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Abstract The status and needs relating to the optimal

design of community seasonal energy storage are reported.

Thermal energy storage research has often focused on

technology development and integration into buildings, but

little emphasis has been placed on the most advantageous

use of thermal storage in community energy systems.

Depending on the composition and characteristics of a

community, the most appropriate community thermal

storage may differ from that for a single building. District

energy systems usually link thermal users to cold supplies

and/or heat supplies (e.g., solar thermal energy, geothermal

energy from ground-source heat pumps or geothermal hot

zones, industrial waste heat, thermal energy from cogen-

eration or trigeneration). It is demonstrated that the optimal

integration of these technologies can be enhanced through

the use of appropriate seasonal thermal energy storage and

that community-level seasonal storage can facilitate the

development of smart net-zero energy buildings and yield

efficiency, economic and environmental benefits. Issues

that need to be resolved to allow optimal solutions to be

attained are described. Advanced tools are required for

modeling, simulation, analysis, improvement, design and

optimization, which incorporate advanced methods like

exergy analysis. The most appropriate scale, number and

type (e.g., sensible, latent, thermochemical) of thermal

storages in a community need to be better assessed, and the

appropriate time duration capacities for each determined in

an optimal manner. This is particularly important since a

combination of short-, medium- and long-term storage is

sometimes required to yield the most benefits from com-

munity energy systems.

Keywords Thermal storage � Community energy system �
Integration

1 Introduction

As research aimed at nearing or achieving net-zero energy

buildings and communities intensifies, governments are

promoting the adoption of renewable energy sources in

buildings in the commercial, institutional, industrial and

residential sectors. Thermal energy storage (TES) is a

useful technology for storing thermal energy (heat or cold)

between periods when it is available and periods when it is

needed and thus facilitates the integration of renewable

energy into communities (on the generation side) and acts

as a buffer that permits the user-demand variability in

communities to be satisfied (on the demand side).

Although much research on thermal energy storage

often focuses on the development of storage technologies

and some focuses on the integration of storages into

buildings, much less emphasis has been placed on the most

advantageous use of TES in community energy systems.

Depending on the composition and characteristics of a

community, the most appropriate thermal storage for a

community may differ from that for a single building.

A community-level thermal storage can be integrated

into a community serving many users and multiple thermal

energy suppliers of thermal energy. The thermal energy can

be above environmental temperatures (i.e., hot) or below
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environmental temperatures (i.e., cold). Thermal energy

users can be in the form of a wide range of building types

(Heier et al. 2015). Heat suppliers can include solar thermal

energy, geothermal energy from ground-source heat pumps

or geothermal hot zones, industrial waste heat, thermal

energy from cogeneration or trigeneration systems and

others. Cold suppliers usually include dedicated cooling

facilities.

The linkages between thermal energy users (buildings)

and thermal energy suppliers are often accomplished using

thermal grids, i.e., district heating and/or cooling systems.

Various heat users (i.e., commercial, industrial and resi-

dential buildings) require heat at a range of temperatures

depending on the indoor temperature demands as well as

the heating technologies used in the building. TES systems

are selected according to such specific applications. For

example, underground thermal energy storage (UTES)

systems operate more efficiently with lower-temperature

requirements for space heating and higher-temperature

requirements for space cooling. In commercial and insti-

tutional buildings that use thermo-active building systems

(TABS) or in residential buildings that use floor heating

systems, UTES systems can be an appropriate choice to be

integrated with such low-temperature heating/high-tem-

perature cooling technologies. A schematic representation

is presented in Fig. 1 of a community energy system

incorporating TES and highlighting the various compo-

nents of such an energy system.

The optimal integration of all of these technologies can

be enhanced through the use of appropriate TES and often

seasonal storage. But a better understanding is needed of

optimal community-level seasonal storages, i.e., TESs that

meet the needs of a group of buildings and that operate

over long time frames (seasonal or annual). This article

aims to address that need in part and seeks to improve

understanding of the characteristics of community-level

TES. The main objective is to describe the status and needs

relating to the optimal design of community seasonal

energy storage.

2 Community-level Seasonal Energy Storage:
Status and Research

Thermal storages that can be applied in various settings,

including at the community level, have been investigated

recently. For instance, an operating borehole thermal

storage system for a solar community of several buildings

has been examined (Rad et al. 2017), as has a seasonal

solar thermal storage that was converted into an innovative

multifunctional storage (Schmidt and Mangold 2010). A

research oriented book on thermal storage was recently

published (Dincer and Rosen 2010), which covers many

community-level applications.

