦ r4(pσ ) for any σ ∈ Gal(K/Q). By Proposition 1, for each
fixed sign μ,

Rμ = {p ∈ Sμ : � ◦ r4(p) = 1 for p a prime ofKabovep}.
For N ∈ Z+, let Rμ,N :={p ∈ Rμ : p < N } and Sμ,N :={p ∈ Sμ : p < N }. We will prove

that

d(Rμ|Sμ) = # ker(�μ)
#Mμ

4
.

Then since K is cyclic of odd degree and 2 is inert in K/Q, we can apply Proposition 4
to get that #M4 = 2n. Then since half the elements of M4 are in M+

4 and half in M−
4 ,

#M+
4 = #M−

4 = 2n−1.
Let μ denote a fixed sign. Let S′

μ,N denote the set of primes of K laying above primes in
Sμ,N and let R′

μ,N denote the set of primes of K laying above primes in Rμ,N . Since primes
in S split completely,

#Rμ,N
#Sμ,N

= #R′
μ,N

#S′
μ,N

.

Let r4,N denote the restriction of r4 to S′
μ,N . Then R′

μ,N is the disjoint union

R′
μ,N =

⊔

α∈ker(�μ)

(
S′
μ,N ∩ r−1

4,N (α)
)
,

taken over elements α ∈ ker(�μ), i.e. elements of α ∈ M4 such that N(α) = μ1 mod 4
and �(α) = 1. Therefore

#R′
μ,N

#S′
μ,N

=
∑

α∈ker(�μ)

#
(
S′
μ,N ∩ r−1

4,N (α)
)

#S′
μ,N
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By Lemma 9, for all α ∈ ker(�μ),

d(r−1
4 (α) ∩ S′

μ|S′
μ) = 1

#Mμ
4

= 1
2n−1 .

Therefore

d(Rμ|Sμ) = d(R′
μ|S′

μ) = lim
N→∞

∑

α∈ker(�μ)

#
(
S′
μ,N ∩ r−1

4,N (α)
)

#S′
μ,N

=
∑

α∈ker(�μ)
lim

N→∞
#

(
S′
μ,N ∩ r−1

4,N (α)
)

#S′
μ,N

=
∑

α∈ker(�μ)
d(r−1

4 (α) ∩ S′
μ|S′

μ)

=
∑

α∈ker(�μ)

1
2n−1 = # ker(�μ)

2n−1 .

��

5 Counting solutions to a Hilbert symbol condition
In this section, we assume that K/Q satisfies (C1)-(C4) and prove formulae for # ker(�μ).
Throughout, the degree n := [K : Q] to taken as an odd integer.
Fix τ to be a generator of Gal(K/Q). For any α ∈ K , write α(k):=ατ k for k ∈ Z.

Lemma 10 (−1,−1)2 = −1.

Proof Assume for contradiction that (−1, 1)2 = 1. Consider a homomorphismψ : M4 →
{±1} given by [α] �→ (α,−1)2. Since the Hilbert symbol is non-degenerate, and −1 is not
a square modulo 4 in K , ψ is not identically 1. Therefore # kerψ = #M4/# imψ = 2n−1.
For any [α] ∈ M4 \ {±1}, we have (α(k),−1)2 = (α,−1)2 for any k . Therefore ψ is stable

under the Galois action. The size of each Galois orbit is n except the orbit of ±1. But then
n divides both #{[α] ∈ M4 \ {±1} : ψ(α) = 1} = #{[α] ∈ M4 : ψ(α) = 1} − 2 = 2n−1 − 2
and #{[α] ∈ M4 : ψ(α) = −1} = 2n−1, which is a contradiction. ��
Our aim is to count the number of elements inM4 with a representative α ∈ OK satisfying
the spin relation

(α,ασ )2 = 1 for all non-trivial σ ∈ Gal(K/Q). (6)

By Lemma 6, the property (6) only depends on the class of [α] ∈ M4.

