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Abstract

Let p be a prime number. The supersingular polynomial Sp(x) in characteristic p is the
polynomial over Fp whose roots in Fp are the supersingular j-invariants of elliptic
curves over Fp. In this paper we study the Newton polygons of certain rational lifts of
Sp(x) connected to the theory of Jacobi polynomials. As a corollary to our results on
the Newton polygons, we obtain new cases of irreducibility for these supersingular lifts,
providing more evidence for the general irreducibility conjecture of Mahlburg and Ono.
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1 Background
Let p > 3 be a prime number and let E be an elliptic curve defined over the finite field
Fp. Recall that E is supersingluar if the pn-torsion E[pn] of E is trivial for all n (there
are many equivalent characterizations of supersingularity, see [8, V.4] for more details
and examples). For a fixed prime p, there are finitely many supersingular j-invariants in
characteristic p, which prompts the following definition. The supersingular polynomial

Sp(x) =
∏

j′
(x − j′) ∈ Fp[x]

is defined to be the polynomial over Fp whose roots j′ are the supersingular j-invariants in
characteristic p; it is known [5] that Sp(x) is in fact defined over Fp. The purpose of this
paper is to study a particular lift to Q ofSp(x); namely, a family of polynomials, indexed
by p, with rational coefficients whose reduction mod p coincides with Sp(x). The family
that we shall study was first introduced by Kaneko and Zagier in [5] and subsequently
studied by Brillhart and Morton [2], Mahlburg and Ono [6], and many others. In [5], the
authors describe several different natural lifts ofSp(x); the family we study in this paper
is in fact a family of Jacobi polynomials.
We follow [4] in our choice of notation for the remainder of the paper.Write p = 12n+e

with e ∈ {1, 5, 7, 11} and n ≥ 0 and set k = p − 1. Let λ,μ ∈ {±1} be such that e − 6 =
2λ + 3μ and ε, δ ∈ {0, 1} such that e − 1 = 4δ + 6ε. It is known that Sp(x) has degree
n + δ + ε and has the factorization

Sp(x) = xδ(x − 1728)εsp(x),
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where sp(x) is a degree-n polynomial defined over Fp. Kaneko and Zagier originally intro-
duced a family of polynomials they denote F̃k (x) ∈ Q[x] such that F̃k (x) ≡ sp(x) (mod p);
in [5] the emphasis is on the connection to modular forms where the index k is a nat-
ural choice since the dimension of the space of weight k holomorphic modular forms
on PSL2(Z) has dimension n + 1. Mahlburg and Ono in [6] conjecture that the F̃k are
irreducible over Q with full Galois group and in [4] the authors gave new evidence for
both the irreducibility and the Galois group conjectures. Themain tool used in [4] was the
Newton polygon and the purpose of this paper is towork out theNewton polygons inmore
generality. As a corollary, we will obtain new cases of irreducibility of these supersingular
lifts.
Continuing with our notational conventions, we recall that the classical degree-n Jacobi

polynomial P(α,β)
n (x) can be expressed in terms of the hypergeometric function

P(α,β)
n (x) = (α + 1)n

n! 2F1
[−n 1 + α + β + n

1 + α
;
1 − x
2

]
. (1)

It can be shown (see [4, Section 2] for a complete derivation) that

F̃k (x) = 1728nP(λ/3,μ/2)
n

(
1 − x

864

)
,

which connects the original notation of [5] with our own. In [4, Lemma 2.4] it was shown
that the polynomial

M(λ,μ)
n (x) def=

n∑

j=0

(
n
j

)⎡

⎣
n∏

k=j+1
(λ + 3k)

j∏

k=1
(6n + 3μ + 2λ + 6k)

⎤

⎦ xj

with integral coefficients has the same irreducibility and Galois properties as the F̃k (x)
(the proof involves judicious linear shifts of the variable and clearing denominators). In
this paper we change notation slightly to aid in the computation of the Newton polygon.
Namely, we focus on the monic version of theM(λ,μ)

n (x) and denote them by S(λ,μ)n (x):

S(λ,μ)n (x) def=
n∑

j=0

(
n
j

) n∏

k=j+1

6k + 2λ
6n + 2λ + 3μ + 6k

xj def=
n∑

j=0
Ajxj.

With all of this notation in place we can now state the main results of the paper.

Theorem 1 Let p > 3 be a prime and let r be a positive integer. Let n = (pr − λ)/3, where

λ =
⎧
⎨

⎩
1 if p ≡ 1 (mod 3),

(−1)r if p ≡ −1 (mod 3).

Define

Vk =

⎧
⎪⎪⎨

⎪⎪⎩

(pk − 1)/3 if p ≡ 1 (mod 3),

(p2k − 1)/3 if p ≡ −1 (mod 3) and r is even,

(p2k+1 + 1)/3 if p ≡ −1 (mod 3) and r is odd.

