Schembri Res. Number Theory (2019) 5:11 N H
https://doi.org/10.1007/540993-018-0150-x 0 Resea rCh In N um ber Theo ry

RESEARCH

Examples of genuine QM abelian surfaces e
which are modular

Ciaran Schembri

“Correspondence:
cschembri2@sheffield.ac.uk

University of Sheffield, . . .
Hicks Building, Sheffield 53 7RH, Let K be an imaginary quadratic field. Modular forms for GL(2) over K are known as

UK Bianchi modular forms. Standard modularity conjectures assert that every weight 2
rational Bianchi newform has either an associated elliptic curve over K or an associated
abelian surface with quaternionic multiplication over K. We give explicit evidence in the
way of examples to support this conjecture in the latter case. Furthermore, the
quaternionic surfaces given correspond to genuine Bianchi newforms, which answers a
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1 Introduction

Let K be an imaginary quadratic field. A simple abelian surface over K whose algebra
of K-endomorphisms is an indefinite quaternion algebra over Q is commonly known as
a QM abelian surface, or just QM surface. These are also often referred to false elliptic
curves, coined by Serre in the 1970s [1] based on the observation that such a surface is
isogenous to the square of an elliptic curve modulo every prime of good reduction [30,
Lemma 6].

It is well-known that one can obtain QM surfaces over K by base changing suitable
abelian surfaces over Q. Accordingly, let us call a QM surface over K genuine if it is not
the twist of base-change to K of an abelian surface over (Q. Motivated by the conjectural
connections with Bianchi modular forms, in 1992 Cremona asked whether genuine QM
surfaces over imaginary quadratic fields should exist (see Question 1.3). We answer this
question in the positive by providing explicit genus 2 curves whose Jacobians are gen-
uine QM surfaces. To the best of our knowledge these are the first such examples in the
literature. Furthermore, by carrying out a detailed analysis of the associated Galois rep-
resentations and applying the Faltings—Serre—Livné criterion, we prove the modularity of
these QM surfaces. The main result of the present article is as follows:

Theorem 1.1 The Jacobians of the following genus 2 curves are QM surfaces which are
modular by a genuine Bianchi newform as in Conjecture 1.2.
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1. Cy:y* = a® +4ix® + (—2i — 6)x* + (—i + 7)x® + (8i — 9)x? — 10ix + 4i + 3,
Bianchi newform: 2.0.4.1-34225.3-a;

2. Cy:y* =a%+ (=24/=3 — 10)x° + (104/=3 + 30)x* + (—8+/—3 — 32)x>
+(—4+/=3 +16)x% + (—16+/—3 — 12)x — 44/—3 + 16,

Bianchi newform: 2.0.3.1-61009.1-a;

3. C3:9* = (104+/—3 — 75)x% + (528/—3 + 456)x* + (5004/—3 + 1044)x>
+(—1038+/=3 + 2706)x% + (—1158+/—3 + 342)x — 612/—3 — 1800,
Bianchi newform: 2.0.3.1-67081.3-a;

4. Cy:9? =a%—2/-3x° 4+ (24/=3 — 3)x* + 1/3(—2v/—3 + 54)x>
+(—20¢/=3 + 3)x2 + (=843 — 30)x + 4/—3 — 11,

Bianchi newform: 2.0.3.1-123201.1-b.

Proof See Sect. 4. |

Over the rationals there is a celebrated result that establishes a connection between
elliptic curves over Q and classical newforms of weight 2. Extending this to number
fields is an important aspect of the Langlands programme. However, in the case when
the number field is totally complex the correspondence needs to be modified to include
QM surfaces. This was first observed by Deligne in a letter to Mennicke in 1979 [12] for
imaginary quadratic fields. The construction is detailed in [15] and is illustrated with an
explicit example.

Thus the details of modularity for QM surfaces are different from the case of GL,-type.
Let us be completely explicit with the following conjecture [8,29].

Conjecture 1.2 Let K be an imaginary quadratic field.

1. Let f be a Bianchi newform over K of weight 2 and level I'y(n) with rational Hecke
eigenvalues. Then there is either an elliptic curve E /K without CM by K of conductor
nsuch that L(E/K, s) = L(f, s) or there is a QM surface A/K of conductor w* such that
L(A/K; s) = L(f; s)2.

