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Abstract

We generalize a result of Frey on Selmer groups of twists of elliptic curves over Q with
Q-rational torsion points to elliptic curves defined over number fields of small degree K
with a K -rational torsion point. We also provide examples of elliptic curves coming from
Zywina that satisfy the conditions of our Corollary D.
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1 Introduction
Let � be an odd, rational prime and let E/K be an elliptic curve defined over a number
field K . The K -rational points E(K ) form a finitely generated group by the Mordell-Weil
theorem. Recall from [1, Section X.4] that we have the following exact sequence

0 → E(K )/�E(K ) → Sel�(E, K ) → I(E, K )[�] → 0,

where Sel�(E, K ) denotes the �-Selmer group and I(E, K )[�] is the �-Shafarevich-Tate
group. If K = Q, then Frey [2] provides explicit examples of quadratic twist of elliptic
curves over Q with Q-rational points of odd, prime order � whose �-Selmer groups are
non-trivial; a theorem of Mazur [3] implies that � ∈ {3, 5, 7}.

Theorem 1.1 ([2], Corollary) Suppose that E/Q is an elliptic curve with a Q-rational
torsion point P of odd prime order �, and suppose that P is not contained in the kernel
of reduction modulo �; in particular, this means that E is not supersingular modulo � if
ord�(jE) ≥ 0. Let˜SE be the subset of odd primes dividing the conductor N (E) of E defined
by

˜SE := {

p|N (E) : p ≡ −1 (mod �), � � ordp(�E)
}

,

where jE is the j-invariant of E and �E is the discriminant of E. Suppose that ˜SE = ∅.
Suppose that d ≡ 3 (mod 4) is a negative, square-free integer coprime to �N (E) satisfying:
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1. if ord�(jE) < 0, then
(

d
�

)

= −1;
2. if p|N (E) is an odd prime, then

(

d
p

)

=

⎧

⎪

⎨

⎪

⎩

−1 if ordp(jE) ≥ 0;
−1 if ordp(jE) < 0 and E/Qp is a Tate curve;
1 otherwise.

Then we have that Sel�(Ed,Q) is non-trivial if and only if the �-torsion of the class group of
Q(

√
d) is non-trivial.

Remark 1.2 Frey actually proved a more explicit double divisibility statement [2, Theo-
rem] concerning the �-Selmer group ofEd and �-torsion of ray class groups, when˜SE �= ∅.

In this paper, we generalize Frey’s results [2, Theorem, Corollary] to number fields K of
small degree. We show that for specific quadratic twists Ed , the order of the �-torsion of
some ray class groupofK (

√
d) divides the order of Sel�(Ed, K ), and the order of Sel�(Ed, K )

divides the order of the �-torsion of a different ray class group of K (
√
d) times the degree

of somemaximal abelian extension of exponent �with prescribed ramification and Galois
conditions (cf. Theorems A, B for precise statements and Remark 3.1 for a colloquial
statement). These results allow us to give explicit applications to elliptic curves defined
over Q (cf. Corollaries C, D), and we provide explicit examples of elliptic curves over Q
satisfying Corollary D in Sect. 6. Finally, in Corollary E, we generalize Theorem 1.1 to
number fields of small degree.

Remark 1.3 Frey’s result [2, Theorem] has been used to produce twists of elliptic curves
Ed overQ such thatI(Ed,Q)[�] is non-trivial.Most notably, Ono [4] utilized Frey’s result
to prove that for a large class of E/Q with torsion subgroup over Q isomorphic to Z/�Z
where � ∈ {3, 5, 7}, there are infinitely many negative square-free integers d for which

rk(Ed,Q) = 0 and Z/�Z × Z/�Z ⊂ I(Ed,Q).

Later, Balog and Ono [5] used a new type of result concerning the non-triviality of class
groups of imaginary quadratic fields (cf. [5, Theorem 1]) and Frey’s result to prove that
for such E/Q,

#
{

−X < D < 0 : L(Ed, 1) �= 0, rk(Ed,Q) = 0, and � | #I(Ed,Q)
}


E
X

1
2+ 1

2�

log2 X
.

Frey’s idea was to obtain information about Sel�(Ed,Q) when E(Q) contains an element
of order �. In particular, he studied the behavior ofE over local fieldsQ� and their algebraic
closures Q�. His work illustrated a deep relationship between �-ranks of Selmer groups
and class groups of finite Galois extensions of exponent �. In this paper, we investigate the
�-Selmer rank in families of quadratic twists of elliptic curves E/K with K -rational points
of odd prime order �. We use Frey’s proof as a blueprint for our own, but the techniques
we utilize come from class field theory. That being said, many of his arguments go through
mutatis mutandis.
In order to state our results, we first need to recall some facts concerning prime torsion

of elliptic curves defined over number fields of small degree. We give a succinct summary
of these results and refer the reader to [6] for a more detailed synopsis. Let S(n) denote
the set of primes that can arise as the order of a rational point on an elliptic curve defined
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over a number field of degree n and let Primes(n) denote the set of primes bounded by n.
By Merel-Oesterlé’s bound, we know that

S(n) ⊆ Primes((3n/2 + 1)2).
The exact value of the set S(n) is currently known for n ≤ 5, but reasonable good bounds
on S(6) and S(7) are given in [7].

n S(n) References
1 Primes(7) [3]
2 Primes(13) [8]
3 Primes(13) [9]
4 Primes(17) [10]
5 Primes(19) [11]
6 ⊆ Primes(19) ∪ {37, 73} [7]

One can also consider the subset SQ(n) ⊆ S(n) corresponding to primes that can arise as
the order of a rational point on an elliptic curve EK = E ×Q K where E is defined overQ
and K is a number field of degree n. From [12], it is known that

SQ(n) ⊆ Primes(13) ∪ {37} ∪ Primes(2n + 1),
and [12, Corollary 1.1] states that for 1 ≤ n ≤ 20,

SQ(n) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Primes(7) for n = 1, 2
{2, 3, 5, 7, 13} for n = 3, 4
Primes(13) for n = 5, 6, 7
Primes(17) for n = 8
Primes(19) for n = 9, 10, 11
Primes(19) ∪ 37 for 12 ≤ n ≤ 20.

In this paper, we generalize the full double divisibility statement of [2, Theorem] to
elliptic curves defined over small degree number fields K . We state explicit versions of
our results, Theorems A, B and Corollary E, in Sect. 3 once we have established some
notation.

1.1 Some remarks about the proofs

The problem of constructing elements in the Selmer group is a classical question with
many avenues of approach. Frey’s condition that the elliptic curve E/K have a K -rational
point of odd prime power order � > 3 has two immediate consequences. First, the image
of Galois under the mod � representation is conjugate to

(

1 ∗
0 ∗

)

⊂ GL2(F�),

which will assist in our explicit description the Galois structure of splitting fields of �-
covers of E/K and the splitting fields of elements in Sel�(Ed, K ). The second is that we
can immediately identify a quotient ofH1(Gal(K/K ), E(K )[�]), namelyH1(Gal(K/K ),μ�).
Frey’s (and our) proof relies on an analysis of cocyles in H1(Gal(K/K ), E(K )[�]) and this
fact will allow us to deduce local triviality in certain cases using Hilbert’s Theorem 90. A
laborious aspect of our proofs is the case by case analysis of how primes p dividing N (E)
behave in the field K (

√
d) ·K (E[�]) where d ∈ O×

K /(O×
K )

2 yields the quadratic twist Ed of
E and K (E[�]) is the �-division field of E/K .
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1.2 Organization of paper

In Sect. 2, we recall some classical facts from class field theory and algebraic number
theory. In Sect. 3, we state our main results, Theorems A, B and Corollary E. In Sect. 4,
we prove Theorem A, which yields a single divisibility statement. In Sect. 5, we prove
the double divisibility statement of Theorem B by investigating the Galois structure of
splitting fields of �-covers of E/K and the splitting fields of elements Sel�(Ed, K ). Finally
in Sect. 6, we provide explicit examples of elliptic curves over Q coming from [13] that
satisfy the Corollary D.

