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Abstract
In 1982, Gessel showed that the Apéry numbers associated to the irrationality of ζ(3)
satisfy Lucas congruences. Our main result is to prove corresponding congruences for
all known sporadic Apéry-like sequences. In several cases, we are able to employ
approaches due to McIntosh, Samol–van Straten and Rowland–Yassawi to establish
these congruences. However, for the sequences labeled s18 and (η) we require a finer
analysis.
As an application, we investigate modulo which numbers these sequences are
periodic. In particular, we show that the Almkvist–Zudilin numbers are periodic modulo
8, a special property which they share with the Apéry numbers. We also investigate
primes which do not divide any term of a given Apéry-like sequence.
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1 Introduction
In his surprising proof [5, 24] of the irrationality of ζ(3), R. Apéry introduced the sequence

A(n) =
n∑

k=0

(
n
k

)2(n + k
k

)2
, (1.1)

which has since been referred to as the Apéry sequence. It was shown by I. Gessel ([16],
Theorem 1) that, for any prime p, these numbers satisfy the Lucas congruences

A(n) ≡ A(n0)A(n1) · · ·A(nr) (mod p), (1.2)

where n = n0 + n1p+ · · · + nrpr is the expansion of n in base p. Initial work of F. Beukers
[8] and D. Zagier [29], which was extended by G. Almkvist, W. Zudilin [4] and S. Cooper
[12], has complemented the Apéry numbers with a, conjecturally finite, set of sequences,
known as Apéry-like, which share (or are believed to share) many of the remarkable
properties of the Apéry numbers, such as connections to modular forms [2, 7, 27]
or supercongruences [6, 10, 13, 21–23]. After briefly reviewing Apéry-like sequences in
Section 2, we prove in Sections 3 and 4 our main result that all of these sequences also
satisfy the Lucas congruences (1.2). For all but two of the sequences, we establish these
congruences in Section 3 by extending a general approach provided by R. McIntosh [19].
The main difficulty, however, lies in establishing these congruences for the sequence (η).
For this sequence, and to a lesser extent for the sequence s18, we require a much finer
analysis, which is given separately in Section 4.
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In the approaches of Gessel and McIntosh, binomial sums, like (1.1), are used to
derive Lucas congruences. Other known approaches to proving Lucas congruences for a
sequence C(n) are based on expressing C(n) as the constant terms of powers of a Laurent
polynomial or as the diagonal coefficients of a multivariate algebraic function. However,
neither of these approaches is known to apply, for instance, to the sequence (η). In the
first approach, one seeks a Laurent polynomial�(x) = �(x1, . . . , xd) such thatC(n) is the
constant term of �(x). In that case, we write C(n) = ct�(x)n for brevity. If the Newton
polyhedron of �(x) has the origin as its only interior integral point, the results of K.
Samol and D. van Straten [26] (see also [20]) apply to show that C(n) satisfies the Dwork
congruences

C(prm + n)C(�n/p�) ≡ C(pr−1m + �n/p�)C(n) (mod pr) (1.3)

for all primes p and all integers m, n ≥ 0, r ≥ 1. The case r = 1 of these congruences is
equivalent to the Lucas congruences (1.2) for the sequence C(n). For instance, in the case
of the Apéry numbers (1.1), we have ([28], Remark 1.4)

A(n) = ct
[

(x + y)(z + 1)(x + y + z)(y + z + 1)
xyz

]n
,

from which one may conclude that the Apéry numbers satisfy the congruences (1.3), gen-
eralizing (1.2). Similarly, for the sequence (η), onemay derive from the binomial sum (4.2),
using G. Egorychev’s method of coefficients [15], that its nth term is given by ct�(x, y, z)n,
where

�(x, y, z) =
(
1 − 1

xy(1 + z)5

)
(1 + x)(1 + y)(1 + z)4

z3
.

However, �(x, y, z) is not a Laurent polynomial, and it is unclear if and how one could
express the sequence (η) as constant terms of powers of an appropriate Laurent poly-
nomial. As a second general approach, E. Rowland and R. Yassawi [25] show that Lucas
congruences hold for a certain class of sequences that can be represented as the diag-
onal Taylor coefficients of 1/Q(x)1/s, where s ≥ 1 is an integer and Q(x) ∈ Z[ x] is a
multivariate polynomial. Again, while such representations are known for some Apéry-
like sequences, see, for instance, [28], no suitable representations are available for the
sequences (η) or s18.
It was conjectured by S. Chowla, J. Cowles andM. Cowles [11] and subsequently proven

by I. Gessel [16] that

A(n) ≡
{
1, if n is even,
5, if n is odd,

(mod 8). (1.4)

The congruences (1.4) show that the Apéry numbers are periodic modulo 8, and it was
recently demonstrated by E. Rowland and R. Yassawi [25] that they are not eventually
periodic modulo 16, thus answering a question of Gessel. The Apéry numbers are also
periodic modulo 3 (see (5.1)) and their values modulo 9 are characterized by an extension
of the Lucas congruences [16]; see also the recent generalizations [17] of C. Krattenthaler
and T. Müller, who characterize generalized Apéry numbers modulo 9. As an application
of the Lucas congruences established in Sections 3 and 4, we address in Section 5 the nat-
ural question to which extent results like (1.4) are true for Apéry-like numbers in general.
In particular, we show in Theorem 5.3 that the Almkvist–Zudilin numbers are periodic
modulo 8 as well.
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The primes 2, 3, 7, 13, 23, 29, 43, 47, . . . do not divide any Apéry number A(n), and E.
Rowland and R. Yassawi [25] pose the question whether there are infinitely many such
primes. While this question remains open, we offer numerical and heuristic evidence that
a positive proportion of the primes, namely, about e−1/2 ≈ 60.65 %, do not divide any
Apéry number. In Section 6, we investigate the analogous question for other Apéry-like
numbers, and prove that Cooper’s sporadic sequences [12] behave markedly differently.
Indeed, for any given prime p, a fixed proportion of the last of the first p terms of these
sequences is divisible by p. In the case of sums of powers of binomial coefficients, such a
result has been proven by N. Calkin [9].

2 Review of Apéry-like numbers
Along with the Apéry numbers A(n), defined in (1.1), R. Apéry also introduced the
sequence

B(n) =
n∑

k=0

(
n
k

)2(n + k
k

)
,

which allowed him to (re)prove the irrationality of ζ(2). This sequence is the solution of
the three-term recursion

(n + 1)2un+1 = (an2 + an + b)un − cn2un−1, (2.1)

with the choice of parameters (a, b, c) = (11, 3,−1) and initial conditions u−1 = 0, u0 =
1. Because we divide by (n + 1)2 at each step, it is not to be expected that the recursion
(2.1) should have an integer solution. Inspired by F. Beukers [8], D. Zagier [29] conducted
a systematic search for other choices of the parameters (a, b, c) for which the solution to
(2.1), with initial conditions u−1 = 0, u0 = 1, is integral. After normalizing, and apart
from degenerate cases, he discovered four hypergeometric, four Legendrian as well as six
sporadic solutions. It is still open whether further solutions exist or even that there should
be only finitely many solutions. The six sporadic solutions are reproduced in Table 1. Note
that each binomial sum included in this table certifies that the corresponding sequence
indeed consists of integers.
Similarly, the Apéry numbers A(n), defined in (1.1), are the solution of the three-term

recurrence

(n + 1)3un+1 = (2n + 1)(an2 + an + b)un − n(cn2 + d)un−1, (2.2)

Table 1 The six sporadic solutions of (2.1) and their labels in [29] and [3]

(a, b, c) [29] [3] A(n)

(7, 2,−8) A (a)
∑
k

(n
k

)3
(11, 3,−1) D (b)

∑
k

(n
k

)2(n+k
n

)
(10, 3, 9) C (c)

∑
k

(n
k

)2(2k
k

)
(12, 4, 32) E (d)

∑
k

(n
k

)(2k
k

)(2(n−k)
n−k

)
(9, 3, 27) B (f)

∑
k

(−1)k3n−3k
( n
3k

)
(3k)!
k!3

(17, 6, 72) F (g)
∑
k,l

(−1)k8n−k
(n
k

)(k
l

)3
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with the choice of parameters (a, b, c, d) = (17, 5, 1, 0) and initial conditions u−1 = 0,
u0 = 1. Systematic computer searches for further integer solutions have been performed
by G. Almkvist andW. Zudilin [4] in the case d = 0 and, more recently, by S. Cooper [12],
who introduced the additional parameter d. As in the case of (2.1), apart from degener-
ate cases, only finitely many sequences have been discovered. In the case d = 0, there are
again six sporadic sequences, which are recorded in Table 2. Moreover, by general princi-
ples (see [12] Eq. (17)), each of the sequences in Table 1 times

(2n
n
)
is an integer solution of

(2.2) with d �= 0. Apart from such expected solutions, Cooper also found three additional
sporadic solutions, including

s18(n) =
�n/3�∑
k=0

(−1)k
(
n
k

)(
2k
k

)(
2(n − k)
n − k

) [(
2n − 3k − 1

n

)
+

(
2n − 3k

n

)]
, (2.3)

for n ≥ 1, with s18(0) = 1, as well as s7 and s10, which are included in Table 2. Remark-
ably, these sequences are again connected to modular forms [12] (the subscript refers to
the level) and satisfy supercongruences, which are proved in [23]. Indeed, it was the cor-
responding modular forms and Ramanujan-type series for 1/π that led Cooper to study
these sequences, and the binomial expressions for s7 and s18 were found subsequently by
Zudilin (sequence s10 was well-known before).

