RESEARCH

Open Access

Selmer groups of twists of elliptic curves over *K* with *K*-rational torsion points

Jackson Salvatore Morrow*

*Correspondence: jmorrow4692@gmail.com Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, USA

Abstract

We generalize a result of Frey on Selmer groups of twists of elliptic curves over \mathbf{Q} with \mathbf{Q} -rational torsion points to elliptic curves defined over number fields of small degree K with a K-rational torsion point. We also provide examples of elliptic curves coming from Zywina that satisfy the conditions of our Corollary D.

Keywords: Selmer groups, Quadratic twists of elliptic curves

1 Introduction

Let ℓ be an odd, rational prime and let E/K be an elliptic curve defined over a number field K. The K-rational points E(K) form a finitely generated group by the Mordell-Weil theorem. Recall from [1, Section X.4] that we have the following exact sequence

 $0 \rightarrow E(K)/\ell E(K) \rightarrow \operatorname{Sel}_{\ell}(E, K) \rightarrow \operatorname{III}(E, K)[\ell] \rightarrow 0,$

where $\text{Sel}_{\ell}(E, K)$ denotes the ℓ -Selmer group and $\text{III}(E, K)[\ell]$ is the ℓ -Shafarevich-Tate group. If $K = \mathbf{Q}$, then Frey [2] provides explicit examples of quadratic twist of elliptic curves over \mathbf{Q} with \mathbf{Q} -rational points of odd, prime order ℓ whose ℓ -Selmer groups are non-trivial; a theorem of Mazur [3] implies that $\ell \in \{3, 5, 7\}$.

Theorem 1.1 ([2], Corollary) Suppose that E/Q is an elliptic curve with a Q-rational torsion point P of odd prime order ℓ , and suppose that P is not contained in the kernel of reduction modulo ℓ ; in particular, this means that E is not supersingular modulo ℓ if $\operatorname{ord}_{\ell}(j_E) \geq 0$. Let \widetilde{S}_E be the subset of odd primes dividing the conductor N(E) of E defined by

 $\widetilde{S}_E := \{ p | N(E) : p \equiv -1 \pmod{\ell}, \ \ell \nmid \operatorname{ord}_p(\Delta_E) \},\$

where j_E is the *j*-invariant of *E* and Δ_E is the discriminant of *E*. Suppose that $\tilde{S}_E = \emptyset$. Suppose that $d \equiv 3 \pmod{4}$ is a negative, square-free integer coprime to $\ell N(E)$ satisfying:

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

1. *if* $\operatorname{ord}_{\ell}(j_E) < 0$, *then* $\left(\frac{d}{\ell}\right) = -1$; 2. *if* p|N(E) *is an odd prime, then*

$$\begin{pmatrix} \frac{d}{p} \end{pmatrix} = \begin{cases} -1 & \text{if } \operatorname{ord}_p(j_E) \ge 0; \\ -1 & \text{if } \operatorname{ord}_p(j_E) < 0 \text{ and } E/\mathbf{Q}_p \text{ is a Tate curve}; \\ 1 & \text{otherwise.} \end{cases}$$

Then we have that $\text{Sel}_{\ell}(E^d, \mathbf{Q})$ is non-trivial if and only if the ℓ -torsion of the class group of $\mathbf{Q}(\sqrt{d})$ is non-trivial.

Remark 1.2 Frey actually proved a more explicit double divisibility statement [2, Theorem] concerning the ℓ -Selmer group of E^d and ℓ -torsion of ray class groups, when $\widetilde{S}_E \neq \emptyset$.

In this paper, we generalize Frey's results [2, Theorem, Corollary] to number fields K of small degree. We show that for specific quadratic twists E^d , the order of the ℓ -torsion of some ray class group of $K(\sqrt{d})$ divides the order of $\operatorname{Sel}_{\ell}(E^d, K)$, and the order of $\operatorname{Sel}_{\ell}(E^d, K)$ divides the order of the ℓ -torsion of a different ray class group of $K(\sqrt{d})$ times the degree of some maximal abelian extension of exponent ℓ with prescribed ramification and Galois conditions (cf. Theorems A, B for precise statements and Remark 3.1 for a colloquial statement). These results allow us to give explicit applications to elliptic curves defined over **Q** (cf. Corollaries C, D), and we provide explicit examples of elliptic curves over **Q** satisfying Corollary D in Sect. 6. Finally, in Corollary E, we generalize Theorem 1.1 to number fields of small degree.

Remark 1.3 Frey's result [2, Theorem] has been used to produce twists of elliptic curves E^d over \mathbf{Q} such that $III(E^d, \mathbf{Q})[\ell]$ is non-trivial. Most notably, Ono [4] utilized Frey's result to prove that for a large class of E/\mathbf{Q} with torsion subgroup over \mathbf{Q} isomorphic to $\mathbf{Z}/\ell\mathbf{Z}$ where $\ell \in \{3, 5, 7\}$, there are infinitely many negative square-free integers d for which

 $\operatorname{rk}(E^d, \mathbf{Q}) = 0$ and $\mathbf{Z}/\ell \mathbf{Z} \times \mathbf{Z}/\ell \mathbf{Z} \subset \operatorname{III}(E^d, \mathbf{Q}).$

Later, Balog and Ono [5] used a new type of result concerning the non-triviality of class groups of imaginary quadratic fields (cf. [5, Theorem 1]) and Frey's result to prove that for such E/\mathbf{Q} ,

$$\#\left\{-X < D < 0 : L(E^d, 1) \neq 0, \ \mathrm{rk}(E^d, \mathbf{Q}) = 0, \ \mathrm{and} \ \ell \mid \# \mathrm{III}(E^d, \mathbf{Q})\right\} \gg_E \frac{X^{\frac{1}{2} + \frac{1}{2\ell}}}{\log^2 X}$$

Frey's idea was to obtain information about $\operatorname{Sel}_{\ell}(E^d, \mathbf{Q})$ when $E(\mathbf{Q})$ contains an element of order ℓ . In particular, he studied the behavior of E over local fields \mathbf{Q}_{ℓ} and their algebraic closures $\overline{\mathbf{Q}}_{\ell}$. His work illustrated a deep relationship between ℓ -ranks of Selmer groups and class groups of finite Galois extensions of exponent ℓ . In this paper, we investigate the ℓ -Selmer rank in families of quadratic twists of elliptic curves E/K with K-rational points of odd prime order ℓ . We use Frey's proof as a blueprint for our own, but the techniques we utilize come from class field theory. That being said, many of his arguments go through *mutatis mutandis*.

In order to state our results, we first need to recall some facts concerning prime torsion of elliptic curves defined over number fields of small degree. We give a succinct summary of these results and refer the reader to [6] for a more detailed synopsis. Let S(n) denote the set of primes that can arise as the order of a rational point on an elliptic curve defined

over a number field of degree n and let Primes(n) denote the set of primes bounded by n. By Merel-Oesterlé's bound, we know that

 $S(n) \subseteq Primes((3^{n/2} + 1)^2).$

The exact value of the set S(n) is currently known for $n \le 5$, but reasonable good bounds on S(6) and S(7) are given in [7].

п	S(n)	References
1	Primes(7)	[3]
2	Primes(13)	[8]
3	Primes(13)	[9]
4	Primes(17)	[10]
5	Primes(19)	[11]
6	$\subseteq Primes(19) \cup \{37, 73\}$	[7]

One can also consider the subset $S_{\mathbf{Q}}(n) \subseteq S(n)$ corresponding to primes that can arise as the order of a rational point on an elliptic curve $E_K = E \times_{\mathbf{Q}} K$ where *E* is defined over **Q** and *K* is a number field of degree *n*. From [12], it is known that

 $S_{\mathbf{Q}}(n) \subseteq \mathsf{Primes}(13) \cup \{37\} \cup \mathsf{Primes}(2n+1),$

and [12, Corollary 1.1] states that for $1 \le n \le 20$,

$$S_{\mathbf{Q}}(n) = \begin{cases} \mathsf{Primes}(7) & \text{for } n = 1, 2 \\ \{2, 3, 5, 7, 13\} & \text{for } n = 3, 4 \\ \mathsf{Primes}(13) & \text{for } n = 5, 6, 7 \\ \mathsf{Primes}(17) & \text{for } n = 8 \\ \mathsf{Primes}(19) & \text{for } n = 9, 10, 11 \\ \mathsf{Primes}(19) \cup 37 & \text{for } 12 \le n \le 20. \end{cases}$$

In this paper, we generalize the full double divisibility statement of [2, Theorem] to elliptic curves defined over small degree number fields *K*. We state explicit versions of our results, Theorems A, B and Corollary E, in Sect. 3 once we have established some notation.

1.1 Some remarks about the proofs

The problem of constructing elements in the Selmer group is a classical question with many avenues of approach. Frey's condition that the elliptic curve E/K have a K-rational point of odd prime power order $\ell > 3$ has two immediate consequences. First, the image of Galois under the mod ℓ representation is conjugate to

$$\begin{pmatrix} 1 & * \\ 0 & * \end{pmatrix} \subset \operatorname{GL}_2(\mathbf{F}_{\ell}),$$

which will assist in our explicit description the Galois structure of splitting fields of ℓ covers of E/K and the splitting fields of elements in $\operatorname{Sel}_{\ell}(E^d, K)$. The second is that we can immediately identify a quotient of $H^1(\operatorname{Gal}(\overline{K}/K), E(\overline{K})[\ell])$, namely $H^1(\operatorname{Gal}(\overline{K}/K), \mu_{\ell})$. Frey's (and our) proof relies on an analysis of cocyles in $H^1(\operatorname{Gal}(\overline{K}/K), E(\overline{K})[\ell])$ and this fact will allow us to deduce local triviality in certain cases using Hilbert's Theorem 90. A laborious aspect of our proofs is the case by case analysis of how primes \mathfrak{p} dividing N(E)behave in the field $K(\sqrt{d}) \cdot K(E[\ell])$ where $d \in \mathcal{O}_K^{\times}/(\mathcal{O}_K^{\times})^2$ yields the quadratic twist E^d of E and $K(E[\ell])$ is the ℓ -division field of E/K.

1.2 Organization of paper

In Sect. 2, we recall some classical facts from class field theory and algebraic number theory. In Sect. 3, we state our main results, Theorems A, B and Corollary E. In Sect. 4, we prove Theorem A, which yields a single divisibility statement. In Sect. 5, we prove the double divisibility statement of Theorem B by investigating the Galois structure of splitting fields of ℓ -covers of E/K and the splitting fields of elements $\operatorname{Sel}_{\ell}(E^d, K)$. Finally in Sect. 6, we provide explicit examples of elliptic curves over Q coming from [13] that satisfy the Corollary D.

2 Background and notation

Let L/K be a Galois extension of K, with ring of integers \mathcal{O}_L and \mathcal{O}_K . For any finite prime $\mathfrak{P} \in \mathcal{O}_L$ lying over a prime $\mathfrak{p} \in \mathcal{O}_K$, let $D(\mathfrak{P})$ denote the decomposition group of \mathfrak{P} , let $I(\mathfrak{P})$ denote the inertia group of \mathfrak{P} and let $\kappa' := \mathcal{O}_L/\mathfrak{P}$ and $\kappa = \mathcal{O}_K/\mathfrak{p}$ be the residue fields of characteristic $q = p^n$. In this note, we need a specific result concerning the Artin symbol and ramification theory for quadratic extensions L/K. For the definition of the Artin symbol $\left(\frac{L/K}{n}\right)$, we refer the reader to [14, Chapter IV].

Lemma 2.1 Let L/K be a quadratic extension, let \mathfrak{p} be a prime ideal of \mathcal{O}_K , let \mathfrak{P} denote some prime of \mathcal{O}_L lying above \mathfrak{p} , and let $\langle \delta \rangle = \operatorname{Gal}(L/K)$. Then:

- 1. \mathfrak{p} is unramified and splits completely in $L \iff \left(\frac{L/K}{\mathfrak{p}}\right) = \mathrm{id}$,
- 2. \mathfrak{p} is unramified and non-split in $L \iff \left(\frac{L/K}{\mathfrak{p}}\right) = \delta$, 3. \mathfrak{p} is ramified in $L \iff \mathfrak{p}|\Delta_{L/K}$ where $\Delta_{L/K}$ denotes the relative discriminant of L/K.

Proof Part (3) follows directly from the definition of the Artin symbol. Since p is unramified, we know that $|D(\mathfrak{P})| = f$ where f is the inertia degree of \mathfrak{P} over \mathfrak{p} . A prime \mathfrak{p} splits completely in *L* if and only if the ramification index *e* of \mathfrak{P} above \mathfrak{p} and the inertia degree *f* of \mathfrak{P} above \mathfrak{p} are equal to 1. Hence,

$$|D(\mathfrak{P})| = [\kappa':\kappa] = 1 \iff \operatorname{ord}\left(\frac{L/K}{\mathfrak{p}}\right) = 1 \iff \left(\frac{L/K}{\mathfrak{p}}\right) = \operatorname{id},$$

which proves (1). For (2), our assumptions and the fundamental identity tell us that e = 1and g = 1 if and only if f = 2. Thus,

$$|D(\mathfrak{P})| = [\kappa':\kappa] = 2 \iff \operatorname{ord}\left(\frac{L/K}{\mathfrak{p}}\right) = 2 \iff \left(\frac{L/K}{\mathfrak{p}}\right) = \delta.$$

In Theorem A, we use primitive Hecke characters to describe a subset of primes $\mathfrak{p}|N(E)$; we refer the reader to [14, Chapter VII, Section 6] for the definition of these characters.