Then:

(1) If p ≡ 1 (mod 3), then the vertices of NPp(S(1,μ)n (x)) are

(V0, r), (V1, r − 1), (V1, r − 2), . . . , (Vr, 0).

In particular, NPp(S(1,μ)n (x)) consists of r segments of lengths p−1
3 , p

2−p
3 , . . . , p

r−pr−1

3
with respective slopes
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−3
p − 1

,
−3

p2 − p
, . . . ,

−3
pr − pr−1 .

(2) If p ≡ −1 (mod 3), p > 5, and r is even, then the vertices of NPp(S(1,μ)n (x)) are

(V0, r/2), (V1, r/2 − 1), (V2, r/2 − 2), . . . , (Vr/2, 0).

In particular, NPp(S(1,μ)n (x)) consists of r/2 segments of lengths p2−1
3 , p

4−p2
3 , . . . ,

pr−pr−2

3 with respective slopes

−3
p2 − 1

,
−3

p4 − p2
, . . . ,

−3
pr − pr−2 .

(3) If p ≡ −1 (mod 3), p > 5, and r is odd, then the vertices of NPp(S(−1,μ)
n (x)) are

(0, (r + 1)/2), (V0, (r + 1)/2 − 1), (V1, (r + 1)/2 − 2), . . . , (V(r−1)/2, 0).

In particular,NPp(S(−1,μ)
n (x)) consists of (r + 1)/2 segments of lengths p+1

3 , p
3−p
3 , . . . ,

pr−pr−2

3 with respective slopes

−3
p + 1

,
−3

p3 − p
,

−3
p5 − p3

, . . . ,
−3

pr − pr−2 .

While these statements do not immediately give irreducibility, we point out that there
are certain special cases that do. The following corollary gives new Eisenstein results that
extend some of the cases of [6, Theorem 1.1].

Corollary 1 With all notation as above, set r = 1 in Parts (1) and (3) of Theorem 1 and
r = 2 in Part (2). Then for λ,μ ∈ {±1} we have
(1) If p ≡ λ (mod 3), then S(λ,μ)(p−λ)/3(x) is Eisenstein at p.
(2) If p ≡ −1 (mod 3), then S(1,μ)(p2−1)/3(x) is Eisenstein at p.

The proof of Theorem 1 involves an analysis of the p-valuations of the coefficients of
the S(λ,μ)n (x). Because of the form of the coefficients, the computations are notationally
intricate. Therefore, in the next section we give a non-technical sketch of the proof that
clearly outlines each step. We then prove Theorem 1 in Sect. 3 and give further remarks
in Sect. 4. The final section of the paper is devoted to computational evidence for further
Eisenstein properties of the S(λ,μ)n (x) at small primes.We conclude by proving a new case of
irreducibility when n is a power of 7 that complements a similar result in [6, Theorem 1.1].

2 Notation and outline of the proofs
In this section we continue to outline our main result on the Newton Polygons of certain
S(λ,μ)n (x). Let p > 3 be a prime, r > 0 a positive integer, λ,μ ∈ {±1} with the relationship
between p, λ, n, and r that

n = pr − λ

3
∈ Z.

In other words, if p ≡ 1 (mod 3) then λ = 1, while if p ≡ −1 (mod 3) then λ = −1 for
odd r and λ = 1 for even r. We will apply all of this notation to the polynomials

S(λ,μ)n (x) =
n∑

j=0

(
n
j

) n∏

k=j+1

6k + 2λ
6n + 2λ + 3μ + 6k

xj =
n∑

j=0
Ajxj.
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We set the additional notation

c(n, λ,μ, k) def= 6k + 2λ
6n + 2λ + 3μ + 6k

so that Aj = (n
j
) ∏n

k=j+1 c(n, λ,μ, k). Before outlining the theorems (Fig. 1), we give a
picture in the figure below of theNewton polygons at p of the S(λ,μ)n (x) when n = (pr−1)/3
and λ = 1:
We will break the proof of Theorem 1 into several lemmas and, due to the intricate

notation, we will first give an informal sketch of the proofs. We focus on part (1) of
Theorem 1 since the ideas behind the other two are similar.
The goal of Sect. 3 is to show that the vertices of the Newton polygon have coordinates(
ps−1
3 , r − s

)
for s = 0, . . . , r. To do this, we start in Lemma 1 by showing the bino-

mial coefficients
( pr−1

3
ps−1
3

)
are not divisible by p. This allows us to simplify the polynomials

S(λ,μ)n (x) by twisting out the binomial coefficients. This technique was used by Schur in
[7] to compute the Newton polygons of a wider class of polynomials than the truncated
exponentials; see [3] for an account of this. Lemma 2 and Corollary 2 establish the identity
ordp Aj = r − s when j = ps−1

3 . To finish the proof of the Newton polygon, it remains to
show that the intermediate coefficients all have p-valuation greater than or equal to r − s;
we prove this in Lemma 3. We now proceed to the proofs.

