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Abstract

We give a new formula for the Chebotarev Densities of Frobenius elements in Galois
groups. This formula is given in terms of smallest prime factors pmin(n) of integers
n ≥ 2. More precisely, let C be a conjugacy class of the Galois group of some finite
Galois extension K ofQ. Then we prove that

− lim
X→∞

∑

2≤n≤X[
K/Q

pmin(n)

]
=C

μ(n)
n

= #C
#G

.

This theorem is a generalization of a result of Alladi from 1977 that asserts that largest
prime divisors pmax(n) are equidistributed in arithmetic progressions modulo an integer
k , which occurs when K is a cyclotomic fieldQ(ζk ).
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Mathematics Subject Classification: 11R45, 11R44

1 Introduction and statement of results
It is well-known that

lim
s→1+ ζ (s)−1 = lim

X→∞

X∑

n=1

μ(n)
n

= 0,

where ζ (s) = ∑
n≥1 n−s is the Riemann zeta function and μ(n) is the Möbius function

defined by

μ(n) :=

⎧
⎪⎨

⎪⎩

1 if n = 1,
0 if p2 | n for some prime p,
(−1)r if n = p1 . . . pr where the pi are distinct primes.

This follows from the fact that ζ (s) has a pole at Re(s) = 1. In particular, we observe by
reordering that

− lim
X→∞

X∑

n=2

μ(n)
n

= 1.

As this work will show, this can be interpreted as the statement that 100% of integers
n ≥ 2 are divisible by a prime. Tomake sense of this, let pmin(n) (resp. pmax(n)) denote the
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smallest (resp. largest) prime divisor of n. Alladi shows in [1] that if gcd(�, k) = 1, then

−
∑

n≥2
pmin(n)≡� (mod k)

μ(n)
n

= 1
ϕ(k)

, (1)

which, by Dirichlet’s theorem on primes in arithmetic progressions and a certain dual-
ity principle stated in Sect. 2, implies that largest prime divisors are equidistributed in
arithmetic progressions modulo k . Here we generalize this.
For aesthetic purposes, we define

μ∗(n) := −μ(n). (2)

In order to state our results, suppose that K is a Galois extension of Q. If p is an
unramified prime and p ⊆ OK is a prime ideal lying above p, then let

[
K/Q
p

]
denote the

Artin symbol (see Sect. 2.2). For convenience, we let
[
K/Q

p

]
=
{[

K/Q

p

]
: p ⊆ OK is a prime ideal lying above p

}
.

Therefore, it is well-known that
[
K/Q
p

]
= C , where C ⊂ Gal(K/Q) is a conjugacy class.

Theorem 1 Let K be a finite Galois extension ofQwith Galois group G = Gal(K/Q), and
let C ⊂ G be a conjugacy class. Then we have that

lim
X→∞

∑

2≤n≤X[
K/Q

pmin(n)

]
=C

μ∗(n)
n

= #C
#G

.

Remark The convergence of the sum in Theorem 1 is conditional, and the proof of
Theorem 1 in Sect. 3 gives an explicit convergence rate [see Eq. (10)].

Remark We can view the set
{
−μ(2)

2
,−μ(3)

3
,−μ(5)

5
,−μ(6)

6
, . . .
}

=
{

μ∗(2)
2

,
μ∗(3)
3

,
μ∗(5)
5

,
μ∗(6)
6

, . . .
}

as a “signed probability measure” which can be used to calculate Chebotarev Densities via
minimal prime divisors of squarefree integers.

Examples

a) Alladi’s Theorem (1) is a special case of Theorem 1 where one chooses K to be a
cyclotomic field, i.e. K = Q (ζk ), where ζk is a primitive kth root of unity.

b) Let f (x) = x4 + x + 1. Then f (x) has Galois group Gal(f ) = S4, so in particular
#Gal(f ) = 24. Let K be the splitting field of f , and define the set

S := {p prime : p is unramified in K and f has no roots in Z/pZ}.

For primes p ∈ S, the reduction of f modulo p is either an irreducible quartic,
which corresponds to the conjugacy class in Gal(f ) = S4 consisting of a 4-cycle (this
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conjugacy class has six elements), or a product of two irreducible quadratics, which
corresponds to the conjugacy class in S4 consisting of products of two transpositions
(this conjugacy class has three elements). Then the probability of an irreducible
quartic contributes 6

24 to the sum, and the probability of a product of irreducible
quadratics contributes 3

24 to the sum, so the theorem gives

∑

n≥2
pmin(n)∈S

μ∗(n)
n

= 3
8

= 0.375.