3 Lucas congruences
It is a well-known and beautiful classical result of Lucas [18] that the binomial coefficients
satisfy the congruences(

n
k

)
≡

(
n0
k0

)(
n1
k1

)
· · ·

(
nr
kr

)
(mod p), (3.1)

where p is a prime and ni, respectively ki, are the p-adic digits of n and k. That is, n =
n0+n1p+· · ·+nrpr and k = k0+k1p+· · ·+krpr are the expansions of n and k in base p.
Correspondingly, a sequence a(n) is said to satisfy Lucas congruences, if the congruences

a(n) ≡ a(n0)a(n1) · · · a(nr) (mod p) (3.2)

Table 2 The sporadic solutions of (2.2)

(a, b, c, d) [3] [12] A(n)

(7, 3, 81, 0) (δ)
∑
k

(−1)k3n−3k
( n
3k

)(n+k
n

)
(3k)!
k!3

(11, 5, 125, 0) (η)
�n/5�∑
k=0

(−1)k
(n
k

)3 ((4n−5k−1
3n

) + (4n−5k
3n

))
(10, 4, 64, 0) (α)

∑
k

(n
k

)2(2k
k

)(2(n−k)
n−k

)
(12, 4, 16, 0) (ε)

∑
k

(n
k

)2(2k
n

)2
(9, 3,−27, 0) (ζ )

∑
k,l

(n
k

)2(n
l

)(k
l

)(k+l
n

)
(17, 5, 1, 0) (γ )

∑
k

(n
k

)2(n+k
n

)2
(13, 4,−27, 3) s7

∑
k

(n
k

)2(n+k
k

)(2k
n

)
(6, 2,−64, 4) s10

∑
k

(n
k

)4
(14, 6, 192,−12) s18 defined in (2.3)
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hold for all primes p. It was shown by I. Gessel ([16], Theorem 1) that the Apéry
numbers A(n), defined in (1.1), satisfy Lucas congruences. E. Deutsch and B. Sagan
([14], Theorem 5.9) show that the Lucas congruences (3.2) in fact hold for the family of
generalized Apéry sequences

Ar,s(n) =
n∑

k=0

(
n
k

)r(n + k
k

)s
, (3.3)

with r and s positive integers. This family includes the sequences (a), (b) from Table 1,
and the sequences (γ ), s10 from Table 2. The purpose of this section and Section 4 is
to show that, in fact, all the Apéry-like sequences in Tables 1 and 2 satisfy the Lucas
congruences (3.2). Using and extending the general framework provided by R. McIntosh
([19], Theorem 6), which we review below, we are able to prove this claim for all of the
sequences in the two tables, with the exception of the two sequences (η) and s18, for which
we require a much finer analysis, which is given in Section 4.

Theorem 3.1. Each of the sequences from Tables 1 and 2 satisfies the Lucas congruences
(3.2).

Remark 3.2. The Lucas congruences (3.2), in general, do not extend to prime powers.
However, it is shown in [16], and generalized in [17], that the Lucas congruences modulo
3 for the Apéry numbers extend to hold modulo 9.
On the other hand, numerical evidence suggests that all the Apéry-like sequences from

Tables 1 and 2 in fact satisfy the Dwork congruences (1.3). While Theorem 3.1 proves
the case r = 1 of these congruences, it would be desirable to establish the corresponding
congruences modulo higher powers of primes.

Following [19], we say that a function L : Z2≥0 → Z has the double Lucas property (DLP)
if L(n, k) = 0, for k > n, and if

L(n, k) ≡ L(n0, k0)L(n1, k1) · · ·L(nr , kr) (mod p), (3.4)

for every prime p. Here, as in (3.1), ni and ki are the p-adic digits of n and k, respectively.
Eq. (3.1) shows that the binomial coefficients

(n
k
)
are aDLP function. More generally, it is

shown in ([19], Theorem 6) that, for positive integers r0, r1, . . . , rm,

L(n, k) =
(
n
k

)r0(n + k
k

)r1(n + 2k
k

)r2
· · ·

(
n + mk

k

)rm
(3.5)

is a DLP function. For instance, choosing the exponents as ri = 1, we find that the
multinomial coefficient(

n + mk
k, k, . . . , k, n − k

)
= (n + mk)!

k!m+1 (n − k)!
is a DLP function for any integerm ≥ 0.
Suppose that L(n, k) is a DLP function and that G(n) and H(n) are LP functions, that

is, the sequences G(n) and H(n) satisfy the Lucas congruences (3.2). Then, as shown in
([19], Theorem 5),

F(n) =
n∑

k=0
L(n, k)G(k)H(n − k) (3.6)
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is an LP function. Note that (3.5) and (3.6) combined are already sufficient to prove that
the generalized Apéry sequences, defined in (3.3), satisfy Lucas congruences. In order to
apply this machinery more generally, and prove Theorem 3.1, our next results extend the
repertoire of DLP functions. In fact, it turns out that we need a natural extension of the
Lucas property to the case of three variables. We say that a function M : Z3≥0 → Z has
the triple Lucas property (TLP) ifM(n, k, j) = 0, for j > n, and if

M(n, k, j) ≡ M(n0, k0, j0) · · ·M(nr , kr , jr) (mod p), (3.7)

for every prime p, where ni, ki and ji are the p-adic digits of n, k and j, respectively. It is
straightforward to prove the following analog of (3.6) for TLP functions.

Lemma 3.3. If M(n, k, j) is a TLP function, then

L(n, k) =
n∑

j=0
M(n, k, j)

satisfies the double Lucas congruences (3.4). In particular, if L(n, k) = 0, for k > n, then
L(n, k) is a DLP function.

Proof. Let p be a prime. It is enough to show that, for any nonnegative integers
n0, n′, k0, k′ such that n0 < p and k0 < p,

L(n0 + n′p, k0 + k′p) ≡ L(n0, k0)L(n′, k′) (mod p). (3.8)

Since the sum defining L(n, k) is naturally supported on j ∈ {0, 1, . . . , n}, we may extend
it over all j ∈ Z. Modulo p, we have

L(n, k) =
∑
j∈Z

M(n, k, j)

=
p−1∑
j0=0

∑
j′∈Z

M(n, k, j0 + j′p)

≡
∑
j0∈Z

∑
j′∈Z

M(n0, k0, j0)M(n′, k′, j′)

= L(n0, k0)L(n′, k′),

which is what we had to prove.

Lemma 3.4. The function

M(n, k, j) =
(
n
j

)(
k + j
n

)

is a TLP function.

Proof. Clearly, M(n, k, j) = 0, for j > n. In order to show that M(n, k, j) is a TLP
function, we therefore need to show that, for any prime p,

M(n0 + n′p, k0 + k′p, j0 + j′p) ≡ M(n0, k0, j0)M(n′, k′, j′) (mod p), (3.9)

provided that 0 ≤ n0, k0, j0 < p and n′, k′, j′ ≥ 0. Observe that in the case j0 > n0
both sides of the congruence (3.9) vanish because of the Lucas congruences (3.1) for the
binomial coefficients. We may therefore proceed under the assumption that j0 ≤ n0.
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Writing [ xn] f (x) for the coefficient of xn in the polynomial f (x), we begin with the
simple observation that(

k + j
n

)
=[ xn] (1 + x)k+j.

