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Abstract
Print conditions for thermoplastics by filament-based material extrusion (MatEx) are commonly optimized to maximize the 
elastic modulus. However, these optimizations tend to ignore the impact of thermal history that depends on the specimen 
size and print path selection. Here, we investigate the effect of size print path (raster angle and build orientation) and print 
sequence on the mechanical properties of polycarbonate (PC) and polypropylene (PP). Examination of parallel and series 
printing of flat (XY) and stand-on (YZ) orientation of Type V specimens demonstrated that to observe statistical differences in 
the mechanical response that the interlayer time between printed roads should be approximately 5 s or less. The print time for 
a single layer in XY orientation is much longer than that for a single layer in YZ orientation, so print sequence only impacts 
the mechanical response in the YZ orientation. However, the specimen size and raster angle did influence the mechanical 
properties in XY orientation due to the differences in thermal history associated with intralayer time between adjacent roads. 
Moreover, all of these effects are significantly larger when printing PC than PP. These differences between PP and PC are 
mostly attributed to the mechanism of interface consolidation (crystallization vs. glass formation), which changes the require-
ments for a strong interface between roads (crystals vs. entanglements). These results illustrate how the print times dictated 
by the print path layout impact observed mechanical properties. This work also demonstrated that the options available in 
some standards developed for traditional manufacturing will change the quantitative results when applied to 3D printed parts.

Keywords  Fused filament fabrication · Semicrystalline polymers · Polyolefin · Tensile properties

1  Introduction

Advances in machine design and processing have enabled 
3D printing (3DP) of plastics by materials extrusion (MatEx) 
to transition from rapid prototyping to production (additive 
manufacturing, AM) [1–4]. Here we use the term MatEx to 
describe thermal filament-based 3D printing as prescribed 
by the revised ISO/ASTM2900 Additive Manufacturing—
General Principles—Terminology. This printing modality 
has also been commonly referred as Fused Filament Fab-
rication (FFF) and by the Stratasys trademarked Fused 
Deposition Modeling (FDM). In addition to the potential 
advantages of 3DP for plastic manufacture associated with 
low initial investments and potential for mass customization, 
the quick turnaround from design to parts enables 3DP to 

be a key production method to respond to crises as demon-
strated with the COVID-19 pandemic [5, 6]. The increased 
variety of filaments available [7, 8], especially engineering 
plastics [9–11], has expanded potential applications for AM. 
However, one limitation [12, 13] to the widespread adapta-
tion of MatEx for manufacturing is their inferior mechani-
cal properties, which can strongly depend on the process 
[14–19]. Mechanical properties are path dependent and gen-
erally anisotropic that depends on build orientation [20]. 
The inferior mechanical properties have been attributed to 
incomplete filling (voids) and/or limitations with polymer 
diffusion to provide entanglements across interfaces between 
printed roads [21, 22]. These attributes are controlled by 
details of the printing process and thus determining how to 
optimize the mechanical properties associated with MatEx 
3D printing has been a significant thrust [23–25]. Addition-
ally, significant efforts have been made to understand layer 
bonding in MatEx 3D printing due to its importance for the 
ultimate properties of the printed part [26–28].
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As the effective weld time [29] for interface development 
between printed roads depends on the print details, the pro-
cess parameters optimized for mechanical properties may be 
limited to the examined part shape. For products, the printed 
parts need to satisfy multiple characteristics through multi-
ple-objective optimization, which tends to involve additional 
tradeoffs [30]. Recently, optimization routines have been 
applied to objects that are representative of products instead 
of mechanical test coupons [31, 32], but direct comparisons 
were not drawn between these approaches. To understand 
print processes, instrumentation, typically measuring tem-
perature, flow and pressure [21, 33, 34], provide process 
monitoring during the print that can assess potential issues 
to avoid expensive, post-print product monitoring like X-ray 
microcomputed tomography (μCT) [35, 36]. Measurement 
of flow [37, 38] and temperature [39, 40] during MatEx 3D 
printing are particularly useful as these parameters correlate 
with the ultimate properties of the printed part. These in-
line monitoring data with appropriate models can predict the 
interlayer strength [21] or be applied to polymer weld theory 
[11]. The properties can be altered through post processing 
of 3D printed parts, which relaxes residual stresses [41, 42]. 
Despite these complexities, reporting of empirical optimiza-
tion of print process parameters remains common [43–46], 
but the growing knowledge about the underlying principles 
that relate rate, temperature and pressure dependencies of 
the polymer flow during printing [21] to mechanical prop-
erties would suggest that the optimization should be object 
dependent. This object dependence is consistent with recent 
comparisons of standard test methods, ASTM D638-14 vs. 
UNE 116005 [47] and ASTM D638 vs. ASTEM D3039 
[20], as well as specimen size with ASTM D638 [48]. The 
measured properties depend on standard selection, but phys-
ical insights into these observations have been limited.

