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Abstract
Fused deposition modeling (FDM) is one of the most popular additive manufacturing (AM) technologies for reasons including 
its low cost and versatility. However, like many AM technologies, the FDM process is sensitive to changes in the feedstock 
material. Utilizing a new feedstock requires a time-consuming trial-and-error process to identify optimal settings for a large 
number of process parameters. The experience required to efficiently calibrate a printer to a new feedstock acts as a barrier 
to entry. To enable greater accessibility to non-expert users, this paper presents the first system for autonomous calibration 
of low-cost FDM 3D printers that demonstrates optimizing process parameters for printing complex 3D models with submil-
limeter dimensional accuracy. Autonomous calibration is achieved by combining a computer vision-based quality analysis 
with a single-solution metaheuristic to efficiently search the parameter space. The system requires only a consumer-grade 
camera and computer capable of running modern 3D printing software and uses a calibration budget of just 30 g of filament 
(~ $1 USD). The results show that for several popular thermoplastic filaments, the system can autonomously calibrate a 3D 
printer to print complex 3D models with an average deviation in dimensional accuracy of 0.047 mm, which is more accurate 
than the 3D printer’s published tolerance of 0.1–0.4 mm.

Keywords Additive manufacturing · Computer vision · Optimization · Metaheuristic

1 Introduction

Fused deposition modeling (FDM) is an additive manufac-
turing process where a thermoplastic filament is selectively 
dispensed through an extruder [1]. FDM is one of the most 
commonly used 3D printing technologies and has the poten-
tial to democratize manufacturing by enabling low-cost pro-
duction of goods by users outside the manufacturing sector 
[2–4]. FDM 3D printing is constantly expanding into new 
feedstock materials, including polymer composites, and 
commonly recycled thermoplastics such as high-density 
polyethylene (HDPE) and polyethylene terephthalate (PET) 

[5, 6]. Unfortunately, the 3D printing process is sensitive to 
any change in system configuration, especially the feedstock. 
Calibrating a printer to a new feedstock requires a time-con-
suming trial-and-error process to identify optimal settings 
for a large number of process parameters [7]. The experi-
ence required to efficiently navigate this high-dimensional 
parameter space acts as a barrier to entry for non-expert 
users; improper settings often result in failed prints that are 
time consuming and wasteful and can discourage users from 
using 3D printers in the future [8, 9].

Autonomous experimentation (AE) systems [10] capable 
of iteratively planning, executing, and analyzing experiments 
toward human-directed research outcomes have shown great 
promise in accelerating optimization in complex and high-
dimensional materials problems such as carbon nanotube 
synthesis [11], chemical reactions [12], and direct ink writ-
ing (DIW) [13, 14]. Inspired by these advances, this paper 
presents the first low-cost AE system for closed-loop cali-
bration of FDM 3D printers that demonstrates optimizing 
process parameters for printing complex 3D models with 
submillimeter dimensional accuracy. The system is imple-
mented on a low-cost FDM printer and requires only a 
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consumer-grade camera and computer capable of running 
modern 3D printing software, making it easily deployable. 
Autonomous calibration is realized through a computer 
vision-based quality analysis that computes a metric between 
a camera image of a calibration object and its 3D model. The 
computer vision-based analysis is combined with the simu-
lated annealing metaheuristic to efficiently explore candidate 
process parameter settings.

System performance is evaluated based on the dimen-
sional accuracy of a popular benchmark 3D model printed 
using three materials: polylactic acid (PLA), PLA blended 
with several additives (PLA Pro), and polyvinyl butyral 
(PVB). Results show that the system is capable of autono-
mously calibrating a 3D printer to print the benchmark with 
an average deviation in dimensional accuracy of 0.047 mm 
using a calibration budget of just 30 g of filament (~ $1 
USD). The time and material savings enabled by the dem-
onstrated automation represents a significant step forward to 
increase the accessibility of 3D printing to non-expert users.

2  Related work

The tight link between printer configuration and part qual-
ity has motivated research into the optimization of process 
parameters for a variety of materials and models [15–19]. 
A common approach is to evaluate a matrix of process 
parameter settings determined using design of experiments 
(DOE) [7]. Since each experiment requires physically 
printing a part, calibration objects that are designed to be 
printed quickly while still having geometric features that 
are representative of more complex models are typically uti-
lized [20–22]; however, these methods can still be inefficient 
and time consuming when the parameter space is large [7].

