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Abstract Jatropha curcas is a plant with a variety of

potential and ecological applications. The seeds of this

plant contain a high amount of oil that can be used to

obtain a better quality of alternative fuel biodiesel. But the

Jatropha plants are seriously affected by the mosaic virus

(Begomovirus) that is carried by infected vector whiteflies.

It severely affects the Jatropha plants by causing leaf

damage, yellowing leaves and sap drainage. In particular, it

attacks its fruits considerably reducing the production of

seeds. In this paper, we formulate a model for the dynamics

of this disease and its possible control via insecticide

spraying. We identify the parameters that are most

important for vector-borne disease control. Pontryagin

minimum principle is employed to minimize the cost of

spraying. The findings indicate that the optimal spraying

policy does not require insecticide application during the

first ten days of the epidemic outbreak and that instead the

spraying must be continued for the following three months

to eradicate the disease.

Keywords Jatropha curcas � Whiteflies � Insecticide

spraying � Optimal control � Sensitivity analysis

1 Introduction

Nowadays, the demand for alternative energy sources is of

utmost importance. Among the possible means of gener-

ating energy in an environment-friendly way, the

exploitation of crops for the production of biofuels is

becoming widely popular. The Jatropha plants originated in

the tropical zone, initially from Mexico and the central part

of the USA. The plants spread then in Latin America,

Africa and SouthEast Asia and in India. This plant can

easily be grown in arid and infertility conditions, even in

sandy and salty soils, with minimal costs for cultivation.

Jatropha curcas seeds contain between 27 and 40 %

triglycerides that can be used to produce a better quality

substitute eco-fuel (Sahoo et al. 2009; Achten et al. 2007).

The Jatropha plants have been chosen for massive pro-

duction of renewable biodiesel because they have no

competitor among the other commercial food or cash crops.

But in addition to these qualities, Jatropha plants play a

crucial role also in the environment, for instance as

degraded land developers, soil erosion controllers and

carbon sequesters (Pandey et al. 2012).

However, a major drawback on the widespread use of

the Jatropha plant is the fact that it is easily affected by the

mosaic virus Begomovirus. It heavily affects the Jatropha

plants, causing. e.g., leaf damage, namely yellowing

leaves, and sap drainage, and in particular attacking its

fruits, considerably reducing the production of seeds. This

plant virus is carried by infected whiteflies Bemisia tabaci

(Gennadius). Its spread is normally determined by the

whitefly vectors as well as density of host plant. Interest-

ingly, however, the low density of Jatropha curcas plants

allows a fast disease transmission compared with other host
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plants with higher density (Fauquet and Fargette 1990).

Environmental conditions such as temperature and rainfall

also influence the disease spread. It has been observed that

heavy rains may constitute an obstacle to the spread of the

whiteflies (Fargette et al. 1994).

The whiteflies are tiny flying insects, maturing from

eggs through a sequence of instars. To protect themselves

in harsh situations, the adult insects cover the outer part of

their body with a layer of dry wax (Whitefly 2006).

A possible way to protect the Jatropha curcas plants from

the mosaic virus is the use of insecticides spraying to control

the vector whiteflies (Roy et al. 2015b). In particular, insec-

ticidal soap is an organic insecticide, so harmless and safe that

one can eat the vegetables or fruits on which the soap has been

sprayed. It helps by reducing the amounts of eggs that are

deposited by the whitefly population and prevents the adult

flies to migrate from one plant to another (http://bugspray.

com/article/whiteflies.html; Thurston 1998).

In this investigation we consider large Jatropha planta-

tions. The corresponding model differs sensibly from a

parallel investigation in which a major emphasis is given to

the individual behavior of the producers of small ‘‘back-

yard’’ Jatropha crops (Roy et al. 2015a).

The paper is organized as follows. In the next section we

formulate the model. In Sect. 3 we analyze its equilibria;

Sect. 4 contains the sensitivity analysis; in Sect. 5, we

reformulate the problem as a control problem. Simulations

are carried out throughout the paper, to substantiate the

analytical findings. A final discussion concludes the paper.