Much research has been reported in recent years on

systems for TES and enhancing their understanding. Rel-

evant developments include improved modeling of thermal

storage systems and predictions of their performance and

operating characteristics. Also, efforts have been reported

on the integration of thermal storages into buildings, their

component parts and related energy systems (Guadalfajara

et al. 2014). Relevant developments include enhanced

modeling and design.

2.1 Technologies

Thermal energy storage methods, technologies and appli-

cations have been examined in detail [see chapter 9 of

Dincer and Rosen (2010)] and several reviews published

recently (Heier et al. 2015; Soares et al. 2013; Tatsid-

jodoung et al. 2013; Waqas and Din 2013). For example,

advanced storage concepts for active solar energy being

carried out through the IEA (Task 32) were recently

reviewed (Hadorn 2008a), as were relevant applications

with solar energy (Sharma et al. 2009; Singh et al. 2010).

An overview has been presented of TES technologies and

their status for solar heat (Hadorn 2008b). Reviews on solar

TES in building heating and cooling supply are available

(Lee 2010; Novo et al. 2010). The principal methods

available for seasonal storage of solar thermal energy are

provided by Pinel et al. (2011), concentrating on residential

scale systems, particularly existing examples which mostly

store energy in the form of sensible heat, and briefly dis-

cussing newer methods such as chemical and latent storage.

A good example of systems utilizing TES in solar buildings

is the Drake Landing Solar Community in Okotoks,

Fig. 1 Schematic of a community energy system incorporating TES

and various types of buildings. Buildings are linked to one or more

seasonal thermal energy storages (STES) and to each other via district

energy grids
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Alberta, Canada, which incorporates a borehole seasonal

storage to supply space heating to 52 detached energy-

efficient homes through a district heating network. The

system and its operation are described by Sibbitt et al.

(2012), and five-year performance data are presented.

Thermal storage systems that incorporate PCMs in the

building envelope (e.g., in walls, floors, ceilings and win-

dows), including basic principles, candidate PCMs and

their thermophysical properties, incorporation methods and

heat transfer enhancement, are also reviewed (Soares et al.

2013; Pomianowski et al. 2013; Navarro et al. 2016;

Palomo del Barrio et al. 2017). A review on developments

during the last four decades on seasonal TES in the ground,

considering various storage concepts and natural and

renewable energy sources, is provided by Pavlov and

Olesen (2012) and new intelligent seasonal TES possibil-

ities for use in combination with space heating, space

cooling and domestic hot water systems are described.

Large seasonal heat storages for buildings often use

storage mediums in the vicinity of the buildings as opposed

to storage in the building structure. Some of these tech-

nologies include aquifer, borehole and snow storage as well

as storage in pits or buried tanks. The state of the art and

outlook for latent thermal storage in buildings have been

presented (Heier et al. 2015; Soares et al. 2013). Seasonal

heat storages in large basins like tanks and gravel-water pits

have also been reviewed (Novo et al. 2010), as have phase

change materials for thermal storage (Shukla et al. 2009;

Agyenim et al. 2010; Kenisarim 2010; Desgrosseilliers et al.

2013). Applications of STES, often including community-

level examples, have been reviewed in some regions and

countries, e.g., Germany (Schmidt and Mangold 2008).

A summary of the articles reviewed in this section,

indicating the focus as well as the energy storage mecha-

nism and type used, is provided in Table 1.

2.2 Concepts

New concepts in thermal storage applicable in community

settings have been proposed and examined, such as systems

that integrate solar collectors and storage units (Kumar and

Rosen 2010; Terziotti et al. 2012; Wang et al. 2012). Many

researchers review TES technologies suitable for building

applications, with a focus on storage materials and their

classifications, recent developments, limitations and pos-

sible improvements for building uses (Tatsidjodoung et al.

2013; Cabeza et al. 2011). Investigations of thermal strat-

ification, and the benefits it can provide in terms of effi-

ciency and performance, have been reported (Njoku et al.

2014). Oil-pebble beds have been considered as thermal

storages under various heat sources (Mawire and

McPherson 2009). Furthermore, novel technologies have

been investigated that may be included in practical

systems, like binderless granulated molecular sieves (Jän-

chen et al. 2010). However, the use of chemical methods

for seasonal storage has not yet progressed beyond small

systems (Allegrini et al. 2015). Examinations have been

published of novel solid–liquid micro-phase change mate-

rials for thermal storage in the form of microcapsules (Sari

et al. 2010) and alternative phase change materials like

calcium chloride hexahydrate (Tyagi and Buddhi 2008).