Remark 2.2 Recall that there is a conductor-preserving correspondence between primitive Dirichlet characters of order ℓ and cyclic, degree ℓ number fields F/Q. From [15, Theorem 3.7], the Dirichlet character χ corresponds to the fixed field F of ker $\chi \subseteq$ $(\mathbf{Z}/f_{\chi}\mathbf{Z})^{\times} = \text{Gal}(\mathbf{Q}(\zeta_{f_{\chi}})/\mathbf{Q}).$ For any prime q,

$$\chi(q) = 0 \iff q$$
 ramifies in *F* and $\chi(q) = 1 \iff q$ splits in *F*.

By class field theory, any primitive Hecke character χ_H of K of order ℓ determines a cyclic extension N/K of degree ℓ . Moreover, the set of primitive Hecke characters determining this cyclic extension equals $\{\chi_H, \chi_H^2, \ldots, \chi_H^{\ell-1}\}$. These $\ell - 1$ Hecke characters have the same conductor \mathfrak{f} , and the determinant of L/K equals their product $\mathfrak{f}^{\ell-1}$ by the Hasse conductor-discriminant theorem. Thus for any prime ideal \mathfrak{q} of \mathcal{O}_K , we have that

 $\chi_H(\mathfrak{q}) = 0 \iff \mathfrak{q}$ ramifies in N and $\chi_H(\mathfrak{q}) = 1 \iff \mathfrak{q}$ splits in N.

2.1 Notation

We set the following notation:

- K := Galois number field,
- $\ell := \text{ odd}, \text{ rational prime in } S(n) \setminus \{2, 3\} \text{ such that } \ell \nmid \operatorname{cl}(K) \text{ and } \zeta_{\ell} \notin K,$
- L/K := algebraic extension of *K*,
 - $\mathfrak{p} := \text{ prime divisor of the rational prime } p \text{ in } \mathcal{O}_K$,
 - $\mathfrak{P} :=$ prime divisor of \mathfrak{p} in \mathcal{O}_L ,
 - $K_{\mathfrak{p}} := \text{ completion of } K \text{ with respect to } \mathfrak{p},$
- $L_{\mathfrak{P}} := \text{ completion of } L \text{ with respect to } \mathfrak{P},$
 - S := finite set of primes of \mathcal{O}_K ,
- M/L := Galois extension with abelian Galois group of exponent ℓ .

More generally, lower case gothic font will denote a divisor of a rational prime of \mathbf{Q} , and similarly, upper case gothic font will denote a divisor of a prime of K.

Definition 2.3 M/L is said to be little ramified outside *S* if for primes $p \notin S$ and all $\mathfrak{P}_L|\mathfrak{p}$ one has

 $M \cdot L_{\mathfrak{P}}(\zeta_{\ell}) = L_{\mathfrak{P}}(\zeta_{\ell})(\sqrt[\ell]{u_1}, \ldots, \sqrt[\ell]{u_k})$

with $k \in \mathbf{N}$ and $\operatorname{ord}_{\mathfrak{P}_L}(u_i) = 0$. Here ζ_ℓ is a ℓ th root of unity, u_1, \ldots, u_k are elements in $L_{\mathfrak{P}}(\zeta_\ell)$, and $\operatorname{ord}_{\mathfrak{P}_L}$ is the normed valuation belonging to \mathfrak{P}_L .

If M/L little ramified outside S, then M/L is unramified at all divisors of primes $\mathfrak{p} \notin S \cup \{l\}$.

2.2 Notation

We set the following notation, which comes directly from [2]:

 $L_{S} := \text{ maximal abelian extension of exponent } \ell \text{ of } L \text{ which is}$ little ramified outside S, $L_{S,u} := \text{ maximal subfield of } L_{S} \text{ which is unramified outside of } S,$ $H_{S}(L) := \text{ Galois group of } L_{S}/L,$ $H_{S,u}(L) := \text{ Galois group of } L_{S,u}/L,$ $\text{cl}_{S}(L)[\ell] := \text{ order of } H_{S}(L),$ $\text{cl}_{S,u}(L)[\ell] := \text{ order of } H_{S,u}(L).$

Remark 2.4 If $S = \emptyset$, we see that $cl_{\emptyset,\mu}(L)$ is equal to the order of the subgroup of the divisor class group of *L* consisting of elements of order ℓ which we denote by $cl(L)[\ell]$.

Now assume that L/K is normal with cyclic Galois group generated by an element γ of order $\ell - 1$. Take an extension $\tilde{\gamma}$ to $L(\zeta_{\ell})$. Let χ_{ℓ} be the cyclotomic character induced by the action of $\text{Gal}(L(\zeta_{\ell})/K)$ on $\langle \zeta_{\ell} \rangle$. Then $\chi_{\ell}(\tilde{\gamma})$ is determined by

$$\widetilde{\gamma}(\zeta_{\ell}) = \zeta_{\ell}^{\chi_{\ell}(\widetilde{\gamma})}.$$

Let *M* be normal over *K* containing *L* such that Gal(M/L) is abelian of exponent ℓ . Then $\tilde{\gamma}$ operates by conjugation on

 $\operatorname{Gal}(M(\zeta_{\ell})/L(\zeta_{\ell})) \cong \operatorname{Gal}(M/L),$

and this operation does not depend on choice of $\widetilde{\gamma}.$ Hence the subgroup

$$H(\chi_{\ell}) := \left\{ \alpha \in \operatorname{Gal}(M/L) : \widetilde{\gamma} \alpha \widetilde{\gamma}^{-1} = \alpha^{\chi_{\ell}(\widetilde{\gamma})} \right\} \subseteq \operatorname{Gal}(M/L)$$

is well-defined. In the special case that $M = L_S$, we denote the order of $H_S(L)(\chi_\ell)$ by $\operatorname{cl}_S(L)_\ell(\chi_\ell)$.

Now we shall consider an elliptic curve E/K given by a Weierstrass equation F(x, y) = 0 with coefficients in \mathcal{O}_K and minimal discriminant Δ_E . For any extension L/K, we denote the *L*-rational points of *E* (including ∞) by E(L). Let χ_H be a primitive Hecke character of order ℓ and let

$$\widetilde{S}_E := \left\{ \mathfrak{p} | N(E) : \chi_H(\mathfrak{p}) \neq 0, \operatorname{ord}_\mathfrak{p}(\Delta_E) \not\equiv 0 \pmod{\ell} \right\}$$
$$S_E := \left\{ \mathfrak{p} \in \widetilde{S}_E : \operatorname{ord}_\mathfrak{p}(j_E) < 0 \right\}.$$

Let $d \in \mathcal{O}_K^{\times}/(\mathcal{O}_K^{\times})^2$ and denote the twist of E/K by E^d/K . Via the general theory of twists [1, Section X.2], we know that E^d is isomorphic to E over $K(\sqrt{d})$ but not over K. Let $G_K := \operatorname{Gal}(\overline{K}, K)$ denote the absolute Galois group. Let $\mathfrak{W}(E^d, K)[\ell]$ be the set of elements of order ℓ in the kernel of

$$\rho: H^1(G_K, E^d(\overline{K})) \longrightarrow \bigoplus_{\mathfrak{p} \text{ prime}} H^1(\operatorname{Gal}(\overline{K_{\mathfrak{p}}}/K_{\mathfrak{p}}), E^d(\overline{K_{\mathfrak{p}}})).$$

The group of elements of order ℓ in the Selmer group of E^d , denoted by $\text{Sel}_{\ell}(E^d, K)$ is given as the pre-image of $\mathfrak{W}(E^d, K)[\ell]$ by the map

$$\alpha: H^1(G_K, E^d(\overline{K})[\ell]) \longrightarrow H^1(G_K, E^d(\overline{K})).$$

There are two main cases we need to consider:

Case 1 Assume that $\operatorname{ord}_{\mathfrak{P}}(j_E) \geq 0$. Then there is a finite extension N/K such that E has good reduction modulo all $\mathfrak{P}_N | \mathfrak{p}$ i.e., we find an elliptic curve \tilde{E} such that \tilde{E} modulo \mathfrak{P}_N is an elliptic curve over the residue field of \mathfrak{P}_N . $\tilde{E}(\overline{N_{\mathfrak{P}}})$ contains a subgroup $\tilde{E}_-(N_{\mathfrak{P}})$ consisting of points (\tilde{x}, \tilde{y}) with $\operatorname{ord}_{\mathfrak{P}_N}(\tilde{x}) < 0$. \tilde{E}_- is the kernel of reduction modulo \mathfrak{P}_N , and $\operatorname{ord}_{\mathfrak{P}_N}(\tilde{x}/\tilde{y})$ is the level of (\tilde{x}, \tilde{y}) . For ease of notation, we say that a point $(x, y) \in E(\overline{N_{\mathfrak{P}}})$ is in the kernel of the reduction modulo \mathfrak{P}_N if its image $(\tilde{x}, \tilde{y}) \in \tilde{E}_-(\overline{N_{\mathfrak{P}}})$.

Case 2 Assume that $\operatorname{ord}_{\mathfrak{p}}(j_E) < 0$. Then after an extension $L/K_{\mathfrak{p}}$ of degree $\leq 2, E$ becomes a Tate curve (via a theorem of Tate [1, Theorem C.14.1]); in particular, one has a Tate parametrization

$$\tau: \overline{L}^{\times}/\langle q \rangle \longrightarrow E(\overline{L})$$

where q is the p-adic period of E. One also has that

$$j_E = rac{1}{q} + \sum_{i=0}^\infty a_i q^i \quad ext{with } a_i \in \mathbf{Z}$$

and the points of order ℓ in $E(\overline{L})$ are of the form $\tau(\zeta_{\ell}^{\alpha}(q^{\beta/\ell}))$ where $\alpha, \beta \in \{1, \ldots, \ell-1\}$.

Definition 2.5 If F/K is a number field and $\mathfrak{P}_F|\mathfrak{p}$ we say that a point $(x, y) \in E(F_{\mathfrak{P}})$ is in the connected component of the unity modulo \mathfrak{P}_F if it is of the form $\tau(u)$ with u a \mathfrak{P}_F -adic unit, and (x, y) is in the kernel of the reduction modulo \mathfrak{P}_F if $u - 1 \in \mathfrak{P}_F$.

Remark 2.6 One should notice that if *E* is not a Tate curve over K_p but over an extension of degree 2 of K_p , then for all points $P \in E(K_p)$, 2*P* is in the connected component of unity modulo \mathfrak{p} .

3 Statement of results

As mentioned above, [2, Theorem] gives a double divisibility statement involving the ℓ torsion of the Selmer group. First, we generalize his single divisibility to elliptic curves E/K defined over number fields K of finite degree with K-rational points of odd, prime order ℓ . Recall that S(n) is the set of primes that can arise as the order of a rational point on an elliptic curve defined over a number field of degree n.

Theorem A Let K be a Galois number field and choose $\ell \in S(n) \setminus \{2, 3\}$ such that $\ell \nmid \operatorname{cl}(K)$ and $\zeta_{\ell} \notin K$. Let E/K be an elliptic curve over K with a K-rational point P of order ℓ ; let χ_{H} denote a primitive Hecke character of K with order ℓ ; let \mathfrak{q} denote a prime of \mathcal{O}_{K} that lies above 2; and let \mathfrak{l} denote a prime of \mathcal{O}_{K} that lies above ℓ . Suppose that P is not contained in the kernel of reduction modulo \mathfrak{l} ; in particular, this means that E is not supersingular modulo \mathfrak{l} if $\operatorname{ord}_{\mathfrak{l}}(\mathfrak{j}_E) \geq 0$. Let S_E be the set of primes

$$S_E := \left\{ \mathfrak{p} | N(E) : \operatorname{ord}_{\mathfrak{p}}(\Delta_E) \neq 0 \pmod{\ell}, \ \chi_H(\mathfrak{p}) \neq 0, \ and \ \operatorname{ord}_{\mathfrak{p}}(j_E) < 0 \right\}.$$

Suppose that $d \in \mathcal{O}_K^{\times}/(\mathcal{O}_K^{\times})^2$ is negative,¹ coprime to $(\cdot N(E))$, and satisfies the following divisibility and Artin symbol conditions where $\langle \delta \rangle = \text{Gal}(K(\sqrt{d})/K)$:

1. if $\mathfrak{q}|N(E)$, then $\mathfrak{q}|\Delta_{K(\sqrt{d})/K}$;

2. if
$$\operatorname{ord}_{\mathfrak{l}}(j_E) < 0$$
, then $\left(\frac{K(\sqrt{d})/K}{\mathfrak{l}}\right) = \delta_{j}$

- 3. *if* $\mathfrak{p}|N(E)$ *is a prime of* K *with* $\mathfrak{p} \notin S_E$ *, then*
 - $if \operatorname{ord}_{\mathfrak{p}}(j_E) \geq 0$, then $\left(\frac{K(\sqrt{d})/K}{\mathfrak{p}}\right) = \delta;$
 - *if* $\operatorname{ord}_{\mathfrak{p}}(j_E) < 0$ and $E/K_{\mathfrak{p}}$ is a Tate curve, then $\left(\frac{K(\sqrt{d})/K}{\mathfrak{p}}\right) = \delta;$
 - otherwise, $\left(\frac{K(\sqrt{d})/K}{\mathfrak{p}}\right) = \mathrm{id}.$

Then we have that the order of the ℓ -torsion of the S_E -ray class group of $K(\sqrt{d})$ divides the order of Sel_{ℓ}(E^d , K). More precisely, the single divisibility statement holds:

$$\operatorname{cl}_{S_{E,\mathcal{U}}}(K(\sqrt{d}))[\ell] \, \big| \, \# \operatorname{Sel}_{\ell}(E^d, K) \, . \tag{1}$$

We also prove a stronger, more explicit version of Theorem A in the form of a double divisibility statement, which completely generalizes [2, Theorem].