2 Background and notation
Let L/K be a Galois extension of K , with ring of integersOL andOK . For any finite prime
P ∈ OL lying over a prime p ∈ OK , let D(P) denote the decomposition group of P, let
I(P) denote the inertia group of P and let κ ′ := OL/P and κ = OK /p be the residue
fields of characteristic q = pn. In this note, we need a specific result concerning the Artin
symbol and ramification theory for quadratic extensions L/K . For the definition of the
Artin symbol

(

L/K
p

)

, we refer the reader to [14, Chapter IV].

Lemma 2.1 Let L/K be a quadratic extension, let p be a prime ideal of OK , letP denote
some prime ofOL lying above p, and let 〈δ〉 = Gal(L/K ). Then:

1. p is unramified and splits completely in L ⇐⇒
(

L/K
p

)

= id,

2. p is unramified and non-split in L ⇐⇒
(

L/K
p

)

= δ,
3. p is ramified in L ⇐⇒ p|�L/K where �L/K denotes the relative discriminant of L/K.

Proof Part (3) follows directly from the definition of the Artin symbol. Since p is unrami-
fied, we know that |D(P)| = f where f is the inertia degree of P over p. A prime p splits
completely in L if and only if the ramification index e ofP above p and the inertia degree
f ofP above p are equal to 1. Hence,

|D(P)| = [κ ′ : κ] = 1 ⇐⇒ ord
(

L/K
p

)

= 1 ⇐⇒
(

L/K
p

)

= id,

which proves (1). For (2), our assumptions and the fundamental identity tell us that e = 1
and g = 1 if and only if f = 2. Thus,

|D(P)| = [κ ′ : κ] = 2 ⇐⇒ ord
(

L/K
p

)

= 2 ⇐⇒
(

L/K
p

)

= δ.

��
In TheoremA, we use primitive Hecke characters to describe a subset of primes p|N (E);

we refer the reader to [14, Chapter VII, Section 6] for the definition of these characters.

Remark 2.2 Recall that there is a conductor-preserving correspondence between prim-
itive Dirichlet characters of order � and cyclic, degree � number fields F/Q. From [15,
Theorem 3.7], the Dirichlet character χ corresponds to the fixed field F of ker χ ⊆
(

Z/fχZ
)× = Gal(Q(ζfχ )/Q). For any prime q,

χ (q) = 0 ⇐⇒ q ramifies in F and χ (q) = 1 ⇐⇒ q splits in F.

By class field theory, any primitive Hecke character χH of K of order � determines a cyclic
extension N/K of degree �. Moreover, the set of primitive Hecke characters determining
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this cyclic extension equals {χH ,χ2
H , . . . ,χ

�−1
H }. These � − 1 Hecke characters have the

same conductor f, and the determinant of L/K equals their product f�−1 by the Hasse
conductor-discriminant theorem. Thus for any prime ideal q ofOK , we have that

χH (q) = 0 ⇐⇒ q ramifies in N and χH (q) = 1 ⇐⇒ q splits in N.

2.1 Notation

We set the following notation:

K := Galois number field,

� := odd, rational prime in S(n)\ {2, 3} such that � � cl(K ) and ζ� /∈ K,

L/K := algebraic extension of K,

p := prime divisor of the rational prime p inOK ,

P := prime divisor of p inOL,

Kp := completion of K with respect to p,

LP := completion of L with respect toP,

S := finite set of primes ofOK ,

M/L := Galois extension with abelian Galois group of exponent �.

More generally, lower case gothic font will denote a divisor of a rational prime of Q, and
similarly, upper case gothic font will denote a divisor of a prime of K .

Definition 2.3 M/L is said to be little ramified outside S if for primes p /∈ S and allPL|p
one has

M · LP(ζ�) = LP(ζ�)( �
√
u1, . . . , �

√
uk )

with k ∈ N and ordPL (ui) = 0. Here ζ� is a �th root of unity, u1, . . . , uk are elements in
LP(ζ�), and ordPL is the normed valuation belonging toPL.

IfM/L little ramified outside S, thenM/L is unramified at all divisors of primes p /∈ S∪{l}.

2.2 Notation

We set the following notation, which comes directly from [2]:

LS := maximal abelian extension of exponent �of L which is

little ramified outside S,

LS,u := maximal subfield of LS which is unramified outside of S,

HS(L) := Galois group of LS/L,

HS,u(L) := Galois group of LS,u/L,

clS(L)[�] := order of HS(L),

clS,u(L)[�] := order of HS,u(L).

Remark 2.4 If S = ∅, we see that cl∅,u(L) is equal to the order of the subgroup of the
divisor class group of L consisting of elements of order � which we denote by cl(L)[�].
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Now assume that L/K is normal with cyclic Galois group generated by an element γ of
order � − 1. Take an extension γ̃ to L(ζ�). Let χ� be the cyclotomic character induced by
the action of Gal(L(ζ�)/K ) on 〈ζ�〉. Then χ�(γ̃ ) is determined by

γ̃ (ζ�) = ζ
χ�(γ̃ )
� .

LetM be normal over K containing L such that Gal(M/L) is abelian of exponent �. Then
γ̃ operates by conjugation on

Gal(M(ζ�)/L(ζ�)) ∼= Gal(M/L),

and this operation does not depend on choice of γ̃ . Hence the subgroup

H (χ�) :=
{

α ∈ Gal(M/L) : γ̃ αγ̃ −1 = αχ�(γ̃ )
}

⊆ Gal(M/L)

is well-defined. In the special case that M = LS , we denote the order of HS(L)(χ�) by
clS(L)�(χ�).
Nowwe shall consider an elliptic curve E/K given by aWeierstrass equation F (x, y) = 0

with coefficients inOK and minimal discriminant �E . For any extension L/K , we denote
the L-rational points of E (including ∞) by E(L). Let χH be a primitive Hecke character
of order � and let

˜SE := {

p|N (E) : χH (p) �= 0, ordp(�E) �≡ 0 (mod �)
}

SE := {p ∈ ˜SE : ordp(jE) < 0}.

Let d ∈ O×
K /(O×

K )
2 and denote the twist of E/K by Ed/K . Via the general theory of

twists [1, Section X.2], we know that Ed is isomorphic to E over K (
√
d) but not over K .

Let GK := Gal(K, K ) denote the absolute Galois group. Let W(Ed, K )[�] be the set of
elements of order � in the kernel of

ρ : H1(GK , Ed(K )) −→
⊕

p prime
H1(Gal(Kp/Kp), Ed(Kp)).

The group of elements of order � in the Selmer group of Ed , denoted by Sel�(Ed, K ) is
given as the pre-image ofW(Ed, K )[�] by the map

α : H1(GK , Ed(K )[�]) −→ H1(GK , Ed(K )).

There are two main cases we need to consider:

Case 1 Assume that ordp(jE) ≥ 0. Then there is a finite extension N/K such that E has
good reduction modulo all PN |p i.e., we find an elliptic curve ˜E such that Ẽ modulo
PN is an elliptic curve over the residue field of PN .˜E(NP) contains a subgroup˜E−(NP)
consisting of points (̃x, ỹ) with ordPN (̃x) < 0. ˜E− is the kernel of reduction modulo PN ,
and ordPN (̃x/̃y) is the level of (̃x, ỹ). For ease of notation, we say that a point (x, y) ∈ E(NP)
is in the kernel of the reduction moduloPN if its image (̃x, ỹ) ∈ ˜E−(NP).

Case 2 Assume that ordp(jE) < 0. Then after an extension L/Kp of degree≤ 2, E becomes
a Tate curve (via a theorem of Tate [1, Theorem C.14.1]); in particular, one has a Tate
parametrization

τ : L×
/〈q〉 −→ E(L)

where q is the p-adic period of E. One also has that

jE = 1
q

+
∞
∑

i=0
aiqi with ai ∈ Z

and the points of order � in E(L) are of the form τ (ζ α
� (q

β/�)) where α,β ∈ {1, . . . , � − 1}.
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Definition 2.5 If F/K is a number field and PF |p we say that a point (x, y) ∈ E(FP) is
in the connected component of the unity modulo PF if it is of the form τ (u) with u a
PF -adic unit, and (x, y) is in the kernel of the reduction moduloPF if u − 1 ∈ PF .

Remark 2.6 One should notice that if E is not a Tate curve over Kp but over an extension
of degree 2 ofKp, then for all points P ∈ E(Kp), 2P is in the connected component of unity
modulo p.