Now, define the set

S′ := {p prime : p is unramified in K and f has exactly one root in Z/pZ}.

For primes p ∈ S′, the reduction of f modulo p is a product of a linear factor and
an irreducible cubic, which corresponds to the conjugacy class in S4 consisting of a
3-cycle (this conjugacy class has eight elements). Then the theorem gives

∑

n≥2
pmin(n)∈S′

μ∗(n)
n

= 1
3
.

The table below gives the actual values of the sums

∑

2≤n≤X
pmin(n)∈S

μ∗(n)
n

and
∑

2≤n≤X
pmin(n)∈S′

μ∗(n)
n

for increasing values of X .

X f (mod p) has no roots f (mod p) has 1 root
20,000 0.3730 0.3342
40,000 0.3741 0.3328
60,000 0.3738 0.3337
80,000 0.3735 0.3330
100,000 0.3734 0.3338

c) Theorem 1 holds for suitable sets of primes S with Dirichlet density.

To prove Theorem 1, we need the following theorem which is a statement about the
largest prime divisors of integers.

Theorem 2 Assume the notation and hypotheses from Theorem 1. Then we have that

∑

2≤n≤X[
K/Q

pmax(n)

]
=C

1 = #C
#G

· X + O
(
X exp

{−k(logX)1/3
})

, (3)

where k is a positive constant.
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In Sect. 2.1, we give some results which will help bound error terms in the proofs of
the above theorems, and we give the duality between largest and smallest prime divisors
introducedbyAlladi [1]. In Sect. 2.2,we state andexplain theChebotarevDensityTheorem
[8]. In Sect. 3, we prove Theorems 1 and 2.

2 Preliminaries
2.1 Error terms and duality

We require several tools in order to prove Theorems 1 and 2. First, we define the function

�(X, Y ) :=
∑

n≤X
pmax(n)≤Y

1,

which counts the number of integers n ≤ X with largest prime divisor pmax(n) ≤ Y .
Let S(X, Y ) denote the set of such integers n ≤ X with pmax(n) ≤ Y . Then clearly
|S(X, Y )| = �(X, Y ).
We now state a theorem of Hildebrand [4] which improves an asymptotic bound for

�(X, Y ) given by de Bruijn [3]. We must first define the Dickman function ρ(β) as the
continuous solution of the system

ρ(β) = 1 for 0 ≤ β ≤ 1,

−βρ′(β) = ρ(β − 1) for β > 1.

Theorem (Hildebrand) We have that

�(X, Y ) = Xρ(β)
(
1 + Oε

(
β log(β + 1)

logX

))

uniformly in the range X ≥ 3, 1 ≤ β ≤ logX/(log logX)5/3+ε , for any fixed ε > 0.

The following unpublished theorem of Maier [6] can be recognized as a corollary of
Hildebrand’s Theorem, and this corollary will be sufficient to prove the theorems in this
paper.

Corollary If β = logX
log Y , then for X sufficiently large (where β varies with X) we have that

�(X, Y ) ∼ Xρ(β)

uniformly in the range 1 ≤ β ≤ (logX)1−ε for any fixed ε > 0.

It turns out that for 1 ≤ β ≤ (logX)1−ε , we have

�(X, Y ) = Oε

(
X exp

{−β log β/2
})

. (4)

The O-constant depends on ε, and we will later choose ε = 2/3 in the proof of Theorem
2. To obtain (4), we require an upper bound for ρ(β) as recommended by one of the
reviewers. Norton [7, Lemma 4.7] gives the following bound,

ρ(β) ≤ 1
	(β + 1)

. (5)
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Applying Stirling’s formula to (5), we see that

ρ(β) ∼ 1√
2πβ

exp
{−β log β/e

}
.

From this asymptotic estimate and the above corollary, it is straightforward to see that (4)
holds.
These estimates will be useful in bounding error terms in the proof of Theorem 1. The

following lemma will also be useful in obtaining estimates.