Theorem B Let K be a Galois number field of degree $n \leq 5$ such that $N_{K/Q}(q) = 2$ for all q|2. Choose $\ell \in S(n) \setminus \{2, 3\}$ such that $\ell \nmid \operatorname{cl}(K)$ and $\zeta_{\ell} \notin K$. Let E/K be an elliptic curve over K with a K-rational point P of order ℓ ; let χ_H denote a primitive Hecke

¹We say that $d \in \mathcal{O}_{K}^{\times}/(\mathcal{O}_{K}^{\times})^{2}$ is negative if the image of d under each real embedding is negative.

character of K with order ℓ ; let q denote a prime ideal of \mathcal{O}_K that lies above 2; and let \mathfrak{l} denote a prime ideal of \mathcal{O}_K that lies above ℓ . If $[K : \mathbf{Q}] = 5$ and $\ell = 5$, then we must make the added assumption that $(\ell)\mathcal{O}_K$ is not totally ramified. Suppose that P is not contained in the kernel of reduction modulo \; in particular, this means that E is not supersingular modulo l if $ord_{l}(j_{E}) \geq 0$. Let S_{E} and S_{E} be the sets of primes

$$\widetilde{S}_E := \left\{ \mathfrak{p} | N(E) : \chi_H(\mathfrak{p}) \neq 0, \operatorname{ord}_\mathfrak{p}(\Delta_E) \neq 0 \pmod{\ell} \right\},\$$
$$S_E := \left\{ \mathfrak{p} \in \widetilde{S}_E : \operatorname{ord}_\mathfrak{p}(j_E) < 0 \right\}.$$

Suppose that $d \in \mathcal{O}_K^{\times}/(\mathcal{O}_K^{\times})^2$ is negative, coprime to $l \cdot N(E)$, and satisfies the following divisibility and Artin symbol conditions where $\langle \delta \rangle = \text{Gal}(K(\sqrt{d})/K)$:

- 1. if q|N(E), then $q|\Delta_{K(\sqrt{d})/K}$;
- 2. *if* $\operatorname{ord}_{\mathfrak{l}}(j_E) < 0$, then $\left(\frac{K(\sqrt{d})/K}{\mathfrak{l}}\right) = \delta;$ 3. *if* $\mathfrak{p}|N(E)$ *is a prime of* K *with* $\mathfrak{p} \notin S_E$, then
 - *if* $\operatorname{ord}_{\mathfrak{p}}(j_E) \geq 0$, then $\left(\frac{K(\sqrt{d})/K}{\mathfrak{p}}\right) = \delta$;
 - if $\operatorname{ord}_{\mathfrak{p}}(j_E) < 0$ and $E/K_{\mathfrak{p}}$ is a Tate curve, then $\left(\frac{K(\sqrt{d})/K}{\mathfrak{p}}\right) = \delta;$
 - otherwise, $\left(\frac{K(\sqrt{d})/K}{\mathfrak{p}}\right) = \mathrm{id}.$

Then we have the following double divisibility

$$\operatorname{cl}_{S_{E,u}}(K(\sqrt{d}))[\ell] \mid \# \operatorname{Sel}_{\ell}(E^d, K) \mid \operatorname{cl}_{\widetilde{S}_{E,u}}(K(\sqrt{d}))[\ell] \cdot \operatorname{cl}_{S_E}(K')[\ell](\chi_{\ell}),$$
(2)

where K' is the subfield of $K(\sqrt{d}, \zeta_{\ell})$ of index 2 containing neither ζ_{ℓ} nor \sqrt{d} .

Remark 3.1 In words, (2) states that the order of the ℓ -torsion of the S_E -ray class group of $K(\sqrt{d})$ divides the order of Sel_{ℓ}(E^d , K), and the order of Sel_{ℓ}(E^d , K) divides the order of the ℓ -torsion of the \tilde{S}_E -ray class group of $K(\sqrt{d})$ times the degree of the maximal abelian extension K'' of K' of exponent ℓ unramified outside of $S_E \cup \{l\}$ such that the Galois group $\operatorname{Gal}(K'/K)$ acts on $\operatorname{Gal}(K''/K)$ by $\chi_{\ell}\varepsilon_d$, where ε_d is the character prescribing the Galois action on \sqrt{d} .

Once we have proved Theorems A, B, we can immediately extend the divisibility statements (1), (2) to elliptic curves *E* defined over **Q** by considering the values of $S_{\mathbf{Q}}(n)$.

Corollary C Let E/Q be an elliptic curve defined over Q. For some Galois number field K, suppose that E_K attains a K-rational point P of order ℓ where $\ell \in S_Q(n) \setminus \{2, 3\}$ such that $\ell \nmid cl(K)$ and $\zeta_{\ell} \notin K$. In keeping with the notation and assumptions of Theorem A, we can produce examples of quadratic twists E_K^d that satisfy the divisibility statement (1).

Corollary D Let E/Q be an elliptic curve defined over Q; let E_K denote the base change of this curve to a Galois number field of degree $n \leq 20$ such that $N_{K/Q}(q) = 2$ for all q|2. *Choose* $\ell \in S_Q(n) \setminus \{2, 3\}$ *such that* $\ell \nmid cl(K), \zeta_\ell \notin K$ *, and the ramification index* $e_l(K/Q)$ satisfies $1 > e_{\mathfrak{l}}(K/\mathbb{Q})/(\ell-1) - 1$. Suppose that E_K attains a K-rational point P of order ℓ , then in keeping with the notation and assumptions of Theorem B, we can produce examples of quadratic twists E_K^d that satisfy the double divisibility statement (2).

We can also generalize [2, Corollary], which we stated as Theorem 1.1.

Corollary E Let (E, ℓ, K, d) be as in Theorem B or in Corollary D. If $\tilde{S}_E = \emptyset$, then $\operatorname{Sel}_{\ell}(E^d, K)$ is non-trivial if and only if the ℓ -torsion of the class group of $K(\sqrt{d})$ is non-trivial, in particular

$$\operatorname{cl}(K(\sqrt{d}))[\ell] \mid \# \operatorname{Sel}_{\ell}(E^d, K) \mid (\operatorname{cl}(K(\sqrt{d}))[\ell])^2$$

Remark 3.2 In his Ph.D. thesis [16], Mailhot was able to recover and sharpen [[2], Theorem] for elliptic curves defined over \mathbf{Q} using purely cohomological methods. His refinement comes from prescribing a splitting behavior of primes above K' instead of just a non-ramified condition. We remark that our methods and results are disjoint, however, we believe that [16, Corollary 2.17] can be generalized to elliptic curves defined over number fields K, using Theorem B.

4 Proof of Theorem A

In this section, we prove the divisibility statement (1). Before we proceed, we make a remark about some of the prime assumptions of Theorem A.

Remark 4.1 (Prime assumptions) If $\operatorname{ord}_{\mathfrak{p}}(j_E) < 0$, then we have that $E/K_{\mathfrak{p}}$ has a Tate parametrization. The second condition $\operatorname{ord}_{\mathfrak{p}}(\Delta_E) \neq 0 \pmod{\ell}$ assists us in Lemma 4.2. In short, it allows us to understand ramification in the ℓ -division field of $E_{K_{\mathfrak{p}}}$. The final condition $\chi_H(\mathfrak{p}) \neq 0$ is used in Lemma 4.3 and is an analogue of Frey's condition that $p \equiv -1 \pmod{\ell}$. Moreover, this condition allows us to deduce, using Remark 2.2, that for a cyclic extension M_2/K of degree ℓ , \mathfrak{p} is unramified in M_2 .

The first step in the proof is to exhibit an element in $Sel_{\ell}(E^d, K)$.

Lemma 4.2 Let $\ell > 3$ be a rational prime; let M/K be a non-abelian Galois extension of degree 2ℓ containing $K(\sqrt{d})$ that is unramified over this field outside of S_E ; let α be a generator of $\operatorname{Gal}(M/K(\sqrt{d}))$; and let ϕ the element in $H^1(\operatorname{Gal}(M/K), E^d(M)[\ell])$ determined by $\phi(\alpha) = P$, where P is a K-rational point of order ℓ . Then ϕ is an element of $\operatorname{Sel}_{\ell}(E^d, K)$.

Proof First, we need to show that there exists some element

 $\phi \in H^1(\operatorname{Gal}(M/K), E^d(M)[\ell])$

whose restriction $\overline{\phi}$ to $\operatorname{Gal}(M/K(\sqrt{d})) = \langle \alpha \rangle$ is given by $\overline{\phi}(\alpha) = P$. We identify $E^d(M)[\ell]$ with $E(M)[\ell] = \langle P \rangle$. Since $E^d(K(\sqrt{d}))[\ell] = \langle P \rangle$ and $\delta(P) = -P$ where $\langle \delta \rangle = \operatorname{Gal}(K(\sqrt{d})/K)$, we have invariance of ϕ under δ from the fact that $\delta \alpha \delta = \alpha^{-1}$. Since

$$H^{1}(\text{Gal}(M/K), E^{d}(M)[\ell]) = H^{1}(\text{Gal}(M/K(\sqrt{d})), E^{d}(M)[\ell])^{\delta},$$

our assertions follows.

Hence it remains to show that $\overline{\phi}$ is locally trivial when regarded as an element of

 $H^1(\operatorname{Gal}(M/K(\sqrt{d})), E^d(M)).$

We may restrict ourselves to primes $\mathfrak{P}_M | \mathfrak{l} \cdot N(E)$. By condition (1) of Theorem A, the divisors of \mathfrak{q} are unramified in $M/K(\sqrt{d})$ if $\mathfrak{q}|N(E)$, and hence we may assume that $\mathfrak{P}_M \nmid \mathfrak{q}$.

Assume that $\left(\frac{K(\sqrt{d})/K}{\mathfrak{p}}\right) = \delta$. In this case, \mathfrak{P}_M is either fully ramified or decomposed (since M/K is non-abelian). So assume that \mathfrak{P}_M is fully ramified and divides \mathfrak{p} . Then

 $\mathfrak{p} \in S_E$ and in particular $\mathfrak{p} \neq \mathfrak{l}$ and $\operatorname{ord}_{\mathfrak{p}}(\Delta_{E_K}) \neq 0 \pmod{\ell}$. We claim that $E^d/K_{\mathfrak{p}}(\sqrt{d})$ is a Tate curve and that P is contained in the connected component of the unity over $K_{\mathfrak{p}}(\sqrt{d})$ corresponding to an ℓ^{th} root of unity ζ_{ℓ} e.g., $P = \tau(\zeta_{\ell}^{\alpha})$ where τ is the Tate parametrization and $\alpha \in \{1, \ldots, \ell - 1\}$.

The fact that $E^d/K_p(\sqrt{d})$ is a Tate curve follows since $\mathfrak{p} \in S_E$ and so $\operatorname{ord}_\mathfrak{p}(j_E) < 0$. Since $\operatorname{ord}_\mathfrak{p}(\Delta_E) \neq 0 \pmod{\ell}$, we know that adjoining $q^{1/\ell}$ to $K_\mathfrak{p}(\sqrt{d})$, where q is the \mathfrak{p} -adic period of E, is a non-trivial extension. Under the Tate parametrization τ , we have that torsion points of order ℓ in $E^d(\overline{K_\mathfrak{p}}(\sqrt{d}))[\ell]$ are of the form $\tau(\zeta_\ell^\alpha q^{\beta/\ell})$ where $\alpha, \beta \in \{1, \ldots, \ell - 1\}$. Since P is a point of order ℓ defined over $K_\mathfrak{p}(\sqrt{d})$, we know that $\zeta_\ell^\alpha \in K_\mathfrak{p}(\sqrt{d})$ for some $\alpha \in \{1, \ldots, \ell - 1\}$ and that

$$\tau^{-1}(P) = \zeta_{\ell}^{\alpha} q^{\beta/\ell} \in K_{\mathfrak{p}}(\sqrt{d})$$

In order for $\zeta_{\ell}^{\alpha} q^{\beta/\ell} \in K_{\mathfrak{p}}(\sqrt{d})$, we must have that $\beta = 0$ since q is not an $1/\ell^{\text{th}}$ power. Thus, $\tau^{-1}(P) = \zeta_{\ell}^{\alpha}$, and hence P is contained in the connected component of the unity over $K_{\mathfrak{p}}(\sqrt{d})$ corresponding to an ℓ^{th} root of unity ζ_{ℓ} . Since $M_{\mathfrak{P}}/K_{\mathfrak{p}}(\sqrt{d})$ is cyclic of degree ℓ , we have that $\zeta_{\ell} = \alpha x/x$ for some $x \in M_{\mathfrak{P}}$ by Hilbert' Theorem 90, and therefore, $\overline{\phi}$ is trivial when considered in $H^1(\text{Gal}(M_{\mathfrak{P}}/K_{\mathfrak{p}}), E^d(M_{\mathfrak{P}}))$.