5.1 The Hilbert symbol as a bilinear form onM4

By the Kronecker–Weber theorem, K is contained in the cyclotomic field Q(ζf), where
f is the conductor of K . The conductor f is odd since we assumed that 2 is unrami-
fied in K . By [4, Theorem 4.5], there exists a normal 2-integral basis of Q(ζf), i.e. we
can find some a ∈ OQ(ζf) such that the localization of OQ(ζf) at 2 can be written as
OQ(ζf),2 = ⊕g∈Gal(Q(ζf)/Q)Z(2)ag . Similar to the classic result for integral bases [11, Propo-
sition 4.31(i)], taking y = TrQ(ζf)/K (a), then {y, yτ , . . . , yτn−1} gives a normal 2-integral
basis of K . Since Z(2)/2 ∼= Z/2 and OK,2/2 ∼= OK /2, we know that y, yτ , . . . , yτn−1 also
form a normal F2-basis ofOK /2.
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Set α = 1 + 2y. It follows from the isomorphism in (5) that

M4 =
{n−1∏

i=0
[α(i)]ui : (u0, . . . , un−1) ∈ Fn

2

}

.

Write (α,α(i))2 = (−1)ci , ci ∈ {0, 1}. Note that (α(i),α(j))2 = (α,α(j−i))2. The Hilbert
symbol is multiplicatively bilinear, so we can represent ( · , · )2 by the matrix

A:=

⎛

⎜
⎜⎜⎜
⎜⎜⎜
⎝

c0 cn−1 cn−2 . . . c1
c1 c0 cn−1 . . . c2
c2 c1 c0 . . . c3
...

...
...

. . .
...

cn−1 cn−2 cn−3 . . . c0

⎞

⎟
⎟⎟⎟
⎟⎟⎟
⎠

(7)

with respect to the basis [α(i)], 0 ≤ i ≤ n − 1.
Define the n × n F2-matrix

T1 =

⎛

⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜
⎝

0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1
1 0 0 0 . . . 0

⎞

⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟
⎠

,

Tk = Tk
1 and T0 = I .

Lemma 11 Let A be the matrix representation of ( · , · )2 on M4 with respect to a normal
basis, as given in (7). Define a map

� : Fn
2 → F2[x]/(xn − 1)

u = (u0, . . . , un−1) �→ Fu(x):=u0 + u1x + u2x2 + · · · + un−1xn−1.

Also define

� : Fn
2 → Fn

2 u �→ (uTT0u, uTT1u, . . . , uTTn−1u).

Let B:=� ◦ �, so

B : Fn
2 → F2[x]/(xn − 1) u �→ xn · Fu(x)Fu(1/x) mod (xn − 1).

Then # ker(�+) = #B−1(0) and # ker(�−) = #B−1(h(x)), where h(x) = �(A−1(1, 0, . . . , 0)).
Furthermore

h(x) ≡ xnh(1/x) mod (xn − 1). (8)

Proof For any u = (u0, . . . , un−1), v = (v0, . . . , vn−1) ∈ Fn
2, we have

⎛

⎝
∏

i
α
ui
(i),

∏

j
α
vj
(j)

⎞

⎠

2

= (−1)u
TAv .

Since ( · , · )2 is non-degenerate on M4 by Lemma 6, the matrix A has rank n and is
invertible. Note also that A is symmetric.
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Now
∏

i α
ui
(i), u = (u0, . . . , un−1) ∈ Fn

2 satisfies (6) if and only if

uTAT1u = uTAT2u = · · · = uTATn−1u = 0. (9)

Notice that from (7), we can write

A =
n−1∑

i=0
ciTi, ci ∈ F2.

Then (9) becomes

A ◦ �(u) = A

⎛

⎜⎜⎜
⎜
⎝

uTT0u
uTT1u

...
uTTn−1u

⎞

⎟⎟⎟
⎟
⎠

∈

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛

⎜⎜⎜
⎜
⎝

0
0
...
0

⎞

⎟⎟⎟
⎟
⎠
,

⎛

⎜⎜⎜
⎜
⎝

1
0
...
0

⎞

⎟⎟⎟
⎟
⎠

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (10)

Since A is invertible, we can set h(x) = �(A−1(1, 0, . . . , 0)). Notice that � is a one-to-
one correspondence. Then (10) can be rewritten as B(u) = � ◦ �(u) ∈ {0, h(x)}. Since A
is symmetric, A−1 is also symmetric, so (8) holds. Also (α,α)2 = (α,−1)2 = (α,−1)n2 =
∏

i(α(i),−1)2 = (NK/Q(α),−1)2, which is 1 if NK/Q(α) ≡ 1 mod 4 and −1 if NK/Q(α) ≡
−1 mod 4 by Lemma 10. Therefore # ker(�+) = #B−1(0) and # ker(�−) = #B−1(h(x)). ��

5.2 The counting problem

Our aim is to obtain the size of the preimage of 0 and h(x) under B. For any polynomial f ,
let f ∗ denote its reciprocal, i.e. f ∗(x) = xdeg f · f (1/x).