Modulo p, we have

(1 + x)k+j = (1 + x)k0+j0(1 + x)(k
′+j′)p ≡ (1 + x)k0+j0(1 + xp)k

′+j′ (mod p).

Since 0 ≤ k0 + j0 < 2p, extracting the coefficient of xn = xn0(xp)n′ from this product
results in the congruence(

k + j
n

)
≡

(
k0 + j0
n0

)(
k′ + j′

n′

)
+

(
k0 + j0
n0 + p

)(
k′ + j′

n′ − 1

)
(mod p).

Note that, under our assumption that j0 ≤ n0, the second term on the right-hand side
of this congruence vanishes (since n0 + p ≥ j0 + p > j0 + k0). This, along with (3.1),
proves (3.9).

Corollary 3.5. The function

L(n, k) =
(
n
k

)(
2k
n

)

is a DLP function.

Proof. Set j = k in Lemma 3.4.

Lemma 3.6. The function

L(n, k) = 3n−3k
(
n
3k

)
(3k)!
k!3

is a DLP function.

Proof. Let p be a prime. As usual, we write n = n0 + n′p and k = k0 + k′p where
0 ≤ n0 < p and 0 ≤ k0 < p. In light of (3.1) and (3.6), the simple observation(

2n
n

)
=

n∑
k=0

(
n
k

)2
, (3.10)

demonstrates that the sequence of central binomial coefficients is an LP function. We
claim that

(3k)!
k!3

=
(
3k
k

)(
2k
k

)

is an LP function as well. From the Lucas congruences for the central binomials, that is(
2k
k

)
≡

(
2k0
k0

)(
2k′

k′

)
(mod p),

we observe that
(2k
k
)
is divisible by p if 2k0 ≥ p. Hence, we only need to show the

congruences

(3k)!
k!3

≡ (3k0)!
k0!3

(3k′)!
k′!3

(mod p) (3.11)
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under the assumption that k0 < p/2. Note that(
3k
k

)
=

[
xk

]
(1 + x)3k

≡
[
xk0(xp)k

′]
(1 + x)3k0(1 + xp)3k

′
(mod p)

=
(
3k0
k0

)(
3k′

k′

)
+

(
3k0

k0 + p

)(
3k′

k′ − 1

)
+

(
3k0

k0 + 2p

)(
3k′

k′ − 2

)
.

In the case k0 < p/2, we have k0 + p > 3k0, so that the last two terms on the right-hand
side vanish. This proves (3.11).
Next, we claim that(

n
3k

)
(3k)!
k!3

≡
(
n0
3k0

)
(3k0)!
k0!3

(
n′

3k′

)
(3k′)!
k′!3

(mod p). (3.12)

By congruence (3.11), both sides vanish modulo p if 3k0 ≥ p. On the other hand, if
3k0 < p, then the usual argument shows that(

n
3k

)
≡

[
x3k0

(
xp

)3k′]
(1 + x)n0

(
1 + xp

)n′ =
(
n0
3k0

)(
n′

3k′

)
(mod p).

In combination with (3.11), this proves (3.12).
Finally, the congruences L(n, k) ≡ L(n0, k0)L(n′, k′), that is

3n−3k
(
n
3k

)
(3k)!
k!3

≡ 3n0−3k0
(
n0
3k0

)
(3k0)!
k0!3

3n
′−3k′

(
n′

3k′

)
(3k′)!
k′!3

(mod p), (3.13)

follow from Fermat’s little theorem and the fact that both sides vanish if 3k0 > n0 or
3k′ > n′.

We are now in a comfortable position to prove Theorem 3.1 for all but two of the spo-
radic Apéry-like sequences. To show that sequences (η) and s18 satisfy Lucas congruences
as well requires considerable additional effort, and the corresponding proofs are given in
Section 4.

Proof of Theorem 3.1. Recall from (3.10) that the sequence of central binomial coeffi-
cients is an LP function. Further armed with (3.5) as well as Corollary 3.5 and Lemma 3.6,
the claimed Lucas congruences for the sequences (a), (b), (c), (d), (f), (α), (ε), (γ ), s10, s7
follow from (3.6). It remains to consider the sequences (g), (δ), (ζ ) as well as (η) and s18.
Sequence (g) can be written as

Ag(n) =
n∑

k=0
(−1)k8n−k

(
n
k

)
F(k),

where F(k) = ∑k
l=0

(k
l
)3

are the Franel numbers (sequence (a)), which we already know to
be an LP function. As a consequence of Fermat’s little theorem, the sequence an is an LP
function for any integer a. Hence, Eq. (3.6) applies to show that Ag(n) is an LP function.
In order to see that sequence (δ) satisfies the Lucas congruences as well, it suffices to

observe that L(n, k) = (n+k
k

)
is almost aDLP function, that is, it satisfies the congruences

(3.4) but does not vanish for k > n. This is enough to conclude from Lemma 3.6 that

L(n, k) = 3n−3k
(
n
3k

)(
n + k
k

)
(3k)!
k!3
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is a DLP function. Since this is the summand of sequence (δ), the desired Lucas
congruences again follow from (3.6).
On the other hand, for sequence (ζ ), we observe that

L(n, k) =
n∑

j=0

(
n
j

)(
k
j

)(
k + j
n

)

satisfies the congruences ( 3.4) by Lemma 3.3 because the summand is a TLP function by
Lemma 3.4. Hence,

(n
k
)2L(n, k) is a DLP function. Writing sequence (ζ ) as

Aζ (n) =
n∑

k=0

(
n
k

)2
L(n, k),

the claimed congruences once more follow from (3.6).

4 Proofs for the two remaining sequences
The proof of the Lucas congruences in the previous section does not readily extend to the
sequences (η) and s18 from Table 2, because, in contrast to the other cases, the known
binomial sums for these sequences do not have the property that their summands satisfy
the double Lucas property. Let us first note that the binomial sums for s18 and sequence
(η), given in (2.3) and Table 2, can be simplified at the expense of working with binomial
coefficients with negative entries. Namely, we have

s18(n) =
n∑

k=0
(−1)k

(
n
k

)(
2k
k

)(
2(n − k)
n − k

)(
2n − 3k

n

)
(4.1)

and

Aη(n) =
n∑

k=0
(−1)k

(
n
k

)3(4n − 5k
3n

)
, (4.2)

where, as usual, for any integerm ≥ 0 and any number x, we define(
x
m

)
= x(x − 1) · · · (x − m + 1)

m!
.

For instance, the equivalence between (2.3) and (4.1) is a simple consequence of the fact
that, for integers n ≥ 0 and l = n − k,

(−1)k
(
2n − 3k

n

)
= (−1)k+n

(−n + 3k − 1
n

)
= (−1)l

(
2n − 3l − 1

n

)
. (4.3)

For the first equality, we used that, for integers b ≥ 0,(
a
b

)
= a(a − 1) · · · (a − b + 1)

b!

= (−1)b
(−a)(−a + 1) · · · (−a + b − 1)

b!
= (−1)b

(−a + b − 1
b

)
. (4.4)

The following result generalizes the Lucas congruences for the sequence s18(n).

Theorem 4.1. Suppose that B(n, k) is a DLP function with the property that B(n, k) =
B(n, n − k). Then, the sequence

A(n) =
n∑

k=0
(−1)kB(n, k)

(
2n − 3k

n

)

is an LP function, that is, A(n) satisfy the Lucas congruences (3.2).
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Proof. Let p be a prime and let n ≥ 0 be an integer. Write n = n0+n′p and k = k0+k′p,
where 0 ≤ n0 < p and 0 ≤ k0 < p and n′, k′ are nonnegative integers. We have to show
that

A(n) ≡ A(n0)A(n′) (mod p). (4.5)

In the sequel, we denote

C(n, k) = (−1)kB(n, k)
(
2n − 3k

n

)
.

For k0 ≤ n0/3, we have 2n0 − 3k0 ≥ n0 ≥ 0 and 2n0 − 3k0 ≤ 2n0 < n0 + p. Hence, by
the usual argument, we have(

2n − 3k
n

)
≡

[
xn0(xp)n

′]
(1 + x)2n0−3k0 (

1 + xp
)2n′−3k′

(mod p)

≡
(
2n0 − 3k0

n0

)(
2n′ − 3k′

n′

)
(mod p).