A summary is provided in Table 2 of the articles reviewed

in this section, identifying the focus of the article as well as

the energy storage mechanism and type considered.

2.3 Performance

The dynamic characteristics and energy performance of

buildings using phase change materials have been reviewed

(Zhu et al. 2009). Methods to improve the performance of

thermal storages have also been investigated, including heat

transfer improvement through the use of heat exchanger fins

(Agyenim et al. 2009) and thermal conductivity enhance-

ment (Alawadhi 2008), and the use of paraffin in a novel

tube-in-shell thermal storage system (Akgün et al. 2008).

Also, methods to determine stratification efficiency of TES

processes have been reviewed and compared (Haller et al.

2009). Performance of thermal storage utilizing microcap-

sule phase change materials (Fang et al. 2010) and granular

phase change composites (Rady et al. 2010) has also been

examined, as have isothermal storage methods of solar

energy for buildings (Heim 2010). Long-term test results

have been reported from a latent heat storage for solar

heating and cooling (Himpel et al. 2010).Also, the utilization

of water phase transitions in seasonal thermal storage sys-

tems has been investigated (Eyem 2010).

A summary of the articles reviewed in this section,

indicating the relevant performance topic as well as the

energy storage mechanism and type, is provided in

Table 3.

2.4 Size

New concepts in compact thermochemical storage, likely

to be applicable in community settings, have been proposed

and examined (IEA 2010; van Essen et al. 2010; van

Helden and Hauer 2010; Weber 2010; Heinz and

Schranzhofer 2010), and the performance of this technol-

ogy has been examined (Haji Abedin and Rosen 2010a),

assessed (Rosen and Haji Abedin 2010) and reviewed (Haji

Abedin and Rosen 2010b). A type of long-term thermo-

chemical storage based on sorption processes has been

reviewed (N’Tsoukpoe et al. 2009), while various sorption

storages for solar thermal energy are reviewed (Yu et al.

2013). Advanced thermal storage materials have also been

the focus of attention (Fernández et al. 2009; Ristic et al.
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2010; Furbo et al. 2010), including composites (Hongois

et al. 2010; Alkan et al. 2009).

A summary of the articles reviewed in this section

showing the energy storage mechanism and type for

compact thermal storages is provided in Table 4.

2.5 Cooling applications

Special attention has been devoted in recent years to the

use of thermal storage in conjunction with cooling systems

(Parameshwaran et al. 2010; Sanaye and Shirazi 2013;

Waqas and Din 2013). For instance, high-temperature

thermal storage has been considered for solar cooling

applications (Gil et al. 2013), and specific integrations have

been examined of long-term thermal storage for absorption

cooling (N’Tsoukpoe et al. 2010).

Seasonal cold storage is also an efficient method of

cooling which is reviewed widely (Yan et al. 2016; Veer-

akumar and Sreekumar 2016; Mastani Joybari et al. 2015).

In this method, naturally or artificially produced cold

Table 1 Summary of selected articles that mainly focus on thermal energy storage technologies

Focus of study References Energy storage mechanism/system type

Solar heating system for community Rad et al. (2017) Sensible/borehole

Solar energy multifunctional storage Schmidt and Mangold (2010)

Community-level applications Dincer and Rosen (2010)

Building application; central solar heating plants Guadalfajara et al. (2014) Sensible/water tank

Thermal energy storage methods, technologies and

applications

Dincer and Rosen (2010)

Review article: building application Heier et al. (2015)

Review article: building application Soares et al. (2013) Latent/PCM

Review article: building application Pomianowski et al. (2013) Latent/PCM

Review article: building application Navarro et al. (2016) Latent; sensible

Review article Palomo del Barrio et al. (2017) Latent/PCM

Solar energy systems Hadorn (2008a, b)

Review article Lee (2010) Sensible/aquifer

Review article Novo et al. (2010) Sensible/water tank; Sensible/gravel–water

pit

Review article: solar energy systems; building application Pinel et al. (2011)

Solar energy systems; district energy Sibbitt et al. (2012)