From a molecular perspective, the bonding strength at the 
interface between adjacent roads is related to the local chain 
conformation that depends on the local thermal and flow his-
tory. The development of interfacial strength can be related 
to the welding of the printed roads, which should effectively 
be mechanistically similar to conventional welding where 
(1) surface contact, (2) surface rearrangement, (3) surface 
wetting, (4) chain diffusion, and (5) chain relaxation [49] 
define the weld quality. Typically, the welding quality relies 
on polymer diffusion across the interface to form bridging 
entanglements, which depends on the geometry of adjacent 
printed roads [50, 51] and the build (layer) orientation [52]. 
The overall print layout can affect the local thermal history, 
which determines the effective diffusion time [53]. Thus, 
printing multiple parts simultaneously can lead to changes 
in the mechanical properties as increased cooling between 
printed layers (interlayer time) leads to less effective poly-
mer diffusion across interlayer to deteriorate mechanical 
properties [54]. The print path can significantly impact the 

mechanical properties of printed parts [55]. With the com-
mon optimization of print parameters for MatEx 3D printing 
based on objects that differ from the printed product, it is 
constructive to understand the origin and extent of sensi-
tivity of mechanical properties to the object shape and the 
overall print path. Here, two standard ASTM D638 tensile 
bar sizes (Type IV and V) along with parallel and series 
printing of the specimens were examined for polycarbon-
ate (PC) and polypropylene (PP). These plastics have been 
previously demonstrated for 3DP [7, 56–59], including as 
composites [60, 61], with PC exhibiting properties for poten-
tial engineering applications, while PP offers potential for 
a much lower cost. The elastic modulus was independent 
of these examined print characteristics, but the failure was 
dependent on the specimen size. Based on further investiga-
tion into raster angle and build orientation, these differences 
were attributed to the efficacy of the welding quality that 
depends on the time between both djacent printed roads, 
both interlayer and interlayer. If the time is sufficiently large 
between the printing of these adjacent roads, the mechani-
cal response is effectively independent of specimen size and 
print sequence. The size effect on mechanical properties is 
significantly weaker for PP as the weld strength does not 
require large diffusion for entanglement as crystallization 
between adjacent roads strengthens the interface. These 
results illustrate that the sensitivity of the mechanical prop-
erties to details of the part size and shape, build orientation, 
and print sequence is related to the thermal history of adja-
cent printed roads.

2 � Experimental procedure

Filaments of amorphous bisphenol-A polycarbonate (PC, 
Makrolon 3208, Covestro) were fabricated using a HAKKE 
single screw extruder (Rheomex 252p) and drawn by a take-
up wheel to a diameter of 1.7 ± 0.03 mm. Additional details 
about the filament fabrication are included in the Supple-
mentary Information (SI). Filaments of semi-crystalline 
polypropylene (PP) with diameter 1.75 ± 0.05 mm were 
acquired from Verbatim, Inc. (P/N 55950). The commercial 
PP filament contained 0.1 wt% bis- 2 ethylhexyl phthalate 
(DEHP), 0.1 wt% benzyl butyl phthalate (BBP), 0.1 wt% 
dibutyl phthalate (DBP), and 0.1 wt% diisobutyl phthalate 
(DIBP), per specification from the manufacturer, to improve 
the flow properties.