Hence, we find that, when k0 ≤ n0/3,

C(n, k) ≡ C(n0, k0)C(n′, k′) (mod p). (4.6)

For n0/3 < k0 < 2n0/3, we have n0 > 2n0 − 3k0 > 0. By the same argument as above,
we find that(

2n − 3k
n

)
≡ 0 (mod p), (4.7)

and hence C(n, k) ≡ C(n0, k0) ≡ 0 modulo p.
Finally, consider the case n0 ≥ 1 and 2n0/3 ≤ k0 ≤ n0. In that case, −p < −n0 ≤

2n0 − 3k0 ≤ 0 or, equivalently, 0 < 2n0 − 3k0 + p ≤ p. Hence, we have, modulo p,(
2n − 3k

n

)
≡

[
xn0(xp)n

′]
(1 + x)2n0−3k0+p (

1 + xp
)2n′−3k′−1

≡
(
2n0 − 3k0 + p

n0

)(
2n′ − 3k′ − 1

n′

)

≡
(
2n0 − 3k0

n0

)(
2n′ − 3k′ − 1

n′

)
, (4.8)

because, for any integers A,B andm such that 0 ≤ m < p,(
A + Bp

m

)
= 1

m!
(A + Bp)(A + Bp − 1) · · · (A + Bp − m + 1)

≡ 1
m!

A(A − 1) · · · (A − m + 1) =
(
A
m

)
(mod p). (4.9)

Set l′ = n′ − k′. Applying (4.3) to the second binomial factor in (4.8), we find that(
2n − 3k

n

)
≡ (−1)n

′
(
2n0 − 3k0

n0

)(
2n′ − 3l′

n′

)
(mod p).

In combination with the assumed symmetry of B(n, k), we therefore have that, when
n0 ≥ 1 and 2n0/3 ≤ k0 ≤ n0,

C(n, k) ≡ C(n0, k0)C(n′, n′ − k′) (mod p). (4.10)



Malik and Straub Research in Number Theory  (2016) 2:5 Page 11 of 26

We are now ready to combine all cases. First, suppose that n0 ≥ 1. Noting that k ≤ n/3
implies k′ ≤ n′/3, and using (4.6), (4.7) and (4.10), we conclude that, modulo p,

A(n) =
p−1∑
k0=0

n′∑
k′=0

C(n, k) ≡
n0∑

k0=0

n′∑
k′=0

C(n, k)

≡
�n0/3�∑
k0=0

n′∑
k′=0

C(n, k) +
n0∑

k0=�2n0/3

n′∑
k′=0

C(n, k)

≡
�n0/3�∑
k0=0

C(n0, k0)
n′∑

k′=0
C(n′, k′) +

n0∑
k0=�2n0/3

C(n0, k0)
n′∑

k′=0
C

(
n′, n′ − k′)

=
⎡
⎣�n0/3�∑

k0=0
C(n0, k0) +

n0∑
k0=�2n0/3

C(n0, k0)

⎤
⎦ n′∑

k′=0
C

(
n′, k′)

= A(n0)A(n′),

which is what we wanted to prove. The case n0 = 0 is simpler, and we only have to use
(4.6) to again conclude that (4.5) holds.

Corollary 4.2. The sequence s18(n) satisfies the Lucas congruences (3.2).

Proof. Recall from the discussion in Section 3 that

B(n, k) =
(
n
k

)(
2k
k

)(
2(n − k)
n − k

)

is a DLP function. Obviously, B(n, k) = B(n, n − k). Hence, Theorem 4.1 applies to show
that s18(n), in the form (4.1) satisfies the Lucas congruences (3.2).

Next, we prove that the sequence (η), which corresponds to the choice a = 3 in
Theorem 4.3, satisfies Lucas congruences as well.

Theorem 4.3. Let a ∈ {1, 3}. Then, the sequence

A(n) =
n∑

k=0
(−1)k

(
n
k

)a(4n − 5k
3n

)
(4.11)

is an LP function, that is, A(n) satisfy the Lucas congruences (3.2).

Proof. Let p be a prime and let n ≥ 0 be an integer. As in the proof of Theorem 4.1, we
write n = n0 + n′p and k = k0 + k′p, where 0 ≤ n0 < p and 0 ≤ k0 < p and n′, k′ are
nonnegative integers. Again, we have to show that

A(n) ≡ A(n0)A(n′) (mod p). (4.12)

Throughout the proof, let d = �3n0/p�.
If k0 ≤ n0/5, then 4n0 − 5k0 ≥ 3n0 ≥ 0 and 4n0 − 5k0 ≤ 4n0 < 3n0 + p. Since

d = �3n0/p�, we thus have 0 ≤ 3n0 − dp < p and 0 ≤ 4n0 − 5k0 − dp < (3n0 − dp) + p.
Therefore, modulo p,
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(
4n − 5k

3n

)
≡

[
x3n0−dp(xp)3n

′+d
]
(1 + x)4n0−5k0−dp(1 + xp)4n

′−5k′+d

≡
(
4n0 − 5k0 − dp

3n0 − dp

)(
4n′ − 5k′ + d

3n′ + d

)

≡
(
4n0 − 5k0

3n0

)(
4n′ − 5k′ + d

3n′ + d

)
,

where in the last step we used that, modulo p,

(
4n0 − 5k0 − dp

3n0 − dp

)
=

(
4n0 − 5k0 − dp

n0 − 5k0

)
≡

(
4n0 − 5k0
n0 − 5k0

)
=

(
4n0 − 5k0

3n0

)
, (4.13)

which follows from (4.9) because 0 ≤ n0 − 5k0 < p. In particular, we have

�n0/5�∑
k0=0

n′∑
k′=0

(−1)k
(
n
k

)a(4n − 5k
3n

)

≡
�n0/5�∑
k0=0

(−1)k0
(
n0
k0

)a(4n0 − 5k0
3n0

) n′∑
k′=0

(−1)k
′
(
n′

k′

)a(4n′ − 5k′ + d
3n′ + d

)
, (4.14)

and we observe that, for d ∈ {0, 1},

A(n) =
n∑

k=0
(−1)k

(
n
k

)a(4n − 5k + d
3n + d

)
. (4.15)

To see this, note that the the sum of the k-th and (n − k)-th term does not depend on
the value of d ∈ {0, 1}. Indeed, using (4.4), Pascal’s relation and (4.4) again, we deduce that

(
4n − 5k + 1

3n + 1

)
+ (−1)n

(
4n − 5(n − k) + 1

3n + 1

)

=
(
4n − 5k + 1

3n + 1

)
−

(
4n − 5k − 1

3n + 1

)

=
[(

4n − 5k + 1
3n + 1

)
−

(
4n − 5k
3n + 1

)]
+

[(
4n − 5k
3n + 1

)
−

(
4n − 5k − 1

3n + 1

)]

=
(
4n − 5k

3n

)
+

(
4n − 5k − 1

3n

)

=
(
4n − 5k

3n

)
+ (−1)n

(
4n − 5(n − k)

3n

)
.

Next, suppose that n0 ≥ 1 and 4n0/5 ≤ k0 ≤ n0. In that case, −p < −n0 ≤ 4n0 −5k0 ≤
0 or, equivalently, 0 < 4n0 − 5k0 + p ≤ p. Hence, we have, modulo p,

(
4n − 5k

3n

)
≡

[
x3n0−dp(xp)3n

′+d
]
(1 + x)4n0−5k0+p(1 + xp)4n

′−5k′−1

≡
(
4n0 − 5k0 + p

3n0 − dp

)(
4n′ − 5k′ − 1

3n′ + d

)
.
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We rewrite the first binomial factor as follows, applying first (4.4) and then (4.9) twice,
to find that, with l0 = n0 − k0, modulo p,(

4n0 − 5k0 + p
3n0 − dp

)
= (−1)n0+d

(
4n0 − 5l0 − (d + 1)p − 1

3n0 − dp

)

≡ (−1)n0+d
(
4n0 − 5l0 − dp − 1

3n0 − dp

)

= (−1)n0+d
(
4n0 − 5l0 − dp − 1

n0 − 5l0 − 1

)

≡ (−1)n0+d
(
4n0 − 5l0 − 1
n0 − 5l0 − 1

)

= (−1)n0+d
(
4n0 − 5l0 − 1

3n0

)
.

Here, we proceeded under the assumption that n0 − 5l0 > 0. It is straightforward to
check that the final congruence also holds when n0 = 5l0, because then the binomial
coefficients vanish modulo p. We conclude that, when n0 ≥ 1 and 4n0/5 ≤ k0 ≤ n0,

(−1)k
(
4n − 5k

3n

)
≡ (−1)l0

(
4n0 − 5l0 − 1

3n0

)
(−1)k

′+d
(
4n′ − 5k′ − 1

3n′ + d

)
(mod p).