Lemma 3 For a ≤ X and S(X, Y ) defined as above, we have that

∫ X

a

⎛

⎝
∑

n∈S(X/t,t)
1

⎞

⎠ dt =
∑

1≤n≤X/a
pmax(n)≤X/n

∫ X/n

max
(
pmax(n),a

) dt.

Proof Looking at the (Stieltjes) integral on the left hand side, a given integer n occurs
whenever t is in the range t ≥ a, t ≥ pmax(n), and t ≤ X/n. Therefore the integer
n contributes to the integral the length of the interval from max

(
pmax(n), a

)
to X/n,

provided that max
(
pmax(n), a

) ≤ X/n. This is precisely the contribution of n to the sum
on the right hand side. ��

In addition to error bounds, the proof of Theorem 1 requires the following beautiful
result of Alladi on the duality between largest and smallest prime factors.

Theorem (Alladi [1]) If f is a function defined on integers with f (1) = 0, then
∑

d|n
μ(d)f

(
pmax(d)

) = −f
(
pmin(n)

)
, (6)

∑

d|n
μ(d)f

(
pmin(d)

) = −f
(
pmax(n)

)
. (7)

This theorem provides the connection between Theorems 1 and 2.

2.2 The Chebotarev Density Theorem

Ourmain result is closely related to the Chebotarev Density Theorem, which we carefully
state here.Wemust first give all of the machinery required to define the Artin symbol. Let
L/K be a finite Galois extension of number fields, and letOL andOK be the corresponding
rings of integers. Let p be any nonzero prime (maximal) ideal in OK . Then the ideal
generated inOL by p can be uniquely split into distinct maximal idealsPj lying over p in
the following way: there exists an integer g ≥ 1 such that

pOL =
g∏

j=1
P

ej
j .

We say the ideal p is unramified in L if ej = 1 for all 1 ≤ j ≤ g , which occurs for all but
finitely many prime ideals. Define the absolute norm of a nonzero ideal a of the ring of
integersOF of some number field F by

Nm(a) := [OF : a] = |OF/a| .
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For any prime ideal P lying over p, the Artin symbol
[
L/K
P

]
is defined as the unique

element σ ∈ G such that

σ (α) = αNm(p) (mod P) for all α ∈ L.

All of the prime idealsPj lying over p are isomorphic by elements of G and
[
L/K
τ (P)

]
= τ

[
L/K
P

]
τ−1

for τ ∈ G, so there exists a conjugacy class C associated to p such that each
[
L/K
Pj

]
lies in

C . We define the Artin symbol
[
L/K
p

]
to be the conjugacy class C .

We now define density. Let K be a number field, let Q(K ) be some set of prime ideals
of OK , and let P(K ) be the set of all prime ideals of OK . The natural density of Q(K ) is
defined by

lim
X→∞

#{p ∈ Q(K ):Nm(p) ≤ X}
#{p ∈ P(K ):Nm(p) ≤ X} ,

provided the limit exists.
For convenience, define

πC (X, L/K ) := #{p ∈ PC :Nm(p) ≤ X}.
In other words, πC (X, L/K ) is the number of nonzero prime ideals p of OK which are
unramified in L and for which Nm(p) ≤ X and

[
L/K
p

]
= C , where C is a conjugacy class

of the Galois group G = Gal(L/K ).
We may now recall the Chebotarev Density Theorem [8]. Let L/K be a finite Galois

extension of number fields, and let C be a conjugacy class of Gal(L/K ). Let

PC =
{
p ∈ P(K ) : p is unramified in L,

[
L/K
p

]
= C

}
.

Then, as X → ∞, we have that

πC (X, L/K ) = #C
#Gal(L/K )

· X
logX

+ o
(

X
logX

)
.

In other words, the natural density of PC in {p ∈ P(K ) : p is unramified in L} exists and is
equal to #C

#Gal(L/K ) .

In particular, a more precise formulation of the Chebotarev Density Theorem from
Lagarias and Odlyzko [5, Theorems 1.3 and 1.4] is:

Theorem (Lagarias–Odlyzko [5])For sufficiently largeX ≥ c1 (DL, nL), where the constant
c1 depends on both the discriminant DL and the degree nL of L, we have

∣∣∣∣πC (X, L/K ) − #C
#G

Li(X)
∣∣∣∣ ≤ 2c2 X exp

{
−c3 (nL)−1/2√logX

}

for constants c2 and c3.