Metaheuristics represent a family of approximate optimi-
zation techniques able to provide sufficiently good solutions 
for complex and high-dimensional problems and have been 
shown to be effective at optimizing process parameters for 
3D printing [23–25]. Abdollahi, et al. [24] developed an 
expert guided hill-climbing algorithm to optimize process 
parameters for 3D printing the experimental material polydi-
methylsiloxane (PDMS). The algorithm involved three steps; 
expert screening to select the parameter space, factors, and 
factor levels; using hill-climbing with a rubric-based evalua-
tion method to search the expert-defined parameter space for 
the best set of parameter settings; and using expert knowl-
edge to define a new parameter space if hill climbing con-
verged to an unsatisfactory set of parameters. The algorithm 
was able to find a high-quality set of parameters for a set of 
simple calibration objects that were shown to be transferable 
to more complex models such as a human toe and ear.

In a similar study, Oberloier, et al. [25] used particle 
swarm optimization (PSO) to optimize process parameter 

settings for FDM 3D printing using recycled low-density 
polyethylene (LDPE) filament. Utilizing a fitness function 
based on physical measurements, PSO was able to optimize 
six process parameters to print three calibration objects: a 
line, planar surface, and cube. The parameter settings were 
also found to be transferable to printing other objects such 
as the legs for a stool.

Common to the studies above is the need for human 
assessment (physical measurement, subjective assessment, 
etc.) within the optimization loop. Computer vision tech-
niques offer a potential low-cost solution for “closing the 
loop”, enabling an autonomous research loop similar to 
those demonstrated by AE systems on several complex and 
high-dimensional materials problems [10]. Existing research 
on computer vision-based defect monitoring includes meth-
ods that compare an ideal reference model with images of 
the printed part [26, 27], and machine learning methods that 
classify, localize, or segment printed part defects by training 
a model using a large dataset of defect examples [28–31].

Nuchitprasitchai, et al. [26] developed single and double 
camera systems capable of detecting simple failure condi-
tions such as a clogged nozzle and incomplete printing based 
on deviations from the expected part geometry. In the single 
camera setup deviations were detected through image sub-
traction with a reference image depicting the ideal geom-
etry generated from the 3D model. In the double camera 
setup, the two images were used to create a two-view 3D 
reconstruction that was compared to the 3D model in terms 
of height and width. Petsiuek and Pearce [27] developed a 
more complex single camera system able to detect additional 
printing errors including layer shifting and infill deviation. 
Pseudo top-down and side views of the part were generated 
by applying perspective projection to images captured from 
a digital camera at a fixed angle. In combination with the 
position of the camera and toolpath trajectories, the side 
view images enabled detection of deviations in the height 
of the part as it is being printed. Top-down images were 
utilized to detect deviations in the trajectory of the outer 
shell using multi-template matching and the iterative clos-
est point algorithm, as well as to assess infill texture quality 
using texton-based texture segmentation.

The use of convolutional neural networks (CNN) for 
defect detection and process monitoring in 3D printing has 
grown in popularity in recent years [28]. This is largely due 
to the discovery that features generated by CNNs pretrained 
on very large datasets such as ImageNet can be transferred 
to other problem domains with only modest changes to 
the original network [29]. Jin, et al. [30] utilized images 
collected from a consumer-grade webcam mounted to the 
extruder of an FDM printer to train a CNN for material 
extrusion evaluation. Images of three classes of extrusion 
quality created by varying the material flow rate were col-
lected and used to fine-tune a RestNet 50 architecture. The 
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trained CNN was deployed in a closed-loop system and its 
predictions were used to correct the flow rate of the printer 
in real-time. Brion and Pattinson [31] extended this work 
with two additional process parameters, lateral speed, and Z 
offset, by utilizing a CNN with an attention mechanism and 
multiple output layers and showed that their system could 
be used to improve prints that would otherwise fail without 
intervention. Despite these promising demonstrations, CNNs 
require a very large number of training images and it is often 
difficult or impractical to collect a dataset that is representa-
tive of all operating conditions the system may encounter.

Closest to this work is the Additive Manufacturing 
Autonomous Research System (AM ARES) developed by 
Deneault, et al. [13]. AM ARES utilized computer vision in 
combination with Bayesian methods for closed-loop optimi-
zation of a DIW system. Whereas AM ARES demonstrated 
closed-loop optimization of process parameters for direct-
writing single-layer 2D prints, the system presented in this 
paper targets the FDM process and is capable of optimizing 
process parameters for printing complex 3D models.