ASTM D638 type IV and type V tensile bars were printed 
with a Roboze One + 400 Xtreme printer These specimens 
differ in the width and length of the dogbone shape as illus-
trated in Fig. 1a, while a common thickness (2 mm) was 
used. The ASTM tensile specimen were printed using the 
following parameters: 0.25 mm layer height, 0.48 mm extru-
sion width, 20 mm/s printing speed, 100% infill, and 0/90° 
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rectilinear infill pattern unless otherwise noted. Full explicit 
printing parameters are provided in the Supplementary 
Information (SI). These print conditions were determined 
from prior experience with PC [62] and the manufacturer 
guidance for PP along with the understanding of the thermal 
properties of these polymers as described in the SI. Five 
specimens were printed for each condition as suggested by 
ASTM D638. The use of five samples provides statistical 
significance to the properties reported and illustrates the 
reproducibility of the print under the conditions examined. 
Two distinct printing sequences (series and parallel) were 
used to understand the effect of thermal history. For series 
printing, all specimens have identical thermal histories, 
while for parallel printing, different interlayer thermal his-
tories occur, especially for the first and the last specimen 
printed. Printing in series involved fully printing one speci-
men before moving to the next as shown in Fig. 1b, while 
printing in parallel involved printing five tensile bars simul-
taneously with the first layer for all five specimens com-
pleted before the 2nd layer began to print (Fig. 1c). Two 
build orientations, stand-on (YZ) and flat (XY) were used 
as shown schematically in Fig. 1d.

The tensile properties of the printed ASTM D638 speci-
mens were measured using MTS 50kN loading frame system 
(Criterion Model 43) with 5kN load cell and video extensom-
eter. The specimens were stretched at a constant displacement 
rate corresponding to an engineering strain rate of 1min−1 until 
failure, which is consistent with the requirements of ASTM 
D638. All experiments were performed at room temperature. 
The data are reported in terms of engineering strain 
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extensometer that measured the initial displacement, whereas 
engineering stress–strain are used for all other properties 
reported due to the limited field of view for the video exten-
someter. The tensile data were also used to determine the 
toughness from the area under the stress–strain curve prior to 
failure as U
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�d� . The fracture surfaces were examined 

by scanning electron microscopy (SEM, Thermoscientific 
Apereo S) with an accelerating voltage of 1 kV and a current 
of 25 pA.

Fig. 1   a Illustration of the sizes of ASTM D638 type IV and type 
V tensile bars. b Schematic showing printing specimens in series. 
Each specimen is printed from start to finish before the next speci-

men brings to print. c Printing in parallel where the nth layer for all 
5 specimens completes before the n + 1 layer begins. d Schematic for 
flat and stand-on print orientations
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3 � Results and discussion

The tensile properties of 3D printed polymers are com-
monly measured following standards, such as ASTM D638, 
which were developed for traditional polymer manufacture. 
As shown in Fig. 2a, the PC exhibits brittle failure when 
printed in a type IV dogbone at raster angles of 0°/90°. This 
is counter to injection molded PC, which exhibits ductile 
failure [63], but consistent with brittle fracture observed 
with other 3D printed PC dependent on build orientation 
and testing rate [57]. However, decreasing the specimen size 
to type V with the same print conditions leads to ductile 
failure as shown in Fig. 2b. This difference does not appear 
to be due to the interlayer thermal history as tensile behav-
ior is similar for the type V printed in parallel as shown in 
Fig. 2c. This change from series to parallel alters the thermal 