2. Conversely, ifE /K is an elliptic curve without CM by K of conductor v then there is an
f as above such that L(E, s) = L(f, s). Moreover, if A/K is a QM surface of conductor
n? then there is an f as above such that L(A, s) = L(f, s)>.

up to isogeny
weight 2 rational RN
{ Bianchi newforms/K < ’ U

QM surfaces/K
up to isogeny

non-CM by K
elliptic curves/K

Let f be a classical newform of weight 2 with a real quadratic Hecke eigenvalue field
Ky = Q({a;}) and denote < o >= Gal(K;/Q). We say that f has an inner twist if
f? =f ® xx where xi is the quadratic Dirichlet character associated to some imaginary
quadratic field K. It follows that f and f° must base change to the same Bianchi newform
over K. The term genuine is used for newforms that are not (the twist of) base-change of
a classical newform. For more background on Bianchi newforms see [11, §2].


http://www.lmfdb.org/ModularForm/GL2/ImaginaryQuadratic/2.0.4.1/34225.3/a/
http://lmfdb.org/ModularForm/GL2/ImaginaryQuadratic/2.0.3.1/61009.1/a/
http://www.lmfdb.org/ModularForm/GL2/ImaginaryQuadratic/2.0.3.1/67081.3/a/
http://www.lmfdb.org/ModularForm/GL2/ImaginaryQuadratic/2.0.3.1/123201.1/b/
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From a geometric point of view, let A/Q be the abelian surface of GL;-type corre-
sponding to the newforms f, f° with an inner twist via L(A/Q, s) = L(f, s)L(f°, s). If the
base-change surface A ®g K remains simple then it is necessarily a QM surface and
L(A/K;s) = L(F,s)?, where F is the induction from Q to K of f. This motivates the
following question (see [10, Question 1’] and also [13, Conjecture 1]).

Question 1.3 Iff is a rational weight 2 Bianchi newform over K which is genuine, does f
have an associated elliptic curve over K?

Given the modular correspondence above, we could rephrase this question to ask
whether all QM surfaces arise from a GLy-type surface over Q. The genus 2 curves given
in Theorem 4.4 answer this question and say that such a newform f does not necessarily
have to correspond to an elliptic curve.

The genuine QM surfaces we present also have an interesting connection to the
Paramodularity Conjecture. Recall that the Paramodularity Conjecture posits a corre-
spondence between abelian surfaces A/Q with Endg(A) ® Q >~ Q and genus 2 paramod-
ular rational Siegel newforms of weight 2 that are not Gritsenko lifts [6, Conjecture 1.1].
It has been recently pointed out by F. Calegari et al. [5, §10] that the conjectural corre-
spondence needs to include abelian 4-folds B/Q with Endg(B) ® Q an indefinite non-split
quaternion algebra over QQ (see the amended version in [6, §8]) . This can be illustrated
using our genuine QM surfaces.

Let C/K be any of the four curves given in Theorem 4.4. Define A/K to be the QM
surface given by taking the Jacobian of C/K with Endx(A) ® Q =~ D/Q an indefinite
non-split quaternion algebra. Then the Weil restriction B = Resg/g(A) of A from K to
Q is a simple abelian 4-fold such that Endg(B) ® Q ~ D/Q. We prove that there is a
genuine rational weight 2 Bianchi newform f over K such that L(A/K, s) = L(f,s)%. Now
let F be the genus 2 paramodular rational Siegel newform of weight 2 that is the theta lift
of f. It now follows from the properties of Weil restriction [24] and theta lifting [3] that
L(B/Q,s) = L(A/K, s) = L(f,s)?> = L(E, s)2.

In analogy to the case of QM surfaces, at any prime p unramified in D the 8-dimensional
p-adic Tate module of B/Q splits as the square of a 4-dimensional submodule[7, §7]. Then
the 4-dimensional p-adic Galois representation has similar arithmetic to one that arises
from an abelian surface over Q with trivial endomorphisms. Indeed, our example above
shows that via the representation afforded by the submodule, B/Q corresponds to a Siegel
newform of the type considered in the Paramodularity Conjecture.

The article will be laid out as following: in Sect. 2 we outline how these genus 2 curves
were found and in Sect. 3 we discuss some arithmetic properties of the attached Galois
representation in the case where ¢ divides the discriminant of the acting quaternion
algebra. Then Sect. 4 will be dedicated to showing how the Faltings—Serre—Livné criterion
can be applied in order to prove that the examples given are modular. The final section
lists the examples and contains further details of interest about them.