Review article: building application Pavlov and Olesen (2012) Sensible/UTES

Solar water heater Shukla et al. (2009) Latent/PCM

Review article Agyenim et al. (2010) Latent/PCM

Review article Kenisarim (2010) Latent/high-temperature PCM

Desgrosseilliers et al. (2013) Latent/PCM

Community-level applications Schmidt and Mangold (2008)

Table 2 Summary of selected articles that introduce new concepts in thermal energy storage systems

Focus of study References Energy storage mechanism/system type

Solar water heater Kumar and Rosen (2010)

Solar energy systems; building application Terziotti et al. (2012)

Solar energy systems; building application Wang et al. (2012) Sensible/borehole

Review article Cabeza et al. (2011) Latent/PCM

Review article: stratified thermal storage Njoku et al. (2014)

Mawire and McPherson (2009) Sensible/oil-pebble bed

Solar energy systems Jänchen et al. (2010) Thermochemical

Review article: district energy systems Allegrini et al. (2015)

Sari et al. (2010) Latent/micro-PCM

Tyagi and Buddhi (2008) Latent/PCM
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energy in winter (e.g., snow, ice, cold ambient air, frozen

soil and rocks) is stored as ice in a tank and can be

extracted as chilled water to meet building cooling needs in

summer. Seasonal cold storage using heat pipes for cooling

in buildings is investigated by Yan et al. (2016), but studies

are limited in this area.

A summary of the articles reviewed in this section,

specifying the cooling application we well as the energy

storage mechanism and type, is provided in Table 5.

2.6 Modeling, analysis and optimization

Advanced activities have been reported and reviewed

involving modeling, analysis and optimization related to

thermal storage and applicable to community-level appli-

cations (Verma and Singal 2008; Tulus et al. 2016).

Modeling is important for performance prediction and

design of seasonal thermal energy stores due to their long-

term effects (Allegrini et al. 2015). For instance, modeling

activities using analytical and numerical techniques have

been reported for a range of thermal storages, including

underground hot water systems (Ochs et al. 2010), ground

buried sand beds (Terziotti et al. 2012), borehole energy

storage (Wang et al. 2012; Rad et al. 2013; Koohi-Fayegh

and Rosen 2014; Cui et al. 2015; Eslami-nejad and Bernier

2013), aquifer thermal energy storage (Réveillèrea et al.

2013), cold storage (Yan et al. 2016; Alawadhi 2008),

phase change thermal storage (Verma and Singal 2008;

Dutil et al. 2014) and thermochemical storage (Kerskes

et al. 2010). Models for seasonal storage in water tanks or

gravel pits are available in some software tools such as

TRNSYS (Dickinson et al. 2013). A hybrid solar ground-

source heat pump system for heating and cooling of an

office building (Wang et al. 2012) and a house (Rad et al.

2013) is also modeled in TRNSYS. Ground energy storage

using boreholes is the most widely used method of seasonal

energy storage. Models of ground heat exchangers and

their applications are reviewed by Soni et al. (2015).

Aquifer thermal energy storage systems use natural water

in a saturated and permeable underground layer as the

Table 3 Summary of selected articles that analyze performance of thermal storage systems

Performance analysis topic References Energy storage mechanism/system type

Use of phase change materials in buildings Zhu et al. (2009) Latent

Use of heat exchanger fins Agyenim et al. (2009) Latent

Thermal conductivity enhancement Alawadhi (2008) Sensible/water tank (cold storage)

Novel tube-in-shell design Akgün et al. (2008) Latent

Solar energy storage in stratified thermal storage systems Haller et al. (2009)

Use of microcapsule phase change material Fang et al. (2010) Latent

Use of granular phase changing composites Rady et al. (2010) Latent/granular phase change composites

Solar energy storage in building construction Heim (2010) Latent

Solar energy systems in buildings Himpel et al. (2010) Latent

Utilization of water phase transitions Eyem (2010)s Latent

Table 4 Summary of selected

articles that focus on compact

thermal energy storage systems

References Energy storage mechanism/system type

IEA (2010) Latent/PCM; thermochemical

van Essen et al. (2010)

Weber (2010) Thermochemical

Heinz and Schranzhofer (2010) Latent

Haji Abedin and Rosen (2010a) Thermochemical

Rosen and Haji Abedin (2010) Thermochemical

Haji Abedin and Rosen (2010b) Thermochemical

N’Tsoukpoe et al. (2009) Thermochemical

Yu et al. (2013) Sorption

Fernández et al. (2009) Sensible; latent

Ristic et al. (2010) Sorption

Furbo et al. (2010) Latent

Hongois et al. 2010 Thermochemical

Alkan et al. (2009) Latent
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storage medium (Lee 2010). Information on the operating

principles, design and construction of these systems can

also be found (Lee 2010). Developments in using under-

ground spaces for sensible heat storage are also described

in several studies (Lee 2010; Novo et al. 2010). Alterna-

tively, large water tanks and gravel-water pits can be used

as storage media for sensible TES (Novo et al. 2010).