In particular, we have

n0∑
k0=�4n0/5

n′∑
k′=0

(−1)k
(
n
k

)a(4n − 5k
3n

)

≡
n0∑

k0=�4n0/5
(−1)l0

(
n0
l0

)a(4n0 − 5l0 − 1
3n0

) n′∑
k′=0

(−1)k
′+d

(
n′

k′

)a(4n′ − 5k′ − 1
3n′ + d

)

=
�n0/5�∑
k0=0

(−1)k0
(
n0
k0

)a(4n0 − 5k0 − 1
3n0

) n′∑
k′=0

(−1)k
′+d

(
n′

k′

)a(4n′ − 5k′ − 1
3n′ + d

)
, (4.16)

and we observe that, for integers d ≥ 0,

n∑
k=0

(−1)k+d
(
n
k

)a(4n − 5k − 1
3n + d

)
=

n∑
k=0

(−1)k
(
n
k

)a(4n − 5k + d
3n + d

)

because, by (4.4),

(−1)k
(
4n − 5k + d

3n + d

)
= (−1)(n−k)+d

(
4n − 5(n − k) − 1

3n + d

)
.

Therefore, we can combine (4.14) and (4.16) into

n0∑
k0=0

k0≤n0/5ork0≥4n0/5

n′∑
k′=0

(−1)k
(
n
k

)a(4n − 5k
3n

)

≡ A(n0)
n′∑

k′=0
(−1)k

′
(
n′

k′

)a(4n′ − 5k′ + d
3n′ + d

)
(mod p), (4.17)

which holds for all 0 ≤ n0 < p (recall from the discussion at the beginning of this section
that A(n0), like sequence (η), can be represented as in Table 2).
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On the other hand, suppose that n0/5 < k0 < 4n0/5. Set f = �(4n0 − 5k0)/p�. Since
0 < 4n0 − 5k0 < 3n0 < 3p, we have f ∈ {0, 1, 2}. The usual arguments show that,
modulo p,

(
4n − 5k

3n

)
≡ [ x3n0−dp(xp)3n

′+d] (1 + x)4n0−5k0−fp(1 + xp)4n
′−5k′+f

≡
(
4n0 − 5k0 − fp

3n0 − dp

)(
4n′ − 5k′ + f

3n′ + d

)

≡
(
4n0 − 5k0
3n0 − dp

)(
4n′ − 5k′ + f

3n′ + d

)
. (4.18)

We are now in a position to begin piecing everything together. To do so, we consider
individually the cases corresponding to the value of d ∈ {0, 1, 2}.
First, suppose d = 0 or d = 1. Congruence (4.17) coupled with (4.15) implies that

n0∑
k0=0

k0≤n0/5 or k0≥4n0/5

n′∑
k′=0

(−1)k
(
n
k

)a(4n − 5k
3n

)
≡ A(n0)A(n′) (mod p).

To conclude the desired congruence (4.12), it therefore only remains to show that

�4n0/5−1∑
k0=�n0/5�+1

n′∑
k′=0

(−1)k
(
n
k

)a(4n − 5k
3n

)
≡ 0 (mod p). (4.19)

This is easily seen in the case d = 0, because then each term of this sum vanishes
modulo p. Equivalently, for d = 0, (4.18) vanishes whenever n0/5 < k0 < 4n0/5 (because
0 ≤ 4n0 − 5k0 − fp ≤ 4n0 − 5k0 < 3n0). On the other hand, if d = 1, we claim that the
sum (4.19) vanishes modulo p because the terms corresponding to (k0, k′) and (k0, n′ −k′)
cancel each other. To see that, observe first that, for d = 1, (4.18) vanishes whenever
n0/5 < k0 < 4n0/5 and f = �(4n0 − 5k0)/p� �= 0 (because 0 ≤ 4n0 − 5k0 − fp ≤
4n0 − 5k0 − p < 3n0 − p if f ∈ {1, 2}). Therefore, for the term corresponding to (k0, k′),

(−1)k
(
4n − 5k

3n

)
≡ (−1)k0

(
4n0 − 5k0
3n0 − p

)
(−1)k

′
(
4n′ − 5k′

3n′ + 1

)
(mod p),

while, for the term corresponding to (k0, n′ − k′) with j = k0 + (n′ − k′)p,

(−1)j
(
4n − 5j
3n

)
≡ (−1)k0

(
4n0 − 5k0
3n0 − p

)
(−1)n

′−k′
(
4n′ − 5(n′ − k′)

3n′ + 1

)

≡ (−1)k0
(
4n0 − 5k0
3n0 − p

)
(−1)k

′+1
(
4n′ − 5k′

3n′ + 1

)

≡ −(−1)k
(
4n − 5k

3n

)
(mod p),

where we applied (4.4) for the second congruence. It is now immediate to see that the sum
(4.19) indeed vanishes modulo p for d = 1.
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It remains to prove the Lucas congruences (4.12) in the case d = 2. Using (4.17), we
have

A(n) ≡ A(n0)
n′∑

k′=0
(−1)k

′
(
n′

k′

)a(4n′ − 5k′ + 2
3n′ + 2

)
+ M (mod p),

where

M :=
�4n0/5−1∑

k0=�n0/5�+1

n′∑
k′=0

(−1)k
(
n
k

)a(4n − 5k
3n

)
.

Combining this congruence with the identity

A(n) =
n∑

k=0
(−1)k

(
n
k

)a [(
4n − 5k + 2

3n + 2

)
−

(
4n − 5k
3n + 2

)]
,

which can be deduced along the same lines as (4.15), we find that

A(n) ≡ A(n0)A(n′) + A(n0)
n′∑

k′=0
(−1)k

′
(
n′

k′

)a(4n′ − 5k′

3n′ + 2

)
+ M (mod p). (4.20)

We have, by (4.18), modulo p,

M ≡
�4n0/5−1∑

k0=�n0/5�+1
(−1)k0

(
n0
k0

)a(4n0 − 5k0
3n0 − 2p

) n′∑
k′=0

(−1)k
′
(
n′

k′

)a(4n′ − 5k′ + f
3n′ + 2

)

≡
�4n0/5−1∑

k0=�n0/5�+1
(−1)k0

(
n0
k0

)a(4n0 − 5k0
3n0 − 2p

) n′∑
k′=0

(−1)k
′
(
n′

k′

)a(4n′ − 5k′

3n′ + 2

)
,

where the last congruence is a consequence of the identity
n∑

k=0
(−1)k

(
n
k

)a(4n − 5k + 1
3n + 2

)
=

n∑
k=0

(−1)k
(
n
k

)a(4n − 5k
3n + 2

)

(which follows from (4.4) and replacing k with n − k) and the fact that (4.18) vanishes for
n0/5 < k0 < 4n0/5 if f = 2. Using this value ofM in (4.20), we find that the desired Lucas
congruence (4.12) follows, if we can show that

A(n0) +
�4n0/5−1∑

k0=�n0/5�+1
(−1)k0

(
n0
k0

)a(4n0 − 5k0
3n0 − 2p

)
≡ 0 (mod p). (4.21)

Note that, if k0 ≤ n0/5, then, by (4.9) and (4.13),(
4n0 − 5k0
3n0 − 2p

)
≡

(
4n0 − 5k0 − 2p

3n0 − 2p

)
≡

(
4n0 − 5k0

3n0

)
(mod p). (4.22)

A similar argument, combined with (4.4), shows that the congruence (4.22) also holds if
k0 ≥ 4n0/5. We therefore find that (4.21) is equivalent to

n0∑
k0=0

(−1)k0
(
n0
k0

)a(4n0 − 5k0
3n0 − 2p

)
≡ 0 (mod p).

The next lemma proves that this congruence indeed holds provided that a ∈ {1, 3}.
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Lemma 4.4. Let p be a prime, and a ∈ {1, 2, 3}. Then we have, for all n such that 2p/3 ≤
n < p,

n∑
k=0

(−1)ak
(
n
k

)a(4n − 5k
3n − 2p

)
≡ 0 (mod p).