3 Main results
To see that the Newton polygons of the S(λ,μ)n (x) are as claimed, we begin by proving part
(1) of Theorem 1. In preparation for the theorem, we set λ = 1, and let p ≡ 1 (mod 3).
Recall that S(1,μ)n (x) = ∑n

j=0 Ajxj with

Aj =
(
n
j

) n∏

k=j+1
c(n, 1,μ, k).

In what follows, Lemmas 1 and 2 and Corollary 2 establish the vertices of the Newton
polygon. Lemma 3 then shows that the p-valuations of the intermediate (non-break)
coefficients are strictly larger than those of the breaks. Together, these three lemmas
prove part (1) of Theorem 1.

Fig. 1 p-Adic Newton polygon of S(1,1)(pr−1)/3(x)
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Lemma 1 Let p be a prime congruent to 1 modulo 3. Let r, s ∈ Z≥0 with r ≥ s. Then the

binomial coefficient
(

pr−1
3

ps−1
3

)
is coprime to p.

Proof Recall that if N0 + N1p + · · ·Nkpk is the base-p expansion of the positive integer
N , then

ordpN ! = N − (
∑k

i=0 Ni)
p − 1

.

By writing pr as the telescoping sum

pr = p + p2 − p + p3 − p2 + · · · + pr − pr−1

= p + (p − 1)p2 + (p − 1)p3 + · · · + (p − 1)pr−1,

it follows that the base-p expansion of (pr − 1)/3 is given by

pr − 1
3

=
r−1∑

k=0

(p − 1)
3

pk .

Therefore

ordp
( pr−1

3
ps−1
3

)
= ordp

(
pr − 1

3

)
! − ordp

(
ps − 1

3

)
! − ordp

(
pr − ps

3

)
!

= pr − 1 − r(p − 1)
3(p − 1)

− ps − 1 − s(p − 1)
3(p − 1)

− pr − ps − r(p − 1) + s(p − 1)
3(p − 1)

= 0,

as claimed. ��

Lemma 2 With all notation as above, ordpA0 = r.

Proof Write A0 = ∏n
k=1

6k+2
6n+2+3μ+6k so that

ordpA0 =
n∑

k=1
ordp(6k + 2) −

n∑

k=1
ordp(6n + 2 + 3μ + 6k). (2)

Recall we set n = (pr − 1)/3. We first count the number of k such that 6k + 2 has p-
valuation equal to �. Since p is odd, we divide by 2 and count the p-valuations of 3k + 1.
We set some notation. Let N = {1, . . . , n} and X�

def= {k ∈ N | ordp(3k + 1) = �}. Then the
X� partition N:

N =
r∐

�=0
X�.

One can check (in fact, one can give an explicit formula for the k ∈ X�) that the size of X�

is given by

#X� =

⎧
⎪⎪⎨

⎪⎪⎩

1 if � = r,
p−1
3 · pr−�−1 if 0 < � < r,

p−1
3 · pr−1 − 1 if � = 0.
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Similarly, define Y�
def= {k ∈ N | ordp(6n + 2 + 3μ + 6k) = �}. In this case, Yr = ∅ and it

is easy to check that

#Y� =
⎧
⎨

⎩

p−1
3 · pr−�−1 if 0 < � < r,

p−1
3 · pr−1 if � = 0.

Altogether, the k that belong to X0 or Y0 do not contribute to the p-valuation of A0. For
each � with 0 < � < r, it is the case that #X� = #Y�. Consequently, all the terms in the
sum (2) cancel except for the contribution from Xr , which consists of the single element
k = (pr − 1)/3. It follows that ordpA0 = r, as claimed. ��

Corollary 2 Let s ∈ {0, 1, 2, . . . , r}. Then ordp(Aps−1
3

) = r − s.

Proof Observe that

Aj =
(
n
j

) n∏

k=j+1
c(n, 1,μ, k) =

(
n
j

)∏n
k=1 c(n, 1,μ, k)∏j
k=1 c(n, 1,μ, k)

.

Set n = (pr − 1)/3, j = (ps − 1)/3, and apply Lemma 1 to the binomial coefficient. Then

ordp(Aps−1
3

) = ordp
(pr−1)/3∏

k=1
c(n, 1,μ, k) − ordp

(ps−1)/3∏

k=1
c(n, 1,μ, k)

= r − ordp
(ps−1)/3∏

k=1
c(n, 1,μ, k),

by Lemma 2. However, if one replaces “r” by “s” in the expression for n, then the same
argument in Lemma 2 appliesmutatismutandis to the product ordp

∏(ps−1)/3
k=1 c(n, 1,μ, k),

whence

ordp
(ps−1)/3∏

k=1
c(n, 1,μ, k) = s

so that ordp(Aps−1
3

) = r − s. ��

Lemma 3 Let s ∈ [0, r]∩Z and let j be an index with ps−1
3 < j <

ps+1−1
3 . Then ordp Aj ≥

r − s.