2 Rational points on Shimura curves

In this section we outline how the genus 2 curves in Theorem 4.4 were found. Let A be a
geometrically simple abelian surface defined over an imaginary quadratic field K. Define
the endomorphism rings Endx (A) and Endz=(A) to be the endomorphisms of A which are
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defined over K and K respectively. As in the introduction, we use the convention that A
has quaternionic multiplication, or QM for short, if Endg (A) is an order & in an indefinite
quaternion algebra Bp over Q. We say that A has potential QM if the action of & is defined
over some extension of K. The notation Bp is used for the unique quaternion algebra of
discriminant D up to isomorphism. Note that Bp must be non-split because A is simple.
For the remainder of the article let & be a maximal order of Bp.

Families of QM surfaces have been constructed by Hashimoto et al. (see [17]) for quater-
nion algebras of discriminant 6 and 10. Testing numerically it would seem these give rise
to surfaces which are all (a twist of) base-change. So we instead utilise two families given
by Baba and Granath [2] that have been derived from the moduli space.

Given the order @, the set of norm 1 elements is denoted by &'1. These act as isometries
on the upper half plane % via an embedding & — M;(R) and the resulting quotient
Xp = /0" is a moduli space for abelian surfaces with quaternionic multiplication by
O [2]. 1t is well known that these are compact Riemann surfaces called Shimura curves
and they admit a model defined over Q. In particular, these are Xg : X2 +3Y2 +2%2 =0
and Xq0: X2 +2Y%2+ 272 =0.

Let us detail the family for D = 6, for more information see [2]. We take the point on
the conic

Py =(4:3/j:/—27j — 16) € Xe

and define the genus 2 curve

G y2 = (—4 + 35)x° + 61x° + 3£(28 + 9s)xt — 41243
+ 3t2(28 — 9s)x2 + 6t3x — t3(4 + 3s),

where t = —2(27j + 16) and s = Jj@ Then the Jacobian of C; is a QM surface. The
curve is defined over the field Q(\/j, /—6) and the field of moduli for C; is Q(j). In this
way we can generate numerous QM surfaces by, for example, taking any j € Q.

For the purposes of modularity we need to fix a field K = Q(+/—38) and define a QM
surface over K. To do this we first establish whether X4(K) is non-empty and if this is the
case then find a K-rational point (a : b : ¢) on Xe. Take the quantity j = (%)2 € K and
the corresponding genus 2 curve C; is defined over K (+/—6). It has a model defined over
K if and only if K splits the Mestre obstruction which is the quaternion algebra

(—6j, —2(27j + 16))

20) ~ <ﬁ> ~ Bp ®q K.

K
Hence C; has a model defined over K if and only if K splits Bp. Since D = 6 this happens
exactly when neither of 2 or 3 split in K.

So let us suppose that K <> Bp. Once we have the curve C; defined over K (+/—6) we
wish to find an isomorphic curve defined over K. Using MAGMA it is possible to take
Igusa-Clebsch invariants and then create a model defined over K with the same Igusa-
Clebsch invariants. This then allows us to test whether the curve is a twist of base-change.
It can be easily shown that a curve is genuine if the Euler polynomials at a pair of conjugate
primes are not the same (up to twists). If it is indeed genuine then we endeavour to find a
smaller model for the curve.
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The size of the level places a limitation on whether a Bianchi modular form can be
computed. Hence we try to find surfaces with as small a conductor as possible. With QM
surfaces it can be a challenge to find examples with small conductor (see [6, Section 8]).

It is necessary to know the conductor exactly since we wish to find the conjecturally
associated Bianchi newform. The odd part of the conductor can be found using MAGMA.
Computing the even part has recently been made possible using machinery developed in
[14]. The support of the ideal generated by the discriminant of a genus 2 hyperelliptic
curve contains the support of the conductor of its Jacobian and the inclusion can in fact
be strict. This phenomenon arises especially when one works with curves that have very
large coeflicients.

The curves in Theorem 4.4 were then found by parameterising the conic X4(K) and
conducting a large search with varying j-value. To control the support of the conductor
and stay away from large primes we used the proposition below. Once suitable curves were
discovered, minimal models were found using as yet unpublished code by L. Dembélé.

Proposition 2.1 Let Cj/k be a genus 2 curve as above. Then C; has potentially good
reduction at a prime p 1 6 if and only if vy (j) = 0.