2 Formulation of the mathematical model

We consider the plant and vector population into the model

without explicitly including the mosaic virus. However,

mosaic virus affects both these populations, it is implicitly

present in the model via the infected Jatropha and infected

vector. Here, y(t) and v(t) denote the infected Jatropha plant

and infected whitefly population respectively. Their corre-

sponding healthy counterparts are denoted by x(t) and u(t).

As for every vector-carried disease, the mosaic virus

passes from an infected whitefly to a susceptible plant and

vice-versa from an infected Jatropha to a susceptible

insect. Further, the Begomovirus itself can not be passed to

offsprings of whitefly Bemisia tabaci (Gennadius) (Bosco

et al. 2004). Bosco et al. (2004) remarked that the infection

itself cannot be vertically transmitted. Therefore, based on

this field evidence and experimental results, in the model

formulation we assume that the newborn whiteflies are all

susceptible.

We assume the logistic growth for healthy Jatropha

plants due to the finite area of the plantation with net

replanting rate r and carrying capacity k. Let k be the

contact rate from an infected vector to a susceptible plant,

while b is the rate of disease transmission from an infected

plant to a healthy whitefly. Thus a successful contact

between infected vectors with a healthy plant makes it

infected. Similarly, healthy whitefly feeding on an infected

plant makes it infected. Further, the infection cannot be

vertically transmitted.

For the mosaic virus vector, we assume logistic growth,

with net birth rate b. The effect of temperature on life-

history traits of Bemisia tabaci population is significant

(Bonato et al. 2006). So the growth of whiteflies is highly

dependent on the variation of temperature (T). The birth

rate b of whitefly is defined as follows:

b ¼ ae�dTTc: ð1Þ

The term b is defined as above because of the growth curve

of whitefly. Here a, d; c are constants and are so chosen that

value of b lies between its ranges.

In view of the fact that the cultivation in large areas is

accounted as their environment, the carrying capacity of

the cultivation is taken as the amount of Jatropha total leaf

biomass, both healthy and infected, available within the

entire plantation. This is indeed the case, because Bemisia

tabaci generally attacks the leaves but not stem flowers and

fruits. In turn, total leaf biomass is related to the plant

abundance in the plantations as proportional (Sequeira and

Naranjo 2008; Naranjo and Flint 1995). Denoting by a the

maximum number of vectors that can survive on a plant,

aðxþ yÞ represents then the environmental carrying

capacity of the vectors. Letting also m and l be the sum of

the natural and the virus-related mortalities of the infected

plants and vectors, respectively, the model can be written

as follows, for xþ y[ 0:

dx

dt
¼ rx 1 � xþ y

k

h i
� kxv;

dy

dt
¼ kxv� my;

du

dt
¼ bðuþ vÞ 1 � uþ v

aðxþ yÞ

� �
� buy;

dv

dt
¼ buy� lv:

ð2Þ

Clearly for xþ y ¼ 0 the plantation would be nonexistent,

and there would be no need of the model, so that we can

exclude this case from further consideration. With

J11 ¼ r½1 � ð2xþ yÞk�1� � kv, the Jacobian is:
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3 Equilibria and stability

3.1 Equilibria assessment

There are only three possible equilibria for system (2): the

insect-and-disease-free equilibrium E1 ¼ ðk; 0; 0; 0Þ, the

disease-free equilibrium E2 ¼ ðk; 0; ak; 0Þ and the endemic

equilibrium E� ¼ ðx�; y�; u�; v�Þ, whose population values

cannot be completely given. Summing the first and second

equations in (2) as well as the second and the fourth one,

we obtain y and u in terms of x and using these into the

fourth equation we obtain also v as a function of x, as

follows:

y� ¼ rx�
k � x�

rx� þ km
; u� ¼ ml

bkx�
; v� ¼ mr

k
k � x�

rx� þ km
:

Clearly from the above values, the endemic equilibrium is

feasible if

k� x�: ð3Þ

Substituting these population values into the third equation

of (2), we can find an equation of degree five for the

unknown x population, WðxÞ ¼
P5

i¼0 hix
i ¼ 0. The coeffi-

cients can all explicitly be calculated, but they are rather

complicated, and we provide only the two most relevant

ones: h0 ¼ �bk2m2l2b�1\0, h5 ¼ ar2ðbþ lÞ[ 0. From

these, it is easily seen that at least one positive root x� for

equation WðxÞ ¼ 0 must exists. The remaining coefficients

do not appear to have easily determined signs, so that the

application of Descartes’ rule of sign is not necessary.