3  Methodology

Figure 1 shows a high-level overview of the system pipe-
line. Since the real-world function relating the 3D printer's 
process parameters to the printed part quality is unknown, 
the 3D printing process is modeled as a black box function. 
The function receives a set of process parameter settings that 
are used to print a calibration object, and outputs a computer 
vision-based metric representing the quality of the settings. 
Unlike recent methods [30, 31], the quality analysis does 
not require a large dataset of images to train a computer 

vision model. Instead, it leverages a calibration object that 
prints quickly and is representative of more complex models. 
The evaluation method extracts local shape features from a 
camera image of the calibration object and a synthetic image 
based on the calibration object’s 3D model that is generated 
using computer graphics. The quality metric is computed 
as a minimum cost matching between the feature vectors of 
the two images and represents the dissimilarity between the 
printed object and the 3D model. Simulated annealing is 
used to efficiently search the parameter space for parameter 
settings that minimize the quality metric. The calibration 
process is run until a user-defined budget is expended.

3.1  System configuration

Figure 2 shows the system configuration. It consists of a 
Creality Ender-3 FDM 3D printer and Raspberry Pi High 
Quality Camera controlled using a Raspberry Pi 4 Model 
B. The Ender-3 is configured to deposit 1.75 mm plas-
tic filament from a nozzle with a 0.4 mm diameter at a 
maximum extrusion temperature of 240 °C and is capa-
ble of printing at a maximum speed of 180 mm/s with an 
accuracy range of 0.1–0.4 mm and a printing precision 
of ± 0.1 mm. The Ender-3 has a maximum print area of 
220 mm × 220 mm × 250 mm that can be heated to a tem-
perature of 100 °C. The Raspberry Pi High Quality Cam-
era utilizes a Sony IMX477R stacked CMOS sensor. The 
sensor consists of a 4072 × 3040 square pixel array with a 
pixel size of 1.55 μm × 1.55 μm and employs an RGB pig-
ment primary color mosaic filter. The camera is mounted 
on a 50-inch lightweight tripod stand and equipped with a 
16 mm C-mount telephoto lens. The system is controlled by 
a workstation equipped with an Nvidia Quadro P5200 GPU, 

Fig. 1  High-level diagram of 
the closed-loop calibration 
system
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an Intel Xeon E-2186 M CPU, and 64 GB of RAM; however, 
any computer that meets the minimum requirements to run 
modern 3D printing software can be utilized. PrusaSlicer 
v2.5.0. is used to set the printer configuration and generate 
toolpaths.

The calibration object is a modified Stanford bunny 
model [32] that was smoothed and resized to have dimen-
sions 25.6 mm × 19.2 mm × 24.1 mm. The modifications 
enable it to print in 25 min at a speed of 20 mm/s using 
just 1 g of filament with a cubic infill density of 7%. The 
Stanford bunny model was chosen due to having several geo-
metric structures that can pose a challenge for FDM printers. 
For example, the model’s ears test the printer’s ability to 
print structures that extend outward with no direct support, 
whereas the model’s spherical back tests the printer’s surface 
finish ability.

3.2  Calibration object evaluation using computer 
vision

3.2.1  Object segmentation

The first step in the computer vision evaluation pipeline 
is to segment the object from the background using color-
based thresholding. The Red, Green, and Blue (RGB) image 
from the camera is converted to Hue, Saturation, and Value 
(HSV), which separates the color and luminance into sepa-
rate channels [33]. The calibration object is separated from 
the background by thresholding with a hue range that cor-
responds to the color of the filament used to print the object.

3.2.2  Synthetic image generation

Synthetic image generation renders a synthetic image of 
the 3D model in the same position and orientation as the 
printed object, and at the same resolution as the camera 
image, enabling the use of pixel-based comparison methods. 