Modeling and simulation to estimate ground energy storage

long-term performance have been the focus of various

studies (Wang et al. 2012; Koohi-Fayegh and Rosen 2014).

However, they have significant modeling challenges

regarding fast methods that can accurately calculate long-

term behavior, particularly for multiple interacting bore-

holes (Allegrini et al. 2015; Koohi-Fayegh and Rosen

2014). Effects of parameters such as location and storage

system design on a solar district heating system equipped

with borehole seasonal storage have also been studied

(Flynn and Siren 2015). Improvements to current ground

storage systems such as use of PCMs in boreholes to

improve ground heat pump efficiency and reduce the

borehole design length are also examined (Eslami-nejad

and Bernier 2013). Modeling ground thermal energy stor-

age including aquifer storage is often performed using

finite difference, element and volume methods using tools

such as FEFLOW. Several models and software tools that

address district-level interactions among energy systems

including seasonal energy storage systems are reviewed in

(Allegrini et al. 2015). Numerical models have been used

to better understand thermal processes in the charging and

discharging of the seasonal storages, such as hot water

tanks in (Dickinson et al. 2013). When using multiple

storages, various charging and discharging strategies such

as charging and discharging of storages in parallel or series

or their combination are studied (Dickinson et al. 2013).

Since results of analytical and numerical modeling can be

strongly dependent on assumed storage characteristics (i.e.,

material) for some storage types, field scale living labora-

tories have also been built in some cases [e.g., in Torino,

Italy (Giordano et al. 2016)] to calibrate the results on real

data.

Numerical approaches have also been developed for

forecasting thermal energy storage performance (Varol

et al. 2010). Also, efficiency measures based on energy and

exergy have been proposed and applied for various TESs

(Rosen 2011; Dincer and Rosen 2012; Rezaie et al. 2015;

Li 2016), including cold storage (Rosen and Dincer 2009).

The main methods have been reviewed for modeling and

assessing performance of stratified thermal storage (Njoku

et al. 2014). Further, techno-economic assessments of heat

and cold thermal storage systems have been applied, often

using advanced methods like exergoeconomics (economics

based on exergy) (Rosen 2011; Mosaffa and Garousi Farshi

2016). The economics of thermal storage systems in con-

junction with cogeneration, trigeneration and DE have also

been the subject of numerous investigations (Rentizelas

et al. 2009; Lozano et al. 2009a, 2010; Balli et al. 2010;

Dominković et al. 2015), including thermoeconomic anal-

yses (Balli et al. 2010) and economic optimization of

designs (Lozano et al. 2010).

Appropriate thermal storage utilization can also support

the concept of ‘‘zero peak communities,’’ which are com-

munities or subdivisions that do not contribute to the utility

system peak (Christian et al. 2007), providing a powerful

tool in demand-side management programs (Arteconi et al.

2012). By reducing peak loads, such communities can

assist electric utilities in providing affordable and reliable

electric power and in enhancing environmental stewardship

and sustainable development. Community-level seasonal

storage can also facilitate the development of ‘‘net-zero

energy buildings’’ (NZEB) and communities, with net-zero

average annual energy consumption at both the building

and neighborhood levels, and yield efficiency, economic

and environmental benefits. Much research is currently

being carried out on energy design and operation concepts

to drive them toward such targets. These include applica-

tions, field trials and concepts of innovative systems that

will improve energy efficiency and integration of renew-

able technologies in buildings. For example, much research

effort by the Smart Net-Zero Energy Building Research

Network (SNEBRN) in Canada (SNEBRN 2015) is

Table 5 Summary of articles selected that focus on cooling applications of thermal energy storage systems