Proof. To prove these congruences we employ N. Calkin’s technique [9] for proving sim-
ilar divisibility results for sums of powers of binomials (6.9). Denoting r = p−n, we have,
by (4.4) and (4.9),

n∑
k=0

(−1)ak
(
n
k

)a(4n − 5k
3n − 2p

)
=

p−r∑
k=0

(−1)ak
(
p − r
k

)a(4p − 4r − 5k
p − 3r

)

=
p−r∑
k=0

(
k − p + r − 1

k

)a(4p − 4r − 5k
p − 3r

)

≡
p−r∑
k=0

(
k + r − 1

k

)a(4p − 4r − 5k
p − 3r

)
(mod p).

Clearly,(
k + r − 1

k

)
= (k + 1)(k + 2) · · · (k + r − 1)

(r − 1)!
= (k + 1)r−1

(r − 1)!
, (4.23)

where (x)k = x(x + 1) · · · (x + k − 1) denotes the Pochhammer symbol (in particular,
(x)0 = 1). Likewise,(

4p − 4r − 5k
p − 3r

)
= (3p − r − 5k + 1)p−3r

(p − 3r)!
Since (r − 1)! and (p − 3r)! are not divisible by p, we have to show that

p−r∑
k=0

(k + 1)ar−1(3p − r − 5k + 1)p−3r ≡ 0 (mod p). (4.24)

Since the polynomials (x)k , (x)k−1, . . . , (x)0 form an integer basis for the space of
all polynomials with integer coefficients and degree at most k, there exist integers
c0, c1, . . . , cN with N = (a − 1)(r − 1) + p − 3r so that

(k + 1)a−1
r−1 (3p − r − 5k + 1)p−3r =

N∑
j=0

cj(k + r)j.

Then the left-hand side of (4.24) becomes
p−r∑
k=0

(k + 1)r−1

N∑
j=0

cj(k + r)j =
N∑
j=0

cj
p−r∑
k=0

(k + 1)r−1(k + r)j

=
N∑
j=0

cj
p−r∑
k=0

(k + 1)r+j−1

=
N∑
j=0

cj
(p − r + 1)r+j

r + j
, (4.25)

where we used

(x)k − (x − 1)k = k(x)k−1
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to evaluate
p−r∑
k=0

(k + 1)r+j−1 =
p−r∑
k=0

(k + 1)r+j − (k)r+j

r + j
= (p − r + 1)r+j

r + j
.

The desired congruence therefore follows if we can show that

(p − r + 1)r+j

r + j
≡ 0 (mod p) (4.26)

for all j = 0, 1, . . . ,N . Since r > 0 and j ≥ 0, the numerator (p−r+1)r+j is always divisible
by p. The congruences (4.26) thus follow if r + j < p for all j, or, equivalently, r + N < p.
Since

r + N = (a − 1)(r − 1) + p − 2r,

we have r + N < p if and only if

(a − 1)(r − 1) < 2r.

Clearly, this inequality holds for all r ≥ 1 if and only if a ≤ 3.

Remark 4.5. Numerical evidence suggests that the values a ∈ {1, 3} in Theorem 4.3
are the only choices for which the sequence (4.11) satisfies Lucas congruences. In light
of Lemma 4.4, it is natural to ask if there are additional values of a and ε, for which the
sequence

n∑
k=0

(−1)εk
(
n
k

)a(4n − 5k
3n

)

satisfies Lucas congruences. Empirically, this does not appear to be the case. In particular,
for a = 2 this sequence does not satisfy Lucas congruences for either ε = 0 or ε = 1.

5 Periodicity of residues
The Apéry numbers satisfy

A(n) ≡ (−1)n (mod 3), (5.1)

and so are periodic modulo 3. As in the case of the congruences (1.4), which show that the
Apéry numbers are also periodic modulo 8, the congruences (5.1) were first conjectured
in [11] and then proven in [16]. We say that a sequence C(n) is eventually periodic if
there exists an integer M > 0 such that C(n + M) = C(n) for all sufficiently large n. An
initial numerical search suggests that each sporadic Apéry-like sequence listed in Tables 1
and 2 can only be eventually periodic modulo a prime p if p ≤ 5. As an application of
Theorem 3.1, we prove this claim next.

Corollary 5.1. None of the sequences from Tables 1 and 2 is eventually periodic modulo
p for any prime p > 5.

Proof. Gessel [16] shows that, if a sequence C(n) satisfies the Lucas congruences (3.2)
modulo p and is eventually periodic modulo p, then C(n) ≡ C(1)n modulo p for all n =
0, 1, . . . , p − 1.
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For instance, let C(n) be the Almkvist–Zudilin sequence (δ). Then, C(1) = 3, C(2) = 9
and C(3) = 3. Suppose C(n) was eventually periodic modulo p. Then p has to divide
C(3) − C(1)3 = −24, which implies that p ∈ {2, 3}.
In Table 3 we list, for each sequence, the primes dividing both C(2)−C(1)2 and C(3)−

C(1)3. The fact, that all these primes are at most 5, proves our claim.

As another simple consequence of Theorem 3.1, we observe that the Apéry-like
sequences are in fact eventually periodic modulo each of the primes listed in Table 3.

Corollary 5.2. Let C(n) be any sequence from Tables 1 and 2.

• C(n) ≡ C(1) (mod 2) for all n ≥ 1.
• C(n) ≡ C(1) (mod 3) for all n ≥ 1 if C(n) is one of (c), (f ), (g), (δ), (α), (ε), (ζ ), s18,

and C(n) ≡ (−1)n (mod 3) for all n ≥ 0 if C(n) is (a) or (γ ).
• C(n) ≡ 3n (mod 5) for all n ≥ 0 if C(n) is (b), and C(n) ≡ 0 (mod 5) for all n ≥ 1 if

C(n) is (η).

Proof. One can check that Table 3 does not change if we include only those primes p
such that C(n) − C(1)n is divisible by p for all n ∈ {0, 1, 2, 3, 4}. For n = 0, this is trivial
since C(0) = 1. Therefore, in each of the cases considered here, we have

C(n) ≡ C(1)n (mod p)

for all n ∈ {0, 1, . . . , p − 1}. For any n ≥ 0, let n = n0 + n1p + · · · + nrpr be the p-adic
expansion of n. Then, by Theorem 3.1, we have

C(n) ≡ C(n0)C(n1) · · ·C(nr) (mod p)

≡ C(1)n0+n1+···+nr (mod p)

≡ C(1)n (mod p).

For the final congruence we used Fermat’s little theorem. All claimed congruences then
follow from the specific initial values of C(n) modulo p.

More interestingly, the congruences (1.4) show that the Apéry numbers (sequence (γ ))
are periodic modulo 8. We offer the following corresponding result for the Almkvist–
Zudilin sequence (δ).

Theorem 5.3. The Almkvist–Zudilin numbers

Z(n) =
n∑

k=0
(−1)k3n−3k

(
n
3k

)(
n + k
n

)
(3k)!
k!3

Table 3 The primes dividing both C(2) − C(1)2 and C(3) − C(1)3, for each sequence C(n) from
Tables 1 and 2

(a) (b) (c) (d) (f) (g) (δ) (η) (α) (ε) (ζ ) (γ ) (s7) (s10) (s18)

2, 3 2, 5 2, 3 2 2, 3 2, 3 2, 3 2, 5 2, 3 2, 3 2, 3 2, 3 2 2 2, 3



Malik and Straub Research in Number Theory  (2016) 2:5 Page 19 of 26

satisfy the congruences

Z(n) ≡
{
1, if n is even,
3, if n is odd,

(mod 8). (5.2)

Proof. It is shown in [28] that the numbers (−1)nZ(n) are the diagonal Taylor coeffi-
cients of the multivariate rational function

F(x1, x2, x3, x4) = 1
1 − (x1 + x2 + x3 + x4) + 27x1x2x3x4

. (5.3)

That is, if

F(x1, x2, x3, x4) =
∞∑

n1=0

∞∑
n2=0

∞∑
n3=0

∞∑
n4=0

C(n1, n2, n3, n4)xn11 xn22 xn33 xn44

is the Taylor expansion of the rational function F, then Z(n) = (−1)nC(n, n, n, n).
Given such a rational function as well as a prime power pr , Rowland and Yassawi [25]

give an explicit algorithm for computing a finite state automaton, which produces the
values of the diagonal coefficients modulo pr . In the present case, this finite state automa-
ton for the values (−1)nZ(n) modulo 8 turns out to be the same automaton as the one
for the Apéry numbers modulo 8. Hence, the congruences (5.2) follow from the con-
gruences (1.4). We refer to [25] for details on finite state automata and the algorithm to
construct them from amultivariate rational generating function.We also remark that, due
to the complexity of the algorithm, pr should be reasonably small in practice (for instance,
the implementation accompanying [25] takes several minutes to compute the finite state
automaton for the coefficients of (5.3) modulo 25, and did not finish in reasonable time
modulo 26).