Proof Recall that Aj = (n
j
)∏n

k=j+1 c(n, 1,μ, k) so that we may write

ordp Aj = ordp
(
n
j

)
+ ordp

∏n
k=1 c(n, 1,μ, k)∏(ps−1)/3

k=1 c(n, 1,μ, k) · ∏j
k=(ps−1)/3+1 c(n, 1,μ, k)

= ordp
(
n
j

)
+ r − s − ordp

j∏

k=(ps−1)/3+1
c(n, 1,μ, k).

Since ordp
(n
j
) ≥ 0, it will suffice to prove ordp

∏j
k=(ps−1)/3+1 c(n, 1,μ, k) ≤ 0. Continuing

with the dévissage, write

c(n, 1,μ, k) = 6k + 2
6n + 2 + 3μ + 6k

def= N (k)
D(k)

,
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so that

ordp
j∏

k=(ps−1)/3+1
c(n, 1,μ, k) =

j∑

k=(ps−1)/3+1
ordp N (k) −

j∑

k=(ps−1)/3+1
ordp D(k).

We will treat each sum separately.
For the numerators, we have

j∑

k=(ps−1)/3+1
ordp N (k) =

j∑

k=(ps−1)/3+1
ordp (6k + 2)

=
j∑

k=(ps−1)/3+1
ordp (3k + 1)

=
j−(ps−1)/3∑

m=1
ordp (ps + 3m).

Moreover, since for m in the stated range it is never the case that ordp (ps + 3m) > s, it
follows that

ordp (ps + 3m) = ordp(3m) = ordp(m),

whence
j−(ps−1)/3∑

m=1
ordp (ps + 3m) =

j−(ps−1)/3∑

m=1
ordp(m) = ordp

(
j − ps − 1

3

)
!

We can rewrite the denominators similarly:

j∑

k=(ps−1)/3+1
ordp D(k) =

j∑

k=(ps−1)/3+1
ordp 6

(
pr − 1

3

)
+ 2 + 3μ + 6k

=
j−(ps−1)/3∑

m=1
ordp (2pr + 2ps + 6m − 2 + 3μ).

Again, because of the range ofm, it is never the case that ordp (2ps + 6m − 2 + 3μ) = r,
hence

ordp (2pr + 2ps + 6m − 2 + 3μ) = ordp (2ps + 6m − 2 + 3μ).

However, for the denominators there is a unique index m in the range 1 ≤ m <
ps+1−1

3
such that

ordp (2ps + 6m − 2 + 3μ) = s + 1;

namely

m = ps+1 − (3μ − 2)
6

,

so that 6m + 3μ − 2 = ps+1. Altogether, this shows we can compute the p-valuation of
the denominator of Aj by means of the formula
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j−(ps−1)/3∑

m=1
ordp (2pr + 2ps + 6m − 2 + 3μ)

=
⎧
⎨

⎩

∑j−(ps−1)/3
m=1 ordp (6m + 3μ − 2) if j <

ps+1−(3μ−2)
6∑j−(ps−1)/3

m=1 ordp (6m + 3μ − 2) − 1 if j ≥ ps+1−(3μ−2)
6 .

To finish the proof, recall that we need to show ordp(D(k)) ≥ ordp(N (k)). But [1, Prop.
2.2] establishes the integrality of the product

kn

n!

n−1∏

m=1
(1 + km).

This is applicable to our setup by setting n = j − (ps − 1)/3 and k = 6; it shows that
6nN (k)/D(k) is integral. While the quotient N (k)/D(k) itself may not be integral, since
p > 3 it is certainly p-integral, which is sufficient to prove the Lemma. ��

To recap, this sequence of Lemmas establishes the Newton polygon of S(1,μ)n (x) when
n = (pr − 1)/3 and p ≡ 1 (mod 3). For parts (2) and (3) of Theorem 1, the ideas and
proofs are nearly identical, so we give brief sketches of the arguments rather than detailed
proofs. Both parts (2) and (3) can be proved via a similar sequence of Lemmas:

Step 1. It is easy to check that Lemma 1 holds for the polynomials in parts (2) and (3) of
Theorem 1 as well. That is, using the notation of Theorem 1

ordp
(
n
Vk

)
= 0,

where for parts (2) and (3) of Theorem 1 we have

Part (2) : p ≡ −1 (mod 3), r even, n = pr − 1
3

, Vk = p2k − 1
3

Part (3) : p ≡ −1 (mod 3), r odd, n = pr + 1
3

, Vk = p2k+1 + 1
3

.