Cooling application details References Energy storage mechanism/system type

Building application Parameshwaran et al. (2010) Latent

Air-conditioning applications Sanaye and Shirazi (2013) Latent/ice storage

Building application; free cooling Waqas and Din (2013) Latent

Solar cooling Gil et al. (2013) Latent

Solar cooling N’Tsoukpoe et al. (2010) Thermochemical

Building application Yan et al. (2016) Latent/ice storage

Veerakumar and Sreekumar (2016) Latent

Building application Mastani Joybari et al. (2015) Latent
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dedicated to developing concepts and designs in a combi-

nation of systems and technologies, including short-term

and seasonal thermal storage (Desgrosseilliers et al. 2013;

Wang et al. 2012; Rad et al. 2013; Koohi-Fayegh and

Rosen 2014; Eslami-nejad and Bernier 2013; Dickinson

et al. 2013) along with heat pump systems, combined heat

and power technologies, integrated solar systems, high-

performance windows and smart controls, that are suited to

Canadian climatic conditions and construction practices to

design smart net-zero energy buildings and to influence

long-term national policies on their future development.

Optimization methods have also been applied to air-

conditioning using ice storage (Sanaye and Shirazi 2013)

and stratified thermal storages (Schütz et al. 2015; Jack and

Wrobel 2009) and to operating modes for seasonal under-

ground thermal storages (Zhao et al. 2008). Finally, sys-

tems that integrate different types of thermal storage, with

the aim of maximizing the advantages of each, have been

proposed and investigated (Weber et al. 2010).

2.7 Sustainability

More broadly, the role of thermal storage for sustainable

buildings has been examined (Heier et al. 2015; Rad et al.

2017; Dincer and Rosen 2008; Orehounig et al. 2014). A

critical review of the integration of thermal storage and

HVAC systems has been published, along with recent

advances (Haji Abedin and Rosen 2010c). Performance

analyses of building energy systems (Soares et al. 2013;

Arkar et al. 2016) and HVAC equipment (Parameshwaran

et al. 2010; Kanoglu et al. 2007) have also been reported,

often using advanced analysis methods. Performance

enhancements have been described of subcooled cold

storage integrated with air-conditioning (Hsiao et al. 2009).

Models of geothermal heat pumps with vertical ground

interfaces have been presented for use in HVAC systems

(Kouhi-Fayegh and Rosen 2010). Also, sustainability

assessments of community systems, incorporating case

studies and simulations, have been recently carried out

considering exergy and environmental factors (Solberg

2010). Furthermore, improving the sustainability and

environmental performance of energy systems, through the

utilization of thermal storage in conjunction with cogen-

eration, trigeneration and DE, has been the motivation

behind much research focusing on environmental emis-

sions and impacts such as climate change (Rentizelas et al.

2009; Balli et al. 2010).

2.8 Integration with energy systems

Modeling and optimization methods have been developed

and employed for a wide range of district energy (DE),

cogeneration and trigeneration systems (Réveillèrea et al.

2013; (Dominković et al. 2015; Lozano et al. 2009b;

Erdem et al. 2010; Wang et al. 2015; Mago et al. 2009;

Mancarella 2014), which often are integral to community

energy systems. Included in many of these studies are

examinations of the most advantageous role of energy

storage (Rong et al. 2008) and advances in that technol-

ogy (Lund et al. 2014), as well as specialized integrated

applications (Chacartegui et al. 2009; Lai and Hui 2010).

This includes determining for such systems the most

viable and optimal scale (Wang et al. 2015; Chicco and

Mancarella 2009a; Badami and Portoraro 2009; Kavva-

dias et al. 2010), the required level of flexibility (Lai and

Hui 2009) and appropriate operation strategies (Kavva-

dias et al. 2010). Also, optimization methods have been

applied to the operation and structure of cogeneration-

based district heating with long-term thermal storage

(Tveit et al. 2009). Many recent studies have focused on

alternative and sustainable energy sources, including

biomass (Rentizelas et al. 2009; Dominković et al. 2015),

while others have focused on the development of

improved technologies for waste heat recovery (Cui et al.

2015) and trigeneration and DE (IEA 2009) considering

diesel engines (Balli et al. 2010), micro-gas turbines with

steam ejector refrigeration (Ameri et al. 2010), advanced

heat pumps (Mancarella 2009), fuel cells (Al-Sulaiman

et al. 2010; Malico et al. 2009), liquid desiccant cooling

systems (Badami and Portoraro 2009) and distributed

multi-generation (Chicco and Mancarella 2009b). The

significant knowledge gaps for integrating optimally

thermal storage with cogeneration, trigeneration and DE,

and the need to use exergy in such research, have been

recognized by the International Energy Agency, which

over the last decade has commissioned several annexes to

investigate and implement systems incorporating cogen-

eration, trigeneration, district heating and cooling, and

thermal storage (Lozano et al. 2010; IEA 2009). For

instance, a guidebook on low-exergy systems for high-

performance buildings and communities was recently

released (IEA 2010).