Next assume that $\left(\frac{K(\sqrt{d})/K}{\mathfrak{p}}\right) = \operatorname{id} \operatorname{and} \mathfrak{p} \neq \mathfrak{l}$. Then $\operatorname{ord}_{\mathfrak{p}}(j_E) < 0$ and E is a Tate curve over $K_{\mathfrak{p}}$, and so again P corresponds to some ℓ^{th} root of unity ζ_{ℓ} under the Tate parametrization of $E = E^d$ over $K_{\mathfrak{p}}(\zeta_{\ell})$ and hence $\overline{\phi}$ is split by $K_{\mathfrak{p}}(\zeta_{\ell})$ as seen above. But since the degree of $K_{\mathfrak{p}}(\zeta_{\ell})$ over $K_{\mathfrak{p}}$ is prime to $\ell, \overline{\phi}$ is split over $K_{\mathfrak{p}}$ already, and thus $\overline{\phi}$ is locally trivial.

There is one remaining case: $\mathfrak{p} = \mathfrak{l}$ and $\operatorname{ord}_{\mathfrak{l}}(j_E) \geq 0$. Let $\mathfrak{L}_M|\mathfrak{l}$. By the assumption, M/K is unramified at \mathfrak{L}_M , and we can find a normal extension N/K of degree prime to ℓ such that E has good reduction modulo all primes $\mathfrak{L}_N|\mathfrak{l}$. In particular, we may take $N = K(\zeta_{12}, \sqrt[12]{12})$. Now

 $H^1(\operatorname{Gal}(M_{\mathfrak{L}} \cdot N/K_{\mathfrak{l}} \cdot N), E^d(M_{\mathfrak{L}} \cdot N)) = 0$

since the reduction of E^d modulo \mathfrak{L} is good and $M_{\mathfrak{L}}N/K_{\mathfrak{l}}N$ is unramified, and hence it follows that

$$H^1(\operatorname{Gal}(M_{\mathfrak{L}}/K_{\mathfrak{l}}), E^d(M_{\mathfrak{L}})) = 0.$$

Next, we look at the action of δ on $H_{S_{F,u}}(K(\sqrt{d}))$.

Lemma 4.3 The generator $\langle \delta \rangle = \text{Gal}(K(\sqrt{d})/K)$ acts as -id on the Galois group $H_{S_{F,\mathcal{U}}}(K(\sqrt{d}))$.

Proof We may write

 $H_{S_{E},u}(K(\sqrt{d})) = H^- \oplus H^+$

where H^- is the part where δ acts as - id, and H^+ the part with $\delta =$ id. Let $\widetilde{M} := M_{S_{E,u}}^{H^-}$, which is the fixed field of $M_{S_{E,u}}$ by H^- . Assume that M_1 is a subfield of \widetilde{M} that is cyclic over $K(\sqrt{d})$. Hence M_1/K is cyclic of degree $2 \cdot [M_1:K(\sqrt{d})]$. Let M_2 be the cyclic extension of K with degree $[M_1 : K(\sqrt{d})]$ contained in M_1 . Then M_2 is unramifed outside of S_E . For $\mathfrak{p} \in S_E$, we have that $\chi_H(\mathfrak{p}) \neq 0$. Since $[M_2:K]|\ell$ and $\ell \nmid \operatorname{cl}(K)$, it follows that M_2 is not contained in the Hilbert class field of K and is unramified at all primes K. Thus, we have that $M_2 = K$, $M_1 = K(\sqrt{d})$ and hence $\widetilde{M} = K(\sqrt{d})$.

Proof of Theorem A The divisibility of $\# \operatorname{Sel}_{\ell}(E^d, K)$ by $\operatorname{cl}_{S_{E,\mu}}(K(\sqrt{d}))[\ell]$ follows from Lemmas 4.2, 4.3 since our element $\phi \in \operatorname{Sel}_{\ell}(E^d, K)$ is induced by $\alpha \in \operatorname{Gal}(M/K(\sqrt{d}))$ and the action of $\langle \delta \rangle$ on $H_{S_{E,\mu}}(K(\sqrt{d}))$ does not affect the order of α when considered as an element of $H_{S_{E,\mu}}(K(\sqrt{d}))$.

5 Proof of Theorem B

Before we proceed with a proof of Theorem B, we wish to shed some light onto our assumptions. In general, our hypotheses allow us to control the ramification in cyclic extensions of $K(\sqrt{d})$.

Remark 5.1 (Field assumptions) We assume that our field *K* is a number field of degree $n \leq 5$ such that $N_{K/\mathbb{Q}}(q) = 2$ for all q|2 and that for some $\ell \in S(n) \setminus \{2, 3\}, \ell \nmid cl(K)$ and $\zeta_{\ell} \notin K$. The degree and norm condition appear in Lemma 5.5 and allow us to deduce ramification conditions on prime divisors $\mathfrak{Q}_M|q$ where M_1/K is cyclic. The condition that $\ell \nmid cl(K)$ implies that there does not exist an extension M_2/K of degree ℓ contained in the Hilbert class field of K; once again this gives us a ramification consequence. The assumption that $\zeta_{\ell} \notin K$ is subtle, but it allows for more ramification possibilities since Kummer theory does not restrict cyclic extensions. The final condition that $e_1(K/\mathbb{Q}) \neq 5$ when $[K:\mathbb{Q}] = 5$ and $\ell = 5$ is due to a deep result of Katz [17] concerning the injectivity of ℓ -torsion under the reduction map; the assumption $1 > e_1(K/\mathbb{Q})/(\ell - 1) - 1$ from Theorem D is the general condition. This assumption allows us to use the fact that prime to 2 torsion will inject under the reduction map.

To prove Theorem B, it suffices to prove the divisibility statement

$$#\operatorname{Sel}_{\ell}(E^{d}, K) \left| \operatorname{cl}_{\widetilde{S}_{F}, u}(K(\sqrt{d}))[\ell] \cdot \operatorname{cl}_{S_{E}}(K')[\ell](\chi_{\ell}) \right|$$

To begin, we discuss the Galois structure of the ℓ -division field of elliptic curves E/K from Theorem B.

5.1 Galois structure of splitting fields of ℓ -covers of E

We want to determine the Galois group structure of splitting fields of elements in $H^1(G_K, E(\overline{K})[\ell])$ for elliptic curves having a *K*-rational point *P* of order ℓ . Recall that $\zeta_\ell \notin K$. Denote the ℓ -division field by $K(E[\ell])$; this is the field obtained by adjoining the *x*, *y* coordinates of all points of order ℓ of *E* to *K*. Then $K(E[\ell])$ is a Galois extension of *K* containing $K(\zeta_\ell)$, and it is cyclic over $K(\zeta_\ell)$ of degree dividing ℓ . From this point on, we shall abbreviate $E(\overline{K})[\ell]$ with $E[\ell]$, and similarly for $E^d[\ell]$.

Lemma 5.2 The Galois group $K(E[\ell])/K$ is generated by two elements $\overline{\gamma}$, $\overline{\varepsilon}$ with $\overline{\gamma}^{\ell-1} = \mathrm{id}$, $\overline{\varepsilon}^{\ell} = \mathrm{id}$, $\overline{\gamma}|K(\zeta_{\ell})$ generates $K(\zeta_{\ell})/K$, and $\overline{\gamma\varepsilon\gamma}^{-1} = \overline{\varepsilon}^{\chi_{\ell}(\overline{\gamma})^{-1}}$.

Proof Choose a base of the form $\{P, Q\}$ of $E[\ell]$ such that for $\sigma \in Gal(K(E[\ell])/K)$ the action of σ on $E[\ell]$ induces the matrix

$$\rho_{\sigma} = \begin{pmatrix} 1 & b \\ 0 & a \end{pmatrix} \in \operatorname{GL}_2(\mathbf{F}_{\ell}),$$

with $a = \det(\rho_{\sigma}) \equiv \chi_{\ell}(\sigma) \mod \ell$. Now we choose $\overline{\gamma}$ such that

$$\rho_{\overline{Y}} = \begin{pmatrix} 1 & 0 \\ 0 & w \end{pmatrix} \in \operatorname{GL}_2(\mathbf{F}_\ell).$$

we

with *w* a generator of $(\mathbb{Z}/\ell\mathbb{Z})^{\times}$. Also, we pick $\overline{\varepsilon} = \operatorname{id} \operatorname{if} K(E[\ell]) = K(\zeta_{\ell})$. If $K(E[\ell]) \neq K(\zeta_{\ell})$, we choose $\overline{\varepsilon}$ such that

$$\rho_{\overline{\varepsilon}} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in \mathrm{GL}_2(\mathbf{F}_\ell).$$

Then $\overline{\gamma}$ and $\overline{\varepsilon}$ generate Gal($K(E[\ell])/K$) and since

$$\begin{pmatrix} 1 & 0 \\ 0 & w \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & w^{-1} \end{pmatrix} = \begin{pmatrix} 1 & w^{-1} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^{w^{-1}}$$

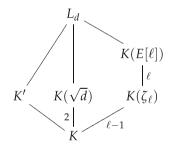
have the relation $\overline{\gamma \varepsilon \gamma}^{-1} = \overline{\varepsilon}^{\chi_{\ell}(\overline{\gamma})^{-1}}.$

Remark 5.3 The choice of $\overline{\gamma}$ and $\overline{\varepsilon}$ is closely related to the choice of base {*P*, *Q*}. In particular, we have $\overline{\varepsilon}(Q) = P + Q$ if $\overline{\varepsilon} \neq id$ and $\overline{\gamma}(Q) = \chi_{\ell}(\overline{\gamma})Q$.

Let $d \in \mathcal{O}_K^{\times}/(\mathcal{O}_K^{\times})^2$ be negative and relatively prime to $\mathfrak{l} \cdot N(E)$. We define L_d to be the quadratic extension of $K(E[\ell])$ given by the compositum $K(\sqrt{d}) \cdot K(E[\ell])$. The Galois group $\operatorname{Gal}(L_d/K)$ is generated by three elements δ , γ , ε with δ commuting with ε and γ and

$\delta^2 = \mathrm{id}$,	$\delta(\sqrt{d}) = -\sqrt{d},$
$\gamma^{\ell-1} = \mathrm{id},$	$\gamma K(E[\ell])=\overline{\gamma},$
$\varepsilon^\ell={\rm id}$,	$\varepsilon K(E[\ell])=\overline{\varepsilon},$
$\gamma^i \varepsilon^j K(\sqrt{d}) = \mathrm{id},$	$\gamma \varepsilon \gamma^{-1} = \varepsilon^{\chi_{\ell}(\gamma)^{-1}}.$

In particular, we have that δ operates as -id on $E^d[\ell]$, the points of order ℓ of E^d . The fixed field of ε is $K(\sqrt{d}, \zeta_{\ell})$ and the fixed field of $\langle \varepsilon, \delta \gamma^{(\ell-1)/2} \rangle$ is K' as defined in Theorem B. Thus, we have the following field diagram:



We now describe the elements in $H^1(G_K, E^d[\ell])$. We have the exact inflation-restriction sequence

 $0 \longrightarrow H^{1}(\operatorname{Gal}(L_{d}/K), E^{d}[\ell]) \xrightarrow{\operatorname{inf.}} H^{1}(G_{K}, E^{d}[\ell]) \xrightarrow{\operatorname{res.}} H^{1}(\operatorname{Gal}(\overline{K}/L_{d}), E^{d}[\ell]),$ where $H^{1}(\operatorname{Gal}(\overline{K}/L_{d}), E^{d}[\ell]) = \operatorname{Hom}_{\operatorname{Gal}(L_{d}/K)}(\operatorname{Gal}(\overline{K}/L_{d}), E^{d}[\ell]).$

Lemma 5.4 The group $H^1(G_K, E^d[\ell])$ injects into $\operatorname{Hom}_{\operatorname{Gal}(L_d/K)}(\operatorname{Gal}(\overline{K}/L_d), E^d[\ell])$.