Proof See [2, Proposition 3.19]. O

3 Galois representations attached to QM surfaces
In this section we describe the image of the Galois representation attached to a QM surface
when the prime ¢ divides the discriminant of the quaternion algebra. For a brief overview
on the arithmetic of quaternion algebras see [23, Ch. 2].

Let A/K be a QM surface with & < Endg(A) a maximal order in the quaternion algebra
B/Q and denote by o, : Gk — GL4(Zy) the representation coming from the ¢-adic Tate
module T/A = lim A[¢"].

Denote by &, = O ®z, Z¢ and By = B ®g Q. Then for each prime ¢ the Tate module
T¢A is free of rank 1 over 0 [26] and hence there is an associated £-adic representation

oo G —> Auty(TeA) ~ ﬁlx C BZ.
Furthermore, the p; form a strictly compatible system of £-adic representations [20, §5].

If ¢ 1 Disc(B) this precisely means that (0 ® Z;)* ~ GLy(Z¢) and in this case there is a
decomposition [7, Theorem 7.1]

0 = pr @ py.

For the remainder of the section let £ be a prime that divides Disc(B). This means that
¢ is ramified in B and so By is isomorphic to the unique division quaternion algebra over
Q. It can be represented as

]T, u 7 . .o o .
(@):QK'1+QK'1+QZ']+QZ-U; 12:% ]227_[;
where 7 is the uniformiser of Z, and Q; (/) is the unique unramified quadratic extension
of Qg.

Any quadratic extension of QQ; splits the ramified quaternion algebra. So let us denote
L = Q¢(y/u) and Ry, as its ring of integers. Then B ®q, L > M,(L) and there is an explicit
isomorphism of Q-algebras

l

By~ [(Of / ﬂ/)| B el 'L — Lisconjugation inL/Q[} C My(L); W
nf o
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If v: Q¢ — Zis the £-adic valuation then w = v o Np, /g, defines a valuation on the
quaternion algebra By. This gives us
Op={x€By|wx) >0}
which is the unique maximal order of B, and
F ={xeB|wix) >0},
a two-sided ideal. It is a principal ideal given by _# = 0/ and any two-sided ideal of 0
is a power of ¢ . In the isomorphism (1) we get 0 by taking o, B € Ry.
Define Ay C O to be the unique two-sided ideal of reduced norm ¢ such that A% = (0).

The torsion subgroups A[¢] and A[)A;] are free of rank 1 over the [F,-algebras &'/¢ and
O | x¢ respectively [20, §4]. Explicitly, these have the structure

o/1e={(45)1a B eFp} c My(Fp),
ﬁ/)\.g ZJFZZ,

Denote the residual representations by

Ty : Gal(K/K) —> Auty (A[€]) < GLy(F,2),
¢ : Gal(K/K) —> Autg (A[Ae]) ~ F,

There is a commutative diagram:

Gk —2 Auty (TyA)
& l

Autg (A[Ae]).

Under the identification (1) and projecting as in the commutative diagram the image of
p¢ will lie in GLy(F2). Furthermore, up to conjugation it can be assumed that the image
of p, is contained in GLy(Fy) by [19, Lemma 3.1]. Specifically, it will be contained in the
non-split Cartan subgroup of GLy(FF¢), which is the unique cyclic subgroup of order £2 —1.

For a Frobenius element F,, the Hecke polynomial is given by

Ppg(Fu) = NB@/QK(I — pe(Fy)t) =1 —ayt + Nth,
which residually is

Py, (Fy) mod £ = (1 — at)(1 — a't)
with o € IFZXz, Furthermore, the map F, — Nr, /F, (@) is the cyclotomic character [20].
Theorem 3.1 Let A be a geometrically simple abelian surface defined over an imaginary
quadratic field K such that Endy (A) is isomorphic to a maximal order O in an indefinite
quaternion algebra B/Q. Suppose that the prime € divides Disc(B) and Ty, p, are the

residual Galois representations on the torsion subgroups A[£] and A[\¢] respectively. Then
there is a short exact sequence of groups

1— € — Im(ty) — Im(p,) — 1,

where € < IE‘ZZ
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Proof Since Autg (A[4]) >~ (€/€)* and Auty (A[Ae]) =~ (O /)™ =~ IFZZ it is enough to
show that there is a short exact sequence

1— ]FZ2 — (O/0) — ]F;z — 1

Let r be the projection r : (0 /€)* — (€/*¢)*. Then ker(r) consists of the cosets ¢ + ¢
such that ¢ € Ay + 1. It follows that ker(r) >~ (1 + A¢)/(1 4+ £) which is isomorphic
toF 2’2. |

Remark 3.2 Iff is a Bianchi newform which corresponds to a QM surface with quaternion
algebra Bp, then the residual representation attached to f has cyclic image at the primes
dividing the discriminant D.