3 Needs and Priorities in System Research
and Design

The use of community-level seasonal storage has not

received a great deal of attention in the past, but has

become increasingly of interest in recent years. The

appropriate utilization of community-level thermal storage

can yield benefits in terms of efficiency, economics, envi-

ronmental impact, etc. But many issues exist that need to

be resolved to allow optimal solutions to be attained. In this

section, general needs and priority areas are identified and

described.
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3.1 General needs

Numerous needs exist in a variety of areas related to STES

for community-level applications:

• Single versus multiple storage. The scale and number of

thermal storages in a community need to be better

assessed. Some efforts have focused on single storages

scaled to a size appropriate for a given community,

while others have focused on multiple smaller storages

appropriately located throughout the community.

Although smaller storages tend to have higher thermal

energy losses due to higher surface area to volume

ratios, other efficiency advantages of multiple storages

in community settings can make the decision to develop

multiple storages advantageous.

• Short-term versus midterm versus long-term storage.

The appropriate time duration capacities of thermal

storages in a community need to be determined. Long-

term storage (based on seasonal or annual storage

cycles) is preferred for some community energy

systems, while short-term (diurnal) and midterm

(weekly) thermal storages are appropriate for other

community applications. Sometimes, a combination of

short-, medium- and long-term storage is required to

yield the most benefits from community energy

systems. This is observed at some existing community

energy systems. For example, the Drake Landing Solar

Community in Okotoks, Alberta, uses a combination of

seasonal ground-based storage with short-term liquid

storage tanks.

• Sensible versus latent energy storage. The type of

thermal storage(s) in a community energy system needs

to be better analyzed and identified. Some systems

benefit from utilizing sensible storages, while others

benefit from the use of latent or thermochemical

storages. There are also systems that may benefit from

using a combination of these types. Although the

combined use of thermal energy storage types has

proved to be beneficial compared to single-type use in

some cases [e.g., tank/PCM in a concentrating solar

collector system (Bhale et al. 2015) or packed bed/PCM

(Geissbühler et al. 2016; Zavattoni et al. 2015)], few

studies are reported in the literature on the combined

use of sensible and latent thermal storage systems.

Moreover, there is a need for studies that focus on

optimization of combined use of these storage types for

various energy systems and energy storage needs.

• Developments are needed in seasonal storage technol-

ogy and systems themselves, in terms of factors such as

efficiency, reliability, economics, environmental impact

and others, so as to achieve optimal performance of

community energy system applications.

• Research is needed to quantify the most appropriate

TES parameters for the optimal integration of thermal

energy users (buildings), thermal energy suppliers and

thermal grids. The potential ways are numerous to use

of TES in such an integrated set of energy suppliers and

users.

• Storage system integration with communities. Improved

understanding of the appropriate integration of thermal

storage into communities having numerous buildings is

needed, particularly where renewable energy sources

(e.g., solar) and advanced energy technologies are

utilized, as such systems are extremely complex.

• Advanced methods and tools. Developments of

advanced tools are required for modeling, simulation,

analysis, improvement, design and optimization. Incor-

poration of advanced methods like exergy analysis for

analysis, improvement and optimization has been

recognized as important, but are at present only

sparingly used.

3.2 Priority needs

Priority needs for development and research fall into four

main areas, which are identified and described in this

section.

3.2.1 Development of new and enhancement of existing

community-level seasonal TESs

There is a need to develop seasonal storage technology and

systems, in order to enhance their efficiency, reliability,

economics and environmental impact, and to achieve

optimal performance in community energy system appli-

cations. Determination of new concepts, and the appro-

priate scale and number of thermal storages, time duration

capacities (long-, mid- and short-term) and storage types

(sensible, latent, thermochemical) is also needed for com-

munity-level seasonal storage in varied settings.