Proof We need to show that $H^1(\text{Gal}(L_d/K), E^d[\ell]) = 0$. If $\varepsilon = \text{id}$, the degree of L_d/K is prime to ℓ , and the assertion follows. Now let ε be of order ℓ . Using the inflation-restriction sequence, one has that

 $H^1(\operatorname{Gal}(L_d/K), E^d[\ell]) = H^1(\langle \varepsilon \rangle, E^d[\ell])^{\langle \delta, \gamma \rangle}.$

Let P_d , Q_d be the points of order ℓ of $E^d[\ell]$ corresponding to $P, Q \in E[\ell]$. Then $P_d = \varepsilon Q_d - Q_d$, and hence $H^1(\langle \varepsilon \rangle, E^d[\ell])$ is generated by the class of cocycle ψ which sends ε to Q_d . Since $\delta \varepsilon \delta = \varepsilon$ and $\delta Q_d = -Q_d$, we have that $\psi \notin H^1(\langle \varepsilon \rangle, E^d[\ell])^{\langle \delta \rangle}$, and thus $H^1(\operatorname{Gal}(L_d/K), E^d[\ell]) = H^1(\langle \varepsilon \rangle, E^d[\ell])^{\langle \delta, \gamma \rangle} = 0.$

Take an element $\widetilde{\Phi} \in H^1(G_K, E^d[\ell])$ with

res $\widetilde{\Phi} = \phi \in \operatorname{Hom}_{\operatorname{Gal}(L_d/K)}(\operatorname{Gal}(\overline{K}/L_d), E^d[\ell])$

and denote by *M* the fixed field of the kernel of ϕ . *M*/*K* is normal and Gal(*M*/*L*_d) is possibly generated by two elements α_1 , α_2 with α_i^{ℓ} = id, which we may choose in such a way that

$$\phi(\alpha_1) = \mu_1 P$$
 and $\phi(\alpha_2) = \mu_2 Q$.

We may also assume that $\mu_i = 1$ if $\alpha_i \neq id$.

We extend δ , γ , $\varepsilon \in \text{Gal}(L_d/K)$ to elements δ , $\tilde{\gamma}$, $\tilde{\varepsilon} \in \text{Gal}(M/K)$ and compute the actions of these elements on α_i . We assume that $\delta^2 = \tilde{\gamma}^{\ell-1} = \text{id. Since}$

 $\phi(\beta\alpha_i\beta^{-1}) = \beta\phi(\alpha_i) \quad \forall \beta \in \operatorname{Gal}(M/K)$

via the fact that ϕ is a group homomorphism and the cocycle condition we get:

$$\begin{split} \widetilde{\delta}\alpha_{i}\widetilde{\delta} &= \alpha_{i}^{-1} & (\because \widetilde{\delta}|E^{d}[\ell] = -\mathrm{id}) \\ \widetilde{\gamma}\alpha_{1}\widetilde{\gamma}^{-1} &= \alpha_{1} & (\because \widetilde{\gamma}P = P), \\ \widetilde{\gamma}\alpha_{2}\widetilde{\gamma}^{-1} &= \alpha_{2}^{\chi\ell(\widetilde{\gamma})} & (\because \widetilde{\gamma}Q = \chi_{\ell}(\widetilde{\gamma})Q), \\ \widetilde{\epsilon}\alpha_{1}\widetilde{\epsilon}^{-1} &= \alpha_{1} & (\because \widetilde{\epsilon}P = P), \\ \widetilde{\epsilon}\alpha_{2}\widetilde{\epsilon}^{-1} &= \alpha_{1}\alpha_{2} & \mathrm{if } \varepsilon \neq \mathrm{id and } \alpha_{2} \neq \mathrm{id}(\because \mathrm{then } \varepsilon\phi(\alpha) = \\ & \varepsilon P = P + Q = \phi(\alpha_{1}\alpha_{2}); \mathrm{necessarily } \alpha_{1} \neq \mathrm{id} \\ & \mathrm{in this case}. \end{split}$$

In particular, it follows that $\langle \alpha_1 \rangle$ is a normal subgroup of $\operatorname{Gal}(M/K)$ and that $\langle \alpha_2 \rangle$ is normal if either $\alpha_2 = \operatorname{id} \operatorname{or} \widetilde{\varepsilon} = \operatorname{id}$.

Now we distinguish between two cases:

Case 1 $\tilde{\varepsilon}$ = id. In this case $\langle \alpha_1 \rangle$ and $\langle \alpha_2 \rangle$ are both normal in Gal(*M*/*K*) and hence

 $M_i := M^{\langle \alpha_i \rangle}$

are normal extensions of *K*. The Galois group of $M_2/K(\sqrt{d})$ is abelian and generated by the restriction of $\langle \tilde{\gamma}, \alpha_1 \rangle$ to M_2 . Hence

 $\overline{M}_2 := M^{\langle \alpha_2, \widetilde{\gamma} \rangle}$

is Galois over *K* containing $K(\sqrt{d})$ and if $\alpha_1 \neq id$, then $Gal(\overline{M}_2/K)$ is non-abelian of order 2ℓ . Since

 $\widetilde{\delta}\widetilde{\gamma}^{(\ell-1)/2}\alpha_2(\widetilde{\delta}\widetilde{\gamma}^{(\ell-1)/2})^{-1} = \alpha_2,$

it follows that M_1 is abelian over K' and hence

$$\overline{M}_1 := M^{\langle \alpha_1, \widetilde{\delta} \widetilde{\gamma}^{(\ell-1)/2}}$$

is normal over K. Its Galois group is generated by

$$\overline{\alpha}_2 = \alpha_2 | \overline{M}_1$$
 and $\overline{\gamma} = \widetilde{\gamma} | \overline{M}_1$,

and its order is equal to $|\alpha_2| \cdot (\ell - 1)$. Also one has the relation $\overline{\gamma \alpha_2 \gamma}^{-1} = \overline{\alpha}_2^{\chi(\overline{\gamma})}$. To summarize, we have that

$$\overline{M}_1(\phi) := M^{\langle \alpha_1, \widetilde{\delta} \widetilde{\gamma}^{(\ell-1)/2} \rangle},$$
$$\overline{M}_2(\phi) := M^{\langle \alpha_2, \widetilde{\gamma} \rangle}.$$

Case 2 $|\tilde{\epsilon}| = \ell$. In this case, we may assume that $\alpha_1 \neq id$ for $\alpha_1 = id$ implies that $\alpha_2 = id$, as well.

Subcase (i) $\alpha_2 = \text{id.}$ We assert that $\text{Gal}(M/K(\zeta_{\ell}, \sqrt{d}))$ is not cyclic. Otherwise $\tilde{\varepsilon}$ would be an element of order ℓ^2 with $\tilde{\varepsilon}^{\ell} = \alpha_1$ (without lose of generality). So $\delta \tilde{\varepsilon}^{\ell} \delta = \tilde{\varepsilon}^{-\ell}$ and hence

$$\widetilde{\delta}\widetilde{\varepsilon}\widetilde{\delta} = \widetilde{\varepsilon}^k \quad \text{with } k \equiv -1 \mod \ell.$$

But since $\delta \varepsilon \delta = \varepsilon$, we would get $\delta \widetilde{\varepsilon} \delta = \widetilde{\varepsilon} \cdot (\widetilde{\varepsilon}^{\ell})^n = \widetilde{\varepsilon}^{1+\ell^n}$ which gives a contradiction. Hence, we can choose $\widetilde{\varepsilon}$ so that

$$\widetilde{\varepsilon}^{\ell} = \widetilde{\alpha}_1^{\ell} = \mathrm{id}$$
 and $\widetilde{\delta}\widetilde{\varepsilon}\widetilde{\delta} = \widetilde{\varepsilon}$,

which determines $\tilde{\varepsilon}$ uniquely. Thus, $\overline{M}_2 := M^{\langle \tilde{\varepsilon}, \tilde{\gamma} \rangle}$ is normal over K and contains $K(\sqrt{d})$ and its Galois group is dihedral of order 2ℓ and generated by $\langle \alpha_1, \tilde{\delta} \rangle$. To summarize, we say that

$$\overline{M}_1(\phi) := M^{\langle \alpha_1, \widetilde{\delta} \widetilde{\gamma}^{(\ell-1)/2} \rangle},$$
$$\overline{M}_2(\phi) := M^{\langle \widetilde{\varepsilon}, \widetilde{\gamma} \rangle}.$$

Subcase (ii) $\alpha_2 \neq \text{id.}$ We have that $M_1 := M^{\langle \alpha_1 \rangle}$ is normal over K and of degree ℓ over L_d . Since $\delta \alpha_2 \delta = \alpha_2^{-1}$, we conclude as above that ε has an extension $\tilde{\varepsilon}$ to M_1 of order ℓ with $\delta \tilde{\varepsilon} \delta = \tilde{\varepsilon}$. Since $\delta \tilde{\gamma}^{(\ell-1)/2}$ acts trivially on α_2 and $\tilde{\varepsilon}$ acts trivially on $\alpha_2 |M_1$, we have that $\langle \delta \tilde{\gamma}^{(\ell-1)/2}, \tilde{\varepsilon} \rangle$ is a normal subgroup of $\text{Gal}(M_1/K)$. Hence

$$\overline{M}_1 := M_1^{\langle \widetilde{\delta} \widetilde{\gamma}^{(\ell-1)/2}, \widetilde{\varepsilon} \rangle}$$

is normal over K containing K', and its Galois group over K' is generated by $\overline{\alpha}_2 = \alpha_2 | \overline{M}_1$, which is of order ℓ and satisfies the relation

$$\overline{\gamma \alpha_2} \overline{\gamma}^{-1} = \overline{\alpha}_2^{\chi_\ell(\overline{\gamma})}$$
 with $\overline{\gamma} = \widetilde{\gamma} | K'$.

In order to simplify notation, we define $\overline{M}_2(\phi) := K(\sqrt{d})$ if either $\varepsilon \neq id$ or $\alpha_2 \neq id$. To summarize, we say that

$$\overline{M}_1(\phi) := M_1^{\langle \widetilde{\delta} \widetilde{\gamma}^{(\ell-1)/2}, \widetilde{\varepsilon} \rangle},$$

 $\overline{M}_2(\phi) := K(\sqrt{d}).$

Hence for a given

$$\widetilde{\Phi} \in H^1(G_K, E^d[\ell])$$

we have a field $M = M(\phi)$ which determines $\langle \phi \rangle$ completely where $\phi = \operatorname{res}(\widetilde{\Phi})$. We want to study the information we attain from the pair $(\overline{M}_1(\phi), \overline{M}_2(\phi))$. If $\varepsilon = \operatorname{id}$ or $\alpha_2 = \operatorname{id}$, then we get back $M(\phi) = M$ from $(\overline{M}_1(\phi), \overline{M}_2(\phi))$. In these cases, we shall say that ϕ is of first type. What happens if $\varepsilon \neq \operatorname{id}$ and $\alpha_2 \neq \operatorname{id}$? Assume that

$$\phi \neq \psi \in H^1(G_K, E^d[\ell])$$

have fields $M(\phi)$ and $M(\psi)$ with Galois groups $\langle \alpha_1, \alpha_2 \rangle$ and $\langle \beta_1, \beta_2 \rangle$ as above such that

 $M(\phi)^{\alpha_1} = M(\psi)^{\beta_1}.$

Let *N* be the composite of $M(\phi)$ and $M(\psi)$. Then the Galois group $Gal(N/L_d)$ is generated by three elements $\langle \sigma_1, \sigma_2, \sigma_3 \rangle$, which we can choose in such a way that

$$\sigma_1 | M(\phi) = \alpha_1, \quad \sigma_1 | M(\psi) = \beta_1^{\lambda}$$

$$\sigma_2|M(\phi) = \alpha_2, \quad \sigma_2|M(\psi) = \beta_2^{\lambda}$$

where $\lambda \in \{1, ..., \ell - 1\}$. *N* is a splitting field of ϕ and ψ , and

$$(\phi - \lambda^{\ell-1}\psi)(\sigma_1) = (\phi - \lambda^{\ell-1}\psi)(\sigma_2) = 0.$$

Hence the fixed field of the kernel of $\phi - \lambda \psi$ is a cyclic extension of L_d which is normal over *K*, and $\phi - \lambda^{-1} \psi$ is of first type.

Thus, $\overline{M}_1(\phi)$ determines $\langle \phi \rangle$ up to elements of first type, and in order to determine all elements in $H^1(G_K, E^d[\ell])$, it is enough to determine all dihedral extensions of K of degree 2ℓ containing $K(\sqrt{d})$ and all extensions M_1 of degree ℓ over K' which are normal over K such that conjugation by $\overline{\gamma}$ on $\operatorname{Gal}(\overline{M}_1, K')$ is equal to $\chi_\ell(\overline{\gamma})$.

Therefore to prove the double divisibility, one has to show that for $\phi \in \text{Sel}_{\ell}(E^d, K)$, the field $\overline{M}_2(\phi)$ is unramified over $K(\sqrt{d})$ outside \widetilde{S}_E , and $\overline{M}_1(\phi)$ is unramified over K' outside S_E and little ramified at divisors of \mathfrak{l} .

5.2 Splitting fields of elements in Sel_{ℓ}(E^d , K)

We shall continue to use the assumptions and the notations of the Theorem B and Sect. 5.1.