3 Statement of results
As mentioned above, [2, Theorem] gives a double divisibility statement involving the �-
torsion of the Selmer group. First, we generalize his single divisibility to elliptic curves
E/K defined over number fields K of finite degree with K -rational points of odd, prime
order �. Recall that S(n) is the set of primes that can arise as the order of a rational point
on an elliptic curve defined over a number field of degree n.

Theorem A Let K be a Galois number field and choose � ∈ S(n)\ {2, 3} such that � � cl(K )
and ζ� /∈ K. Let E/K be an elliptic curve over K with a K-rational point P of order �; let χH
denote a primitive Hecke character of K with order �; let q denote a prime of OK that lies
above 2; and let l denote a prime of OK that lies above �. Suppose that P is not contained
in the kernel of reduction modulo l; in particular, this means that E is not supersingular
modulo l if ordl(jE) ≥ 0. Let SE be the set of primes

SE := {

p|N (E): ordp(�E) �≡ 0 (mod �), χH (p) �= 0, and ordp(jE) < 0
}

.

Suppose that d ∈ O×
K /(O×

K )
2 is negative,1 coprime to l · N (E), and satisfies the following

divisibility and Artin symbol conditions where 〈δ〉 = Gal(K (
√
d)/K ):

1. if q|N (E), then q|�K (
√
d)/K ;

2. if ordl(jE) < 0, then
(

K (
√
d)/K
l

)

= δ;
3. if p|N (E) is a prime of K with p /∈ SE, then

• if ordp(jE) ≥ 0, then
(

K (
√
d)/K
p

)

= δ;

• if ordp(jE) < 0 and E/Kp is a Tate curve, then
(

K (
√
d)/K
p

)

= δ;

• otherwise,
(

K (
√
d)/K
p

)

= id.

Then we have that the order of the �-torsion of the SE-ray class group of K (
√
d) divides the

order of Sel�(Ed, K ). More precisely, the single divisibility statement holds:

clSE ,u(K (
√
d))[�]

∣

∣

∣# Sel�(Ed, K ) . (1)

We also prove a stronger, more explicit version of Theorem A in the form of a double
divisibility statement, which completely generalizes [2, Theorem].

Theorem B Let K be a Galois number field of degree n ≤ 5 such that NK/Q(q) =
2 for all q|2. Choose � ∈ S(n)\ {2, 3} such that � � cl(K ) and ζ� /∈ K. Let E/K be an
elliptic curve over K with a K-rational point P of order �; let χH denote a primitive Hecke

1We say that d ∈ O×
K /(O×

K )
2 is negative if the image of d under each real embedding is negative.
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character of K with order �; let q denote a prime ideal of OK that lies above 2; and let l
denote a prime ideal ofOK that lies above �. If [K : Q] = 5 and � = 5, then we must make
the added assumption that (�)OK is not totally ramified. Suppose that P is not contained
in the kernel of reduction modulo l; in particular, this means that E is not supersingular
modulo l if ordl(jE) ≥ 0. Let˜SE and SE be the sets of primes

˜SE := {

p|N (E):χH (p) �= 0, ordp(�E) �≡ 0 (mod �)
}

,

SE := {p ∈ ˜SE : ordp(jE) < 0}.

Suppose that d ∈ O×
K /(O×

K )
2 is negative, coprime to l · N (E), and satisfies the following

divisibility and Artin symbol conditions where 〈δ〉 = Gal(K (
√
d)/K ):

1. if q|N (E), then q|�K (
√
d)/K ;

2. if ordl(jE) < 0, then
(

K (
√
d)/K
l

)

= δ;
3. if p|N (E) is a prime of K with p /∈ SE, then

• if ordp(jE) ≥ 0, then
(

K (
√
d)/K
p

)

= δ;

• if ordp(jE) < 0 and E/Kp is a Tate curve, then
(

K (
√
d)/K
p

)

= δ;

• otherwise,
(

K (
√
d)/K
p

)

= id.

Then we have the following double divisibility

clSE ,u(K (
√
d))[�]

∣

∣

∣# Sel�(Ed, K )
∣

∣

∣ cl̃SE ,u(K (
√
d))[�] · clSE (K ′)[�](χ�), (2)

where K ′ is the subfield of K (
√
d, ζ�) of index 2 containing neither ζ� nor

√
d.

Remark 3.1 In words, (2) states that the order of the �-torsion of the SE-ray class group of
K (

√
d) divides the order of Sel�(Ed, K ), and the order of Sel�(Ed, K ) divides the order of

the �-torsion of the˜SE-ray class group of K (
√
d) times the degree of the maximal abelian

extensionK ′′ ofK ′ of exponent � unramified outside of SE ∪{l} such that the Galois group
Gal(K ′/K ) acts on Gal(K ′′/K ) by χ�εd , where εd is the character prescribing the Galois
action on

√
d.

Once we have proved Theorems A, B, we can immediately extend the divisibility state-
ments (1), (2) to elliptic curves E defined overQ by considering the values of SQ(n).

Corollary C Let E/Q be an elliptic curve defined overQ. For some Galois number field K ,
suppose that EK attains a K-rational point P of order � where � ∈ SQ(n)\ {2, 3} such that
� � cl(K ) and ζ� /∈ K. In keeping with the notation and assumptions of Theorem A, we can
produce examples of quadratic twists Ed

K that satisfy the divisibility statement (1).

Corollary D Let E/Q be an elliptic curve defined over Q; let EK denote the base change
of this curve to a Galois number field of degree n ≤ 20 such that NK/Q(q) = 2 for all q|2.
Choose � ∈ SQ(n)\ {2, 3} such that � � cl(K ), ζ� /∈ K, and the ramification index el(K/Q)
satisfies 1 > el(K/Q)/(� − 1)− 1. Suppose that EK attains a K-rational point P of order �,
then in keeping with the notation and assumptions of Theorem B, we can produce examples
of quadratic twists Ed

K that satisfy the double divisibility statement (2).

We can also generalize [2, Corollary], which we stated as Theorem 1.1.
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Corollary E Let (E, �, K, d) be as in Theorem B or in Corollary D. If ˜SE = ∅, then
Sel�(Ed, K ) is non-trivial if and only if the �-torsion of the class group of K (

√
d) is non-

trivial, in particular

cl(K (
√
d))[�]

∣

∣

∣# Sel�(Ed, K )
∣

∣

∣ (cl(K (
√
d))[�])2.

Remark 3.2 In his Ph.D. thesis [16], Mailhot was able to recover and sharpen [[2], Theo-
rem] for elliptic curves defined over Q using purely cohomological methods. His refine-
ment comes from prescribing a splitting behavior of primes above K ′ instead of just a
non-ramified condition. We remark that our methods and results are disjoint, however,
we believe that [16, Corollary 2.17] can be generalized to elliptic curves defined over
number fields K , using Theorem B.

4 Proof of Theorem A
In this section, we prove the divisibility statement (1). Before we proceed, we make a
remark about some of the prime assumptions of Theorem A.

Remark 4.1 (Prime assumptions) If ordp(jE) < 0, then we have that E/Kp has a Tate
parametrization. The second condition ordp(�E) �≡ 0 (mod �) assists us in Lemma 4.2.
In short, it allows us to understand ramification in the �-division field of EKp . The final
condition χH (p) �= 0 is used in Lemma 4.3 and is an analogue of Frey’s condition that
p ≡ −1 (mod �). Moreover, this condition allows us to deduce, using Remark 2.2, that
for a cyclic extensionM2/K of degree �, p is unramified inM2.

The first step in the proof is to exhibit an element in Sel�(Ed, K ).

Lemma 4.2 Let � > 3 be a rational prime; let M/K be a non-abelian Galois extension
of degree 2� containing K (

√
d) that is unramified over this field outside of SE; let α be a

generator ofGal(M/K (
√
d)); and letφ the element inH1(Gal(M/K ), Ed(M)[�])determined

by φ(α) = P, where P is a K-rational point of order �. Then φ is an element of Sel�(Ed, K ).

Proof First, we need to show that there exists some element

φ ∈ H1(Gal(M/K ), Ed(M)[�])

whose restriction φ to Gal(M/K (
√
d)) = 〈α〉 is given by φ(α) = P. We identify

Ed(M)[�] with E(M)[�] = 〈P〉. Since Ed(K (
√
d))[�] = 〈P〉 and δ(P) = −P where

〈δ〉 = Gal(K (
√
d)/K ), we have invariance of φ under δ from the fact that δαδ = α−1.