Lemma 12 For any positive factor k �= 1 of n, let dk be the order of 2 in (Z/k)×. Also set
d1 = 1. Consider the following factorisation in F2[x],

xn − 1 = f1(x) . . . fr(x)f ∗
m+1(x) . . . f

∗
r (x),

where fi are irreducible and fi = f ∗
i for i = 1, . . . , m. Let mk be the number of i such that

fi = f ∗
i and deg fi = dk and let 2rk − mk be the number of i such that deg fi = dk . Then∑r

i=1 deg fi = ∑
k|n rkdk and r = ∑

k|n rk and m = ∑
k|n mk , where r1 = m1 = 1, and

(rk ,mk ) =
⎧
⎨

⎩

(
φ(k)
2dk

, 0
)

if dk is odd,(
φ(k)
dk

, φ(k)
dk

)
if dk is even,

for k �= 1.

Proof Take f to be an irreducible factor of xn − 1 in F2[x]. Let γ be a root of f in an
extension of F2. Then γ is a primitive k-th root of unity, where k is some integer dividing
n. Galois theory on finite fields shows that Gal(F2(γ )/F2) is generated by the Frobenius
ϕ : x �→ x2. Sinceϕi : x �→ x2i for any i ∈ Z, we see that the order ofϕmust bedk , the order
of 2 in (Z/k)×. Therefore deg f = dk . The set of roots of f is {γ ,ϕ(γ ),ϕ2(γ ), . . . ,ϕdk−1(γ )},
which is closed under inversion precisely when dk is even. Therefore f is self-reciprocal if
and only if dk is even.
Let Ak be the set of distinct irreducible factors of xn − 1 in F2[x] which has a primitive

k-th root of unity in an extension of F2, and Mk be a subset of Ak containing elements
which are self-reciprocal, so 2rk −mk = #Ak andmk = #Mk . If dk is even, then all f ∈ Ak
are self-reciprocals, so Ak = Mk and rk = mk . If dk is odd, thenMk = ∅ andmk = 0.
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There are φ(k) roots of xn − 1 which are primitive k-th root of unity, so (2rk −mk )dk =
φ(k). Now the statement of the Lemma follows from rk = mk when dk is even, andmk = 0
when dk is odd. ��
We are now ready to prove the formulae for # ker(�+) and # ker(�−).

Proposition 5 For each k �= 1 dividing n, let dk be the order of 2 in (Z/k)×. Then

# ker(�+) =
∏

k|n, dkodd, k �=1
(21+dk − 1)

φ(k)
2dk ,

and

# ker(�−) =
∏

k|n, dk even, k �=1
(2dk/2 + 1)

φ(k)
dk

∏

k|n, dkodd, k �=1
(2dk − 1)

φ(k)
2dk .

If n is a prime, then writing d = dn,

(# ker(�+), # ker(�−)) =
⎧
⎨

⎩

(
(21+d − 1)

n−1
2d , (2d − 1)

n−1
2d

)
if d is odd,

(
1, (2

d
2 + 1)

n−1
d

)
if d is even.

In particular, when n = 3, # ker(�+) = 1 and # ker(�−) = 3.

Proof The first case we make use of # ker(�+) = #B−1(0) from Lemma 11. Here B(u) = 0
implies (xn − 1) | Fu(x)F∗

u (x). Obtain the following factorisation in F2[x] as described in
Lemma 12,

xn − 1 = f1(x) . . . fr(x)f ∗
m+1(x) . . . f

∗
r (x), (11)

Then for each k = 1, . . . , r, we have fk | Fu or f ∗
k | Fu.

By the Chinese Remainder Theorem,

F2[x]/(xn − 1) ∼=
r∏

i=1
(F2[x]/(fi)) ×

r∏

j=m+1

(
F2[x]/(f ∗

j )
)
.

For k = 1, . . . , m, the image of Fu in F2[x]/(fk ) is 0. For k = m + 1, . . . r, the image of Fu
is 0 in at least one of F2[x]/(fk ) and F2[x]/(f ∗

k ). Therefore

#B−1(0) =
r∏

j=m+1
(21+deg fj − 1).