Although sufficient conditions could be given for one, three

or five positive roots, we do not investigate further for the

uniqueness of this equilibrium.

3.2 Stability

The equilibrium E1 is unstable, as its eigenvalues are r,

�m, b, �l. E2 consists two eigenvalues easily are obtained

as �b and �r, and the remaining characteristic equation is

a quadratic, for which the Routh–Hurwitz conditions are

mþ l[ 0; ml� ak2bk[ 0: ð4Þ

The first one holds, the second one gives the stability

condition

kb\
ml
ak2

: ð5Þ

At E� the characteristic equation is given by:

q4 þ r1q
3 þ r2q

2 þ r3qþ r4 ¼ 0; ð6Þ

where,

r1 ¼ �½J11 þ J22 þ J33 þ J44�;
r2 ¼ J33J44 þ J22J44 þ J11J44 � J34J43 � J24J42

þ J22J33 þ J11J33 þ J11J22 � J12J21;

r3 ¼ �J22J33J44 � J11J33J44 � J11J22J44 þ J12J21J44 þ J22J34J43

þ J11J34J43 � J24J32J43 � J14J31J43 þ J24J33J42

þ J11J24J42 � J14J21J42 � J11J22J33 þ J12J21J33;

r4 ¼ J11J22J33J44 � J12J21J33J44 � J11J22J34J43 þ J12J21J34J43

þ J11J24J32J43 � J14J21J32J43 � J12J24J31J43

þ J14J22J31J43 � J11J24J33J42 þ J14J21J33J42:

ð7Þ

In this case some of the entries of the Jacobian matrix

simplify as:

J11 ¼ � rx�

k
; J12 ¼ � rx�

k
; J14 ¼ �kx�;

J21 ¼ kv�; J22 ¼ �m;

J24 ¼ kx�; J31 ¼ bðu� þ v�Þ2

aðx� þ y�Þ2
; J32 ¼ �bu� þ bðu� þ v�Þ2

aðx� þ y�Þ2
;

J33 ¼ b� by� � 2bðu� þ v�Þ
aðx� þ y�Þ ; J34 ¼ b� 2bðu� þ v�Þ

aðx� þ y�Þ ;

J42 ¼ bu�; J43 ¼ by�; J44 ¼ �l:

The Routh–Hurwitz criterion provides the stability

requirements as:

J ¼ Jij
� �

¼

J11 � rx

k
0 � kx

kv � m 0 kx

bðuþ vÞ2

aðxþ yÞ2
� buþ bðuþ vÞ2

aðxþ yÞ2
b� by� 2bðuþ vÞ

aðxþ yÞ b� 2bðuþ vÞ
aðxþ yÞ

0 bu by � l

2
66666666664

3
77777777775

:
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r1 [ 0; r4 [ 0; r1r2 � r3 [ 0;

ðr1r2 � r3Þr3 � r2
1r4 [ 0:

ð8Þ

Numerical evidence shows that these conditions are

nonempty (see Fig. 2).

3.3 Bifurcation analysis

Now, we study possible existence of Hopf bifurcations in

the system (2). At E2, in view of the strict inequality in the

first Routh–Hurwitz condition (4), the quadratic will not

have purely imaginary eigenvalues, thus preventing the

possible occurrence of Hopf bifurcations around this

equilibrium point.

For the endemic equilibrium E� we consider the Hopf

bifurcation as a function of the parameter k 2 R.