Given a Bianchi newform with rational coefficients, it would be desirable to have a
criterion which determines whether f should correspond to an elliptic curve or a QM
surface. The above gives a necessary condition for f to correspond to a QM surface.
We wish to know whether a sufficient condition also exists and if so whether it can be
determined from computing the trace of Frobenius for a finite set of primes.

4 Proof of modularity
Here we provide a proof that the second example in Theorem 4.4 is modular using the
Faltings—Serre—Livné criterion, the other cases follow similarly. So let C; be the genus 2

curve

Cy: 9% = a° 4+ (—24/=3 — 10)x° + (10v/=3 + 30)x* + (—8+v/—3 — 32)x>
+ (—4v/=3 + 16)x? 4+ (—16v/—3 — 12)x — 4/—3 + 16.

and A the Jacobian of C;. The surface A = Jac(C,) has conductor p‘fal . p‘llg)1 with norm
610092 and 0 — EndQ( v=3) (A) where O is the maximal order of the rational quaternion
algebra of discriminant 10. The endomorphism algebra can be independently verified
using the machinery developed in [9].

Let f € Sa(I o(p%g,1 . p%m)) be the genuine Bianchi newform which is listed on the
LMEFDB database with label 2.0.3.1-61009.1-a. We will show that f is modular to A. By the
work of [16,28] and more recently [4,25], we can associate an £-adic Galois representation
pre + Gal(K/K) — GLa(@,) tof such that L(£ s) = L{pge, ).

The Faltings—Serre—Livné method gives an effective way to prove that two Galois repre-
sentations are isomorphic up to semisimplification by showing that the trace of Frobenius
agree on a finite computable set of primes. We follow the steps outlined in [13] which for
practical reasons necessitates use of the prime £ = 2. This prime is ramified in the acting
quaternion algebra and as in Sect. 3 we can associate a representation to the 2-adic Tate
module.

Lemma 4.1 The representations

pa2 P2+ Gal(Q(V—3)/Q(V-3)) — GL2(Q,)

have image contained in GLy(E), where E is the unique unramified quadratic extension of
Z.


http://lmfdb.org/ModularForm/GL2/ImaginaryQuadratic/2.0.3.1/61009.1/a/
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Proof For pa, this is a direct consequence of the way that the representation has been
defined. Let us now consider ps;. The prime 31 is split in Q(+/—3) and the Hecke eigen-
values above these primes are distinct. Hence we can take the field by adjoining the roots
of the Hecke polynomials which gives Q(v/—43, v/—123). The completion at either of the
primes above 2 in this field gives the unique unramified quadratic extension of Z; and so
we can take this as the coefficient field E by [28, Corollary 1]. ]

First we must show that the residual representations are isomorphic.

Lemma 4.2 The residual representations p 45, Pgy are isomorphic and have image C3 C
GLy(IFy).

Proof Denote by F4 and Fy the fields cut out by p 4, and py, respectively. The field given
by the 2-torsion of A is isomorphic to A4 which has only one proper normal subgroup.
This subgroup has order 4 and so applying the short exact sequence of Theorem 3.1, the
image of o4 , must be Cs.

We first note that it can be assumed Im(ﬁﬁ) C GLy(F3) due to the fact that the traces
of Frobenius are all rational [19, Lemma 3.1]. To show that Im(ps,) = C3 let m denote
the modulus

3
m=p;-p131- P91

Then as explained in [18, Ch. 6], if Im(py,) is not equal to C3 there must be a quadratic
extension of Q(v/—3) contained in Fy which corresponds to a quadratic character of

CI(Z[@], m). We compute the ray class group to be

CI(Z[#L m) ~ (Z/27)* & (Z/12Z) & (Z./367Z).

Let {x1,--., xa} be an Fy-basis for the quadratic characters of CI(Z[%?B], m). Then
{x1(p) ..., xa(p)}pes spans F3, where S = {p7,1, p7,2 P132 P192 bs}. If Fy contains a
quadratic subfield then by [13, Proposition 5.4] the associated quadratic character must
be non-zero for one of the primes in S. Hence there must be a prime p € S that is inert in
this subfield and so o, (Froby) must have order 2. However, we compute that the trace of
Frobenius is odd for all primes in S and therefore F; is a cubic extension of Q(/-3).