Now applying Lemma 12,

# ker(�+) =
∏

k|n
(21+dk − 1)rk−mk =

∏

k|n, dk odd, k �=1
(21+dk − 1)

φ(k)
2dk . (12)

The second case # ker(�−) we consider B(u) = h(x). We count the number of u ∈ Fn
2

such that

xn · Fu(x)Fu(1/x) ≡ h(x) mod (xn − 1). (13)

Since A has full rank and (1, 0, 0, . . . 0), (0, 1, 0, . . . , 0), (0, 0, . . . , 0, 1) are linearly indepen-
dent, we know that h(x), xh(x), · · · , xn−1h(x) are linearly independent in F2[x]/(xn − 1).
This implies that h(x) ∈ (F2[x]/(xn − 1))×.
Fix a primitive complex n-th root of unity ζn. Consider the isomorphism

(F2[x]/(xn − 1))× → (Z[ζn]/2)× Fu(x) �→ Fu(ζn) mod 2.
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Now (13) becomes

Fu(ζn)Fu(ζn) ≡ h(ζn) mod 2.

Notice from (8) that h(ζn) = h(ζ−1
n ) = h(ζn) is real. We compute from (11),

#(Z[ζn]/2)× = #(F2[x]/(xn − 1))×

=
r∏

i=1
# (F2[x]/(fi))×

r∏

j=m+1
#

(
F2[x]/(f ∗

j )
)× =

∏

k|n
(2dk − 1)2rk−mk .

Take g ∈ F2[x] such that

xn − 1
x − 1

≡ xn−1 + xn−2 + · · · + x + 1 = x
n−1
2 g(x + x−1).

We can factorise g(x) = g2(x) . . . gr(x), where xdeg gk · gk (x + x−1) = fk (x) for 2 ≤ k ≤ m
and xdeg gk · gk (x + x−1) = fk (x)f ∗

k (x) form + 1 ≤ k ≤ r. Then since (Z[ζn + ζ−1
n ]/2)× ∼=

(F2[x]/(g))×, we compute

#
(
Z[ζn + ζ−1

n ]/2
)× = #(F2[x]/(g))×

=
r∏

i=2
# (F2[x]/(gi))× =

∏

k|n, k �=1
(2dk/2 − 1)mk (2dk − 1)rk−mk .

Our goal is to compute the size of the kernel of the homomorphism

ψ : (Z[ζn]/2)× → (Z[ζn + ζ−1
n ]/2)×β �→ ββ .

We claim that ψ is surjective. Since (Z[ζn + ζ−1
n ]/2)× has odd order, every element is a

square, so suppose β2 ∈ (Z[ζn + ζ−1
n ]/2)×, then ψ(β̂) = β2 for any lift β̂ ∈ Z[ζn + ζ−1

n ]
of β . Therefore

# ker(�−) = #B−1(h(x)) = # kerψ

= #(Z[ζn]/2)×

# imψ
=

∏

k|n, k �=1
(2dk/2 + 1)mk (2dk − 1)rk−mk . (14)

Putting in (12) and (14) the values of r andm in terms of n and d as in Lemma 12 proves
the proposition. ��

6 Joint spins
Fix a sign μ ∈ {±}. Recall that Sμ is the set of rational primes p ≡ μ1 mod 4 that split
completely in K/Q, i.e., unramified and of residue degree 1 in K/Q, and that Fμ is the set
of p ∈ Sμ of residue degree 1 in K (p)/Q. By Corollary 1, a prime p ∈ Sμ belongs to Fμ if
and only if spin(p, σ ) = 1 for all non-trivial σ ∈ Gal(K/Q) and any prime ideal p ofK lying
above p. Recall that Rμ is the set of primes p ∈ Sμ such that spin(p, σ ) spin(p, σ−1) = 1 for
all non-trivial σ ∈ Gal(K/Q) and all prime ideals p of K lying above p, so that Fμ ⊂ Rμ.
In this section, we will prove the following formula for the relative density of Fμ in Rμ,
denoted by d(Fμ|Rμ).

Theorem 5 Assume Conjecture Cη for η = 2
n(n−1) . Then

d(Fμ|Rμ) = 2− n−1
2 .
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Since each p ∈ Sμ splits into exactly the same number of prime ideals inO, and since Rμ

is a set of primes of positive natural density, it suffices to show that
∑

N(p)≤X
p lies over p∈Fμ

1 = 2− n−1
2

∑

N(p)≤X
p lies over p∈Rμ

1 + o(X(logX)−1). (15)

Let τ be a generator ofGal(K/Q), a cyclic groupof ordern. Then, bydefinitionof the setRμ,
a prime p ∈ Rμ belongs to the set Fμ if and only if spin(p, τ k ) = 1 for all k ∈ {1, 2, . . . , n−1

2 }.
The product

n−1
2∏

k=1

1 + spin(p, τ k )
2

is the indicator function of the property that spin(p, τ k ) = 1 for all k ∈ {1, 2, . . . , n−1
2 }.