Fig. 2   Stress–strain response of PC tensile bars printed in flat orienta-
tion with alternating 0°/90° raster angle using a Type IV in series, b 
Type V in series and c Type V in parallel. The different color lines 
correspond to individual specimens to illustrate the variance in the 
mechanical response of these printed parts. All type V samples exhib-

ited ductile-like failure, while type IV samples showed brittle failure. 
d Toughness assessed from the area under the stress–strain curve 
depends strongly on the size of the PC tensile bar. The error bars rep-
resent the standard error (±  �√

n

 ) associated with the five printed speci-
mens for each case

Table 1   Estimated printing time of each layer (interlayer time) for 
different sequence and build orientation combinations

Reported interlayer time for stand-on orientation is associated with 
the printing path in the gauge region
Note: Estimated from Simplify 3D software version 4.1.2

Specimen Build orientation Sequence Printing time 
of single layer 
(s)

Type IV Flat Parallel 982
Type IV Flat Series 195
Type V Flat Parallel 330
Type V Flat Series 67.5
Type V Stand-on Parallel 4.75
Type V Stand-on Series 0.79
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history between layers (see Table 1). As an aside, thermal 
annealing post processing of the type IV specimens does 
not produce ductility approaching that of the type V speci-
mens (additional information provided in SI). Despite the 
significant differences in the stress–strain behavior of type 
IV and type V specimens, the elastic modulus of the printed 
PC is approximately 1.8 GPa, irrespective of the print his-
tory. A prior comparison of type I and type IV printed PLA 
indicated that the optimized ultimate tensile strength (UTS) 
was not significantly influenced by the selection, but the type 
IV geometry tends to produce higher UTS over the full print 
parameter space [48]. Examination of the stress at failure 
indicates a slightly larger UTS with the type V geometry, 
which is consistent with the prior comparison with PLA in 
terms of the specimen size effect. Yielding for the specimen 
printed with the type V geometry significantly increases the 

toughness of the printed PC (Fig. 2d). Toughness is more 
sensitive to the appearance of the tensile curves than elastic 
modulus or UTS, which are more common metrics to quan-
tify the properties of printed plastics. 

To assess the universality of this behavior, a semi-crys-
talline polymer, PP, was printed using the same geometries 
and print paths. Unlike PC, PP consistently exhibited ductile 
failure (Fig. 3a–c) with strain hardening after yielding. This 
strain hardening is attributed to the extension of tie chains 
between PP crystals [64]. The elastic modulus and yield 
stress are both effectively independent of the print details for 
the three cases examined. However, the type IV specimens 
tend to fail at slightly lower tensile strains. Figure 3d illus-
trates this difference in terms of the toughness of the printed 
parts, where the Type IV geometry leads to a lower tough-
ness despite no statistical difference in the elastic modulus 

Fig. 3   Stress–strain response of PP tensile bars printed in flat orienta-
tion with alternating 0°/90° raster angle using a Type IV in series, b 
Type V in series and c Type V in parallel. The different color lines 
correspond to distinct individual specimens printed under the same 
conditions. All PP tensile bar showed ductile failure. Prior to strain 

hardening, all samples exhibit a yield stress. d Toughness of PP ten-
sile bars. All type V samples absorb more energy prior to failure 
compared with type IV samples. The average of five specimens alone 
with standard error (±  �√

n

)
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with the different tensile geometries. Table 2 summarizes 
the mechanical properties obtained for the PP and PC as a 
function of the specimen geometry and print sequence for 
the flat orientation with alternating 0°/90° raster angles. The 
primary differences in properties for the different print con-
ditions are in the toughness and strain to break. 