Let W : ð0;1Þ ! R be the following continuously

differentiable function of k:

WðkÞ :¼ r1ðkÞr2ðkÞr3ðkÞ � r2
3ðkÞ � r4ðkÞr2

1ðkÞ:

Then for occurring the Hopf bifurcation, it is to be required

that the spectrum rðkÞ ¼ fq : DðqÞ ¼ 0g of the charac-

teristic equation is such that there exists k� 2 ð0;1Þ, at

which a pair of complex eigenvalues qðk�Þ; �qðk�Þ 2 rðkÞ
satisfy

Reqðk�Þ ¼ 0; Imqðk�Þ ¼ x0 [ 0;

along with the transversality condition

dReqðkÞ
dk

����
k�
6¼ 0

Furthermore, all other elements of rðkÞ must have negative

real parts.

Theorem 1 The system (2) around the endemic equilib-

rium E� enters into Hopf bifurcation at k ¼ k� 2 ð0;1Þ if
and only if Wðk�Þ ¼ 0 and

r3
1r

0
2r3ðr1 � 3r3Þ[ 2ðr2r

2
1 � 2r2

3Þðr03r2
1 � r01r

2
3Þ ð9Þ

and all other eigenvalues are of negative real parts, where

qðkÞ is purely imaginary at k ¼ k�.

Proof By the condition Wðk�Þ ¼ 0, the characteristic

equation can be written as

q2 þ r3

r1

� �
q2 þ r1qþ r1r4

r3

� �
¼ 0:

If it has four roots, say qi, (i = 1, 2, 3, 4) with the pair of

purely imaginary roots at k ¼ k� as q1 ¼ �q2, then we have

q3 þ q4 ¼ �r1; x2
0 þ q3q4 ¼ r2;

x2
0ðq3 þ q4Þ ¼ �r3; x2

0q3q4 ¼ r4:
ð10Þ

where x0 ¼ Imq1ðk�Þ. By dividing the third and the first

equations in (10), we find x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
r3r�1

1

p
. Now, if q3 and

q4 are complex conjugate, from (10), it follows that

2Req3 ¼ �r1; if they are real roots, then by (6) and (10)

q3\0 and q4\0. To complete the discussion, it remains to

verify the transversality condition.

As Wðk�Þ is a continuous function of all its roots, there

exists an open interval k 2 ðk� � �; k� þ �Þ where q1 and q2

are complex conjugate for k. Suppose that their general

forms in this neighborhood are

q1;2ðkÞ ¼vðkÞ � imðkÞ:

Now, we shall verify the transversality condition

dReðqjðkÞÞ
dk

jk¼k� 6¼ 0; j ¼ 1; 2:

Substituting qjðkÞ ¼ vðkÞ � imðkÞ, into (6) and differenti-

ating, we have

KðkÞv0ðkÞ � LðkÞm0ðkÞ þMðkÞ ¼ 0;

LðkÞv0ðkÞ þ KðkÞm0ðkÞ þ NðkÞ ¼ 0;
ð11Þ

where

KðkÞ ¼ 4v3 � 12vm2 þ 3r1ðv2 � m2Þ þ 2r2vþ r3;

LðkÞ ¼ 12v2mþ 6r1vm� 4v3 þ 2r2v;

MðkÞ ¼ r1v
3 � 3r01vm

2 þ r02ðv2 � m2Þ þ r03v;

NðkÞ ¼ 3r01v
2m� r01m

3 þ 2r02vmþ r03v:

Solving (11) for v0ðk�Þ we have

dReðqjðkÞÞ
dk

� �

k¼k�
¼ v0ðkÞk¼k� ¼ � Lðk�ÞNðk�Þ þ Kðk�ÞMðk�Þ

K2ðk�Þ þ L2ðk�Þ

¼ r3
1r

0
2r3ðr1 � 3r3Þ � 2ðr2r2

1 � 2r2
3Þðr03r2

1 � r01r
2
3Þ

r4
1ðr1 � 3r3Þ2 þ 4ðr2r2

1 � 2r2
3Þ

2
[ 0

which holds in view of (9).