Lemma 5.5 Let ϕ be an element in Sel_{ℓ}(E^d , K). Then $\overline{M}_1(\phi) =: \overline{M}_1$ is unramified at \mathfrak{q} over K' and $\overline{M}_2(\phi) =: \overline{M}_2$ is unramified at \mathfrak{q} over $K(\sqrt{d})$.

Proof We first prove the latter statement. Since $\mathfrak{q}|\Delta_{K(\sqrt{d})/K}$, we have that $K(\sqrt{d})$ and K' are ramified at \mathfrak{q} over K. Hence the norm of $\mathfrak{Q}|\mathfrak{q}$ in $K(\sqrt{d})$ is equal to \mathfrak{q} , and by assumption the norm of $\mathfrak{Q}|\mathfrak{2}$ is equal to 2. Suppose that $K(\sqrt{d})$ had a cyclic extension of degree ℓ in which \mathfrak{Q} is ramified. Then the completion $K(\sqrt{d})_{\mathfrak{Q}}$ admits a cyclic extension of degree ℓ ramified at \mathfrak{Q} . Since ℓ is odd and \mathfrak{Q} has residue characteristic two, this extension is tamely ramified. By local class field theory, the tamely ramified cyclic extensions of a local field $K(\sqrt{d})_{\mathfrak{Q}}$ all have degree dividing $|\kappa^{\times}|$, where κ is the residue field. Since $\kappa = \mathbf{F}_2$, we have that there are no tamely ramified and ramified extensions of $K(\sqrt{d})_{\mathfrak{Q}}$. Thus, $K(\sqrt{d})$ has no cyclic extension of degree ℓ in which \mathfrak{Q} ramifies, and hence \overline{M}_2 is unramified at \mathfrak{q} over $K(\sqrt{d})$.

To prove the former statement, we shall utilize the proof of [2, Lemma 3] and look prime by prime. For $\ell = 5$, the same argument as above can be applied to $\mathfrak{Q}_{K'}|\mathfrak{q}$. For $\ell = 7$, there is only one extension $\mathfrak{Q}|\mathfrak{q}$ to K' which is ramified of order 2 and has norm 8. Assume that $\mathfrak{Q}_{K'}$ is ramified in \overline{M}_1/K' and let $\mathfrak{Q}_{\overline{M}_1}$ be the unique extension of $\mathfrak{Q}_{K'}$ to \overline{M}_1 . Let M_t be the subfield of \overline{M}_1 in which $\mathfrak{Q}_{\overline{M}_1}$ is tamely ramified. Then M_t is a cyclic extension of degree 7 over $K(\zeta_7 + \zeta_7^{-1})$, and \overline{M}_1 is the compositum of M_t with K' over $K(\zeta_7 + \zeta_7^{-1})$. Thus, $\text{Gal}(\overline{M}_1/K(\zeta_7 + \zeta_7^{-1}))$ is abelian. But this contradicts the fact that

$$\overline{\gamma}^3 \overline{\alpha} \overline{\gamma}^3 = \overline{\alpha}^{\chi_7(\overline{\gamma}^3)} = \overline{\alpha}^{-1},$$

where $\langle \overline{\alpha} \rangle = \operatorname{Gal}(\overline{M}_1/K')$ and $\langle \overline{\gamma} \rangle = \operatorname{Gal}(K'/K)$.

For $\ell = 11, 13, 19, 37$, we can use the same proof as the first statement since

$11 \nmid (2^5 - 1)$	$13 \nmid (2^2 - 1)$	$37 \nmid (2^3 - 1)$	$37 \nmid (2^{18} - 1)$
$13 \nmid (2^6 - 1)$	$19 \nmid (2^9 - 1)$	$37 mid (2^9 - 1)$	$37 mid (2^2 - 1).$
$13 \nmid (2^3 - 1)$	$19 mid (2^3 - 1)$	$37 mid (2^6 - 1)$	

For $\ell = 17$, there there is only one extension $\mathfrak{Q}|\mathfrak{q}$ to K' which is ramified of order 2 and has norm 2^8 (note that $17|(2^8 - 1))$). If we assume that $\mathfrak{Q}_{K'}$ is ramified in \overline{M}_1/K' , then we can use the above argument to construct the same contradiction.

Remark 5.6 Since $73|(2^{36}-1), 73|(2^9-1)$, and $73|(2^{18}-1)$, we may not assume that there is a unique cyclic extension of K' with degree 73 in which \mathfrak{Q} is ramified, and hence the above argument does work for $\ell = 73$. This precludes us from extending Theorem B to number fields K of degree ≥ 6 .

Therefore, we can assume that $\mathfrak{p} \nmid \mathfrak{q} \cdot \mathfrak{l}$, but $\mathfrak{p}|N(E)$.

Lemma 5.7 Let ϕ be an element in Sel_{ℓ}(E^d , K). Then \overline{M}_1/K' is unramified outside of $S_E \cup \{l\}$ and $\overline{M}_2/K(\sqrt{d})$ is unramified outside $\widetilde{S}_E \cup \{l\}$.

Proof We have to test prime numbers $p \neq l$ that divide N(E).

- 1. If $\operatorname{ord}_{\mathfrak{p}}(j_E) \ge 0$, then it follows from Néron's list of minimal models of elliptic curves with potentially good reduction that ℓ must be equal to 3 [18, p.124]. Since we only consider primes $\ell > 3$, we can exclude this case from consideration.
- 2. Now assume that $\operatorname{ord}_{\mathfrak{p}}(j_E) < 0$. We have two subcases:
 - (a) If $\operatorname{ord}_{\mathfrak{p}}(j_E) \equiv 0 \mod \ell$, we have that $\mathfrak{p} \notin S_E$ and so E^d is not a Tate curve over $K_{\mathfrak{p}}$. Moreover, $K_{\mathfrak{p}}(E[\ell])$ is unramified over $K_{\mathfrak{p}}$ and hence $\overline{M_1}/K'$ and $\overline{M_2}/K(\sqrt{d})$ are unramified at all divisors of \mathfrak{p} if and only if M_1/L_d (resp. M_2/L_d) are unramified at all divisors of \mathfrak{p} . We now use the triviality of the $\phi \in \operatorname{Sel}_{\ell}(E^d, K)$ over $K_{\mathfrak{p}}$ from Lemma 4.2. Also recall that M is the fixed field of the kernel of ϕ . We shall show that \mathfrak{Q}_M is unramified over L_d .

There is a $\widetilde{P} \in E^d(M_{\mathfrak{P}})$ where $\mathfrak{P}_M|\mathfrak{p}$ such that for all $\sigma \in D(\mathfrak{P}_M)$, we have $\sigma \widetilde{P} - \widetilde{P} = \phi(\sigma)$. Hence

$$P' := \ell \cdot \widetilde{P} \in E^d(K_{\mathfrak{p}})$$

and so 2P' is in the connected component of unity modulo \mathfrak{p} via Remark 2.6. Hence $\tilde{P} = \tilde{P}_1 + P_2$ with $P_2 \in E^d[\ell]$ and $2\tilde{P}_1$ in the component of the unity of $E \mod \mathfrak{P}_M$, so \tilde{P}_1 corresponds to a \mathfrak{P}_M -adic unity u under the Tate parametrization. Now take

$$\alpha \in \langle \alpha_1, \alpha_2 \rangle \cap I(\mathfrak{P}_M)$$

where $I(\mathfrak{P}_M)$ is the interia group of \mathfrak{P}_M . Then $2(\alpha \tilde{P} - \tilde{P})$ corresponds to $\alpha u/u$ and is an ℓ^{th} root of unity. By Hilbert's Theorem 90, we have that $\alpha = \text{id}$, and thus, \mathfrak{P}_M is unramified over L_d .

(b) If $\operatorname{ord}_{\mathfrak{p}}(j_E) \neq 0 \mod \ell$, then the values at the Hecke characters χ of order ℓ tell us that either *E* is a Tate curve over $K_{\mathfrak{p}}$ or that $\mathfrak{p} \in S_E$. Consider the former situation. Our assumptions from Theorem B tell us that \mathfrak{q} is not completely decomposed in $K(\sqrt{d})$ and K'. Since

$$K_{\mathfrak{p}}^{\times}/(K_{\mathfrak{p}}^{\times})^{\ell} \cong K_{\mathfrak{p}}(\sqrt{d})^{\times}/(K_{\mathfrak{p}}(\sqrt{d})^{\times})^{\ell} \cong K_{\mathfrak{P}}'^{\times}/(K_{\mathfrak{P}}'^{\times})^{\ell}$$

for all $\mathfrak{P}_{K'}|\mathfrak{p}$, we see that for all cyclic extensions \overline{M}_1 of K' and $\overline{M}_2/K(\sqrt{d})$ of degree ℓ and divisors $\mathfrak{P}_{M_i}|\mathfrak{p}$, one has that $\operatorname{Gal}(\overline{M}_{i,\mathfrak{P}_{M_i}}/K_\mathfrak{q})$ is abelian of even order. But this implies that

$$\overline{M}_{1,\mathfrak{P}} = K'_{\mathfrak{n}}$$
 and $\overline{M}_{2,\mathfrak{P}} = K_{\mathfrak{P}}(\sqrt{d}),$

which is absurd. Thus $\mathfrak{p} \in S_E$ and our lemma follows.

The next step is to describe the behavior of \overline{M}_i at divisors of \mathfrak{l} .

Lemma 5.8 Assume that $\operatorname{ord}_{\mathfrak{l}}(j_E) < 0$ and $\phi \in \operatorname{Sel}_{\ell}(E^d, K)$. Then $\overline{M}_2/K(\sqrt{d})$ is unramified at \mathfrak{l} and \overline{M}_1/K' is little ramified at divisors of \mathfrak{l} .

Proof The assumptions tells us that $E/K_{\mathfrak{l}}$ is a Tate curve but that $E^d/K_{\mathfrak{l}}$ is not a Tate curve. Since $K_{\mathfrak{l}}(E[\ell]) = K_{\mathfrak{l}}(\zeta_{\ell})$, the behavior of \overline{M}_i at \mathfrak{l} is determined by the behavior of M at \mathfrak{l} . Let $\mathfrak{L}_M|\mathfrak{l}$, let $I(\mathfrak{L}_M)$ be the inertia group of \mathfrak{L}_M , and let

 $\alpha \in \langle \alpha_1, \alpha_2 \rangle \cap I(\mathfrak{L}_M).$

As in the proof of Lemma 5.7, we can use the fact that $E^d/K_{\mathfrak{l}}$ is not a Tate curve to show that there is a $\widetilde{Q} \in E^d(M_{\mathfrak{L}})$ where $\mathfrak{L}_M|\mathfrak{l}$ and $\alpha \widetilde{Q} - \widetilde{Q} = \phi(\alpha)$. Hence $2\widetilde{Q}$ is in the connected component of unity modulo \mathfrak{L}_M via Remark 2.6. This implies that

$$M_{\mathfrak{L}_M} = M_{\mathfrak{L}_M}^{\langle \alpha \rangle}(\sqrt[\ell]{u})$$

where u is a \mathfrak{L}_M -adic unit corresponding to $2\tilde{Q}$ under the Tate parametrization. Moreover, M_1/L_d is little ramified at \mathfrak{l} .

Now assume that $\alpha_2 = \text{id}$ or $\varepsilon = \text{id}$. Then $\overline{M}_2/K(\sqrt{d})$ is of degree ℓ , and we have to show that $\overline{M}_2/K(\sqrt{d})$ is unramified at $\mathcal{L}_{\overline{M}_2}|\mathfrak{l}$. We recall the choice of point Q. Since $\gamma Q = \chi_\ell(\gamma)Q$ where $\langle \gamma \rangle = \text{Gal}(K(\zeta_\ell)/K)$, it follows that Q is in the kernel of the reduction of E modulo all divisors of \mathfrak{l} , and hence $P + \lambda Q$ is not in this kernel where $\lambda \in \mathbf{N}$. For $\alpha \in I(\mathcal{L}_M)$, we saw that $\sigma \widetilde{Q} - \widetilde{Q} = \phi(\sigma)$ is in the kernel of the reduction modulo \mathcal{L}_M , and hence

 $\alpha_1 \alpha_2^{\lambda} \notin I(\mathfrak{L}_M) \quad \forall \lambda \in \mathbf{N} \text{ and } \mathfrak{L}_M | \mathfrak{l}.$

Thus, it follows that $M^{\langle \alpha_2 \rangle}/L_d$ is unramified at \mathfrak{L}_M and $\overline{M}_2/K(\sqrt{d})$ is unramified at \mathfrak{l} . \Box

Finally, we look at the case where $\operatorname{ord}_{\mathfrak{l}}(j_E) \geq 0$.