Note that Li(X) := ∫ X2 dt/ log t.
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Remark The constant c1 can be made explicit using Theorems 1.3 and 1.4 of [5].

The above theorem is useful in bounding error terms in the proofs of Theorems 1 and
2.

3 Proofs
Theproofs of Theorems 1 and 2 closely follow the proofs of the corresponding theorems in
[1]. Note that c4 , . . . , c12 are positive constants which will not be specified in the following
proofs.

Proof of Theorem 2 We first rewrite the desired sum in terms of the function �(X, Y ), for
which we have asymptotic bounds.

∑

2≤n≤X[
K/Q

pmax(n)

]
=C

1 =
∑

p≤X[
K/Q
p

]
=C

∑

n≤X
pmax(n)=p

1

=
∑

p≤X[
K/Q
p

]
=C

�

(
X
p
, p
)
.

Notice that this sum can be broken up into a sum over small primes and a sum over large
primes, so that

∑

2≤n≤X[
K/Q

pmax(n)

]
=C

1 =
∑

p≤exp
{
(logX)2/3

}
[
K/Q
p

]
=C

�

(
X
p
, p
)

+
∑

exp
{
(logX)2/3

}
<p≤X[

K/Q
p

]
=C

�

(
X
p
, p
)
.

Let

S1 :=
∑

p≤exp
{
(logX)2/3

}
[
K/Q
p

]
=C

�

(
X
p
, p
)

and S2 :=
∑

exp
{
(logX)2/3

}
<p≤X[

K/Q
p

]
=C

�

(
X
p
, p
)
.

We now estimate S1 and show that it is much smaller than S2. This implies that S1 is not
the main term in the asymptotic formula in Eq. (3), so we only need to obtain an upper
bound. We see that

S1 =
∑

p≤exp
{
(logX)2/3

}
[
K/Q
p

]
=C

�

(
X
p
, p
)

≤
∑

p≤exp{(logX)2/3}
�

(
X
p
, p
)
.

Let

Y = exp
{
(logX)2/3

}
.

Then we have that

S1 ≤ �(X, Y ) − 1.
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If Y = X1/β for some β , then β = (logX)1/3. Thus, by Eq. (4), we have that

S1 = O
(
X exp

{−(logX)1/3 log logX
})

.

We will now estimate S2, and it turns out that this will provide the main term in the
asymptotic formula in Eq. (3). To obtain the main term, it will be convenient to define

S3 :=
∑

exp
{
(logX)2/3

}
<p≤X[

K/Q
p

]
=C

�

(
X
p
, p
)

− #C
#G

∫ X

exp{(logX)2/3}
�

(
X
t
, t
)

dt
log t

,

which means that

S2 = #C
#G

∫ X

exp{(logX)2/3}
�

(
X
t
, t
)

dt
log t

− S3.

Our goal now is to show that S3 is small compared to S2. By the definition of �
(X
t , t
)
, we

replace it with a function counting elements of S (Xt , t
)
to obtain

S3 =
∑

exp
{
(logX)2/3

}
<p≤X[

K/Q
p

]
=C

⎛

⎝
∑

n∈S(X/p,p)
1

⎞

⎠− #C
#G

∫ X

exp{(logX)2/3}

⎛

⎝
∑

n∈S(X/t,t)
1

⎞

⎠ dt
log t

.

Applying Lemma 3 and switching the order of summation in the first term, we then have
that

S3 = ∑

1≤n≤X exp
{−(logX)2/3

}

pmax(n)≤X/n

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

∑
pmax(n)≤p≤X/n
p>exp

{
(logX)2/3

}
[
K/Q
p

]
=C

1 − #C
#G
∫ X/n
max(pmax(n),exp{(logX)2/3})

dt
log t

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

= ∑

1≤n≤X exp
{−(logX)2/3

}

pmax(n)≤X/n

⎛

⎝πC
(X
n , K/Q

)− πC
(
max

(
pmax(n), exp

{
(logX)2/3

})
, K/Q

)

− #C
#G Li(X/n) + #C

#G Li
(
max

(
pmax(n), exp

{
(logX)2/3

}))
⎞

⎠,

by the definitions of πC (X, K/Q) and Li(X). Here we apply the reformulation of the
Chebotarev Density Theorem by Lagarias and Odlyzko to obtain

|S3| ≤
∑

1≤n≤X exp
{−(logX)2/3

}

pmax(n)≤X/n

c4 (X/n) exp
{
−c5

√
log(X/n)

}
.