Thus the transversality conditions hold, and conse-

quently, a Hopf bifurcation occurs at k ¼ k�.

4 Sensitivity analysis

We now provide a local sensitivity analysis of the

solutions of (2) (Saltelli and Scott 1997; Saltelli et al.

1999). In this way we evaluate which parameters most

affect the system dynamics. Consistency of the model with

respect to small uncertainties in parameter values allows

reliable predictions.

To study the forward, or direct sensitivity, of a popu-

lation P with respect to the parameter g, one must plot the

values of oP
og as function of time. For this task, we use
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MATLAB software that calculates the sensitivities by

combining the original model system with the auxiliary

differential equations for the sensitivities. These additional

equations are obtained by differentiating the original

equations with respect to parameters.

5 The optimal control problem

In this section, we formulate the problem as an optimal

control problem, to minimize the costs involved in insec-

ticide spraying.

Here, we do not consider the migration of infected

vectors population. We assume that all the infected

vectors of a particular region fall possibly under the

control of spraying of insecticide. We reformulate the

model (2) introducing the control 0� cðtÞ� 1, as

follows:

dx

dt
¼ rx 1 � xþ y

k

h i
� ð1 � cðtÞÞkxv;

dy

dt
¼ ð1 � cðtÞÞkxv� my;

du

dt
¼ bðuþ vÞ 1 � uþ v

aðxþ yÞ

� �
� buyð1 � cðtÞÞ;

dv

dt
¼ byuð1 � cðtÞÞ � lv:

ð12Þ

Note that for c ¼ 0, there is no reduction in the contact rate

between infected vectors and healthy plants, while for

c ¼ 1, we have no such contact rate whatsoever. The role

of c is to express the reduction of the transmission from

carrier to the susceptible plant by use of insecticide.

The cost function (i.e., objective functional) is taken in

quadratic to ensure the existence of minimum spraying, as

follows:

JðcðtÞÞ ¼
Z tf

t0

½PcðtÞ2 þ Qy2 � Rx2�dt: ð13Þ

The objective functional is taken in such a way that we can

account the costs of spraying, insecticide and labor expressed

by the first term, the damage of the crop due to infected

plants, whose presence needs to be minimized, second term,

and for the extra revenues obtained by a larger population of

healthy Jatropha plants, expressed by last term. Here, the

objective is to minimize the cost by finding a suitable cðtÞ.
To solve the problem we construct the Hamiltonian as

follows:

H ¼ PcðtÞ2 þ Qy2 � Rx2 þ n1 rx 1 � xþ y

k

h i
� kxvð1 � cðtÞÞ

h i

þ n2 kxvð1 � cðtÞÞ � my½ � þ n3 bðuþ vÞ 1 � uþ v

aðxþ yÞ

� ��

�buyð1 � cðtÞÞ
�
þ n4 byuð1 � cðtÞÞ � lv½ �;

ð14Þ
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Fig. 1 Growth rate of whitefly is plotted as a function of temperature,

taking a ¼ 0:1896, d ¼ 0:02, and c ¼ 0:6
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k ¼ 0:005;T ¼ 30 	C and other

parameters as given in Table 1
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where the ni, i ¼ 1; . . .4 are the adjoint variables.

Applying ‘‘Pontryagin Minimum Principle’’ for the exis-

tence of the optimal control, we obtain the following result:

Theorem 2 If the objective function JðcÞ is minimum for

the optimal control c�ðtÞ, then there exists adjoint variables
ni, i ¼ 1; . . .4, which satisfy the equations below:

Fig. 4 Bifurcation diagram in

terms of the bifurcation

parameter k; the other

parameters are kept fixed at the

values given in Table 1

Table 1 Values of the

parameters used in the

numerical simulations, obtained

in part from the literature

Parameters Definition Default values assigned

r Growth rate of healthy plants 0.05 day-1

k Plant carrying capacity 500 hectare-1

k Plant infection rate 0.002–0.032 vector-1 day-1

m Plant loss/roguing rate 0.0.003 day-1

b Vector reproduction rate 0.8 day-1

a Maximum vector amount 80 plant-1

b Vectors infection rate 0.003 plant-1 day-1

l Vector mortality rate 0.12 day-1

T Temperature 30 �C
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Fig. 3 Persistent populations

oscillations are plotted as a

function of time for k ¼ 0:015

and other parameters as given in

Table 1
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on1

ox
¼ �n1r 1 � 2xþ y

k

� �
þ n1kvð1 � cðtÞÞ

� n2kvð1 � cðtÞÞ � n3

bðuþ vÞ2

aðxþ yÞ2
;

on2

oy
¼ �2Qy

n1rx

k
þ n2m� n3

bðuþ vÞ2

aðxþ yÞ2
� n4buð1 � cðtÞÞ;

on3

ou
¼ n3b 1 � 2ðuþ vÞ

aðxþ yÞ

� �
� n3byð1 � cðtÞÞ

� n3cþ n4ðbyð1 � cðtÞÞÞ;
on4

ov
¼ n1kxð1 � cðtÞÞ � n2xð1 � cðtÞÞ

� n3b 1 � 2ðuþ vÞ
aðxþ yÞ

� �
þ n4l;

ð15Þ

with the transversality condition satisfying niðtf Þ ¼ 0,

i ¼ 1; . . .4.

The optimal control policy is given by:

c�ðtÞ ¼ max 0;min 1;
kxvðn2 � n1Þ þ byuðn4 � n3Þ

2P


 �
 �
:

ð16Þ

Proof Applying the ‘‘Pontryagin Minimum Principle’’

(Fleming and Rishel 1975), the optimal control variable

c�ðtÞ satisfies:

oH

oc�ðtÞ ¼ 0: ð17Þ

From (14) and (17), we can get the following expression

for c�:

c�ðtÞ ¼ kxvðn2 � n1Þ þ byuðn4 � n3Þ
2P

:

For the boundedness of the optimal control, we have

Hence the compact form of c�ðtÞ is given by (16).

The above equations are the necessary conditions

satisfying the optimal control cðtÞ and also the state

variables of the system. According to ‘‘Pontryagin Mini-

mum Principle’’ (Fleming and Rishel 1975), the existence

conditions are established by the corresponding adjoint

equations:

dn1

dt
¼ � oH

ox
;
dn2

dt
¼ � oH

oy
;

dn3

dt
¼ � oH

ou
;
dn4

dt
¼ � oH

ov
:

ð18Þ

From set of equations (18), we immediately find (15).

6 Numerical simulations

In theoretical study, we have illustrated the analytical

method using optimal control theoretic approach for the

qualitative analysis of the dynamical system to control the

whitefly population. We carry out the numerical simulation

of the model system on the outlook of the analytical

behaviors. We take xð0Þ ¼ 10; yð0Þ ¼ 8; uð0Þ ¼ 5; vð0Þ ¼
2 as initial conditions.

It is observed by Kashina et al. (2013) and Ramkat

et al. (2011) that the Indian Cassava mosaic virus can

cause the mosaic disease in Jatropha curcas plant. Fur-

thermore, the phylogenetic nature of Cassava plants and

the Jatropha plants are not same; thus, their growth and

death rates differ but the plantation methods are very

similar. For this reason, we have estimated the parameter

values from the literature (Holt et al. 1997) for numerical

simulations.

The effect of temperature on growth rate is shown in

Fig. 1. Maximum growth is seen around a temperature of

30 	C. Here, a ¼ 0:1896, d ¼ 0:0200 and c ¼ 0:6. Their

values are so chosen that b lies between its ranges. We plot

the growth rate b as a function of temperature (T) and see

that at 30 	C whitefly growth rate is the maximum which is

agreeable with Bonato et al. (2006). That means disease

transmission is also higher particularly within this tem-

perature. So, we think it is reasonable to analyze and

control the system when the transmission rate gets maxi-

mized. Thus we take b ¼ 0:8 for our numerical

simulations.