Expanding this product gives

2− n−1
2

∑

H⊂{τ ,...,τ n−1
2 }

∏

σ∈H
spin(p, σ ), (16)

where the sum is over all subsets H of {τ , τ 2, . . . , τ n−1
2 }. When H = ∅, the product is 1 by

convention.
Let L/K be any abelian extension whose Galois group is isomorphic to Mμ

4 , and let A
denote the set of disjoint Gal(K/Q)-orbits of elements ofMμ

4 , so that we can write

Mμ
4 =

⊔

A∈A
A.

Each Gal(K/Q)-orbit A is then a collection of invertible congruence classes modulo 4O
that are distinct modulo squares. Let A0 ⊂ A be the set of Gal(K/Q)-orbits A such that
spin(p, σ ) spin(p, σ−1) = 1 for all non-trivial σ ∈ G and for all prime ideals p such that
r4(p) ∈ A. Note that a prime ideal p inO lies over a prime p ∈ Rμ if and only if r4(p) ∈ A
for some A ∈ A0.
Summing (16) over all prime ideals p of normN(p) ≤ X , we get that

∑

N(p)≤X
p∈Fμ

1 = 2− n−1
2

∑

H⊂{τ ,...,τ n−1
2 }

A∈A0

�(X ;H,A),

where

�(X ;H,A) =
∑

N(p)≤X
r4(p)∈A

∏

σ∈H
spin(p, σ ).

Being able to split the sum of interest into sums of the type �(X ;H,A) as above is what
partially motivates introducing L/K and orbits A, as it is unclear how one could cleanly
define an analogue of �(X ;H,A) for just one congruence class modulo 4O at a time (as
opposed to one orbit A).
The sums �(X ;∅, A) feature no cancellation and provide the main term in (15). It then

remains to show that

�(X ;H,A) = o(X/ logX) (17)

for each non-empty subsetH of {τ , . . . , τ n−1
2 } and each A ∈ A0. To this end, we will use a

slight generalization of Theorem 1 of [6].



1 Page 24 of 29 Chan et al. Res. Number Theory (2022) 8:1

We cannot apply the results of [6] directly for two reasons. First, the class number h of
K need not be 1 – this forces us to relate spin(a, σ ) to quadratic residue symbols involving
elements “smaller” than the totally positive generators of ah. Second, the sums �(X ;H,A)
feature the additional restriction that r4(p) ∈ A. Since A is a collection of congruence
classes modulo 4O, the restriction that r4(p) ∈ A is reminiscent of the restriction to a
congruence class as in [5, Theorem 1.2, p. 699]. Despite the similarity, there is a technical
difference that we will explain.
Fix once and for all a set C consisting of h unramified degree-one prime ideals inO that

is a complete set of representatives of ideal classes in the class group of K ; its existence
is guaranteed by an application of the Chebotarev Density Theorem to the Hilbert class
field of K .
Now suppose that a is a non-zero ideal in O coprime to

∏
p∈C N(p), and let α denote a

totally positive generator of ah. As h is odd, the set {p2 : p ∈ C} is also a complete set of
representatives. Hence there exists p ∈ C such that ap2 is a principal ideal. Let π denote a
totally positive generator of the ideal ph. Let α0 denote a totally positive generator of ap2.
Then αh

0 and απ2 are both totally positive generators of the ideal (ap2)h, so we have

spin(a, σ ) =
(

α

σ (a)

)
=

(
απ2

σ (ap2)

)
= spin(ap2, σ ) =

(
αh
0

σ (ap2)

)
=

(
α0

σ (α0)

)
, (18)

since h is odd. Note that for each p ∈ C there is a bijection

{a ⊂ O : N(a) ≤ x, ap2 is principal}
� {α0 ∈ D : N(α0) ≤ xN(p)2,α0 ≡ 0 mod p2} (19)

given by a �→ α0 as above, and where D is a set of totally positive elements in O defined
in [5, (4.2), p.713]. Moreover, r4(a) is the class inM4 of a totally positive generator of ah,
i.e., the class of α inM4. Since squares vanish inM4, the classes of α and απ2, and so also
of αh

0 , coincide inM4. Hence, if A is a Gal(K/Q)-orbit, then

r4(a) ∈ A if and only if αh
0 ∈ A. (20)

We will now prove the following adaptation of [6, Theorem 1, p. 2].