In other words, the binomial coefficients do not contribute to the vertices of the Newton
polygons.

Step 2. To extend Lemma 2 to the polynomials of Parts (2) and (3) of Theorem 1, we need
to show that

Part (2): ordpA0 = r/2,

Part (3): ordpA0 = (r + 1)/2.

Each of these can be obtained in a similar way to the strategy of Lemma 2. For each case,
we consider two partitions the set N: one partition is into the k for which the p-valuation
of the numerator equals � and the other is into the k for which the p-valuation of the
denominator equals �. It then remains to count the elements of the subsets and subtract.
For completeness we give the partitions along with the sizes for each of Parts (2) and (3)
of Theorem 1; recall that X� denotes the number of k for which 6k + 2λ has p-valuation
� and Y� denotes the number of k for which 6n + 2λ + 3μ + 6k has p-valuation �:
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Part (2): #X� =

⎧
⎪⎪⎨

⎪⎪⎩

1 if � = r
pr−�−pr−�−1+(−1)�

3 if 0 < � < r
pr−pr−1

3 if � = 0
#Y� = #X� + (−1)�−1 for 0 ≤ � ≤ r

Part (3): #X� =
{
1 if � = r
pr−�−pr−�−1−(−1)�

3 if 0 ≤ � < r
#Y� = #X� + (−1)� for 0 ≤ � ≤ r

We then compute ordpA0 as the weighted sum of the #X� and #Y�:

Part (2): ordpA0 = r · 1 +
r−1∑

�=1
� · p

r−� − pr−�−1 + (−1)�

3

−
r−1∑

�=1
� ·

(
pr−� − pr−�−1 + (−1)�

3
+ (−1)�−1

)

= r −
r−1∑

�=1
�(−1)�−1 = r/2;

Part (3): ordpA0 = r · 1 +
r−1∑

�=1
� · p

r−� − pr−�−1 − (−1)�

3

−
r−1∑

�=1
� ·

(
pr−� − pr−�−1 − (−1)�

3
+ (−1)�

)

= r −
r−1∑

�=1
�(−1)� = (r + 1)/2.

Step 3.Observe that ordpAVk is the difference of ordpA0 when n = (pr −λ)/3 and ordpA0
when n = (ps − λ)/3. By Lemma 2, this establishes the vertices of the Newton polygon.

Step 4. It remains to show that the p-valuations of the intermediate coefficients between
the Vk lie above the breaks. As in Lemma 3, it will suffice to prove that

Part (2): ordp
j∏

k=(p2s−1)/3+1

c(n, 1,μ, k) ≤ 0

Part (3): ordp
j∏

k=(p2s+1+1)/3+1

c(n,−1,μ, k) ≤ 0.

Continuing with the same approach, define N (k) and D(k) to be the numerator and
denominator of c(n, λ,μ, k), respectively. A similar argument shows that

Part (2): ordp
j∏

k=(p2s−1)/3+1
N (k)=

j−(p2s−1)/3∑

m=1
(p2s+3m)=ordp

(
j− p2s − 1

3

)
!

Part (3): ordp
j∏

k=(p2s+1+1)/3+1
N (k)=

j−(p2s+1+1)/3∑

m=1
(p2s+1+3m)=ordp

(
j− p2s+1+1

3

)
!
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For the denominators, it suffices to use the quantities

Part (2):
j−(p2s−1)/3∑

m=1
(6m + 3μ − 2),

Part (3):
j−(p2s+1+1)/3∑

m=1
(6m + 3μ + 2).

Exactly as in Lemma 3, we can use [1, Prop. 2.2] to show that the p-valuation of the
denominators of the c(n,−1,μ, k) are at least as large as that of the numerators and hence
that the respective p-valuations are ≤ 0.
Steps 1–4 establish the remaining cases (2) and (3) of Theorem 1. As a corollary to case

(2) by setting r = 2, we obtain the following result which extends the first case of [6,
Theorem 1.1].

Corollary 3 Let p be a prime number congruent to −1 modulo 3 and let n = (p2 − 1)/3.
Then for μ ∈ {±1}, the polynomial S(1,μ)n (x) is Eisenstein at p.

4 Further remarks
Theorem 1 exploits the product structure of the numerators of the c(n, λ,μ, k). The same
analysis can be performed for the denominators as well. In that case, we obtain the fol-
lowing complementary results to Theorem 1.

Theorem 2 Let p > 3 be a prime and let r be a positive integer. Let λ,μ ∈ {±1} and set
n = (pr − 6 − 2λ − 3μ)/6 ∈ Z. Define

Wk =
⎧
⎨

⎩
(pr − pr−k )/6 if p ≡ 1 (mod 3)

(pr − pr−2k )/6 if p ≡ −1 (mod 3)

and let

λ =
⎧
⎨

⎩
−1 if p ≡ 1 (mod 3), or if p ≡ −1 (mod 3) and r is even,

1 if p ≡ −1 (mod 3) and r is odd.