The details of the print path are important to understand 
these size effects. Some mechanical anisotropy is built into 
the samples from the build orientation of the printed roads 
relative to the direction of the applied stress. This internal 
anisotropy has been reported to be particularly evident for 
fracture [65]. For the tensile specimens, the thickness, build 
orientation (flat, XY) and general print conditions are iden-
tical, but the width in the gauge region differs by nearly a 
factor of 2 between Type IV and V specimens. Although 
the nominal print fill is parallel (0°) for the odd layers and 
perpendicular (90°) for the even layers, the printed perimeter 
and turns near the printed perimeter leads to > 50% parallel 
roads (see Table 3). To test if this difference in the raster 
angle details is responsible for the different fracture behav-
ior, unidirectional (0° or 90°) builds were investigated with 
both geometries. Figure 4a illustrates the ductile failure of 
Type V specimens of PC with the 0° raster angle. The strain 
at break was > 0.75 except one specimen, which is similar 

to the best performing PC specimens in Fig. 3, but there is 
a minor decrease in Young’s modulus (1.78 ± 0.05 GPa). 
Additionally, failure tends to occur near the edge of the 
gauge region where the width of the print increases (images 
of all failed specimens are shown in the SI). This locus for 
the failure is likely associated with defects from the discrete 
step size associated with the print. Conversely Fig. 4b illus-
trates the stress–strain curves for the Type V tensile bars 
printed at 90° raster angle. These specimens generally exhib-
ited brittle fracture with no yield point, but the brittle failure 
tended to occur in the clamp region. This tendency for fail-
ure in the wider region of the tensile bar can be explained by 
the difference of intralayer cooling time in between gauge 
and clamp region, as suggested by Fig. 5, which leads to 
stronger welds between roads within the gauge region. 
Nonetheless, the elastic modulus of the PC printed with 90° 
raster angle was slightly higher (1.91 ± 0.08 GPa). Averag-
ing of the elastic modulus for the different build orientations 
is consistent with the results obtained for the 0°/90° raster 
angle shown previously. Figure 4c shows the stress–strain 
behavior of Type IV PC specimens with 0° raster angle. 
The tensile stress decreases in discrete steps after an appar-
ent yield point. This behavior is associated with intralayer 
failure of weld lines [66]. The larger specimen size extends 
the cooling time between adjacent intralayer roads to lead 
to weaker weld lines for Type IV than Type V specimens 
with 0° raster angle. The Type IV PC specimens printed at 
90° raster angle exhibits brittle failure in all cases (Fig. 4d). 
These differences in the stress–strain behavior with fully 
oriented roads is consistent changes in the intralayer cool-
ing time based on size and raster angle as summarized in 
Table 4.   

Figure 6 illustrates the fracture surfaces of the printed 
PC as a function of the raster angle and the specimen type. 
The first observation is that there are significant voids in the 
printed samples, but these voids do not correlate directly 
with brittle vs. ductile failure. The specimens with the larg-
est strain at break appear to contain more voids (Fig. 6a), 

Table 2   Summary of tensile properties as a function of print conditions with flat (XY) orientation and alternating 0°/90° raster angle

Note: Properties reported from five samples for each condition with the mean (μ) and standard error of mean (SEM) reported

Polymer Sequence Specimen Young’s modulus 
(MPa)

Yield stress (MPa) Toughness (106 J/m3) Stress at break (MPa)

PC Series Type IV 1861 ± 31 N/A 1.0 ± 0.1 46.5 ± 2.3
PC Series Type V 1891 ± 16 59.4 ± 2.0 16.5 ± 7.2 50.1 ± 1.7
PC Parallel Type V 1819 ± 35 62.4 ± 0.3 21.1 ± 6.6 48.5 ± 2.9
PP Series Type IV 266 ± 12 11.8 ± 0.6 59.9 ± 4.0 18.0 ± 0.7
PP Series Type V 229 ± 15 12.3 ± 0.6 100.7 ± 5.1 25.8 ± 0.7
PP Parallel Type V 243 ± 10 12.3 ± 0.1 90.2 ± 8.0 23.4 ± 1.4

Table 3   Estimated fraction of printed roads with 0° raster angle in the 
cross-section of the gauge region (flat orientation)