Since

H1(Gal(M/K ), Ed(M)[�]) = H1(Gal(M/K (
√
d)), Ed(M)[�])δ ,

our assertions follows.
Hence it remains to show that φ is locally trivial when regarded as an element of

H1(Gal(M/K (
√
d)), Ed(M)).

We may restrict ourselves to primes PM |l · N (E). By condition (1) of Theorem A, the
divisors of q are unramified inM/K (

√
d) if q|N (E), and hencewemay assume thatPM � q.

Assume that
(

K (
√
d)/K
p

)

= δ. In this case, PM is either fully ramified or decomposed
(since M/K is non-abelian). So assume that PM is fully ramified and divides p. Then
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p ∈ SE and in particular p �= l and ordp(�EK ) �= 0 (mod �). We claim that Ed/Kp(
√
d) is

a Tate curve and that P is contained in the connected component of the unity overKp(
√
d)

corresponding to an �th root of unity ζ� e.g.,P = τ (ζ α
� ) where τ is theTate parametrization

and α ∈ {1, . . . , � − 1}.
The fact that Ed/Kp(

√
d) is a Tate curve follows since p ∈ SE and so ordp(jE) < 0.

Since ordp(�E) �= 0 (mod �), we know that adjoining q1/� to Kp(
√
d), where q is the

p-adic period of E, is a non-trivial extension. Under the Tate parametrization τ , we have
that torsion points of order � in Ed(Kp(

√
d))[�] are of the form τ (ζ α

� q
β/�) where α,β ∈

{1, . . . , � − 1}. SinceP is a point of order �definedoverKp(
√
d),we know that ζ α

� ∈ Kp(
√
d)

for some α ∈ {1, . . . , � − 1} and that

τ−1(P) = ζ α
� q

β/� ∈ Kp(
√
d).

In order for ζ α
� q

β/� ∈ Kp(
√
d), we must have that β = 0 since q is not an 1/�th power.

Thus, τ−1(P) = ζ α
� , and hence P is contained in the connected component of the unity

overKp(
√
d) corresponding to an �th root of unity ζ�. SinceMP/Kp(

√
d) is cyclic of degree

�, we have that ζ� = αx/x for some x ∈ MP by Hilbert’ Theorem 90, and therefore, φ is
trivial when considered in H1(Gal(MP/Kp), Ed(MP)).
Next assume that

(

K (
√
d)/K
p

)

= id and p �= l. Then ordp(jE) < 0 and E is a Tate
curve over Kp, and so again P corresponds to some �th root of unity ζ� under the Tate
parametrization of E = Ed over Kp(ζ�) and hence φ is split by Kp(ζ�) as seen above. But
since the degree of Kp(ζ�) over Kp is prime to �, φ is split over Kp already, and thus φ is
locally trivial.
There is one remaining case: p = l and ordl(jE) ≥ 0. Let LM |l. By the assumption,

M/K is unramified at LM , and we can find a normal extension N/K of degree prime
to � such that E has good reduction modulo all primes LN |l. In particular, we may take
N = K (ζ12, 12√

l). Now

H1(Gal(ML · N/Kl · N ), Ed(ML · N )) = 0

since the reduction of Ed modulo L is good and MLN/KlN is unramified, and hence it
follows that

H1(Gal(ML/Kl), Ed(ML)) = 0.

��
Next, we look at the action of δ on HSE,u(K (

√
d)).

Lemma 4.3 The generator 〈δ〉 = Gal(K (
√
d)/K ) acts as − id on the Galois group

HSE,u(K (
√
d)).

Proof Wemay write

HSE,u(K (
√
d)) = H− ⊕ H+

where H− is the part where δ acts as − id, and H+ the part with δ = id. Let ˜M := MH−
SE ,u,

which is the fixed field ofMSE,u byH−. Assume thatM1 is a subfield of ˜M that is cyclic over
K (

√
d). HenceM1/K is cyclic of degree 2 · [M1:K (

√
d)]. LetM2 be the cyclic extension of

K with degree [M1 : K (
√
d)] contained in M1. Then M2 is unramifed outside of SE . For

p ∈ SE , we have that χH (p) �= 0. Since [M2:K ]|� and � � cl(K ), it follows that M2 is not
contained in the Hilbert class field of K and is unramified at all primes K . Thus, we have
thatM2 = K ,M1 = K (

√
d) and hence ˜M = K (

√
d). ��
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Proof of Theorem A The divisibility of # Sel�(Ed, K ) by clSE ,u(K (
√
d))[�] follows from

Lemmas 4.2, 4.3 since our element φ ∈ Sel�(Ed, K ) is induced by α ∈ Gal(M/K (
√
d))

and the action of 〈δ〉 on HSE,u(K (
√
d)) does not affect the order of α when considered as

an element of HSE,u(K (
√
d)).

5 Proof of Theorem B
Before we proceed with a proof of Theorem B, we wish to shed some light onto our
assumptions. In general, our hypotheses allow us to control the ramification in cyclic
extensions of K (

√
d).

Remark 5.1 (Field assumptions) We assume that our field K is a number field of degree
n ≤ 5 such that NK/Q(q) = 2 for all q|2 and that for some � ∈ S(n)\ {2, 3}, � � cl(K ) and
ζ� /∈ K . The degree and norm condition appear in Lemma 5.5 and allow us to deduce
ramification conditions on prime divisors QM |q where M1/K is cyclic. The condition
that � � cl(K ) implies that there does not exist an extension M2/K of degree � contained
in the Hilbert class field of K ; once again this gives us a ramification consequence. The
assumption that ζ� /∈ K is subtle, but it allows for more ramification possibilities since
Kummer theory does not restrict cyclic extensions. The final condition that el(K/Q) �= 5
when [K :Q] = 5 and � = 5 is due to a deep result of Katz [17] concerning the injectivity
of �-torsion under the reduction map; the assumption 1 > el(K/Q)/(� − 1) − 1 from
Theorem D is the general condition. This assumption allows us to use the fact that prime
to 2 torsion will inject under the reduction map.

To prove Theorem B, it suffices to prove the divisibility statement

# Sel�(Ed, K )
∣

∣

∣cl̃SE ,u(K (
√
d))[�] · clSE (K ′)[�](χ�) .

To begin, we discuss the Galois structure of the �-division field of elliptic curves E/K from
Theorem B.

5.1 Galois structure of splitting fields of �-covers of E

We want to determine the Galois group structure of splitting fields of elements in
H1(GK , E(K )[�]) for elliptic curves having a K -rational point P of order �. Recall that
ζ� /∈ K . Denote the �-division field by K (E[�]); this is the field obtained by adjoining the
x, y coordinates of all points of order � of E to K . Then K (E[�]) is a Galois extension of K
containing K (ζ�), and it is cyclic over K (ζ�) of degree dividing �. From this point on, we
shall abbreviate E(K )[�] with E[�], and similarly for Ed[�].

Lemma 5.2 TheGalois groupK (E[�])/K is generated by two elements γ , εwith γ �−1 = id,
ε� = id, γ |K (ζ�) generates K (ζ�)/K, and γ εγ −1 = εχ�(γ )−1 .

Proof Choose a base of the form {P,Q} of E[�] such that for σ ∈ Gal(K (E[�])/K ) the
action of σ on E[�] induces the matrix

ρσ =
(

1 b
0 a

)

∈ GL2(F�),

with a = det(ρσ ) ≡ χ�(σ ) mod �. Now we choose γ such that

ργ =
(

1 0
0 w

)

∈ GL2(F�).
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withw a generator of (Z/�Z)×. Also, we pick ε = id ifK (E[�]) = K (ζ�). IfK (E[�]) �= K (ζ�),
we choose ε such that

ρε =
(

1 1
0 1

)

∈ GL2(F�).

Then γ and ε generate Gal(K (E[�])/K ) and since
(

1 0
0 w

) (

1 1
0 1

) (

1 0
0 w−1

)

=
(

1 w−1

0 1

)

=
(

1 1
0 1

)w−1

we have the relation γ εγ −1 = εχ�(γ )−1 . ��
Remark 5.3 The choice of γ and ε is closely related to the choice of base {P,Q}. In
particular, we have ε(Q) = P + Q if ε �= id and γ (Q) = χ�(γ )Q.