Theorem 6 With notation as above, let H be a non-empty subset of {τ , . . . , τ n−1
2 }. Assume

Conjecture Cη holds true for η = 1/(|H |n) with δ = δ(η) > 0 (see [6, p. 7]). Let ε > 0 be a
real number. Then for all X ≥ 2, we have

�(X ;H,A) � X1− δ

54|H |2n(12n+1)
+ε ,

where the implied constant depends only on ε and K .

Note that the set H above is of size at most n−1
2 . Since Conjecture Cη1 implies Conjec-

ture Cη2 whenever η1 ≤ η2, we see that, conditional on Conjecture Cη for η = 2
n(n−1) ,

Theorem 6 implies (17) for each Gal(K/Q)-orbit A ∈ A0 and each non-empty subset
H ⊂ {τ , . . . , τ n−1

2 }, and hence also Theorem 5. It thus remains to prove Theorem 6.
For a non-zero ideal a ⊂ O and a Gal(K/Q)-orbit A, let

r(a;A) =
⎧
⎨

⎩
1 if r4(a) ∈ A

0 otherwise,
and let

sa = r(a;A)
∏

σ∈H
spin(a, σ ).
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Then we have

�(X ;H,A) =
∑

N(p)≤X
sp,

where the summation is over prime ideals p ⊂ O of norm at most X .
Let F be the integer defined in [6, (2.2), p. 5]; it depends only on K . Moreover, we can

choose the sets C�a and C�b in [6, p. 5] so that their elements are coprime to
∏

p∈C N(p).
Note that F is divisible by 32.
To deduce Theorem 6, it suffices to prove that

∑

N(p)≤X
p�F

sp �ε,K X1− δ

54|H |2n(12n+1)
+ε

because F has only finitely many prime ideal divisors.
The proof of Theorem 6 proceeds via Vinogradov’s method, with suitable estimates

necessary for the sums of type I

Am(x) =
∑

Na≤x
(a,F )=1, m|a

sa,

where m is any non-zero ideal coprime to τ (m), and sums of type II

B(x, y; v, w) =
∑

N(a)≤x
(a,F )=1

∑

N(b)≤y
(b,F )=1

vawbsab,

where v = {va}a and w = {wb}b are arbitrary sequences of complex numbers of modulus
bounded by 1. By [5, Proposition 5.2, p. 722] applied with ϑ = δ

54n|H |2 and θ = 1
6n , the

following two propositions imply Theorem 6.

Proposition 6 Let δ = δ(|H |n) > 0 be as in Conjecture C|H |n. Let ε > 0. For any non-zero
ideal m ⊂ O, we have

∑

N(a)≤x
(a,F )=1,m|a

sa � x1−
δ

54n|H |2 +ε , (21)

where the implied constant depends only on K and ε.

Proposition 7 Let ε > 0. For any pair of sequences of complex numbers {va} and {wb}
indexed by non-zero ideals inO and satisfying |va|, |vb| ≤ 1, we have

∑

N(a)≤x
(a,F )=1

∑

N(b)≤y
(b,F )=1

vawbsab �
(
x− 1

6n + y− 1
6n

)
(xy)1+ε , (22)

where the implied constant depends only on K and ε.

6.1 Proof of proposition 6

The proof is very similar to the proof of [6, (2.5), p. 7], so we will outline the additional
arguments necessary to prove Proposition 6. For each non-zero ideal a, there exists a
prime ideal p ∈ C such that ap2 is principal. We can thus write

Am(x) =
∑

p∈C
Am(x; p),
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where

Am(x; p) =
∑

N(a)≤x
(a,F )=1, m|a
ap2 is principal

sa.

Since C depends only on K , it now suffices to prove that

Am(x; p) =
∑

N(a)≤x
(a,F )=1, m|a
ap2 is principal

sa � x1−
δ

54n|H |2 +ε

for each p ∈ C, where the implied constant depends only on K and ε. We now use the
bijection (19), the formula (18), and the equivalence (20) to write

Am(x; p) =
∑

α0∈D, N(α0)≤xN(p)2
(α0 ,F )=1, α0≡0 mod [m,p2]

αh
0∈A

∏

σ∈H

(
α0

σ (α0)

)
,

where [m, p2] denotes the least common multiple of m and p2. Again, since C and so also
the norms {N(p)}p∈C depend only on K , it suffices to prove that