Note: Calculation based on Simplify 3D software version 4.1.2

Size Raster angle Number of 0° 
roads in cross-
section

Relative area of gauge 
cross-section with 0° 
roads (%)

Type IV 0°/90° 60 53.5
Type IV 0° 104 92.7
Type IV 90° 16 14.3
Type V 0°/90° 36 60.6
Type V 0° 56 94.2
Type V 90° 16 26.9
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Fig. 4   Stress–strain response of PC when printed at only a 0° and b 90° infill with type V geometry and printed at c 0° and d 90° infill with type 
IV geometry in flat (XY) build orientation. For c, the printed lines separate on deformation, which leads to unusual stress–strain response

Fig. 5   Schematic illustration of expected intralayer thermal history dependence on size of specimen, location, and raster angle for flat build ori-
entation. The maximum high temperature possible is that of the hotend and the minimum low temperature is that of the chamber
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while the least deformation occurred in the specimen with 
the least voids visible (Fig. 6d). The fracture surfaces appear 
rougher for the specimens that exhibited yielding than those 
that failed at low strain. Specimens that exhibit ductile fail-
ure (Fig. 6a, b) contain larger void sizes after failure than 
samples that exhibit brittle failure. This behavior is likely 
associated with Poisson’s ratio on stretching which narrows 
the polymer between the voids. These results indicate that 
large voids are not the primary source for the brittle behavior 
of 3D printed plastics at least for the case of PC under the 
print conditions examined in this work.

These build orientation effects are significantly sup-
pressed with PP. As shown in Fig. 7a and b, all specimens 
failed after more than 400% elongation. This limited effect 
of the raster angle of the printed roads is consistent with the 
relatively minor size effect on the full stress–strain behavior 
when comparing Type IV and V specimens (Fig. 3). The 
fracture surfaces in Fig. 7 illustrate artifacts from the printed 
roads are not as prominent in the PP specimens. These 

micrographs point towards an improved interface between 
the printed roads as well as improved flow prior to solidifica-
tion that minimizes voids. This is likely partially attributable 
to the lower solidification temperature of PP (88 °C) than 
PC (143 °C), but more importantly, crystallization across 
the interface between roads provides a robust mechanical 
bond without requiring significant diffusion for entangle-
ments as in the case of PC and other glassy polymers [67]. 
The strength of a weld for glassy polymers depends directly 
on diffusion and the ability to form entanglements [68]. 
The lack of entanglements does not impact the mechanical 
properties of polypropylene significantly due to the effective 
crosslinking of chains by crystallization [69]. This mecha-
nistic difference means that the conditional requirements for 
effective welding in 3D printing will be different for glassy 
and crystalline polymers.

Prior work has demonstrated the importance of interlayer 
time on the mechanical properties of 3D printed ABS, especially 
when printed in the stand-on (YZ) orientation [54]. This result is 
qualitatively counter to the results reported here. However, the 
effective time between printed layers will depend on the build ori-
entation and sequence. To shorten the interlayer time, specimens 
of both PC and PP were printed in the stand-on (YZ) orientation 
in both series and parallel. The short interlayer time in the gauge 
region (see Table 1) leads to good welding between layers, so 
that the PC printed in series in the stand-on orientation exhib-
its a similar Young’s modulus compared to specimens printed 
with a flat orientation (Fig. 8a). These specimens are more brittle 
than those printed with 90° raster angle only in a flat orientation, 
which is likely associated with the perimeter in the flat speci-
mens. However, when the stand-on orientation is used in parallel 
for PC, there is a substantial decrease in the modulus and the 

Table 4   Estimated cooling time of intralayer adjacent printed roads 
within gauge region for different size and raster angle for flat build 
orientation prints

Note: Estimate based on one axis motion only

Size Raster angle Maximum cooling 
time (s)

Minimum 
cooling time 
(s)