Let d ∈ O×
K /(O×

K )
2 be negative and relatively prime to l · N (E). We define Ld to be

the quadratic extension of K (E[�]) given by the compositum K (
√
d) ·K (E[�]). The Galois

group Gal(Ld/K ) is generated by three elements δ, γ , ε with δ commuting with ε and γ

and

δ2 = id, δ(
√
d) = −√

d,

γ �−1 = id, γ |K (E[�]) = γ ,

ε� = id, ε|K (E[�]) = ε,

γ iεj|K (
√
d) = id, γ εγ −1 = εχ�(γ )−1

.

In particular, we have that δ operates as − id on Ed[�], the points of order � of Ed . The
fixed field of ε is K (

√
d, ζ�) and the fixed field of 〈ε, δγ (�−1)/2〉 is K ′ as defined in Theorem

B. Thus, we have the following field diagram:

We now describe the elements inH1(GK , Ed[�]).We have the exact inflation-restriction
sequence

0 −→ H1(Gal(Ld/K ), Ed[�]) inf.−→ H1(GK , Ed[�]) res.−→ H1(Gal(K/Ld), Ed[�]),

where H1(Gal(K/Ld), Ed[�]) = HomGal(Ld/K )(Gal(K/Ld), Ed[�]).

Lemma 5.4 The group H1(GK , Ed[�]) injects into HomGal(Ld/K )(Gal(K/Ld), Ed[�]).

Proof We need to show that H1(Gal(Ld/K ), Ed[�]) = 0. If ε = id, the degree of Ld/K is
prime to �, and the assertion follows.Now let ε be of order �. Using the inflation-restriction
sequence, one has that

H1(Gal(Ld/K ), Ed[�]) = H1(〈ε〉, Ed[�])〈δ,γ 〉.
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Let Pd, Qd be the points of order � of Ed[�] corresponding to P,Q ∈ E[�] . Then Pd =
εQd − Qd, and hence H1(〈ε〉, Ed[�]) is generated by the class of cocycle ψ which sends
ε to Qd . Since δεδ = ε and δQd = −Qd , we have that ψ /∈ H1(〈ε〉, Ed[�])〈δ〉, and thus
H1(Gal(Ld/K ), Ed[�]) = H1(〈ε〉, Ed[�])〈δ,γ 〉 = 0. ��
Take an element ˜� ∈ H1(GK , Ed[�]) with

res˜� = φ ∈ HomGal(Ld/K )(Gal(K/Ld), Ed[�])

and denote by M the fixed field of the kernel of φ. M/K is normal and Gal(M/Ld) is
possibly generated by two elements α1,α2 with α�

i = id, which we may choose in such a
way that

φ(α1) = μ1P and φ(α2) = μ2Q.

Wemay also assume that μi = 1 if αi �= id.
We extend δ, γ , ε ∈ Gal(Ld/K ) to elements˜δ, γ̃ , ε̃ ∈ Gal(M/K ) and compute the actions

of these elements on αi. We assume that˜δ2 = γ̃ �−1 = id. Since

φ(βαiβ
−1) = βφ(αi) ∀β ∈ Gal(M/K )

via the fact that φ is a group homomorphism and the cocycle condition we get:

˜δαi˜δ = α−1
i (∵ ˜δ|Ed[�] = − id)

γ̃ α1γ̃
−1 = α1 (∵ γ̃P = P),

γ̃ α2γ̃
−1 = α

χ�(γ̃ )
2 (∵ γ̃Q = χ�(γ̃ )Q),

ε̃α1ε̃
−1 = α1 (∵ ε̃P = P),

ε̃α2ε̃
−1 = α1α2 if ε �= id and α2 �= id(∵ then εφ(α) =

εP = P + Q = φ(α1α2); necessarily α1 �= id

in this case).

In particular, it follows that 〈α1〉 is a normal subgroup ofGal(M/K ) and that 〈α2〉 is normal
if either α2 = id or ε̃ = id.
Now we distinguish between two cases:

Case 1 ε̃ = id. In this case 〈α1〉 and 〈α2〉 are both normal in Gal(M/K ) and hence

Mi := M〈αi〉

are normal extensions of K . The Galois group of M2/K (
√
d) is abelian and generated by

the restriction of 〈γ̃ ,α1〉 toM2. Hence

M2 := M〈α2 ,̃γ 〉

is Galois overK containingK (
√
d) and if α1 �= id, thenGal(M2/K ) is non-abelian of order

2�. Since

˜δγ̃ (�−1)/2α2(˜δγ̃ (�−1)/2)−1 = α2,

it follows thatM1 is abelian over K ′ and hence

M1 := M〈α1,˜δγ̃ (�−1)/2〉

is normal over K . Its Galois group is generated by

α2 = α2|M1 and γ = γ̃ |M1,
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and its order is equal to |α2| · (� − 1). Also one has the relation γα2γ
−1 = α

χ�(γ )
2 . To

summarize, we have that

M1(φ) := M〈α1 ,˜δγ̃ (�−1)/2〉,
M2(φ) := M〈α2 ,̃γ 〉.

Case 2 |̃ε| = �. In this case, we may assume that α1 �= id for α1 = id implies that α2 = id,
as well.

Subcase (i) α2 = id. We assert that Gal(M/K (ζ�,
√
d)) is not cyclic. Otherwise ε̃ would

be an element of order �2 with ε̃ � = α1 (without lose of generality). So˜δ̃ε �̃δ = ε̃−� and
hence

˜δ̃ε˜δ = ε̃ k with k ≡ −1 mod �.

But since δεδ = ε, we would get δ̃εδ = ε̃ · (̃ε�)n = ε̃ 1+�n which gives a contradiction.
Hence, we can choose ε̃ so that

ε̃ � = α̃ �
1 = id and ˜δ̃ε˜δ = ε̃,

which determines ε̃ uniquely. Thus,M2 := M 〈̃ε,̃γ 〉 is normal over K and contains K (
√
d)

and its Galois group is dihedral of order 2� and generated by 〈α1,˜δ〉. To summarize, we
say that

M1(φ) := M〈α1 ,˜δγ̃ (�−1)/2〉,
M2(φ) := M 〈̃ε,̃γ 〉.

Subcase (ii) α2 �= id. We have that M1 := M〈α1〉 is normal over K and of degree � over
Ld . Since˜δα2˜δ = α−1

2 , we conclude as above that ε has an extension ε̃ to M1 of order �

with˜δ̃ε˜δ = ε̃. Since˜δγ̃ (�−1)/2 acts trivially on α2 and ε̃ acts trivially on α2|M1, we have
that 〈˜δγ̃ (�−1)/2, ε̃〉 is a normal subgroup of Gal(M1/K ). Hence

M1 := M〈˜δγ̃ (�−1)/2 ,̃ε〉
1

is normal over K containing K ′, and its Galois group over K ′ is generated by α2 = α2|M1,
which is of order � and satisfies the relation

γα2γ
−1 = α

χ�(γ )
2 with γ = γ̃ |K ′.

In order to simplify notation, we define M2(φ) := K (
√
d) if either ε �= id or α2 �= id. To

summarize, we say that

M1(φ) := M〈˜δγ̃ (�−1)/2 ,̃ε〉
1 ,

M2(φ) := K (
√
d).

Hence for a given

˜� ∈ H1(GK , Ed[�])

we have a fieldM = M(φ) which determines 〈φ〉 completely where φ = res(˜�). We want
to study the information we attain from the pair (M1(φ),M2(φ)). If ε = id or α2 = id,
then we get backM(φ) = M from (M1(φ),M2(φ)). In these cases, we shall say that φ is of
first type. What happens if ε �= id and α2 �= id?
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Assume that

φ �= ψ ∈ H1(GK , Ed[�])

have fieldsM(φ) andM(ψ) with Galois groups 〈α1,α2〉 and 〈β1,β2〉 as above such that

M(φ)α1 = M(ψ)β1 .