Since each summand satisfies

c4 (X/n) exp
{
−c5

√
log(X/n)

}
≤ c4 (X/n) exp

{−c6(logX)1/3
}
,
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we have that

S3 = O
(
X exp

{−c7(logX)1/3
})

.

We have used the fact that an absolute value upper bound of the remainder term in
the Chebotarev Density Theorem is an increasing function of X , so we have replaced the
terms pmax(n) and exp

{
(logX)2/3

}
byX/n. In order to get themain termof the asymptotic

formula from S2, we must show that the integral
∫ X

exp{(logX)2/3}
�

(
X
t
, t
)

dt
log t

contributes a factor of X . Let [X] denote the integral part ofX , and {X} the fractional part,
so that X = [X] + {X}. We observe that

[X] − 1 =
∑

2≤n≤X
1

=
∑

p≤X
�

(
X
p
, p
)
,

which we again break up into small primes and large primes so that

[X] − 1 =
∑

p≤exp{(logX)2/3}
�

(
X
p
, p
)

+
∑

exp{(logX)2/3}<p≤X

�

(
X
p
, p
)
.

Let

S1′ :=
∑

p≤exp{(logX)2/3}
�

(
X
p
, p
)

and S2′ :=
∑

exp{(logX)2/3}<p≤X

�

(
X
p
, p
)
.

By similar estimates, we have that

S1′ = O
(
X exp

{−(logX)1/3(log logX)
})

and

S2′ =
∫ X

exp{(logX)2/3}
�

(
X
t
, t
)

dt
log t

+ S3′,

where

S3′ = O
(
X exp

{−c8(logX)1/3
})

.

Combining these estimates gives
∫ X

exp{(logX)2/3}
�

(
X
t
, t
)

dt
log t

= [X] + O(S1′ + S3′).

Thus we obtain the desired asymptotic formula,
∑

2≤n≤X[
K/Q

pmax(n)

]
=C

1 = #C
#G

· X + O
(
S1 + S3 + S1′ + S3′)

= #C
#G

· X + O
(
X exp

{−c9(logX)1/3
})

.

��
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As a consequence of Theorem 2, we have the following lemma.

Lemma 4 Assume the notation and hypotheses from Theorem 1. Then we have that

∑

2≤n≤X[
K/Q

pmax(n)

]
=C

1
n

= #C
#G

· logX + O
(
exp

{−k(logX)1/3
})

where k is a positive constant.

Proof of Lemma 4 Define the function f by

f (n) :=
{
1 if

[
K/Q
p

]
= C, n = p > 1,

0 otherwise,
(8)

and set

ψf (X) :=
∑

n≤X
f
(
pmax(n)

)
.

Thenψf (X) counts the number of integers n ≤ X such that
[

K/Q
pmax(n)

]
= C , so by Theorem

2 we have that

ψf (X) = #C
#G

· X + ef (X),

where ef (X) = O
(
X exp

{−k(logX)1/3
})
. The function ψf (X) is a type of “stair-step

function,” meaning it oscillates as (the integral part of) X increases depending on the
values of pmax(n) for n ≤ X . Then we can rewrite

∑

2≤n≤X[
K/Q

pmax(n)

]
=C

1
n

=
∫ X

1

dψf (t)
t

,

which by Theorem 2 is
∫ X

1

dψf (t)
t

= #C
#G

∫ X

1

dt
t

+
∫ X

1

def (t)
t

= #C
#G

· logX + ef (t)
t

∣∣∣∣
X

1
+
∫ X

1

ef (t) dt
t2

= #C
#G

· logX + k1 −
∫ ∞

X

ef (t) dt
t2

+ ef (X)
X

,

where

k1 = −ef (1)
1

+
∫ ∞

1

ef (t) dt
t2

.