Approximation of the physical camera uses a calibrated cam-
era model based on the pinhole camera model. Let the 3D 
model of the calibration object be represented by the graph 
G = (V ,E) where each vertex v ∈ V  is a homogeneous coor-
dinate in a three-dimensional Cartesian coordinate frame 
and each edge e ∈ E maintains the adjacency of two vertices 
in V  . The mapping of each vertex v ∈ ℝ

4 to a point u ∈ ℝ
3 

on the image plane is given by

where the matrix K ∈ ℝ
3x3 , also known as the intrinsic 

parameter matrix, describes the intrinsic parameters of the 
camera. The intrinsic parameter matrix has the form

where fx and fy are the focal length of the camera along 
the x and y axes, and px and py are the coordinates of the 
principal point, which is the point where the image plane 
intersects the image’s optical axis. The matrix [R|t] , known 
as the extrinsic parameter matrix, is composed of rotation 
matrix R ∈ ℝ

3x3 and translation vector t ∈ ℝ
3 and describes 

the position and orientation of the camera with respect to the 
world coordinate frame.

Perspective projection requires estimating the physical 
camera’s intrinsic parameters along with models for radial 
and tangential distortion induced by the lens. OpenCV’s 
implementation of Zhang, et al.’s [34] algorithm was utilized 
due to its ease of implementation, accuracy, and robustness 
under different conditions. Zhang’s algorithm takes a set of 
images of a known planar pattern captured in different posi-
tions and orientations and uses the known geometry of the 
pattern to establish correspondences between the 2D image 
points and the 3D world coordinates of the pattern points. 
An asymmetric chessboard with 10 × 7 vertices and 11 × 8 

(1)u = K[R|t]v

(2)K =

⎡⎢⎢⎣

fx 0 px
0 fy py
0 0 1

⎤⎥⎥⎦

Fig. 2  System configuration 
consisting of a the Creality 
Ender-3, Raspberry Pi HQ 
Camera, and b modified Stan-
ford bunny model used as the 
calibration object
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squares was chosen as the planar pattern to detect the inter-
nal corners [35]. The chessboard was scaled to have a 90 mm 
width and 70 mm height and was printed on A4 cardstock. 
A total of 31 chessboard images were used to estimate the 
camera’s intrinsic parameters with a reprojection error of 
0.42 pixels. The reprojection error indicates that on average, 
each of the projected points is displaced 0.42 pixels from 
their true position.

The problem of estimating the matrix [R|t] is known as 
the pose estimation problem [36] and can be solved by mini-
mizing the norm of the reprojection error of n > 3 point cor-
respondences between the image plane and the world frame 
[37]. Generating the required 2D–3D point correspond-
ences utilizes four circular markers shown in Fig. 3a. The 
markers are printed onto the printer bed using a filament 
with a known set of process parameter settings so that the 
coordinates of their centers are known accurately relative to 
the origin of the world coordinate frame. The marker cent-
ers in the image plane are determined by first performing 
object segmentation on the markers using the same meth-
ods described earlier and then performing contour detection 
(Sect.  3.2.3). The extracted contours are then filtered using 
Eq. 3 so that only contours with a minimum circularity of 
0.7 are retained.

Finally, the marker centers are estimated by computing 
the centroid of each contour. After obtaining the intrinsic 
matrix and the point correspondences between the image 
marker centers and their position in the world frame, the 
extrinsic parameter matrix is solved for by minimizing the 
norm of the reprojection error of the 2D-3D point corre-
spondences using OpenCV’s implementation of the Leven-
berg–Marquardt algorithm [38].

Applying Eq. 1 to the vertex set specified by the 3D model 
results in the projection of the points onto the image plane 

(3)Circularity =
4 ⋅ � ⋅ Area

Perimeter2

shown in Fig. 3b. The projected points form an unstructured 
2D point cloud that is unsuitable for computing rich shape 
representation since it does not contain any connectivity 
information between adjacent points. To better facilitate the 
comparison of shape features between the 3D model of the 
calibration object and the image of the printed part, the per-
spective projection of a polygon mesh representation of the 
3D model is rendered using the computed camera matrices 
and the open-source computer graphics API OpenGL [39]. 
The rendering pipeline is shown in Fig. 3c. The pipeline 
begins with the geometric data specified by the 3D model 
formatted as a Wavefront .obj file. The projected position in 
screen space is computed for each vertex according to

where kij is the (i, j) entry of the intrinsic parameter matrix, R 
and t are the rotation matrix and translation vector that com-
pose the extrinsic parameter matrix, w and h are the width 
and height of the camera image, and n and f  specify the 
coordinates for the near and far clipping planes that specify 
how much of the scene is seen by the camera in the view-
port. The projected vertices are assembled into triangles and 
parts of the triangles that fall outside the screen are clipped 
and discarded. The remaining parts are tessellated into an 
array of pixels and the vertex colors are blended across the 
array. The resulting rendering is then saved in image format.