LetN be the composite ofM(φ) andM(ψ). Then theGalois groupGal(N/Ld) is generated
by three elements 〈σ1, σ2, σ3〉, which we can choose in such a way that

σ1|M(φ) = α1, σ1|M(ψ) = βλ
1

σ2|M(φ) = α2, σ2|M(ψ) = βλ
2

where λ ∈ {1, . . . , � − 1}. N is a splitting field of φ and ψ , and

(φ − λ�−1ψ)(σ1) = (φ − λ�−1ψ)(σ2) = 0.

Hence the fixed field of the kernel of φ − λψ is a cyclic extension of Ld which is normal
over K , and φ − λ−1ψ is of first type.
Thus, M1(φ) determines 〈φ〉 up to elements of first type, and in order to determine all

elements inH1(GK , Ed[�]), it is enough to determine all dihedral extensions ofK of degree
2� containing K (

√
d) and all extensionsM1 of degree � over K ′ which are normal over K

such that conjugation by γ on Gal(M1, K ′) is equal to χ�(γ ).
Therefore to prove the double divisibility, one has to show that for φ ∈ Sel�(Ed, K ), the

fieldM2(φ) is unramified over K (
√
d) outside˜SE , andM1(φ) is unramifed over K ′ outside

SE and little ramified at divisors of l.

5.2 Splitting fields of elements in Sel�(Ed, K )

We shall continue to use the assumptions and the notations of the Theorem B and Sect.
5.1.

Lemma 5.5 Let φ be an element in Sel�(Ed, K ). Then M1(φ) =: M1 is unramified at q
over K ′ and M2(φ) =: M2 is unramified at q over K (

√
d).

Proof We first prove the latter statement. Since q|�K (
√
d)/K , we have that K (

√
d) and K ′

are ramified at q overK . Hence the norm ofQ|q inK (
√
d) is equal to q, and by assumption

the norm of Q|2 is equal to 2. Suppose that K (
√
d) had a cyclic extension of degree � in

whichQ is ramified. Then the completion K (
√
d)Q admits a cyclic extension of degree �

ramified atQ. Since � is odd andQ has residue characteristic two, this extension is tamely
ramified. By local class field theory, the tamely ramified cyclic extensions of a local field
K (

√
d)Q all have degree dividing |κ×|, where κ is the residue field. Since κ = F2, we have

that there are no tamely ramified and ramified extensions of K (
√
d)Q. Thus, K (

√
d) has

no cyclic extension of degree � in whichQ ramifies, and henceM2 is unramified at q over
K (

√
d).

To prove the former statement, we shall utilize the proof of [2, Lemma 3] and look prime
by prime. For � = 5, the same argument as above can be applied to QK ′ |q. For � = 7,
there is only one extensionQ|q toK ′ which is ramified of order 2 and has norm 8. Assume
thatQK ′ is ramified inM1/K ′ and letQM1

be the unique extension ofQK ′ toM1. LetMt
be the subfield of M1 in which QM1

is tamely ramified. Then Mt is a cyclic extension of
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degree 7 over K (ζ7 + ζ−1
7 ), and M1 is the compositum of Mt with K ′ over K (ζ7 + ζ−1

7 ).
Thus, Gal(M1/K (ζ7 + ζ−1

7 )) is abelian. But this contradicts the fact that

γ 3αγ 3 = αχ7(γ 3) = α−1,

where 〈α〉 = Gal(M1/K ′) and 〈γ 〉 = Gal(K ′/K ).
For � = 11, 13, 19, 37, we can use the same proof as the first statement since

11 � (25 − 1) 13 � (22 − 1) 37 � (23 − 1) 37 � (218 − 1)

13 � (26 − 1) 19 � (29 − 1) 37 � (29 − 1) 37 � (22 − 1).

13 � (23 − 1) 19 � (23 − 1) 37 � (26 − 1)

For � = 17, there there is only one extension Q|q to K ′ which is ramified of order 2 and
has norm 28 (note that 17|(28 − 1)). If we assume thatQK ′ is ramified inM1/K ′, then we
can use the above argument to construct the same contradiction. ��

Remark 5.6 Since 73|(236−1), 73|(29−1), and 73|(218−1), wemay not assume that there
is a unique cyclic extension of K ′ with degree 73 in which Q is ramified, and hence the
above argument does work for � = 73. This precludes us from extending Theorem B to
number fields K of degree ≥ 6.

Therefore, we can assume that p � q · l, but p|N (E).

Lemma 5.7 Let φ be an element in Sel�(Ed, K ). Then M1/K ′ is unramified outside of
SE ∪ {l} and M2/K (

√
d) is unramified outside˜SE ∪ {l}.

Proof We have to test prime numbers p �= l that divide N (E).

1. If ordp(jE) ≥ 0, then it follows from Néron’s list of minimal models of elliptic curves
with potentially good reduction that � must be equal to 3 [18, p.124]. Since we only
consider primes � > 3, we can exclude this case from consideration.

2. Now assume that ordp(jE) < 0. We have two subcases:

(a) If ordp(jE) ≡ 0 mod �, we have that p /∈ SE and so Ed is not a Tate curve over
Kp.Moreover,Kp(E[�]) is unramified overKp and henceM1/K ′ andM2/K (

√
d)

are unramified at all divisors of p if and only ifM1/Ld (resp.M2/Ld) are unram-
ified at all divisors of p. We now use the triviality of the φ ∈ Sel�(Ed, K ) over
Kp from Lemma 4.2. Also recall thatM is the fixed field of the kernel of φ. We
shall show thatQM is unramified over Ld .
There is a ˜P ∈ Ed(MP) where PM |p such that for all σ ∈ D(PM), we have
σ˜P −˜P = φ(σ ). Hence

P′ := � ·˜P ∈ Ed(Kp)

and so 2P′ is in the connected component of unity modulo p via Remark 2.6.
Hence˜P = ˜P1 + P2 with P2 ∈ Ed[�] and 2˜P1 in the component of the unity of
E mod PM , so˜P1 corresponds to a PM-adic unity u under the Tate parame-
trization. Now take

α ∈ 〈α1,α2〉 ∩ I(PM)
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where I(PM) is the interia group ofPM . Then 2(α˜P −˜P) corresponds to αu/u
and is an �th root of unity. By Hilbert’s Theorem 90, we have that α = id, and
thus,PM is unramified over Ld .

(b) If ordp(jE) �≡ 0 mod �, then the values at the Hecke characters χ of order �

tell us that either E is a Tate curve over Kp or that p ∈ SE . Consider the former
situation. Our assumptions from Theorem B tell us that q is not completely
decomposed in K (

√
d) and K ′. Since

K×
p /(K×

p )� ∼= Kp(
√
d)×/(Kp(

√
d)×)� ∼= K ′×

P /(K ′×
P )�

for all PK ′ |p, we see that for all cyclic extensions M1 of K ′ and M2/K (
√
d) of

degree � and divisors PMi |p, one has that Gal(Mi,PMi
/Kq) is abelian of even

order. But this implies that

M1,P = K ′
p and M2,P = KP(

√
d),

which is absurd. Thus p ∈ SE and our lemma follows. ��
The next step is to describe the behavior ofMi at divisors of l.

Lemma 5.8 Assume that ordl(jE) < 0 and φ ∈ Sel�(Ed, K ). Then M2/K (
√
d) is unrami-

fied at l and M1/K ′ is little ramified at divisors of l.

Proof The assumptions tells us that E/Kl is a Tate curve but that Ed/Kl is not a Tate
curve. Since Kl(E[�]) = Kl(ζ�), the behavior ofMi at l is determined by the behavior ofM
at l. Let LM |l, let I(LM) be the inertia group of LM , and let

α ∈ 〈α1,α2〉 ∩ I(LM).

As in the proof of Lemma 5.7, we can use the fact that Ed/Kl is not a Tate curve to show
that there is a˜Q ∈ Ed(ML) whereLM |l and α˜Q−˜Q = φ(α). Hence 2˜Q is in the connected
component of unity modulo LM via Remark 2.6. This implies that

MLM = M〈α〉
LM

( �
√
u)

whereu is aLM-adic unit corresponding to 2˜Q under theTate parametrization.Moreover,
M1/Ld is little ramified at l.
Now assume that α2 = id or ε = id. Then M2/K (

√
d) is of degree �, and we have

to show that M2/K (
√
d) is unramified at LM2

|l. We recall the choice of point Q. Since
γQ = χ�(γ )Qwhere 〈γ 〉 = Gal(K (ζ�)/K ), it follows thatQ is in the kernel of the reduction
of E modulo all divisors of l, and hence P + λQ is not in this kernel where λ ∈ N. For
α ∈ I(LM), we saw that σ˜Q− ˜Q = φ(σ ) is in the kernel of the reduction modulo LM , and
hence

α1α
λ
2 /∈ I(LM) ∀ λ ∈ N and LM |l.