Then:

(1) If p ≡ 1 (mod 3) then the vertices of NPp
(
S(−1,μ)
n (x)

)
are

(
W0,−r

)
,
(
W1,−(r − 1)

)
,
(
W2,−(r − 2)

)
, . . . ,

(
Wr−1,−1

)
,

(
Wr−1 + (p − 4 − 3μ)/6, 0

)
,

In particular, NPp(S(−1,μ)
n (x)) consists of r segments of lengths pr−pr−1

6 , p
r−1−pr−2

6 , . . .
p2−p
6 , p−4−3μ

6 , with respective slopes

6
pr − pr−1 ,

6
pr−1 − pr−2 , . . . ,

6
p2 − p

,
6

p − 4 − 3μ
.

(2) If p ≡ −1 (mod 3), p > 5, and r is even, then the vertices of NPp
(
S(−1,μ)
n (x)

)
are

(
W0,−r/2

)
,
(
W1,−(r/2 − 1)

)
,
(
W2,−(r/2 − 2)

)
, . . . ,

(
Wr/2−1,−1

)
,

(
Wr/2−1 + (p2 − 4 − 3μ)/6, 0

)
.
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Inparticular,NPp(S(−1,μ)
n (x)) consists of r/2 segments of lengths pr−pr−2

6 , p
r−2−pr−4

6 , . . . ,
p4−p2

6 , p
2−4−3μ

6 with respective slopes

6
pr − pr−2 ,

6
pr−2 − pr−4 , . . . ,

6
p4 − p2

,
6

p2 − 4 − 3μ
.

(3) If p ≡ −1 (mod 3), p > 11, and r is odd, then the vertices of NPp
(
S(1,μ)n (x)

)
are

(
W0,−(r + 1)/2

)
,
(
W1,−(r + 1)/2 + 1

)
,
(
W2,−(r + 1)/2 + 2

)
, . . . ,

(
W(r+1)/2−1,−1

)
,
(
W(r+1)/2−1 + (p − 8 − 3μ)/6, 0

)
.

In particular,NPp(S(1,μ)n (x)) consists of (r+1)/2 segments of lengths pr−pr−2

6 , p
r−2−pr−4

6 ,
. . . , p

3−p
6 , p−8−3μ

6 with respective slopes

6
pr − pr−2 ,

6
pr−2 − pr−4 , . . . ,

6
p3 − p

,
6

p − 8 − 3μ
.

Pictorially, the shape of a typical Newton polygon of this type is as follows (Fig. 2).
While the following are not new, we do immediately recover some of the Eisenstein

results of [6, Theorem 1.1] as special cases.

Corollary 4 With all notation as above, we have

(1) Let p ≡ 1 (mod 3), p > 3, and let n = p−4−3μ
6 . Then S(−1,μ)

n (x) is Eisenstein at p.
(2) Let p ≡ −1 (mod 3), p > 5, and let n = p2−4−3μ

6 . Then S(−1,μ)
n (x) is Eisenstein at p.

(3) Let p ≡ −1 (mod 3), p > 11, and let n = p−8−3μ
6 . Then S(1,μ)n (x) is Eisenstein at p.

5 Small primes and irreducibility conjectures
So farwe have focused on the p-adicNewton polygons of the S(λ,μ)n (x) when n = (pr−λ)/3.
In this section we focus on the primes p = 3, 5, 7, and 11 and give computational evidence
for new Eisenstein results when the degree n is a power of p. Proofs of these conjectures
are likely to be established by techniques other than the ones we have presented in the

Fig. 2 p-Adic Newton polygon of S(−1,−1)
(pr−1)/6)(x) when p ≡ 1 (mod 3)
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previous sections, since our conjectures are based on translates of the polynomials and
will require the p-adic valuation of special values of the polynomials.
In [4], Hajir and the first author showed that certain polynomials of the form S(λ,μ)2m (x)

are Eisenstein at p = 2; specifically, using the notation of [4] we know

Theorem 3 (Theorem 5.1 of [4]) Let n = 2ν . If ν is odd and λ = −1, or if ν is even and
λ = 1, thenNP2(K (λ,μ)

n (x)) is pure of slope (n− 1)/n. In particular, under these conditions
the polynomial K (λ,μ)

n (x) is irreducible overQ.

It is then a simplematter to translate from theK (λ,μ)
n (x) notation to the S(λ,μ)n (x) notation

of this paper. In [6, Theorem 1.1], Mahlburg and Ono proved that the S(−1,1)
7α (x) are

Eisenstein at p = 7 for all α ≥ 1 and proved similar Eisenstein results for p = 5 and
p = 11 as well. However, the prime p = 3 appears not to be covered by any results in the
literature. In the following conjecture, we expand upon the Eisenstein results of [6] and
propose new Eisenstein properties at the prime p = 3.