Lemma 5.9 Assume that E/K has a K-rational point P of order $\ell > 3$, that $\operatorname{ord}_{\mathfrak{l}}(j_E) \ge 0$, and that P is not contained in the kernel of reduction modulo \mathfrak{l} , in particular, this means that E is not supersingular modulo \mathfrak{l} . Let ϕ be an element in $\operatorname{Sel}_{\ell}(E^d, K)$ with corresponding fields \overline{M}_1 and \overline{M}_2 . Then \overline{M}_1/K' is little ramified at \mathfrak{l} , and $\overline{M}_2/K(\sqrt{d})$ is unramified at \mathfrak{l} . Proof Suppose that $\operatorname{ord}_{\mathfrak{l}}(j_{E}) \geq 0$, which implies that *E* has potentially good reduction at \mathfrak{l} . Since *E*/*K* has a *K*-rational point *P* of order $\ell > 3$, we know that $\operatorname{Gal}(K(E[\ell])/K(\zeta_{\ell}))$ is a subgroup of the additive group \mathbf{F}_{ℓ}^+ . We want to show that all divisors of \mathfrak{l} are not ramified in $K(E[\ell])/K(\zeta_{\ell})$. If *E* has good reduction over $K(\zeta_{\ell})$, then we are immediately done. If *E* does not have good reduction over $K(\zeta_{\ell})$, then there must exist some extension $N/K(\zeta_{\ell})$ such that $[N:K(\zeta_{\ell})]|_{6}$ and that *E* has good reduction at all divisors $\mathfrak{L}_{N}|_{5}$; this divisibility condition is similar to the proof of [1, Proposition VII.5.4.c]. From our assumptions, it follows that $N_{\mathfrak{L}}$ contains $K(E[\ell])$ and that $\langle Q \rangle$ is the subgroup of order ℓ of the kernel of reduction modulo \mathfrak{L}_{N} . Hence all divisors of \mathfrak{l} are not ramified in $K(E[\ell])/K(\zeta_{\ell})$, and we can prove the lemma by looking at the behavior of \mathfrak{l} in M/L_d .

Assume that $\mathfrak{L}_M | \mathfrak{l}$ and let $I(\mathfrak{L}_M)$ be the inertia group of \mathfrak{L}_M . Suppose that $\alpha_1^{\mu} \alpha_2^{\lambda} \in I(\mathfrak{L}_M)$. There there is a $\widetilde{P} \in E(M_{\mathfrak{L}})$ with

$$(\alpha_1^{\mu}\alpha_2^{\lambda})\widetilde{P} - \widetilde{P} = \mu P + \lambda Q.$$

But we know that for $\mu \neq 0$, the point $\mu P + \lambda Q$ is not in the kernel of reduction modulo \mathfrak{L}_M . Let \widetilde{E} be a model of E over N having good reduction modulo $\mathfrak{L}_N | \mathfrak{l}$. Since $(I(\mathfrak{L}_M) - \mathrm{id})\widetilde{E}(N \cdot M_{\mathfrak{L}})$ is contained in this kernel, we must have that $\mu = 0$, and hence

 $I(\mathfrak{L}_M) \cap \operatorname{Gal}(M/L_d) \subseteq \langle \alpha_2 \rangle.$

Thus, $M^{\langle \alpha_2 \rangle}/L_d$ is unramified at \mathfrak{L}_M ; moreover, $\overline{M}_2/K(\sqrt{d})$ is unramified above \mathfrak{l} .

Now assume that $I(\mathfrak{L}_M) = \langle \alpha_2 \rangle$. Then $Q = \alpha_2 \widetilde{Q} - \widetilde{Q}$ and since $\langle \alpha_2 \rangle$ acts trivially on $\widetilde{E}(N \cdot M_{\mathfrak{L}})/\widetilde{E}_{-}(N \cdot M_{\mathfrak{L}})$, we may assume that $\widetilde{Q} \in \widetilde{E}_{-}(N \cdot M_{\mathfrak{L}})$ and hence $\ell \cdot \widetilde{Q} \in \widetilde{E}_{-}(N \cdot K_{\mathfrak{l}})$. Since \widetilde{E} has ordinary reduction modulo \mathfrak{L}_M , we have that $N \cdot K_{\mathfrak{l}}(\widetilde{Q})$ is little ramified at divisors of \mathfrak{l} . Thus, our lemma follows.

Lemmas 5.5, 5.7, 5.8 and 5.9 prove that for $\phi \in \text{Sel}_{\ell}(E^d, K)$, the field $\overline{M}_2(\phi)$ is unramified over $K(\sqrt{d})$ outside $\widetilde{S}_E \cup \{\mathfrak{l}\}$, and $\overline{M}_1(\phi)$ is unramified over K' outside S_E and little ramified at divisors of \mathfrak{l} . Moreover, we have proved that

$$\#\operatorname{Sel}_{\ell}(E^{d},K)\left|\operatorname{cl}_{\widetilde{S}_{E},u}(K(\sqrt{d}))[\ell]\cdot\operatorname{cl}_{S_{E}}(K')[\ell](\chi_{\ell})\right|,$$

which completes the proof of Theorem B.

5.3 Proof of Corollary E

Since we have established our double divisibility statement (2), we can proceed with a proof of Corollary E. By the definitions established in Sect. 2, we have that

$$\operatorname{cl}_{\widetilde{S}_{E}, u}(K(\sqrt{d}))[\ell] \cdot \operatorname{cl}_{S_{E}}(K')[\ell](\chi_{\ell}) \left| \operatorname{cl}_{\emptyset, u}(K(\sqrt{d}))[\ell] \cdot \operatorname{cl}_{\emptyset}(K')[\ell](\chi_{\ell}) \cdot \varepsilon_{S}(K')[\ell](\chi_{\ell}) \right| \leq \varepsilon_{S}(K')[\ell](\chi_{\ell}) + \varepsilon_{S}(K')$$

where ε_S is a number depending only on \widetilde{S}_E . Note that when $\widetilde{S}_E = \emptyset$, we have that $\varepsilon_S = 1$ and that $\operatorname{cl}_{\emptyset,u}(K(\sqrt{d}))[\ell] = \operatorname{cl}(K(\sqrt{d}))[\ell]$ by Remark 2.4. Corollary E follows immediately from the following lemma.

Lemma 5.10 $\operatorname{cl}_{\emptyset}(K')[\ell](\chi_{\ell}) | \operatorname{cl}(K(\sqrt{d}))[\ell].$

Proof Let M/K be a Galois extension containing K' with $\langle \alpha \rangle = \text{Gal}(M/K)$, with the relations

$$\alpha^{\ell} = \text{id}$$
 and $\overline{\gamma \alpha \gamma}^{-1} = \alpha^{\chi_{\ell}(\overline{\gamma})}$ where $\langle \overline{\gamma} \rangle = \text{Gal}(K'/K)$.

We assume that M is unramified outside l and little ramified at l; hence

$$M(\zeta_{\ell}) = K'(\sqrt{d})(\sqrt[\ell]{c}),$$

with $c \in M(\sqrt{d})$ and the principal divisor of *c* is a ℓ th power. We want to extend *c* to an element of order ℓ in the divisor class group of $K(\sqrt{d})$.

Let $\tilde{\gamma}$ be an extension of $\overline{\gamma}$ to $\operatorname{Gal}(M(\sqrt{d})/K)$ such that $\tilde{\gamma}^{\ell-1} = \operatorname{id}, \tilde{\gamma}|K(\zeta_{\ell})$ generates $\operatorname{Gal}(K(\zeta_{\ell})/K)$, and $\tilde{\gamma}|K(\sqrt{d}) = \operatorname{id}$. Since $M(\sqrt{d})/K$ is normal, we have $\tilde{\gamma}(c) = c^i \cdot e^{\ell}$ with $1 \leq i \leq \ell - 1$ and $e \in K'(\sqrt{d})$. Hence,

$$\widetilde{\gamma}(\sqrt[\ell]{c}) = (\sqrt[\ell]{c})^i \cdot e \cdot \xi_{\widetilde{\gamma}}$$

with $\xi_{\widetilde{\gamma}}^{\ell} = 1$. Let $\widetilde{\alpha}$ be an extension of α to $M(\sqrt{d})$ of order ℓ . We can see that i = 1 since

$$\widetilde{\gamma}\widetilde{\alpha}(\sqrt[\ell]{c}) = \xi_{\widetilde{\alpha}}^{\chi_{\ell}(\overline{\gamma})}\widetilde{\gamma}(\sqrt[\ell]{c})$$

and

$$\widetilde{\alpha}^{\chi_{\ell}(\gamma)}\widetilde{\gamma}(\sqrt[\ell]{c}) = \widetilde{\alpha}^{\chi_{\ell}(\gamma)}(\xi_{\widetilde{\gamma}}(\sqrt[\ell]{c})^{i} \cdot e) = \xi_{\widetilde{\alpha}}^{i \cdot \chi_{\ell}(\overline{\gamma})} \cdot \widetilde{\gamma}(\sqrt[\ell]{c}),$$

and hence

$$M(\sqrt{d}) = K(\sqrt{d}, \sqrt[\ell]{c}, \zeta_{\ell}).$$

There exists an element $\tilde{c} = c^{\ell-1} \cdot e^{\prime \ell} \in M(\sqrt{d})$ with $e^{\prime} \in K^{\prime}(\sqrt{d})$ such that the divisor of \tilde{c} is a ℓ th power. However, since $\pm \tilde{c}$ is not an ℓ th power in $K(\sqrt{d})$, it is an element of order ℓ in the divisor class group of $K(\sqrt{d})$.

6 Elliptic curves satisfying Corollary D

Let *E* be an elliptic curve over a number field *K*. In a recent work [13], Zywina has described all known, and conjecturally all, pairs $(E/\mathbf{Q}, \ell)$ such that mod ℓ image of Galois, $\rho_{E,\ell}(G_{\mathbf{Q}})$, is non-surjective. Using Zywina's classification, we can find elliptic curves E/\mathbf{Q} that will satisfy the conditions of Corollary D. First, we present an example of this technique for the case when $\ell = 3$. We remark that this case does not apply to Corollary D; however, it best illustrates the technique.

Let E/\mathbf{Q} be a non-CM elliptic curve over \mathbf{Q} such that $\rho_{E,3}(G_{\mathbf{Q}})$ is conjugate to

$$B(3) := \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \subset \operatorname{GL}_2(\mathbf{F}_3)$$

We can use Galois theory to prove the following result:

Proposition 6.1 Let E/Q have mod 3 image of Galois conjugate to B(3). Then $Q(E[3]) = Q(x(E[3])) \cdot K$ where K is an explicitly computable quadratic extension.

Before we prove Proposition 6.1, we prove the following lemma which tells us over which extension E obtains a 3-torsion point.

Lemma 6.2 For E/Q from Proposition 6.1, there exists some quadratic extension K such that E has a K-rational 3-torsion point. In particular, $E(K)[3] = \langle P \rangle$.

Proof Let $E: y^2 = x^3 - Ax - B$ for $A, B \in \mathbb{Q}$. Via the Weil-pairing, we know that $\mathbb{Q}(\zeta_3) \subseteq \mathbb{Q}(E[3])$. It is also a well known fact that $B(3) \cong S_3 \times \mathbb{Z}/2\mathbb{Z}$. Combining these results with our assumptions, we have the following diagram of Galois sub-fields of $\mathbb{Q}(E[3])$:

П

$$\begin{array}{c|c}
\mathbf{Q}(E[3]) \\
2 \\
\mathbf{Q}(x(E[3])) \\
3 \\
\mathbf{Q}(\zeta_3) \\
2 \\
\mathbf{Q} \\
\mathbf{Q}
\end{array}$$

where the extension $\mathbf{Q}(x(E[3]))$ is the index 2 sub-field of $\mathbf{Q}(E[3])$ generated by the *x*-coordinates of points in $E(\overline{\mathbf{Q}})[3]$. Recall that the roots of the 3-division polynomial

 $\psi_3(x) = 3x^4 + 6Ax^2 + 12Bx - A^2$

correspond to *x*-coordinates of $E(\overline{\mathbf{Q}})[3]$. In particular, $\psi_3(x)$ is the minimal polynomial of the degree 6, Galois extension $\mathbf{Q}(x(E[3]))$.

Since S_4 does not contain any transitive subgroups of order 6, we know that $\psi_3(x)$ must have a linear factor, so we write $\psi_3(x) = (x - \alpha)g(x)$ where $\alpha \in \mathbf{Q}$ and g(x) is an irreducible cubic. This implies that there exists some $P \in E(\overline{\mathbf{Q}})[3]$ with **Q**-rational *x*-coordinate given by α . Moreover, we see that there is a 3-torsion point

$$P = (\alpha, \sqrt{f(\alpha)}).$$

that is defined over the quadratic extension $\mathbf{Q}(\sqrt{f(\alpha)})$.

Remark 6.3 From the above proof, one can easily see that $Gal(\mathbf{Q}(x(E[3]))/\mathbf{Q}) \cong S_3$. Indeed, since $\mathbf{Q}(x(E[3]))$ is Galois, we showed that the Galois group of $\psi_3(x)$ is actually the Galois group of the cubic g(x). Since $[\mathbf{Q}(x(E[3])) : \mathbf{Q}] = 6$, we know g(x) must be an irreducible cubic with non-square discriminant, which immediately implies our claim.