Thus, it follows thatM〈α2〉/Ld is unramified at LM andM2/K (
√
d) is unramified at l. ��

Finally, we look at the case where ordl(jE) ≥ 0.

Lemma 5.9 Assume that E/K has a K-rational point P of order � > 3, that ordl(jE) ≥ 0,
and that P is not contained in the kernel of reduction modulo l, in particular, this means
that E is not supersingular modulo l. Let φ be an element in Sel�(Ed, K )with corresponding
fields M1 and M2. Then M1/K ′ is little ramified at l, and M2/K (

√
d) is unramified at l.



Morrow Res. Number Theory (2016) 2:30 Page 18 of 23

Proof Suppose that ordl(jE) ≥ 0, which implies that E has potentially good reduction at l.
Since E/K has a K -rational point P of order � > 3, we know that Gal(K (E[�])/K (ζ�)) is a
subgroup of the additive group F+

� . We want to show that all divisors of l are not ramified
in K (E[�])/K (ζ�). If E has good reduction over K (ζ�), then we are immediately done. If E
does not have good reduction over K (ζ�), then there must exist some extension N/K (ζ�)
such that [N :K (ζ�)]|6 and that E has good reduction at all divisors LN |l; this divisibility
condition is similar to the proof of [1, Proposition VII.5.4.c]. From our assumptions, it
follows that NL contains K (E[�]) and that 〈Q〉 is the subgroup of order � of the kernel of
reduction modulo LN . Hence all divisors of l are not ramified in K (E[�])/K (ζ�), and we
can prove the lemma by looking at the behavior of l inM/Ld .
Assume thatLM |l and let I(LM) be the inertia group ofLM . Suppose thatαμ

1 αλ
2 ∈ I(LM).

There there is a˜P ∈ E(ML) with

(αμ
1 αλ

2 )˜P −˜P = μP + λQ.

But we know that for μ �= 0, the point μP + λQ is not in the kernel of reduction modulo
LM . Let ˜E be a model of E over N having good reduction modulo LN |l. Since (I(LM) −
id)˜E(N · ML) is contained in this kernel, we must have that μ = 0, and hence

I(LM) ∩ Gal(M/Ld) ⊆ 〈α2〉.
Thus,M〈α2〉/Ld is unramified at LM ; moreover,M2/K (

√
d) is unramified above l.

Now assume that I(LM) = 〈α2〉. Then Q = α2˜Q − ˜Q and since 〈α2〉 acts trivially on
˜E(N ·ML)/˜E−(N ·ML), wemay assume that˜Q ∈ ˜E−(N ·ML) and hence � ·˜Q ∈ ˜E−(N ·Kl).
Since ˜E has ordinary reduction modulo LM , we have that N · Kl(˜Q) is little ramified at
divisors of l. Thus, our lemma follows. ��

Lemmas 5.5, 5.7, 5.8 and 5.9 prove that for φ ∈ Sel�(Ed, K ), the fieldM2(φ) is unramified
overK (

√
d) outside˜SE ∪{l}, andM1(φ) is unramifed overK ′ outside SE and little ramified

at divisors of l. Moreover, we have proved that

# Sel�(Ed, K )
∣

∣

∣cl̃SE ,u(K (
√
d))[�] · clSE (K ′)[�](χ�) ,

which completes the proof of Theorem B.

5.3 Proof of Corollary E

Since we have established our double divisibility statement (2), we can proceed with a
proof of Corollary E. By the definitions established in Sect. 2, we have that

cl̃SE ,u(K (
√
d))[�] · clSE (K ′)[�](χ�)

∣

∣

∣cl∅,u(K (
√
d))[�] · cl∅(K ′)[�](χ�) · εS

where εS is a number depending only on˜SE . Note that when˜SE = ∅, we have that εS = 1
and that cl∅,u(K (

√
d))[�] = cl(K (

√
d))[�] by Remark 2.4. Corollary E follows immediately

from the following lemma.

Lemma 5.10 cl∅(K ′)[�](χ�) | cl(K (
√
d))[�].

Proof Let M/K be a Galois extension containing K ′ with 〈α〉 = Gal(M/K ), with the
relations

α� = id and γαγ −1 = αχ�(γ ) where 〈γ 〉 = Gal(K ′/K ).
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We assume thatM is unramified outside l and little ramified at l; hence

M(ζ�) = K ′(
√
d)( �

√
c),

with c ∈ M(
√
d) and the principal divisor of c is a �th power. We want to extend c to an

element of order � in the divisor class group of K (
√
d).

Let γ̃ be an extension of γ to Gal(M(
√
d)/K ) such that γ̃ �−1 = id, γ̃ |K (ζ�) generates

Gal(K (ζ�)/K ), and γ̃ |K (
√
d) = id. SinceM(

√
d)/K is normal, we have γ̃ (c) = ci · e� with

1 ≤ i ≤ � − 1 and e ∈ K ′(
√
d). Hence,

γ̃ ( �
√
c) = ( �

√
c)i · e · ξγ̃

with ξ�
γ̃ = 1. Let α̃ be an extension of α toM(

√
d) of order �. We can see that i = 1 since

γ̃ α̃( �
√
c) = ξ

χ�(γ )
α̃ γ̃ ( �

√
c)

and

α̃χ�(γ )γ̃ ( �
√
c) = α̃χ�(γ )(ξγ̃ ( �

√
c)i · e) = ξ

i·χ�(γ )
α̃ · γ̃ ( �

√
c),

and hence

M(
√
d) = K (

√
d, �

√
c, ζ�).

There exists an element c̃ = c�−1 · e′� ∈ M(
√
d) with e′ ∈ K ′(

√
d) such that the divisor of

c̃ is a �th power. However, since ±̃c is not an �th power in K (
√
d), it is an element of order

� in the divisor class group of K (
√
d). ��

6 Elliptic curves satisfying Corollary D
LetE be an elliptic curve over a number fieldK . In a recentwork [13], Zywinahas described
all known, and conjecturally all, pairs (E/Q, �) such that mod � image of Galois, ρE,�(GQ),
is non-surjective. Using Zywina’s classification, we can find elliptic curves E/Q that will
satisfy the conditions of Corollary D. First, we present an example of this technique for
the case when � = 3. We remark that this case does not apply to Corollary D; however, it
best illustrates the technique.
Let E/Q be a non-CM elliptic curve overQ such that ρE,3(GQ) is conjugate to

B(3) :=
(

∗ ∗
0 ∗

)

⊂ GL2(F3).

We can use Galois theory to prove the following result:

Proposition 6.1 Let E/Q have mod 3 image of Galois conjugate to B(3). Then Q(E[3]) =
Q(x(E[3])) · K where K is an explicitly computable quadratic extension.

Before we prove Proposition 6.1, we prove the following lemma which tells us over
which extension E obtains a 3-torsion point.

Lemma 6.2 For E/Q from Proposition 6.1, there exists some quadratic extension K such
that E has a K-rational 3-torsion point. In particular, E(K )[3] = 〈P〉.
Proof Let E : y2 = x3 −Ax − B for A, B ∈ Q. Via the Weil-pairing, we know thatQ(ζ3) ⊆
Q(E[3]). It is also a well known fact that B(3) ∼= S3 ×Z/2Z. Combining these results with
our assumptions, we have the following diagram of Galois sub-fields ofQ(E[3]):
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where the extension Q(x(E[3])) is the index 2 sub-field of Q(E[3]) generated by the x-
coordinates of points in E(Q)[3]. Recall that the roots of the 3-division polynomial

ψ3(x) = 3x4 + 6Ax2 + 12Bx − A2

correspond to x-coordinates of E(Q)[3]. In particular, ψ3(x) is the minimal polynomial of
the degree 6, Galois extensionQ(x(E[3])).
Since S4 does not contain any transitive subgroups of order 6, we know that ψ3(x) must

have a linear factor, so wewriteψ3(x) = (x−α)g(x) where α ∈ Q and g(x) is an irreducible
cubic. This implies that there exists some P ∈ E(Q)[3] withQ-rational x-coordinate given
by α. Moreover, we see that there is a 3-torsion point

P = (α,
√

f (α)).

that is defined over the quadratic extensionQ(
√

f (α)). ��

Remark 6.3 From the above proof, one can easily see that Gal(Q(x(E[3]))/Q) ∼= S3.
Indeed, since Q(x(E[3])) is Galois, we showed that the Galois group of ψ3(x) is actu-
ally the Galois group of the cubic g(x). Since [Q(x(E[3])) : Q] = 6, we know g(x) must be
an irreducible cubic with non-square discriminant, which immediately implies our claim.