Conjecture 1 With all notation as above, the polynomials S(λ,μ)n (x) have the following
Eisenstein properties.

(1) S(−1,−1)
52α (x + 3) is Eisenstein at 5 for all n ≥ 1;

(2) S(1,1)52α+1 (x + 3) is Eisenstein at 5 for all n ≥ 1;
(3) S(1,μ)112α+1 (x + 1) is Eisenstein at 11 for all n ≥ 0;
(4) S(λ,μ)3α (x − 1) is Eisenstein at 3 for all λ,μ ∈ {±1} and for all n ≥ 1.

In terms of numerical evidence for the conjecture, we have verified the following cases of
Conjecture 1 in Pari/gp:

Polynomial p Cases verified
S(λ,μ)3α (x − 1) 3 1 ≤ α ≤ 8

S(−1,−1)
52α (x + 3) 5 α = 1, 2

S(1,1)52α+1 (x + 3) 5 α = 1, 2

S(1,μ)112α+1 (x + 1) 11 α = 0, 1

Finally, we will prove an Eisenstein result similar to one of the many in [6, Theorem 1.1]
in the case where the degree is a power of 7. Namely, Mahburg and Ono prove that their
polynomials are Eisenstein at p = 7 when “r = 6” (in their notation) and the degree is a
power of 7. We will now work out the complementary “r = 0” case (so set μ = 1).

Theorem 4 The polynomials S(−1,1)
7α (x) are Eisenstein at p = 7.

Before proving Theorem 4 we establish some notation. Recall that we write S(λ,μ)n (x) =∑n
j=0 Ajxj where

Aj =
(
n
j

) n∏

k=j+1
c(n, λ,μ, k) =

(
n
j

) n∏

k=j+1

6k + 2λ
6n + 2λ + 3μ + 6k

.
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The constant coefficient of S(−1,1)
7α (x) is given by

A0 =
7α∏

k=1

6k − 2
6 · 7α + 6k − 5

,

and observe that the numerator 6k − 2 and denominator 6 · 7α + 6k − 5 of the k-th
term in the product cannot simultaneously be divisible by 7. This prompts the following
definitions:

XN (s)
def= {k ∈ [1, 7α] ∩ Z | ord7(6k − 2) = α − s, }

XD(s)
def= {k ∈ [1, 7α] ∩ Z | ord7(6 · 7α + 6k − 5) = α − s}.

The proof of Theorem 4 will follow once we show that the 7-adic Newton polygon has
the shape given in Fig. 3.

Lemma 4 For s ∈ Z, the sizes of XN (s) and XD(s) are given by the following formulas

(1) #XN (s) = #XD(s) = 6 · 7s−1 for s = 1, . . . ,α;
(2) #XN (0) = 1 and #XD(0) = 0;
(3) #XN (1) = 0 and #XD(−1) = 1;
(4) #XN (s) = #XD(s) = 0 if s < −1 or if s > α.

Proof Because of the range 1 ≤ k ≤ 7α it is clear that XN (s) = XD(s) = ∅ if s < −1 or
if s > α. Similarly, it is easy to show that XN (0) = { 2·7α+1

3 }, XD(−1) = { 7α+5
6 }, and that

XN (−1) = XD(0) = ∅. It therefore remains to see that #Xn(s) = #XD(s) = 6 · 7s−1 for
s = 1, . . . ,α. But for k in the range 1 ≤ k ≤ 7α , one can easily verify that k ∈ XN (s) if and
only if 6k − 2 = m7α−s with gcd(m, 7) = 1, where

m = 4 + 6t, t ∈ {0, . . . , 7s − 1} \ {4 + � · 7}7s−1−1
�=1 .

Similarly, k ∈ XD(s) if and only if k is of the form

k = 6 · 7α + 1 + 6t, where t ∈ {0, . . . , 7s − 1} \ {1 + 7�}7s−1
�=1 .

Both sets XN (s) and XD(s) have size 6 · 7s−1, as claimed. ��

Corollary 5 Write S(−1,1)
7α (x) = ∑7α

j=0 Ajxj. Then ord7A0 = −1.