(4)uscreen =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 ⋅
k00

w
0

w−2⋅k02

w
0

0 −2 ⋅
k11

h

h−2⋅k12

h
0

0 0
−f−n

f−n

−2⋅f ⋅n

f−n

0 0 −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
R t

0 0 0 1

�
v

Fig. 3  a The circular mark-
ers used to establish 2D-3D 
correspondences, b point cloud 
generated using Eq. 1, and c 
graphics pipeline used to gener-
ate the synthetic image
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3.2.3  Contour detection

After performing object segmentation and synthetic image 
generation, the boundary information of the calibration 
object is extracted from both images using OpenCV’s imple-
mentation of the border tracing algorithm by Suzuki and 
Abe [40]. The output of the contour detection phase is a pair 
of lists of the pixel coordinates representing the contours of 
the calibration object in the camera and synthetic images.

3.2.4  Shape representation using shape context

For each extracted contour, the shape context [41], a boundary-
based local feature that represents shape as a distribution over 
relative positions of the extracted contour points, is computed. 
A boundary-based representation was chosen as they are more 
sensitive to small deviations than region-based methods [42]. 
For example, shape context can account for minor defects in 
the ears of the calibration object, whereas this information 
is thrown away by region-based representations such as the 
area of the segmentation mask. Additionally, shape context’s 
translation invariance and partial rotation invariance make it 
insensitive to the reprojection error introduced in the cam-
era calibration process. The process for computing the shape 
context is shown in Fig. 4. For each point pi belonging to the 
extracted contour, a 3D histogram hi with bins that are uniform 
in log-polar space is computed according to

where k is the bin number and D(q, pi) is the log of the 
Euclidean distance between points q and pi . Each histogram 
uses 12 angle bins and 5 range bins for a total of 60 bins per 
histogram. The feature vector is taken as the set of computed 
histograms and forms a compact and highly discriminative 
representation of the printed calibration object’s shape.

(5)hi(k) =
|||
{
q ≠ pi ∶ D

(
q, pi

)
∈ bink

}|||

3.2.5  Print quality metric computation

Given the feature vectors H =
{
h1, h2,… , hn

}
 from the cam-

era image and H� =
{
h
1
, h

2
,… h

n�

}
 from the synthetic image, 

the print quality metric is computed by solving for a minimum 
cost feature matching formulated as:

where x
(
h, h′

)
 is an indicator function that takes value 1 

if 
(
h, h′

)
 is included in the matching and 0 otherwise, and 

C
(
h, h′

)
 is the distance between h and h′ given by

The formulation above is an instance of the weighted 
bipartite matching problem, which is solved using the 
Jonker-Volgenant algorithm [43].

3.3  Process parameter optimization using 
simulated annealing

Simulated annealing, a popular single-solution metaheuristic 
that was inspired by the annealing process in metallurgy 
[44], is used to find a high performing set of process parame-
ters. The algorithm is initialized with a set of process param-
eter settings S and a temperature hyperparameter T  that con-
trols the exploration–exploitation trade-off. Table 1 shows 
the five process parameters selected for optimization, their 
minimum and maximum values that form the boundaries of 

min
∑

(h,h�)∈H×H�

C(h, h�)x(h, h�)

(6)s.t.
∑
h�∈H�

x(h, h�) = 1 ∀h ∈ H,

∑
h∈H

x(h, h�) = 1 ∀h� ∈ H�

(7)c(h, h�) =
1

2

∑k

k=1

[
h(k) − h�(k)

]2
h(k) + h�(k)

Fig. 4  Extracting the shape 
context feature: a the log-polar 
bins for an arbitrary contour 
point and b the corresponding 
histogram
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the search space, and the standard deviation used to gener-
ate candidate solutions. All process parameters are set using 
PrusaSlicer v2.5.0. Extrusion temperature, bed temperature, 
printing speed, and fan speed were selected as they have 
been shown to have a significant impact on part quality [16, 
45, 46]. Additionally, many manufacturers of thermoplastic 
filaments provide a recommended range for these parameters 
that can be used for system validation. Extrusion multiplier 
was also selected as the amount of filament extruded by 
the nozzle can vary depending on material type and quality 
[47]. At each iteration, a candidate set of process parameter 
settings S′ is generated by sampling from a set of Gauss-
ian distributions centered on S. If a sample falls outside a 
parameter’s associated range, a new sample is drawn until 
it is within range.