Empirically, Theorem 5.3 is the only other interesting set of congruences, apart from the
congruences (1.4), which demonstrates that an Apéry-like sequence is periodic modulo a
prime power. More precisely, numerical evidence suggests that none of the sequences in
Tables 1 and 2 is eventually periodic modulo pr , for some r > 1, unless p = 2. Moreover,
the only other instances modulo a power of 2 appear to be the following, less interesting,
ones: sequences (d) and (α) are eventually periodic modulo 4 because all their terms,
except the first, are divisible by 4; likewise, sequences (ε) and s7 are eventually periodic
modulo 8 because all their terms, except the first, are divisible by 8. We do not attempt
to prove these claims here. We remark, however, that these claims can be established by
the approach used in the proof of Theorem 5.3, provided that one is able to determine a
computationally accessible analog of (5.3) for the sequence at hand.

6 Primes not dividing Apéry-like numbers
Using the Lucas congruences proved in Theorem 3.1, it is straightforward to verify
whether or not a given prime divides some Apéry-like number.

Example 6.1. The values of Apéry numbers A(0),A(1), . . . ,A(6) modulo 7 are
1, 5, 3, 3, 3, 5, 1. Since 7 does not divide A(0),A(1), . . . ,A(6), it follows from the Lucas
congruences (3.2) that 7 does not divide any Apéry number.
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Arguing as in Example 6.1, one finds that the primes 2, 3, 7, 13, 23, 29, 43, 47, . . . do not
divide any Apéry numberA(n). E. Rowland and R. Yassawi [25] pose the question whether
there are infinitely many such primes. Table 4 records, for each sporadic Apéry-like
sequence, the primes below 100 which do not divide any of its terms, and the last column
gives the proportion of primes below 104 with this property. Each Apéry-like sequence is
specified by its label from [3], which is also used in Tables 1 and 2. The alert reader will
notice that Cooper’s sporadic sequences (the ones with d �= 0 in Table 2) are missing from
Table 4. That is because these sequences turn out to be divisible by all primes. A more
precise result for these sequences is proved at the end of this section.
Example 6.1 shows that the first 7 values of the Apéry numbers modulo 7 are palin-

dromic. Our next result, which was noticed by E. Rowland, shows that this is true for all
primes.

Lemma 6.2. For any prime p, and integers n such that 0 ≤ n < p, the Apéry numbers
A(n) satisfy the congruence

A(n) ≡ A(p − 1 − n) (mod p). (6.1)

Proof. For n such that 0 ≤ n < p, we employ (4.4) and (4.9) to arrive at

A(p − 1 − n) =
p−1∑
k=0

(
p − 1 − n

k

)2(p − 1 − n + k
k

)2

≡
p−1∑
k=0

(
n + k
k

)2(n
k

)2
= A(n) (mod p),

as claimed.

Theorem 3.1 and Lemma 6.2, considered together, suggest that e−1/2 ≈ 60.65% of the
primes do not divide any Apéry number. Indeed, let us make the empirical assumption
that the values A(n) modulo p, for n = 0, 1, . . . , (p− 1)/2, are independent and uniformly

Table 4 Primes not dividing Apéry-like numbers

(a) 3, 11, 17, 19, 43, 83, 89, 97 0.2994

(b) 2, 5, 13, 17, 29, 37, 41, 61, 73, 89 0.2897

(c) 2, 7, 13, 37, 61, 73 0.2962

(d) 3, 11, 17, 19, 43, 59, 73, 83, 89 0.2815

(f) 2, 5, 13, 17, 29, 37, 41, 61, 73, 97 0.2994

(g) 5, 11, 29, 31, 59, 79 0.2929

(δ) 2, 5, 7, 11, 13, 19, 29, 41, 47, 61, 67, 71, 73, 89, 97 0.6192

(η) 2, 3, 17, 19, 23, 31, 47, 53, 61 0.2897

(α) 3, 5, 13, 17, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 83, 89 0.5989

(ε) 3, 7, 13, 19, 23, 29, 31, 37, 43, 47, 61, 67, 73, 83, 89 0.6037

(ζ ) 2, 5, 7, 13, 17, 19, 29, 37, 43, 47, 59, 61, 67, 71, 83, 89 0.6046

(γ ) 2, 3, 7, 13, 23, 29, 43, 47, 53, 67, 71, 79, 83, 89 0.6168

The primes below 100 not dividing Apéry-like numbers (sequence indicated in first column using the labels from [3]) as well as
the proportion of primes (in the last column) below 10, 000 not dividing any term
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random. Since one of the values A(n) is congruent to 0 modulo p with probability 1/p, it
follows that the probability that p does not divide any of the (p + 1)/2 first values is(

1 − 1
p

)(p+1)/2
. (6.2)

By the Lucas congruences, shown in Theorem 3.1, and Lemma 6.2, p does not divide
any of the (p + 1)/2 first values if and only if p does not divide any Apéry number. In the
limit p→∞, the proportion (6.2) becomes e−1/2. Observe that this empirical prediction
matches the numerical data in Table 4 rather well. We therefore arrive at the following
conjecture.

Conjecture 6.3. The proportion of primes not dividing any Apéry number A(n) is e−1/2.

While Lemma 6.2 does not hold for the other Apéry-like numbers C(n) from Tables 1
and 2, we make the weaker observation that if a prime p > 5 divides C(n), where 0 ≤
n < p, then p also divides C(p− 1− n). We expect that this empirical observation can be
proven in the spirit of the proof of Lemma 6.2, but do not pursue this theme further. We
only note that it allows us to extend the heuristic leading to Conjecture 6.3 to the Apéry-
like sequences (δ), (α), (ε), (ζ ) from Table 2. In other words, we conjecture that, for each
of these sequences, the proportion of primes not dividing any of the terms is again e−1/2.
Figure 1 visualizes some numerical evidence for this conjecture. On the other hand, for
sequence (η) as well as the sequences from Table 1, the proportion of primes not dividing
any of their terms appears to be about half of that, that is e−1/2/2 ≈ 30.33%.
To explain this extra factor of 1/2, we note that, for the Apéry-like numbers

Ab(n) =
∑
k

(
n
k

)2(n + k
n

)
, (6.3)

Stienstra and Beukers [27] proved that, modulo p,

Ab

(
p − 1
2

)
≡

{
4a2 − 2p, if p = a2 + b2, a odd,
0, if p ≡ 3 (mod 4)

(6.4)

(and conjectured that the congruence should hold modulo p2, which was later proved
by Ahlgren [1]; see also [2]). In particular, congruence (6.4) makes it explicit that every

Fig. 1 Proportion of primes (up to 3000) not dividing the sequences (δ), (α), (ε), (ζ ), (γ ), with the dotted line
indicating e−1/2. The Apéry sequence is plotted in blue. (We thank Arian Daneshvar for producing this plot.)
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prime p ≡ 3 (mod 4) divides a term of this Apéry-like sequence. Note that, by a classical
congruence of Gauss, the congruences (6.4) are equivalent, modulo p, to the congruences

Ab
(⌊p

2

⌋)
≡

{ (�p/2�
�p/4�

)2, if p ≡ 1 (mod 4),
0, otherwise,

(6.5)

which are valid for any prime p �= 2. Themore general result in [27] also includes the cases
Aa and Ac. Similar divisibility results appear to hold for the other Apéry-like numbers
from Table 1, and it would be interesting to make these explicit.
On the other hand, the extra factor of 1/2 in case of sequence (η) is explained by the

following congruences, which resemble (6.5) remarkably well.

Theorem 6.4. For any prime p �= 3, we have that, modulo p,

Aη

(⌊p
3

⌋)
≡

{
(−1)�p/5�

( �p/3�
�p/15�

)3, if p ≡ 1, 2, 4, 8 (mod 15),
0, otherwise.