To show that the representations are isomorphic let ¥4 denote the cubic charac-
ter associated to F4. Extend this to an Fs-basis {4, x1} of the cubic characters of
CI(Z[%?], m). We find that the prime p37; is such that ¥4 (p37,1) = Oand x1(p37,1) # 0.
So if xs is the cubic character associated to Fy and xs is not in the span of x4 then
V¢ (p37,1) must be non-zero. In particular, g (Froby) must have order 3 but we find that
Tr(ﬁﬁz(Frobpm)) = Tr(p4,(Froby,,,)) and so we can conclude that the residual repre-
sentations are isomorphic. O

Now that we have shown that the residual representations are isomorphic it remains to
show that the full representations are isomorphic up to semisimplifcation. The residual
images are cyclic and note that this will always be the case when the prime ¢ divides
the discriminant of the acting quaternion algebra. Since the images are cyclic we can use
Livné’s criterion, which applies when the image is absolutely reducible.
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Theorem 4.3 Let K be a number field, E a finite extension of Qo and OF its ring of integers
with maximal ideal &. Let

p1, p2 : Gal(K /K) —> GLy(E)

be two continous representations unramified outside of a finite set of primes S and Ky, s the
compositum of all quadratic extensions of K unramified outside of S.
Suppose that

1. Tr(p1) = Tr(pz) = 0 (mod &?) and Det(p,) = Det(py) = 1 (mod P);
2. There is a finite set of primes T such that the characteristic polynomials of p1 and p;
are equal on the set {Froby | p € T}.

Then py and py have isomorphic semisimplifications.
Proof See [21, Theorem 4.3]. |

It is now possible to show that the representations attached to A and f are isomorphic
up to semisimplification.

Theorem 4.4 The Jacobians of the following genus 2 curves are QM surfaces which are
modular by a genuine Bianchi newform as in Conjecture 1.2.

1. Cp:9? =%+ 4ix® + (—2i — 6)x* + (—i + 7)x> + (8i — 9)x® — 10ix + 4i + 3,
Bianchi newform: 2.0.4.1-34225.3-a;

2. Cy:9? =u® 4 (=24/=3 — 10)x° + (10/=3 + 30)x* + (—8+/—3 — 32)x>
+(—4v/=3 + 16)x* + (—164/—3 — 12)x — 4/=3 + 16,

Bianchi newform: 2.0.3.1-61009.1-a;

3. C3:9% = (104+/—=3 — 75)x% + (5284/—3 + 456)x* + (500/—3 + 1044)x>
+(—1038y/=3 4 2706)x% + (—1158+/—3 + 342)x — 612+/—3 — 1800,
Bianchi newform: 2.0.3.1-67081.3-a;

4, Cy:9? =% — 2¢/=3x° 4+ (24/=3 — 3)x* + 1/3(—2v/—3 + 54)x>
+(—204/=3 + 3)x2 + (—8+/—=3 — 30)x + 4/—3 — 11,

Bianchi newform: 2.0.3.1-123201.1-b.

Proof Restricting the representations to the cubic extension cut out by the residual rep-
resentation, the mod & image becomes trivial. We are then in a position to apply Livné’s
criterion.

Let {x1, ..., x¢} be a basis of quadratic characters. Any set of primes {p;} for which the
vectors {(x1(p;) . - -» x6(pi))} cover IFS\{O} will satisfy the criterion. Following [13, §2.3 step
(7)] we compute the set T = {3, 37,43, 61, 67, 73,97, 103, 127, 151, 157, 193, 211, 307, 313,
343, 373,433, 463, 499, 523, 631, 661, 823, 1321, 2197, 2557, 2917}. The traces of Frobenius
agree on this set.