Proof of Proposition 6.1 (Proof of Proposition 6.1) Let *K* denote the quadratic extension from Lemma 6.2. It is clear that $K \subset \mathbf{Q}(E[3])$ and that $K \nsubseteq \mathbf{Q}(x(E[3]))$, so we have $\mathbf{Q}(E(3))$ is the compositum of $\mathbf{Q}(x(E[3]))$ and *K*.

The idea behind finding elliptic curves over **Q** such that $E(\mathbf{Q})[\ell] = \{\mathcal{O}\}$ and $E(K)[\ell] = \langle P \rangle$ is to consider E/\mathbf{Q} with $\rho_{E,\ell}(G_{\mathbf{Q}})$ conjugate to a subgroup H such that

$$\begin{pmatrix} 1 & * \\ 0 & * \end{pmatrix} \subsetneq H \subseteq \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} =: B(\ell).$$

We can see that *E* will attain an ℓ torsion point over an extension *K* where the degree of K/\mathbf{Q} is determined the cardinality of the upper left entry. For $\ell = 3$, we saw that H = B(3) and thus the upper left entry has order 2, which gives a less explicit proof of Proposition 6.1.

Let $\ell \in \{5, 13\}$. Below, we provide examples of elliptic curves E/\mathbf{Q} that do not have a \mathbf{Q} rational point of order ℓ but attain a K-rational point P of order ℓ over some extension of
small degree K that satisfies the conditions of Corollary D. The final step in our verification
is showing P is not contained in the kernel of reduction modulo l; in particular, this means

that E/K is not supersingular modulo l if $\operatorname{ord}_{l}(j_{E}) \geq 0$. This condition is computable via the Magma command IsSupersingular.

In order to conduct a thorough search, we consider all subgroups H which can occur as an image of Galois for a non- $CM E/\mathbf{Q}$ and satisfy the above containment. In particular, we run through a large list elliptic curves E/\mathbf{Q} with prescribed non-surjective mod ℓ image of Galois coming from the modular curves X_H of Zywina [13]. Since this list is comprehensive, we also give examples of elliptic curves over \mathbf{Q} that do not satisfy and potentially satisfy Corollary D, modulo some computations.

For $\ell = 5$, we only have one example.

Example 6.3.1 ($\ell = 5$) Let E/\mathbf{Q} be the elliptic curve

$$E: y^2 = f(x) = x^3 - \frac{185193}{185193}x + \frac{185193}{149}.$$

E has mod 5 image of Galois conjugate to $B(5) \subset GL_2(\mathbf{F}_5)$, and hence *E* attains a *K*-rational point of order 5 over a bi-quadratic extension *K* of **Q**. The first quadratic extension L/\mathbf{Q} is given by adjoining the quadratic root α of the 5-division polynomial ψ_5 , and then the second quadratic is given by adjoining the square root of the $f(\alpha)$. For *E* defined above, we compute that cl(K) = 8, $\zeta_5 \notin K$, 2 is ramified in \mathcal{O}_K , and that E/K is not supersingular modulo l if $ord_l(j_E) \ge 0$ where l|5. Therefore, the elliptic curve *E* and the number field *K* satisfy the conditions of Corollary D.

For $\ell = 7$, we have two possibilities.

Potential example 6.3.2 ($\ell = 7$) Let E/\mathbf{Q} be the elliptic curve

$$E: y^2 = f(x) = x^3 - \frac{81469949623875}{3017401762489}x + \frac{162939899247750}{3017401762489},$$

which has mod 7 image conjugate to B(7). *E* attains a *K*-rational point of order 7 over an extension *K* of degree 6. The extension *K* is given by first adjoining the root α of the cubic factor of ψ_7 and then adjoining the square root of $f(\alpha)$. We verify almost all of the conditions from Corollary D for *E* and *K*; however, we are not able to verify that $7 \nmid cl(K)$.

Non-example 6.3.3 ($\ell = 7$) Suppose that E/\mathbf{Q} has $\rho_{E,7}(G_{\mathbf{Q}})$ conjugate to

$$H := \begin{pmatrix} a^2 & * \\ 0 & * \end{pmatrix} \quad \text{where } a \in \mathbf{F}_7.$$

Since $\#(\mathbf{F}_7^{\times})^2 = 3$, we have that *E* attains a *K*-rational point of order 7 over a cubic extension *K*. Moreover, this extension is given adjoining the root of the cubic factor of the 7-division polynomial ψ_7 . In our search, we find that all E/K are supersingular modulo \mathfrak{l} if $\operatorname{ord}_{\mathfrak{l}}(j_E) \ge 0$ where $\mathfrak{l}|7$.

For $\ell = 11$, there do not exist any subgroups coming from [13] that have our desired condition. For $\ell = 13$, we find a few examples of curves satisfying Corollary D.

Example 6.3.4 ($\ell = 13$) Suppose that E/\mathbf{Q} has $\rho_{E,13}(G_{\mathbf{Q}})$ conjugate to

$$H = \begin{pmatrix} a^3 & * \\ 0 & * \end{pmatrix} \quad \text{where } a \in \mathbf{F}_{13},$$

then *E* attains a *K*-rational point of order 13 over a bi-quadratic extension K/\mathbf{Q} since $\#(\mathbf{F}_{13}^{\times})^3 = 4$. As an example, consider the elliptic curve

$$E: y^2 = x^3 - \frac{2248091}{180353}x + \frac{4496182}{180353},$$

which has mod 13 image conjugate to *H*. *E* attains a *K*-rational point of order 13 over a bi-quadratic extension *K* of **Q**. The first quadratic extension L/\mathbf{Q} is given by adjoining a quadratic root α of the 13-division polynomial ψ_{13} , and then the second quadratic is given by adjoining the square root of the $f(\alpha)$. We compute that cl(K) = 2, $\zeta_{13} \notin K$, (2) splits in \mathcal{O}_K , and E/K is not supersingular modulo l if $ord_l(j_E) \geq 0$ where l|13. Therefore, the elliptic curve *E* and the number field *K* satisfy the conditions of Corollary D.

Example 6.3.5 ($\ell = 13$) Suppose that E/\mathbf{Q} has $\rho_{E,13}(G_{\mathbf{Q}})$ conjugate to

$$H := \begin{pmatrix} a^4 & * \\ 0 & * \end{pmatrix} \quad \text{where } a \in \mathbf{F}_{13}.$$

Since $\#(\mathbf{F}_{13}^{\times})^4 = 3$, *E* attains a *K*-rational point of order 13 over cubic extension *K*/**Q**. For example, consider the elliptic curve

$$E: y^2 = x^3 + 13674069x + 324405221670.$$

Using [13], *E* has mod 13 image conjugate to *H*. Now let K/\mathbf{Q} denote the number field defined by the cubic factor of ψ_{13} . For notational purposes, we shall write $K = \mathbf{Q}(\alpha)$ where α is the primitive element of *K*. By base changing to *K*, we find that $E_K = E \times_{\mathbf{Q}} K$ has *K*-rational 13-torsion point. We also compute that cl(F) = 1, 2 splits in \mathcal{O}_K , $\zeta_{13} \notin K$, and that E/K is not supersingular modulo l if $ord_l(j_E) \ge 0$ where l|13. Therefore, the elliptic curve *E* and the number field *K* satisfy the conditions of Corollary D.

Example 6.3.6 ($\ell = 13$) Suppose that an elliptic curve has $\rho_{E,13}(G_Q)$ conjugate to

$$\begin{pmatrix} a^2 & * \\ 0 & * \end{pmatrix}$$
 where $a \in \mathbf{F}_{13}$.

Since $\#(\mathbf{F}_{13}^{\times})^2 = 6$, *E* will attain a *K*-rational point of order 13 over an extension of degree 6. As an example, consider the elliptic curve

$$E: y^2 = x^3 - \frac{12096}{529}x + \frac{24192}{529},$$

which satisfies the above property. *E* attains a *K*-rational point of order 13 over a sextic extension *K* of **Q**. The first cubic extension L/\mathbf{Q} is given by adjoining a cubic root α of the 13-division polynomial ψ_{13} , and then the second quadratic is given by adjoining the square root of the $f(\alpha)$. We also compute that cl(F) = 4, 2 splits in \mathcal{O}_K , $\zeta_{13} \notin K$, and that E/K is not supersingular modulo l if $ord_l(j_E) \ge 0$ where l|13. Therefore, the elliptic curve *E* and number field *K* satisfy the conditions of Corollary D.

Potential example 6.3.7 ($\ell = 13$) Suppose that an elliptic curve E/\mathbf{Q} has mod 13 image conjugate to B(13). The curve E will attain a K-rational point of order 13 over an extension of degree 12. The difficultly in verifying the conditions of Corollary D is computing the class number and ramification indicies for the duodecic extension K.

Finally for $\ell = 37$, there is only one $E/\overline{\mathbf{Q}}$ that we need to consider.

Potential example 6.3.8 ($\ell = 37$) Suppose that E/\mathbf{Q} is the elliptic curve with *j*-invariant $-7 \cdot 11^3$, which has affine equation

$$E: y^2 = x^3 - \frac{251559}{11045}x + \frac{503118}{11045}.$$

From [13, Theorem 1.10.(ii)], we know that the mod 37 image of *E* is conjugate to

$$H := \begin{pmatrix} a^3 & * \\ 0 & * \end{pmatrix} \quad \text{where } a \in \mathbf{F}_{37}.$$

Since $\#(\mathbf{F}_{37}^{\times})^3 = 12$, *E* attains a *K*-rational point of order 37 over a duodecic extension *K*/**Q**.

As before, the difficultly in verifying the conditions of Corollary D is computing the class number and ramification indicies for the duodecic extension K.

Acknowledgements

The author wishes to thank Ken Ono for initially suggesting this project, David Zureick-Brown for his guidance and patience in explaining the finer details and for his help generalizing the conditions of [2] in a series of conversations, [19] for help in Lemma 5.5, and [20] for help in Remark 2.2. The computations in this paper were performed using the Magma computer algebra system [21]. For Magma code verifying the claims in Sect. 6, we refer the reader to [22].

Received: 26 February 2016 Accepted: 20 September 2016 Published online: 05 October 2016

References

- 1. Silverman, J.H.: The arithmetic of elliptic curves, vol. 106. Springer, Berlin (2009)
- 2. Frey, G.: On the Selmer group of twists of elliptic curves with **Q**-rational torsion points. Can. J. Math. **XL**, 649–665 (1988)
- 3. Mazur, B.: Modular functions of one variable V, pp. 107–148. Springer, Berlin (1977)
- 4. Ono, K.: Nonvanishing of quadratic twists of modular L-functions and applications to elliptic curves. Journal fur die reine und angewandte Mathematik **533**, 81–98 (2001)
- Balog, A., Ono, K.: Elements of class groups and Shafarevich-Tate groups of elliptic curves. Duke Math. J. 120(1), 35–63 (2003)
- 6. Sutherland, A.V.: Torsion subgroups of elliptic curves over number fields. Preprint (2012)
- Derickx, M.: Torsion points on elliptic curves and gonalities of modular curves. Master's thesis, Universiteit Leiden (2012)
- 8. Kamienny, S.: Torsion points on elliptic curves and *q*-coefficients of modular forms. Invent. Math. **109**(1), 221–229 (1992)
- Parent, P.: No 17-torsion on elliptic curves over cubic number fields. Journal de théorie des nombres de Bordeaux 15(3), 831–838 (2003)
- 10. Kamienny, S., Stein, W., Stoll, M.: Torsion points on elliptic curves over quartic number fields. Preprint
- 11. Derickx, M., Kamienny, S., Stein, W., Stoll, M.: Torsion points on elliptic curves over number fields of small degree. In preparation (private communication)
- Lozano-Robledo, Á.: On the field of definition of *p*-torsion points on elliptic curves over the rationals. Math. Ann. 357(1), 279–305 (2013)
- 13. Zywina, D.: On the possible images of the mod ℓ representations associated to elliptic curves over **Q**. http://www. math.cornell.edu/~zywina/papers/PossibleImages/index.html (2015)
- 14. Neukirch, J.: Algebraic number theory. Springer, Berlin (1999)
- 15. Washington, L.C.: Introduction to cyclotomic fields, vol. 83. Springer, Berlin (2012)
- 16. Mailhot, J.: Selmer groups for elliptic curves with isogenies of prime degree. PhD thesis, University of Washington (2003)
- 17. Katz, N.M.: Galois properties of torsion points on abelian varieties. Invent. Math. 62(3), 481–502 (1980)
- Néron, A.: Modèles minimaux des variétés abéliennes sur les corps locaux et globaux. Inst. Hautes Études Sci. Publ. Math. No. 21, 128 (1964)
- Epargyreus: Lack of ramification in cyclic extensions. Mathematics stack exchange. http://math.stackexchange.com/ q/1585179
- 20. Mo, G.: Hecke characters and Conductors. MathOverflow. http://mathoverflow.net/q/223873
- Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24(3–4), 235–265 (1997). doi:10.1006/jsco.1996.0125. Computational algebra and number theory (London, 1993)
- Morrow, J.S.: Electronic transcript of computations for the manuscript "The Selmer group of twists of elliptic curves over K with K-rational torsion points". https://drive.google.com/open?id=0Bx7T-L2ZBv-NNjllZFVtNXBsMUk