The candidate settings are used to print the calibration 
object that is evaluated using the methods described in 
Sect. 3.2. If the quality of the candidate settings is higher 
than that of the current settings, they are accepted as the 
current settings of the next iteration. Otherwise, they are 
accepted according to

where f̂  is the part quality estimated using the computer 
vision evaluation and � ∼ U(0, 1) . Thus, for a sufficient T  , 
Eq. 8 allows the algorithm to escape from local minima. The 
temperature is updated according to the cooling schedule 
given by

(8)exp

⎛⎜⎜⎝

⌢

f (s) −
⌢

f (s�)

T

⎞⎟⎟⎠
> 𝜉

where t is the current iteration and � is the cooling rate. 
The starting temperature and cooling rate were determined 
experimentally to balance exploration and exploitation at 20 
and 0.01, respectively. After each iteration, a custom tool-
path script is called that utilizes the print head to remove the 
current calibration object from the print bed. As a criterion 
for terminating the algorithm, we set a budget of 30 itera-
tions that corresponds to a consumption of approximately 
30 g of filament (~ $1 USD). Although this stopping cri-
terion does not ensure convergence, the following section 
shows that the best-found settings are able to transfer to 
printing high quality parts that are more complex than the 
calibration object, which is demonstrated by printing a popu-
lar benchmark 3D model with submillimeter dimensional 
accuracy.

4  Results and discussion

The autonomous calibration system was evaluated on three 
types of thermoplastic material: PLA, PLA Pro, and PVB. 
PLA is the most popular thermoplastic used in FDM 3D 
printing due to its low melting point and good layer adhe-
sion. PLA Pro is a stronger, more durable, and more tem-
perature-resistant form of PLA that contains additional 
additives that give it improved mechanical properties and 
thermal resistance. PVB is a more recently adopted thermo-
plastic that has similar mechanical and printing properties to 
PLA and PLA Pro but can be easily post-processed with iso-
propyl alcohol for better surface finishes. Table 2 shows the 

(9)T(t + 1) = T(t) − �T(t)

Table 1  Process parameters optimized by simulated annealing, corresponding ranges, and standard deviation

Parameter Description Min Max STD

Extrusion temperature (°C) The temperature at which the material is heated inside the nozzle before extrusion 160 240 10
Bed temperature (°C) The temperature of the surface on which the part is being printed 25 100 10
Print speed (mm/s) The speed at which the nozzle tip travels along the xy-plane during material deposition 20 180 20
Fan speed (%) The speed at which the extruder fan is blowing air over the extruded material that is set 

as a percentage of the fan’s max RPM
0 100 25

Extrusion multiplier (%) Controls fine-tuning of the rate at which the material is extruded from the nozzle 80 160 20

Table 2  Manufacturer recommended settings for the thermoplastic materials used in the experiments

Recommended Settings

Material Extrusion Temp (°C) Bed Temp (°C) Print Speed (mm/s) Fan Speed Extrusion 
multiplier

OVERTURE PLA (Orange) 190–220 25–60 40–90 None None
Inland PLA Pro (Blue) 190–230 25–60 40–80 None None
Polymaker polysmooth PVB (Yellow) 190–220 25–70 40–60 None None
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recommended settings range provided by the manufacturer 
for each material. Two experimental runs were conducted for 
each material. Each experimental run was initialized with an 
extrusion temperature of 240 °C, bed temperature of 22 °C, 
print speed of 100 mm/s, extrusion multiplier of 160%, and 
fan speed of 0%, which are outside each material’s manu-
facturer’s recommended range.