To complete the proof we note that this shows that the representations are isomor-
phic when restricting to the cubic extension cut out by the residual representations. As
explained in [27, pp. 362] this means that the full representations could differ by a char-
acter. We find that the prime above 5 is inert in the cubic extension and that the traces
of Frobenius agree on this prime, which forces the character to be trivial. Hence we can
conclude that the two representations are isomorphic up to semisimplification.


http://www.lmfdb.org/ModularForm/GL2/ImaginaryQuadratic/2.0.4.1/34225.3/a/
http://lmfdb.org/ModularForm/GL2/ImaginaryQuadratic/2.0.3.1/61009.1/a/
http://www.lmfdb.org/ModularForm/GL2/ImaginaryQuadratic/2.0.3.1/67081.3/a/
http://www.lmfdb.org/ModularForm/GL2/ImaginaryQuadratic/2.0.3.1/123201.1/b/
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The set of primes needed for the other three surfaces are:

- T(Cy) =1{5,17,61,73,121,125,157}.

- T(C3) ={3,13,19,31,43,73,79, 103, 157, 163, 181, 199, 307, 313, 397, 409, 457,
487,643, 661, 673, 691, 823, 829, 997, 1063, 1447, 1621, 2377, 2689}.

— T(C4) =1{7,13,61,79,97}.

5 Examples
At the time of writing there are 161343 rational Bianchi newforms of weight 2 in the

LMFDB [22] and these are for the quadratic fields Q(+/—d) withd = 1,2,3,7,11. Up to
conjugation and twist there are only four genuine newforms for which no corresponding
elliptic curve has been found. These are all accounted for by Theorem 4.4.

Curve 5.1 Let C; be the genus 2 curve as in Theorem 4.4.1:
Cy:y* = a8 4 4ix® + (=2 — 6)a* + (=i 4+ 7)x® + (8i — 9)x® — 10ix + 4i + 3.

— The surface A = Jac(Cy) has conductor pg’l . p§7,2 with norm 342252,
— 0 — Endg)(A) where O is the maximal order of the rational quaternion algebra of

discriminant 6.
— There is a genuine Bianchi newform f € SZ(FO(]J%’1 . p%m)) which is modular to A and
is listed on the LMFDB database with label 2.0.4.1-34225.3-a.

Curve 5.2 Let C, be the genus 2 curve as in Theorem 4.4.2:

Co i 92 = x% + (—24/=3 — 10)x° + (10+/=3 + 30)x* + (—8v/—=3 — 32)x>
+ (—4v/ =3 + 16)x% + (—168/—3 — 12)x — 4+/—3 + 16.

— The surface A = Jac(Cy) has conductor p‘f&l . p%9,1 with norm 610092
- O < Endgy j=3)(A) where O is the maximal order of the rational quaternion algebra

of discriminant 10.
— There is a genuine Bianchi newform f € Sa(I'p (13%3’1 ~p%9,1)) which is modular to A and
is listed on the LMFDB database with label 2.0.3.1-61009.1-a.

Curve 5.3 Let C3 be the genus 2 curve as in Theorem 4.4.3:

C3 : 9% =(104+/—3 — 75)x® + (528+/—3 + 456)x* + (500+/—3 + 1044)x>
+ (—1038+v/=3 + 2706)x> + (—1158+v/—3 + 342)x — 612+/—3 — 1800.

— The surface A = Jac(C3) has conductor p%l . p§7,2 with norm 670812,

— O < Endgy j=3)(A) where 0 is the maximal order of the rational quaternion algebra
of discriminant 10.

— There is a genuine Bianchi newform f € Sg(Fo(p%1 - p%m)) which is modular to A and
is listed on the LMFDB database with label 2.0.3.1-67081.3-a.


http://www.lmfdb.org/ModularForm/GL2/ImaginaryQuadratic/2.0.4.1/34225.3/a/
http://lmfdb.org/ModularForm/GL2/ImaginaryQuadratic/2.0.3.1/61009.1/a/
http://www.lmfdb.org/ModularForm/GL2/ImaginaryQuadratic/2.0.3.1/67081.3/a/
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Curve 5.4 Let Cy be the genus 2 curve as in Theorem 4.4.4:

Cy: 9 =x% — 2/=3x" + (2v/=3 — 3)x* + 1/3(—2v/—3 + 54)x>
+ (—20v/=3 4 3)x% 4 (—8v/—3 — 30)x + 4+/—3 — 11.

— The surface A = Jac(Cs) has conductor péz . p‘llg,l with norm 1232012,
— O < Endgy /=3 (A) where 0 is the maximal order of the rational quaternion algebra

of discriminant 6.

— There is a genuine Bianchi newform f € Sz(Fo(pg . 9%3,1)) which is modular to A and

is listed on the LMFDB database with label 2.0.3.1-123201.1-b.
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