A′
m(x) =

∑

α∈D, N(α)≤x
(α,F )=1, α≡0 mod m

αh∈A

∏

σ∈H

(
α

σ (α)

)
�K,ε x1−

δ

54n|H |2 +ε (23)

uniformly for all non-zero ideals m. We have thus removed the issue of summing terms
involving spin(a, σ ) for non-principal ideals a. It remains to handle the condition αh ∈ A.
To this end, we split the sum into congruence classes modulo F , and we emphasize that
F is a multiple of 4. We get

A′
m(x) =

∑

ρ mod F
ρ∈�I (A)

A′
m(x; ρ),

where

A′
m(x; ρ) =

∑

α∈D, N(α)≤x
α≡ρ mod F
α≡0 mod m

∏

σ∈H

(
α

σ (α)

)
(24)

and where �I (A) is the set of congruence classes ρ modulo F such that (ρ, F ) = 1 and
such that

α ≡ ρ mod F =⇒ αh ∈ A.

Note that |�I (A)| ≤ Fn �K 1.
The sumA′

m(x; ρ) in (24) is identical to the sumA(x, ρ) in [6, (3.2), p. 9].Hence, the bound
forA(x, ρ) proved in [6, Section 3] carries over toA′

m(x; ρ), which, in conjunction with the
fact that F depends only on K , implies the bound (23) and hence also Proposition 6.

6.2 Proof of proposition 7

The proof is very similar to the proof of [6, (2.6), p. 7], so we will outline the additional
arguments necessary to prove Proposition 7. Given x, y > 0 and two sequences v = {va}a
and w = {wb}b of complex numbers bounded in modulus by 1, recall that we defined

B(x, y; v, w) =
∑

N(a)≤x
(a,F )=1

∑

N(b)≤y
(b,F )=1

vawbsab, (25)
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and that our goal is to prove that

B(x, y; v, w) �K,ε
(
x− 1

6n + y− 1
6n

)
(xy)1+ε (26)

for all ε > 0, uniformly in v and w. We can write

B(x, y; v, w) =
∑

p1∈C

∑

p2∈C
B(x, y; v, w; p1, p2),

where, for (p1, p2) ∈ C × C, we set
B(x, y; v, w; p1, p2) =

∑

N(a)≤x
(a,F )=1

ap21 is principal

∑

N(b)≤y
(b,F )=1

bp22 is principal

vawbsab.

It suffices to prove the desired estimate for each of the h2 sums B(x, y; v, w; p1, p2). So
fix (p1, p2) ∈ C × C. Writing π1, π2, α0, and β0 for the totally positive generators of the
principal ideals ph1, p

h
2, ap

2
1, and bp22, respectively, we obtain in a similar way to (18) the

formula

spin(ab, σ ) =
(

α0β0
σ (α0β0)

)
=

(
α0

σ (α0)

)(
β0

σ (β0)

)(
α0

σ (β0)σ−1(β0)

)
. (27)

Using the bijection (19), the formula (27), and the equivalence (20), we deduce that

B(x, y; v, w; p1, p2) =
∑

α0∈D
N(α0)≤xN(p1)2

(α0 ,F )=1
α0≡0 mod p21

∑

β0∈D
N(β0)≤yN(p2)2

(β0 ,F )=1
β0≡0 mod p22
(α0β0)h∈A

v′
α0w

′
β0φ(α0,β0), (28)

where

v′
α0 = v(α0)/p21

∏

σ∈H

(
α0

σ (α0)

)
and w′

β0 = w(β0)/p22

∏

σ∈H

(
β0

σ (β0)

)

and where φ(·, ·) is the same function as the one defined in [6, p. 19], i.e.,

φ(α0,β0) =
∏

σ∈H

(
α0

σ (β0)σ−1(β0)

)
.

We further split the sum B(x, y; v, w; p1, p2) into congruence classes modulo F . As F is
divisible by 4, this will have the effect of separating the variables α0 and β0 in the condition
(α0β0)h ∈ A. We have

B(x, y; v, w; p1, p2) =
∑

ρ1 mod F

∑

ρ2 mod F
(ρ1 ,ρ2)∈�II (A)

B(x, y; v, w; p1, p2; ρ1, ρ2),

where

B(x, y; v, w; p1, p2; ρ1, ρ2) =
∑

α0∈D
N(α0)≤xN(p1)2
α0≡ρ1 mod F

∑

β0∈D
N(β0)≤yN(p2)2
β0≡ρ2 mod F

v′′
α0w

′′
β0φ(α0,β0).