Figure 5 shows the convergence plots for the experiments 
and Table 3 lists the optimized process parameter settings. 
In each experimental run, the initial settings caused various 
printing defects including over-extrusion, stringing, over-
heating, and bed adhesion issues. These defects caused sig-
nificant deviations from the expected geometry of the part, 
resulting in high initial dissimilarity scores. In the case of 

Fig. 5  Convergence plots for the 
a PLA, b PLA Pro, and c PVB 
experiments

Table 3  The best-found 
settings in each experiment and 
corresponding dissimilarity 
scores

Experiment Extrusion 
temp (°C)

Bed temp (°C) Print 
speed 
(mm/s)

Fan speed (%) Extrusion 
multi-
plier (%)

Dissimilarity score

PLA 1 220 60 30 97 105 0.0565
PLA 2 191 56 39 78 112 0.0156
PLA Pro 1 209 43 27 97 87 0.2339
PLA Pro 2 190 51 53 92 103 0.3158
PVB 1 220 43 38 89 114 0.0120
PVB 2 212 32 43 84 113 0.0079
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the first run using PLA Pro (Fig. 5b), the part detached from 
the printer bed early in the printing process, resulting in the 
only complete failure and thus the highest dissimilarity score 
across all experimental runs. Simulated annealing was highly 
effective in optimizing process parameter settings for each 
experimental run, resulting in a significant improvement in 
print quality over the initial settings. The optimized settings 
for extrusion temperature and bed temperature fell within the 
corresponding manufacturer’s recommended range in each 
run. Interestingly, the optimized print speed fell below the 
lower bound of the manufacturer’s recommended range in 
at least one run for each material. Furthermore, the opti-
mized settings for each material varied between runs, and no 
two runs yielded the same set of process parameter settings. 

The similarity in print quality despite differences in process 
parameter settings between the optimized settings for each 
material suggests the presence of many local minima close 
in fitness to the global minima [23].

To evaluate the ability of the optimized settings to trans-
fer to more complex objects, the optimized settings from 
each experimental run were used to print a 3DBenchy, a 
popular 3D model for benchmarking 3D printer configura-
tions. The quality of the settings was assessed by taking 
9 physical measurements of the printed benchmarks and 
comparing them with the expected measurements of the 
3D model. Measurements were made using a Mitutoyo 
500-196-30 digital caliper with a resolution of 0.01 mm. 
Figure 6 shows the ideal dimensions of the benchmark 3D 
model, box plots, and radar charts depicting the deviations 

Fig. 6  a The ideal measure-
ments used to evaluate the 
dimensional accuracy of the 
benchmark object, b box plots, 
and radar plots of the deviation 
from the ideal measurements 
in millimeters for the c PLA, d 
PLA Pro, and e PVB experi-
ments
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in millimeters for the experiments. All sets of process 
parameter settings were able to print a benchmark object 
with an average deviation from the 3D model of 0.047 mm, 
which is more accurate than the Creality Ender-3’s pub-
lished tolerance of 0.1–0.4 mm. All individual measure-
ment deviations were also smaller or within the published 
tolerance, demonstrating that the system is capable of opti-
mizing settings that can be used to print high quality parts 
that are more complex than the calibration object.

5  Conclusion and future work

This paper presents the first low-cost AE system for 
closed-loop calibration of FDM 3D printers that demon-
strates optimizing process parameters for printing com-
plex 3D models with submillimeter dimensional accuracy. 
Autonomous calibration is achieved through modeling 
the 3D printing process as a black box function that is 
evaluated using computer vision and optimized using the 
simulated annealing metaheuristic. Print quality is formu-
lated as a minimum cost matching between shape con-
text feature vectors extracted from a camera image of a 
calibration object and a synthetic image of the object’s 
3D model generated using computer graphics. Simulated 
annealing is used to efficiently search the parameter space 
for parameter settings that minimize the computer vision 
evaluation. The system is evaluated on three popular ther-
moplastic materials and is shown to be able to find pro-
cess parameter settings capable of printing high quality 
parts even when initialized with settings known to cause 
printing defects. Results show that the best-found settings 
are able to transfer to printing 3D models that are more 
complex than the calibration object as demonstrated by 
printing a popular benchmark with an average deviation 
in dimensional accuracy of 0.047 mm using a calibration 
budget of just 30 g of filament. The automated parameter 
tuning not only reduces the occurrence of defects in the 3D 
printing process, but also lowers the minimum user skill 
requirement for effective operation, reducing the barrier 
to entry for non-expert users.

A limitation of the system is its ability to miss geo-
metric deviations due to occlusions as a result of using 
a single, fixed camera. Future work includes extending 
the system to incorporate images from multiple viewing 
angles using a 3D printable gantry similar to [48]. A set of 
multi-view images also enables incorporating more com-
plex computer vision techniques such as a comparison of 
the 3D model with a photogrammetric 3D reconstruction 
of the printed object as in [49]. This could enable quantify-
ing not only shape-based deviations, but deviations in the 
printed surface as well.
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