(6.6)

Proof. Suppose that p ≡ 2 (mod 3), and write p = 3n + 2. The congruence (6.6) can
be checked directly for p = 2 and p = 5, and so we may assume p > 5 in the sequel.
Applying (4.23) to the definition of sequence (η) in Table 2, we have

Aη(n) =
�n/5�∑
k=0

(−1)k
(
n
k

)3 ((
4n − 5k − 1

3n

)
+

(
4n − 5k

3n

))

=
�n/5�∑
k=0

(−1)k
(
n
k

)3 (
(n − 5k)3n

(3n)!
+ (n − 5k + 1)3n

(3n)!

)
. (6.7)

Since 3n = p − 2 and 0 ≤ k ≤ n/5, the term

(n − 5k)3n
(3n)!

(6.8)

is always divisible by p, unless n− 5k ∈ {1, 2} (because, otherwise, one of the p− 2 factors
of (n − 5k)3n is divisible by p, while (3n)! is not). Note that n − 5k = 1 and n − 5k = 2
are equivalent to k = (p − 5)/15 and k = (p − 8)/15, respectively. However, (p − 5)/15
cannot be an integer (since p �= 5).We thus find that (6.8) vanishes modulo p unless p ≡ 8
(mod 15) and k = �p/15�, in which case (6.8) is congruent to −1 modulo p. Combined
with the analogous discussion for the corresponding second term in (6.7), we conclude
that

(n − 5k)3n
(3n)!

+ (n − 5k + 1)3n
(3n)!

≡

⎧⎪⎨
⎪⎩
1, if k = �p/15� and p ≡ 2 (mod 15),
−1, if k = �p/15� and p ≡ 8 (mod 15),
0, otherwise.

Applying this to the sum (6.7) and combining the signs properly, we arrive at the
congruences (6.6) when p ≡ 2 (mod 3).
The case p ≡ 1 (mod 3) is similar and a little bit simpler.

In summary, we conjecture that the proportion of primes not dividing any term of the
Apéry-like sequences in Tables 1 and 2 is as follows.



Malik and Straub Research in Number Theory  (2016) 2:5 Page 23 of 26

Conjecture 6.5.

• Let C(n) be one of the sequences of Table 1 or sequence (η). Then the proportion of
primes not dividing any C(n) is 1

2e
−1/2.

• Let C(n) be one of the sequences (δ), (α), (ε), (ζ ), (γ ) from Table 2. Then the
proportion of primes not dividing any C(n) is e−1/2.

In stark contrast, Cooper’s sporadic sequences s7, s10, s18 from Table 2 are divisible by
all primes. Indeed, let C(n) denote any of these three sequences. Then,

C(p − 1) ≡ 0 (mod p)

for all primes p. In fact, we can prove much more. For any given prime p, the last quarter
(or third) of the first p terms of these sequences are divisible by p. In the case of sequence
s10, the sum of fourth powers of binomial coefficients, this is proved by N. Calkin [9].
Indeed, among other divisibility results on sums of powers of binomials, Calkin shows
that, for all integers a ≥ 0, the sums

n∑
k=0

(
n
k

)2a
(6.9)

are divisible by all primes p in the range

n < p < n + 1 + n
2a − 1

.

In particular, in the case a = 2, we conclude that s10(n) is divisible by all primes p that
satisfy n < p < 4n

3 + 1. Equivalently, we have

s10(p − j) ≡ 0 (mod p)

whenever 1 ≤ j ≤ (p + 2)/4. Our final result proves the same phenomenon for Cooper’s
sporadic sequences s7, s18. We note that in each case, empirically, the bounds on j cannot
be improved (with the expection of the case p = 3 for s18; see Remark 6.7).

Theorem 6.6. For any prime p, we have

s7(p − j) ≡ 0 (mod p)

whenever 1 ≤ j ≤ (p + 1)/3, and

s18(p − j) ≡ 0 (mod p)

whenever 1 ≤ j ≤ (p + 2)/4.

Proof. For the sequence s7, we want to show
p−j∑
k=0

(
p − j
k

)2(p − j + k
k

)(
2k

p − j

)
≡ 0 (mod p),

for 1 ≤ j ≤ (p + 1)/3. Note that for 2k < p − j or k > p − j the summand is already zero.
Therefore, we assume that p − j ≥ k ≥ (p − j)/2. We write the summand as(

p − j
k

)2(p − j + k
k

)(
2k

p − j

)
= (p − j + k)! (2k)!

k!3 (p − j − k)!2 (2k − p + j)!
,
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and observe that the denominator is not divisible by p if j ≥ 1. On the other hand, the
factorial (p − j + k)! in the numerator is divisible by p since

p − j + k ≥ p − j +
⌈
p − j
2

⌉
≥ p,

where we used j ≤ (p+ 1)/3 to verify the final inequality. Thus, for 1 ≤ j ≤ (p+ 1)/3, the
congruences s7(p − j) ≡ 0 hold modulo p, as claimed.
We proceed similarly for s18(p − j), which is given by∑�(p−j)/3�

k=0 (−1)k
(p−j

k
)(2k

k
)(2(p−j−k)

p−j−k
) {(2(p−j)−3k−1

p−j
) + (2(p−j)−3k

p−j
)}

,

and, using (4.23), write the summand as

(−1)k(2k)! (2(p − j − k))!
k!3 (p − j − k)!3

(p − j − 3k + 1)p−j−1(3p − 3j − 6k). (6.10)

None of the terms in the denominator is divisible by p since j ≥ 1. On the other hand,
(2(p − j − k))! in the numerator is divisible by p since

2(p − j − k) ≥ 2
(
p − j −

⌊
p − j
3

⌋)
≥ p,

where we used j ≤ (p + 2)/4 for the final inequality. Therefore, for 1 ≤ j ≤ (p + 2)/4,
each of the terms in the sum for s18(p − j) is a multiple of p, and we obtain the desired
congruences.

Remark 6.7. Employing (6.10), we observe that s18(n) ≡ 0 (mod 3) for n ≥ 1, which
reaffirms Corollary 5.2 for this sequence.

Finally, as noted in [12], each of the sequences in Table 1 times
(2n
n
)
is an integer solution

of (2.2) with d �= 0. Observe that
(2n
n
)
is divisible by a prime p for all n such that n < p ≤

2n. This results in a (weaker) analog of Theorem 6.6 for these Apéry-like sequences, and
implies, in particular, that these sequences are again divisible by all prime numbers.

7 Conclusion and open questions
In Sections 3 and 4, we showed that all sporadic solutions of (2.1) and (2.2), given in
Tables 1 and 2, uniformly satisfy Lucas congruences. However, for two of these sequences,
especially sequence (η), we had to resort to a rather technical analysis. We therefore won-
der if there is a representation of these sequences from which the Lucas congruences can
be deduced more naturally, based on, for instance the approaches of [26] and [20], or [25].
More generally, it would be desirable to have a uniform approach to these congruences,
possibly directly from the shape of the defining recurrences and associated differential
equations. In another direction, it would be interesting to show that, as numerical evi-
dence suggests, all of the Apéry-like sequences in fact satisfy the Dwork congruences
(1.3).
The congruences (1.4) show that the Apéry numbers are periodic modulo 8, alternat-

ing between the values 1 and 5. As a consequence, the other residue classes 0, 2, 3, 4, 6, 7
modulo 8 are never attained. On the other hand, the observations in Section 6 show that
certain primes do not divide any Apéry number. This can be rephrased as saying that the
residue class 0 is not attained by the Apéry numbers modulo these primes. This leads us
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to the question of which residue classes are not attained by Apéry-like numbers mod-
ulo prime powers pα . In particular, are there interesting cases which are not explained by
Sections 5 and 6?
The second part of congruence (6.4) makes it explicit that every prime p ≡ 3 (mod 4)

divides a term of the Apéry-like sequence (6.3). Is there a similarly explicit result which
demonstrates that the Apéry numbers are divisible by infinitely many distinct primes?
Recall that Conjecture 6.3 predicts that the proportion of primes not dividing any Apéry

number is e−1/2. One of the referees raised the question whether there might be a connec-
tion between this conjectured proportion and classical divisbility questions of Bernoulli
numbers and the notion of regular primes (for instance, C. L. Siegel conjectured that e−1/2

of all prime numbers are regular).
Another interesting question was suggested by the second referee, who noted that the

right-hand side of (6.4) is the p-th Fourier coefficient cp of the modular form

η(4z)6 := q
∞∏
n=1

(1 − q4n)6 =
∞∑
n=1

cnqn, q = e2π iz.

With this observation, a natural question concerning Theorem 6.4 is whether there
exists a modular form (with CM?) f (z) whose p-th Fourier coefficient is related modulo
p2 to Aη.
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