Proof of Proposition 6.1 (Proof of Proposition 6.1) Let K denote the quadratic extension
fromLemma 6.2. It is clear thatK ⊂ Q(E[3]) and thatK � Q(x(E[3])), so we haveQ(E(3))
is the compositum ofQ(x(E[3])) and K . ��

The idea behind finding elliptic curves over Q such that E(Q)[�] = {O} and E(K )[�] =
〈P〉 is to consider E/Q with ρE,�(GQ) conjugate to a subgroup H such that

(

1 ∗
0 ∗

)

� H ⊆
(

∗ ∗
0 ∗

)

=: B(�).

We can see that E will attain an � torsion point over an extension K where the degree of
K/Q is determined the cardinality of the upper left entry. For � = 3, we saw thatH = B(3)
and thus the upper left entry has order 2, which gives a less explicit proof of Proposition
6.1.
Let � ∈ {5, 13}. Below, we provide examples of elliptic curves E/Q that do not have aQ-

rational point of order � but attain a K -rational point P of order � over some extension of
small degreeK that satisfies the conditions ofCorollaryD.The final step in our verification
is showing P is not contained in the kernel of reductionmodulo l; in particular, this means
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that E/K is not supersingular modulo l if ordl(jE) ≥ 0. This condition is computable via
the Magma command IsSupersingular.
In order to conduct a thorough search, we consider all subgroupsH which can occur as

an image of Galois for a non-CM E/Q and satisfy the above containment. In particular,
we run through a large list elliptic curves E/Q with prescribed non-surjective mod �

image of Galois coming from the modular curves XH of Zywina [13]. Since this list is
comprehensive, we also give examples of elliptic curves over Q that do not satisfy and
potentially satisfy Corollary D, modulo some computations.
For � = 5, we only have one example.

Example 6.3.1 (� = 5) Let E/Q be the elliptic curve

E : y2 = f (x) = x3 − 185193
185193

x + 185193
149

.

E hasmod 5 image ofGalois conjugate toB(5) ⊂ GL2(F5), and henceE attains aK -rational
point of order 5 over a bi-quadratic extension K of Q. The first quadratic extension L/Q
is given by adjoining the quadratic root α of the 5-division polynomial ψ5, and then the
second quadratic is given by adjoining the square root of the f (α). For E defined above, we
compute that cl(K ) = 8, ζ5 /∈ K , 2 is ramified in OK , and that E/K is not supersingular
modulo l if ordl(jE) ≥ 0 where l|5. Therefore, the elliptic curve E and the number field K
satisfy the conditions of Corollary D.

For � = 7, we have two possibilities.

Potential example 6.3.2 (� = 7) Let E/Q be the elliptic curve

E : y2 = f (x) = x3 − 81469949623875
3017401762489

x + 162939899247750
3017401762489

,

which has mod 7 image conjugate to B(7). E attains a K -rational point of order 7 over
an extension K of degree 6. The extension K is given by first adjoining the root α of the
cubic factor of ψ7 and then adjoining the square root of f (α). We verify almost all of the
conditions from Corollary D for E and K ; however, we are not able to verify that 7 � cl(K ).

Non-example 6.3.3 (� = 7) Suppose that E/Q has ρE,7(GQ) conjugate to

H :=
(

a2 ∗
0 ∗

)

where a ∈ F7.

Since #(F×
7 )2 = 3, we have that E attains a K -rational point of order 7 over a cubic

extensionK . Moreover, this extension is given adjoining the root of the cubic factor of the
7-division polynomial ψ7. In our search, we find that all E/K are supersingular modulo l

if ordl(jE) ≥ 0 where l|7.
For � = 11, there do not exist any subgroups coming from [13] that have our desired

condition. For � = 13, we find a few examples of curves satisfying Corollary D.

Example 6.3.4 (� = 13) Suppose that E/Q has ρE,13(GQ) conjugate to

H =
(

a3 ∗
0 ∗

)

where a ∈ F13,
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then E attains a K -rational point of order 13 over a bi-quadratic extension K/Q since
#(F×

13)3 = 4. As an example, consider the elliptic curve

E : y2 = x3 − 2248091
180353

x + 4496182
180353

,

which has mod 13 image conjugate to H . E attains a K -rational point of order 13 over a
bi-quadratic extension K of Q. The first quadratic extension L/Q is given by adjoining a
quadratic root α of the 13-division polynomialψ13, and then the second quadratic is given
by adjoining the square root of the f (α). We compute that cl(K ) = 2, ζ13 /∈ K , (2) splits
in OK , and E/K is not supersingular modulo l if ordl(jE) ≥ 0 where l|13. Therefore, the
elliptic curve E and the number field K satisfy the conditions of Corollary D.

Example 6.3.5 (� = 13) Suppose that E/Q has ρE,13(GQ) conjugate to

H :=
(

a4 ∗
0 ∗

)

where a ∈ F13.

Since #(F×
13)4 = 3, E attains a K -rational point of order 13 over cubic extension K/Q. For

example, consider the elliptic curve

E : y2 = x3 + 13674069x + 324405221670.

Using [13], E has mod 13 image conjugate to H . Now let K/Q denote the number field
defined by the cubic factor ofψ13. For notational purposes, we shall writeK = Q(α) where
α is the primitive element of K . By base changing to K , we find that EK = E ×Q K has
K -rational 13-torsion point. We also compute that cl(F ) = 1, 2 splits inOK , ζ13 /∈ K , and
that E/K is not supersingular modulo l if ordl(jE) ≥ 0 where l|13. Therefore, the elliptic
curve E and the number field K satisfy the conditions of Corollary D.

Example 6.3.6 (� = 13) Suppose that an elliptic curve has ρE,13(GQ) conjugate to
(

a2 ∗
0 ∗

)

where a ∈ F13.

Since #(F×
13)2 = 6, E will attain a K -rational point of order 13 over an extension of degree

6. As an example, consider the elliptic curve

E : y2 = x3 − 12096
529

x + 24192
529

,

which satisfies the above property. E attains a K -rational point of order 13 over a sextic
extension K of Q. The first cubic extension L/Q is given by adjoining a cubic root α of
the 13-division polynomial ψ13, and then the second quadratic is given by adjoining the
square root of the f (α). We also compute that cl(F ) = 4, 2 splits inOK , ζ13 /∈ K , and that
E/K is not supersingular modulo l if ordl(jE) ≥ 0 where l|13. Therefore, the elliptic curve
E and number field K satisfy the conditions of Corollary D.

Potential example 6.3.7 (� = 13) Suppose that an elliptic curve E/Q has mod 13 image
conjugate toB(13). The curve E will attain aK -rational point of order 13 over an extension
of degree 12. The difficultly in verifying the conditions of Corollary D is computing the
class number and ramification indicies for the duodecic extension K .
Finally for � = 37, there is only one E/Q that we need to consider.
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Potential example 6.3.8 (� = 37) Suppose that E/Q is the elliptic curve with j-invariant
−7 · 113, which has affine equation

E : y2 = x3 − 251559
11045

x + 503118
11045

.

From [13, Theorem 1.10.(ii)], we know that the mod 37 image of E is conjugate to

H :=
(

a3 ∗
0 ∗

)

where a ∈ F37.

Since #(F×
37)3 = 12, E attains a K -rational point of order 37 over a duodecic extension

K/Q.
As before, the difficultly in verifying the conditions of Corollary D is computing the class

number and ramification indicies for the duodecic extension K .
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