Here

v′′
α0 = 1(α0 ≡ 0 mod p21) · v′

α0

and

w′′
β = 1(β0 ≡ 0 mod p22) · w′

β0 ,
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where 1(P) is the indicator function of a property P, and �II (A) is the set of (ρ1, ρ2) ∈
(O/(F ))× × (O/(F ))× such that

α0 ≡ ρ1 mod F and β0 ≡ ρ2 mod F =⇒ (α0β0)h ∈ A.

Note that |�II (A)| ≤ F2.
The sum B(x, y; v, w; p1, p2; ρ1, ρ2) has the same shape as the sum Bi(x, y;α0,β0) in [6, p.

19], and so the bound [6, (4.5), p. 19] implies that

B(x, y; v, w; p1, p2; ρ1, ρ2) �K,ε
(
x− 1

6n + y− 1
6n

)
(xy)1+ε .

This finishes the proof of Proposition 7 and hence also of Theorem 6.

7 Proof of main results
We now prove Theorem 1.

Proof By Theorem 4, for each sign μ ∈ {±}, d(Rμ|Sμ) = # ker(�μ)/2(n−1). Then
d(Rμ|Sμ) = sμ/2(n−1) by Proposition 5. By Theorem 5, d(Fμ|Rμ) = 2−(n−1)/2. There-
fore

d(Fμ|Sμ) = d(Fμ|Rμ)d(Rμ|Sμ) = sμ
23(n−1)/2 .

Since d(F |S) = d(F+|S+)d(S+|S) + d(F−|S−)d(S−|S), and d(Sμ|S) = 1/2,

d(F |S) = s+ + s−
2(3n−1)/2 .

��
Theorem 1 settles Conjecture 1.1 in [9]. This conjecture was originally stated for num-

ber fields K which in addition to satisfying properties (C1)-(C4), were also assumed to
have prime degree. While as originally stated, this assumption is necessary, it is artificial
here. In [9],mK is defined as the number of non-trivial Gal(K/Q)-orbits ofM4 with rep-
resentative α ∈ O such that (α,ασ )2 = 1. Let s denote the number of elements ofM4 with
representative α ∈ O such that (α,ασ )2 = 1. When n is prime, s = mKn + 1.
LetE denote the set of rational primes p such that for p a prime ofK above p, spin(p, σ ) =

1 for all non-trivial σ ∈ Gal(K/Q). For a fixed signμ ∈ {±}, let Eμ denote the set of primes
of E congruent to μ1 mod 4.
Conjecture 1.1 in [9] made two assertions, one regarding the density d(E|S) of such

primes restricted to those splitting completely in K/Q and one regarding the overall
density d(E) of such primes. The assertion regarding the restricted density is correct and
the assertion regarding the overall density is slightly off due to a very simple error in the
case inwhich p is not assumed to split completely inK/Q. Theorem7 proves conditionally
a slight modification of Conjecture 1.1 in [9]

Theorem 7 [9] Let K be a number field with prime degree satisfying properties (C1)-(C4).
Assume Conjecture Cη holds for η = 2

n(n−1) with n = [K : Q]. Then

d(E|S) = s
2(3n−1)/2 , d(E) = s

n2(3n−1)/2 ,

d(Eμ|Sμ) = sμ
23(n−1)/2 , and d(Eμ) = sμ

n2(3n−1)/2 .

When n is prime, s = mKn + 1.
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Proof If p is a prime ofK that does not split completely inK/Q, then for some non-trivial
σ ∈ Gal(K/Q), pσ = p so spin(p, σ ) = 0. Therefore E ⊆ S so this E is exactly the F
studied in Theorem 1 and Eμ = Fμ.
Then d(E) = d(F ) = d(F |S)d(S) and d(Eμ) = d(Fμ) = d(Fμ|Sμ)d(Sμ). Since d(S) =

1/n by the Chebotarev Density Theorem and d(Sμ) = 1/(2n), the result follows from
Theorem 1. ��

In Theorem 2, K satisfies (C1), (C2), and (C4) directly from the assumptions. When K
is a cyclic cubic number field with odd class number, by [1, Theorem V] all signatures
are represented by units so condition (C3) is satisfied by Lemma 1 because h is odd. It
is a consequence of the classical Burgess’s inequality [2] that Conjecture Cη is true for
η = 2

3(3−1) = 1
3 , as is shown in Section 9 of [5]. Therefore Theorem 2 follows from

Theorem 1 and is unconditional.
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