Proof Since A0 = ∏7α

k=1
6k−2

6·7α+6k−5 we can compute ord7A0 by the sizes of the sets XN (s)
and XD(s) for s = −1, . . . ,α. By Lemma 4 the number of terms with positive valuation

Fig. 3 7-Adic Newton polygon of S(−1,1)
7α (x)
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α − s equals the number with negative valuation α − s for s = 1, . . . ,α. There is then
a single value of k for which 6k−2

6·7α+6k−5 contributes a positive valuation of α and a single
value of k for which it contributes a negative valuation of r + 1 (parts (2) and (3) of the
Lemma). Altogether, the 7-valuation of A0 equals −1, as claimed. ��

Since the entire family S(λ,μ)n (x) is monic, it follows that ord7An = 0. Therefore, in order
to show that the 7-adic Newton polygon of S(−1,1)

7α (x) is as claimed, it suffices to show
that ord7Aj ≥ 0 for j = 1, . . . , 7α − 1. We will obtain this as a corollary to the following
sequence of Lemmas.

Lemma 5 Let Aj = ∏j
k=1

6k−2
6·7α+6k−5 . Then

ord7Aj =
⎧
⎨

⎩
ord7

∏j
k=1

6k−2
6k−5 if 1 ≤ j < 7α+5

6

ord7
∏j

k=1
6k−2
6k−5 − 1 if j ≥ 7α+5

6 .

Proof This is a simple computation. ��

Lemma 5 allows us to shift our focus to the 7-valuation of the product
∏j

k=1
6k−2
6k−5 .

Continuing, since 7 is odd we can divide the product by 2j . Reindexing, we get

ord7
j∏

k=1

6k − 2
6k − 5

= ord7
j−1∏

k=0

3k + 2
6k + 1

.

In preparation for the next lemma we introduce some notation. Let q be a prime number,
n a positive integer, and let x ∈ Z be invertible modulo qn. Denote by iqn (x) the unique
representative among the integers 1, . . . , qn − 1 of the inverse of x modulo qn.

Lemma 6 With all notation as above, we have 0 ≥ ord7
∏j−1

k=0
3k+2
6k+1 ≥ −α.

Proof According to [1, Formula 2.9], we may write the 7-valuations of the numerators in
the following explicit forms:

ord7
j−1∏

k=0
(6k + 1) =

∑

n≥1

⌊
j − 1 + i7n (6)

7n
,
⌋

ord7
j−1∏

k=0
(3k + 2) =

∑

n≥1

⌊
j − 1 + i7n (3/2)

7n

⌋
.

It is easy to show that

i7n (6) = 6 + 5 · 7 + · · · + 5 · 7n−1,

i7n (3/2) = 3 + 2 · 7 + · · · + 2 · 7n−1.

If x and y are positive real numbers, then we will employ the elementary observation that

�x + �y ≤ �x + y ≤ �x + �y + 1
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in the estimate of ord7
∏j−1

k=0
3k+2
6k+1 . Write

ord7
j−1∏

k=0

3k + 2
6k + 1

=
∑

n≥1

⌊
j − 1 + i7n (3/2)

7n

⌋
−

⌊
j − 1 + i7n (6)

7n

⌋

=
∑

n≥1

⌊
j − 1 + (3 + 2 · 7 + · · · + 2 · 7n−1)

7n

⌋

−
⌊
j − 1 + (6 + 5 · 7 + · · · + 5 · 7n−1)

7n

⌋

=
∑

n≥1

⌊
j − 1 + (3 + 2 · 7 + · · · + 2 · 7n−1)

7n

⌋

−
⌊
j − 1 + (3+2 · 7+· · ·+2 · 7n−1)

7n
+ 3 + 3 · 7+· · · 3 · 7n−1

7n

⌋
.

Applying the elementary inequality of the floor function to each summand yields

0 =
∑

n≥1
0 ≥ ord7

j−1∏

k=0

3k + 2
6k + 1

≥
∑

n≥1
−1.

There are at most α nonzero terms in the sum, whence 0 ≥ ord7
∏j−1

k=0
3k+2
6k+1 ≥ −α, as

claimed. ��
Lemma 7 Let α, j ≥ 1. Then 0 ≥ ord7

∏j
k=1

6k−2
6·7α+6k−5 ≥ −α − 1.

Proof This follows from Lemmas 5 and 6. ��
Corollary 6 With all notation as above, ord7Aj ≥ 0 for j = 1, . . . 7α − 1.

Proof Since Aj = (7α

j
)∏7α

k=j+1
6k−2

6·7α+6k−5 = (7α

j
) A0∏j

k=1
6k−2

6·7α+6k−5
, we have

ord7Aj = ord7
(
7α

j

)
A0

∏j
k=1

6k−2
6·7α+6k−5

= α − ord7j − 1 − ord7
j∏

k=1

6k − 2
6 · 7α + 6k − 5

.

Since 0 ≤ ord7(j) ≤ α − 1 and using Lemma 7, this gives the desired bound. ��
To recap, since S(−1,1)

7α (x) is monic we have ord7An = 0, while Corollary 5 establishes
ord7A0 = −1. Corollary 6 then shows ord7Aj ≥ 0 for all intermediate j. Therefore
S(−1,1)
7α (x) is Eisenstein at 7, hence irreducible overQ.
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