c�ðtÞ ¼

0;
kxvðn2 � n1Þ þ byuðn4 � n3Þ

2P
� 0;

kxvðn2 � n1Þ þ byuðn4 � n3Þ
2P

; 0\
kxvðn2 � n1Þ þ byuðn4 � n3Þ

2P
\1;

1;
kxvðn2 � n1Þ þ byuðn4 � n3Þ

2P
� 1:

8>>>>>><
>>>>>>:
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We observe the behavioral changes of the system for

different values of parameters. In Fig. 2, we portray the

time series characteristic of all the four population taking

the parameter values as given in Table 1. We notice that all

the population oscillates up to 1200 days (approximately).

But initially the magnitudes of this oscillation are very

high, but slowly it becomes stable with the following time

after 1400 days, all the populations go to stable in nature.

In Fig. 3, we display the same population up to 2500 days.

But here we assume the value of parameter k i.e., the

infection rate that is equal to 0.015 and other parameters

are taken as same as in Fig. 2. In this case, oscillations are

periodic. It is observed that as the value of k increases,

oscillation become periodic.

Figure 4 represents the bifurcation diagram of four

populations with respect to the parameter k. Form this

figure, it is clear that for a particular value of the infection

rate (k ¼ 0:0147), the system starts to bifurcate or diverge,

that means it moves from stable to unstable situation. Thus,

it is again established that the system dynamics depends

significantly on this parameter. Here we find that for the

value close to 0.0147 of the parameter k, the complete

system starts to split.

Figure 5 describes the control effect that is plotted as a

function of time. We operate the control through insecti-

cide spraying up to 100 days. In Fig. 6, we portray the

dynamical behavior of all four populations with the influ-

ence of optimal control. In this figure, we notice that due to

effort of control, healthy plant population slowly increases

from its initial position and becomes stable near about

150 days. It maintains its stable position throughout the

remaining time. In case of infected plant population, it goes

to extinction within first 35 days (approximately). Nonin-

fected vector population also enhances up to first 120 days

and then becomes stable throughout the following time

period. Infected plant population reduces within very short

days and finally moves to extinction. We observe that

effect of optimal control by means of insecticide spraying

has a great contribution to make the system stable and

maintain the stable nature in the remaining portion of time

span.

In Fig. 7, we display the sensitivity characteristic of all

parameters introduced into our proposed ecological system.

Here we observe that all eight parameters are sensitive

(some are positively sensitive and some are negatively

sensitive). This actually validates our formulated mathe-

matical model. The summary of sensitivity analysis of the

model with respect to parameter is shown in Table 2. We

notice that all the parameters used in our model are sen-

sitive. Here ‘?ve’ means positively sensitive and ‘-ve’

means negatively sensitive.
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Fig. 6 The dynamics of all four

species of the system with

control effect with parameter

values given in Table 1

Fig. 5 The control function cðtÞ is plotted as a function of time with

parameter values given in Table 1
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7 Conclusion

Here, a mathematical model is formulated to study the

dynamics of Jatropha mosaic disease and its possible

control by using insecticide spraying. From the study, we

observe that the parameter k i.e., the disease transmission

rate is very crucial. All the populations of the model system

are going to oscillate for the cause of variation in the value

of the parameter k. Also for discrepancy of the value of k,

the system starts to diverge or bifurcate. Thus in a nut shell,

it has the capacity to stabilize or destabilize the system.

The application of insecticides minimizes the effect of

oscillation in the system and makes the system stable. So,

the control policy with minimum use of insecticidal soap is

very significant. Numerical simulation also shows that

optimal spraying is needed to control mosaic virus and to

minimize the cost of cultivation. There is no requirement of

control application of spraying during first 10 days. After

that optimal spraying policy required for three months to

eradicate the disease. Control measure has the ability to

condense the oscillating nature of the population. Therefore

spraying has a better effect on the population. Hence we

can apply the insecticide on the host plants systematically.

In this way, we would be liberally developed ourselves for

advanced socioeconomical insight in the days to come.
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