Note that the number k1 exists by Theorem 2, and that Lemma 4 now follows because

ef (X)
X

= O
(
exp

{−k(logX)1/3
})

where k is a positive constant. ��
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Proof of Theorem 1 Let f be defined as in (8) above. By equation (6) from the duality
theorem of Alladi, we have

∑

n≤X[
K/Q

pmin(n)

]
=C

μ(n)
n

=
∑

n≤X

μ(n)f (pmin(n))
n

= −
∑

n≤X

1
n
∑

d|n
μ
(n
d

)
f (pmax(d))

= −
∑

n≤X

∑

d|n

μ(n/d)
n/d

· f (pmax(d))
d

.

To more easily obtain estimates, we delicately split the double sum into two double sums
by introducing the variable m := n/d. For each such m, the allowed values of d with
dm = n < X are exactly 1 ≤ d ≤ X/m, so we have that

−
∑

n≤X

∑

d|n

μ(n/d)
n/d

· f (pmax(d))
d

= −
∑

1≤m≤√
X

μ(m)
m

∑

d≤X/m

f (pmax(d))
d

−
∑

√
X<m≤X

μ(m)
m

∑

d≤X/m

f (pmax(d))
d

.

Nowwe change the order of summation in the second sum.We use the fact thatm >
√
X

andmd = n ≤ X implies d <
√
X to obtain

−
∑

n≤X

∑

d|n

μ(n/d)
n/d

· f (pmax(d))
d

= −
∑

1≤m≤√
X

μ(m)
m

∑

d≤X/m

f (pmax(d))
d

−
∑

d<
√
X

f (pmax(d))
d

∑
√
X<m≤X/d

μ(m)
m

.

We estimate the two sums separately, reverting back to the variable n instead of the new
variablem. Let

S6 := −
∑

n≤√
X

μ(n)
n

∑

d≤X/n

f (pmax(d))
d

and S7 := −
∑

n<
√
X

f (pmax(n))
n

∑
√
X<d≤X/n

μ(d)
d

.

We will show that S6 gives the main term of the desired asymptotic formula, and we will
bound S7. By Lemma 4, we have that

S6 = −
∑

n≤√
X

μ(n)
n

[
#C
#G

· log
(
X
n

)
+ O

(
exp

{−k(log(X/n))1/3
})]

= −
(
#C
#G

· logX
) ∑

n≤√
X

μ(n)
n

+ #C
#G

∑

1≤n≤√
X

μ(n) log n
n

+O
(
exp

{−k(logX)1/3
})

.

We now apply well-known bounds for

∑

n≤√
X

μ(n)
n

and
∑

1≤n≤√
X

μ(n) log n
n

which are consequences of the standard zero-free region for ζ (s) (for example, see [2,
Chapter 13]). Namely, we have that

∑

n≤√
X

μ(n)
n

= O
(
exp

{−c10(logX)1/2
})

(9)
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and

∑

1≤n≤√
X

μ(n) log n
n

= −1 + O
(
exp

{−c11(logX)1/2
})

.

Therefore, we have that

S6 = − #C
#G

+ O
(
exp

{−c10(logX)1/2
})+ O

(
exp

{−c11(logX)1/2
})

+ O
(
exp

{−k(logX)1/3
})

= − #C
#G

+ O
(
exp

{−k(logX)1/3
})

.

By Eq. (9), we also have that

S7 = O

⎛

⎝
∑

n≤√
X

1
n
exp

{−c10(log(X/n))1/2
}
⎞

⎠

= O
(
exp

{−c12(logX)1/2
})

.

Now we see that

∑

2≤n≤X[
K/Q

pmin(n)

]
=C

μ(n)
n

= −#C
#G

+ S6 + S7,

and therefore we have that

∑

2≤n≤X[
K/Q

pmin(n)

]
=C

μ(n)
n

= −#C
#G

+ O
(
exp

{−k(logX)1/3
})

. (10)

Note that as X → ∞, the error term 1/exp
{
k(logX)1/3

}→ 0. Thus we conclude that

lim
X→∞

∑

2≤n≤X[
K/Q

pmin(n)

]
=C

μ(n)
n

= −#C
#G

.
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tutionsklasse gehören. Math. Ann. 95, 191–228 (1926)


	A new formula for Chebotarev Densities
	Abstract
	1 Introduction and statement of results
	2 Preliminaries
	2.1 Error terms and duality
	2.2 The Chebotarev Density Theorem

	3 Proofs
	Acknowledgements
	References