3.2.2 Development of new configurations for community-

level seasonal storage

There is a need for new configurations for community-level

seasonal storage, taking into account the storage and the

community in which it is located and operates. Develop-

ment of such configurations is dependent not only on the

community-level seasonal storage system type, but also on

both the nature and characteristics of the community and its

buildings (e.g., industrial, commercial and residential)

(Heier et al. 2015; Flynn and Siren 2015) as well as type of

energy supplies available (e.g., conventional, renewable

and waste recovery).

176 S. Koohi-Fayegh, M. A. Rosen

123



3.2.3 Enhancement of the integration of seasonal TES

into communities and their buildings

The integration of STES storage schemes into communities

and their buildings needs to be enhanced. This requires

quantification of the most appropriate thermal storage

parameters for the optimal integration of thermal energy

users (i.e., buildings), thermal energy suppliers and thermal

grids/networks. This need also encompasses improvement

in understanding of the appropriate integration of thermal

storage into communities that have numerous buildings for

a wide range of energy technologies.

3.2.4 Development of appropriate tools for modeling,

simulation, analysis, improvement, design

and optimization

Appropriate tools for the above tasks need to be developed,

and existing tools need to be enhanced and/or extended,

while ensuring that they enable appropriate modeling, sim-

ulation, analysis, improvement, design and optimization of

community-level seasonal storage. Several tools have

already been proposed or reviewed for the evaluation and

design of integrated energy components including seasonal

energy storage and energy supplies for the community

(Guadalfajara et al. 2014; Orehounig et al. 2014). The tools

are expected to have at least three main capabilities:

• Modeling and simulation. Improved seasonal thermal

storage models will be developed to assist predictions

of performance and behavior of seasonal thermal

storage in the context of overall community energy

systems. The aim will be to better predict the behaviors

of thermal storages when integrated into complex

systems and, as a consequence, better predict the

performance and behavior of the broader community

energy systems. For instance, ground-based thermal

storages are proving increasingly advantageous for

seasonal applications, leading to a significant need to

develop advanced methods for predicting ground heat

transfer for a wide range of in-ground technology,

systems and applications.

• Analysis and design. Advanced methods will be

developed for improving understanding of the efficien-

cies and losses for seasonal energy storage systems and

community systems that incorporate them. Exergy

methods will be utilized to understand not only the

quantitative flows of thermal energy, but also of their

qualities. Furthermore, these methods will be applied to

improve designs and configurations of seasonal thermal

storages for community applications.

• Optimization and improvement. Research will be

undertaken to ascertain the most appropriate seasonal

thermal storage systems for community applications, as

well as for the most advantageous integration of the

storage systems into communities. Factors such as

efficiency, economics and environmental impact will

be considered. It is pointed out that environmental

impact will be examined from two perspectives: the

environmental benefits achieved through the use of the

thermal storage systems as well as the environmental

impacts caused by implementing such storages (e.g.,

the impact on ecosystems of heat flows away from an

underground storage). Appropriate optimization

schemes will be developed and applied.

In addition, it would be helpful for models to consider

not just deterministic effects, but also stochastic factors.

Accounting for the impact of stochastic elements on TES

modeling and optimization would help improve their

accuracy and realism. Some work has been done in this

field. For instance, the stochastic control of thermal stor-

age-enabled demand response from flexible district energy

systems has been investigated (Kitapbayev et al. 2015), as

has the stochastic risk-averse coordinated scheduling of

grid integrated energy storage units in transmission con-

strained wind-thermal systems (Hemmati et al. 2016).

4 Expected Outcomes from Addressing Needs

If the needs identified in the previous section are addressed,

several significant and important outcomes are likely to

accrue:

• Improved and/or optimal thermal storage technology

and systems for community-level seasonal storage, in

terms of efficiency, reliability, economics and environ-

mental impact, and for a variety of settings.

• Improved configurations for community-level seasonal

storage that account for community and building

characteristics as well as available energy supplies.

• Enhanced schemes for integrating seasonal storage into

communities and their buildings, for a wide range of

technology and settings.

• Enhanced tools for modeling, simulation, analysis,

improvement, design and optimization, for community-

level seasonal storage.

5 Conclusions

The status of community-level seasonal storage suggests

that the technology is working, but that room exists to

optimize such systems. Many needs exist to support such

optimization. If these needs are addressed, several
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significant and important outcomes are likely to accrue,

which will facilitate better building and community energy

systems. These outcomes will be achieved by enhanced

thermal storage technology and systems for community-

level applications, improved configurations for commu-

nity-level seasonal storage, and better integration of sea-

sonal storage into communities and their buildings.
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