Type IV 0° 5.75 4.5
Type IV 90° 0.3 0
Type V 0° 3.17 2.79
Type V 90° 0.16 0

Fig. 6   Tensile fracture surface 
of PC printed in flat orientation 
with a 0° and b 90° raster angle 
with type V geometry where 
some yielding was observed and 
c 0° and d 90° infill with type 
IV geometry. For c, the fracture 
propagated along with the road 
interfaces (parallel to deforma-
tion). The white arrow indicates 
the interlayer direction, while 
a bracket is used to show the 
roads associated with the 
printed perimeter. More details 
about the raster arrangement are 
provided SI
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stress at break is less than one-quarter of the specimens printed in 
series in stand-on orientation. This behavior is consistent with the 
change in interlayer time and the time scales where the intralayer 
(Table 4) time impacts the mechanical response. Similar to the 
flat orientation, the sequence (series vs. parallel) for printing PP 
in stand-on orientation does not significantly alter the mechanical 
response with a small decrease in the strain at break. We attribute 
this difference in behavior between PC and PP to the reinforce-
ment of crystallites at interfaces between printed roads with PP. 
Table 5 summarizes the properties of the specimens printed with 
stand-on orientation. These results suggest that crystallinity leads 
to decreased sensitivity to the details of the print (size, build ori-
entation, sequence), but crystallization tends to lead to challenges 
in dimensional accuracy [8, 70]. 

4 � Conclusions

The process path dependence of the mechanical response 
of MatEx 3D printed PC and PP was systematically exam-
ined. For amorphous PC, the effect of printing multiple 

samples in parallel was dependent on the build orientation. 
For the flat orientation, there was no statistical change 
in the mechanical properties between parallel and series 
printing but the selection of the test coupon size, which 
is associated with intralayer cooling time, influenced the 
specimen failure mechanism. For stand-on orientation, 
there was a difference in the mechanical performance 
between parallel and series printing due to the short inter-
layer time in the gauge region of interest. These effects 
can be explained in terms of the thermal history of both 
interlayer and intralayer printed roads that determines the 
weld strength between roads and can influence the failure 
mode. The significance of these selections decreases with 
PP, where there were limited differences in the mechanical 
response irrespective of sequence, size, and build orienta-
tion examined. This insensitivity to processing parameters 
for PP is attributed to its ability to form strong weld lines 
through crystallization across printed roads without the 
diffusion requirements for entanglements which strengthen 
the glassy PC. The selection of the test coupon has limited 
impact on the elastic modulus, but influences yielding and 

Fig. 7   Stress–strain response of PP when printed at only a 0° and b 90° infill with type V geometry. Associated fracture surfaces from SEM 
based on c 0° and d 90° infill. Yielding of the PP during tensile testing obfuscates the interface between the perimeter and primary infill
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large strain behavior, so care should be taken in appropri-
ately selecting print coupon size and build orientation for 
3D printed plastics mechanical data use in design. Addi-
tionally, these results illustrate that only comparison of 

elastic modulus of the printed parts does not always pro-
vide an accurate representation of the differences in the 
mechanical response.

Fig. 8   Stress–strain response of PC printed in a series or b parallel and PP printed in c series or d parallel using stand-on orientation with 0°/90° 
raster angle. 5 specimens are shown for each stress–strain curve as indicated by the different color curves

Table 5   Summary of tensile properties of PC and PP with stand-on orientation as a function of print conditions

Polymer Sequence Specimen Young’s modulus 
(MPa)

Yield stress (MPa) Toughness (106 J/m3) Stress at break (MPa)

PC Series Type V 1793 ± 63 N/A 0.7 ± 0.4 30.4 ± 3.2
PC Parallel Type V 1230 ± 72 N/A 0.02 ± 0.01 7.4 ± 0.7
PP Series Type V 221 ± 10 9.6 ± 0.3 51.3 ± 5.9 11.7 ± 0.9
PP Parallel Type V 265 ± 25 11.1 ± 0.4 60.6 ± 5.8 11.4 ± 1.0
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