Skip to main content

Advertisement

Log in

Influence of Copper Addition on Microstructure, Mechanical and Thermal Properties of Al–12.6%Zn–Mg Alloys

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

Al–Zn–Mg–Cu alloys have been prepared using the gravity die-casting process. The influence of copper addition on microstructure, mechanical and thermal properties are studied. The experimental alloys were prepared using 5754 alloys, Al–Cu alloys, and pure zinc (solid form). Alloys are mechanically stirred for uniform distributions of alloying elements and precipitate phases. Four alloys with different copper weight percentages (0.02 wt%, 0.89 wt%, 1.57 wt%, and 3.34 wt%) were prepared. The α-Al and η (MgZn2) phases are observed in as-cast Al–Zn–Mg alloy. The addition of copper in Al–Zn–Mg alloys formed a θ phase (Al2Cu). Micro-Vickers hardness of Al–Zn–Mg–Cu alloy increased (from 116 HV1 to 133 HV1) with copper addition (0.02–1.57 wt%) at firstly due to the formation of θ phase (Al2Cu). Then, micro-Vickers hardness decreases due to high amounts of precipitates. Copper addition reduces the melting point (623–612 °C) and precipitation temperature (472–466 °C) of aluminum alloy. Al–Zn–Mg alloys have tensile strength of 422 MPa due to precipitates phase formation of η and T phases, solid solution strengthening (zinc and magnesium). Copper addition increases tensile strength due to the formation of θ phases. After achieving a strength of 486 MPa at an elongation of 3.72% (1.57 wt% Cu), tensile strength reduces due to a higher amount of precipitates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. L. Liu, Y.-Y. Jia, J.-T. Jiang, B. Zhang, G.-A. Li, W.-Z. Shao, L. Zhen, The effect of Cu and Sc on the localized corrosion resistance of Al–Zn–Mg–X alloys. J. Alloys Compd. 799, 1–14 (2019). https://doi.org/10.1016/j.jallcom.2019.05.189

    Article  CAS  Google Scholar 

  2. E.A. Starke, J.T. Staley, Application of modern aluminum alloys to aircraft. Prog. Aerosp. Sci. 32, 131–172 (1996). https://doi.org/10.1016/0376-0421(95)00004-6

    Article  Google Scholar 

  3. G. Wu, J. Zhao, Y. Peng, X. Tao, Y. Liu, Effect of pouring temperature on microstructure, tensile properties and hot-tearing susceptibility of a die-cast Al–Zn–Mg–Cu alloy. Int. J. Met. 17, 455–465 (2023). https://doi.org/10.1007/s40962-022-00782-0

    Article  CAS  Google Scholar 

  4. S. Salarieh, S. Nourouzi, H. Jamshidi Aval, An investigation on the microstructure and mechanical properties of Al–Zn–Mg–Cu/Ti composite produced by compocasting. Int. J. Met. 16, 1397–1414 (2022). https://doi.org/10.1007/s40962-021-00698-1

    Article  CAS  Google Scholar 

  5. R. Ghiaasiaan, S. Shankar, Effect of alloy composition on microstructure and tensile properties of net-shaped castings of Al–Zn–Mg–Cu alloys. Int. J. Met. 13, 300–310 (2019). https://doi.org/10.1007/s40962-018-0254-z

    Article  CAS  Google Scholar 

  6. Y. Chen, Z. Liu, S. Liu, H. Guo, J. Liu, X. Sheng, Effect of Cu on the hot tearing susceptibility of Al–6Zn–2.5Mg–xCu alloy. Int. J. Met. 15, 130–140 (2021). https://doi.org/10.1007/s40962-020-00438-x

    Article  CAS  Google Scholar 

  7. Y.-C. Chiu, K.-T. Du, H.-Y. Bor, G.-H. Liu, S.-L. Lee, The effects of Cu, Zn and Zr on the solution temperature and quenching sensitivity of Al–Zn–Mg–Cu alloys. Mater. Chem. Phys. 247, 122853 (2020). https://doi.org/10.1016/j.matchemphys.2020.122853

    Article  CAS  Google Scholar 

  8. X.-M. Li, M.J. Starink, Effect of compositional variations on characteristics of coarse intermetallic particles in overaged 7000 aluminium alloys. Mater. Sci. Technol. 17, 1324–1328 (2001). https://doi.org/10.1179/026708301101509449

    Article  CAS  Google Scholar 

  9. B. Zhang, P.K. Liaw, J. Brechtl, J. Ren, X. Guo, Y. Zhang, Effects of Cu and Zn on microstructures and mechanical behavior of the medium-entropy aluminum alloy. J. Alloys Compd. 820, 153092 (2020). https://doi.org/10.1016/j.jallcom.2019.153092

    Article  CAS  Google Scholar 

  10. Y. Liao, X. Han, M. Zeng, M. Jin, Influence of Cu on microstructure and tensile properties of 7XXX series aluminum alloy. Mater. Des. 66, 581–586 (2015). https://doi.org/10.1016/j.matdes.2014.05.003

    Article  CAS  Google Scholar 

  11. Y. Alemdağ, T. Savaşkan, Mechanical and tribological properties of Al–40Zn–Cu alloys. Tribol. Int. 42, 176–182 (2009). https://doi.org/10.1016/j.triboint.2008.04.008

    Article  CAS  Google Scholar 

  12. H. Li, F. Cao, S. Guo, Y. Jia, D. Zhang, Z. Liu, P. Wang, S. Scudino, J. Sun, Effects of Mg and Cu on microstructures and properties of spray-deposited Al–Zn–Mg–Cu alloys. J. Alloys Compd. 719, 89–96 (2017). https://doi.org/10.1016/j.jallcom.2017.05.101

    Article  CAS  Google Scholar 

  13. L.-M. Wu, W.-H. Wang, Y.-F. Hsu, S. Trong, Effects of homogenization treatment on recrystallization behavior and dispersoid distribution in an Al–Zn–Mg–Sc–Zr alloy. J. Alloys Compd. 456, 163–169 (2008). https://doi.org/10.1016/j.jallcom.2007.02.054

    Article  CAS  Google Scholar 

  14. C. Mondal, A.K. Mukhopadhyay, On the nature of T(Al2Mg3Zn3) and S(Al2CuMg) phases present in as-cast and annealed 7055 aluminum alloy. Mater. Sci. Eng. A 391, 367–376 (2005). https://doi.org/10.1016/j.msea.2004.09.013

    Article  CAS  Google Scholar 

  15. F. Yan, W. Yang, S. Ji, Z. Fan, Effect of solutionising and ageing on the microstructure and mechanical properties of a high strength die-cast Al–Mg–Zn–Si alloy. Mater. Chem. Phys. 167, 88–96 (2015). https://doi.org/10.1016/j.matchemphys.2015.10.014

    Article  CAS  Google Scholar 

  16. S.-S. Shin, K.-M. Lim, I.-M. Park, Characteristics and microstructure of newly designed Al–Zn-based alloys for the die-casting process. J. Alloys Compd. 671, 517–526 (2016). https://doi.org/10.1016/j.jallcom.2016.02.127

    Article  CAS  Google Scholar 

  17. L. Li, S. Ji, Q. Zhu, Y. Wang, X. Dong, W. Yang, S. Midson, Y. Kang, Effect of Zn concentration on the microstructure and mechanical properties of Al–Mg–Si–Zn alloys processed by gravity die casting. Metall. Mater. Trans. A 49, 3247–3256 (2018). https://doi.org/10.1007/s11661-018-4684-2

    Article  CAS  Google Scholar 

  18. Y. Zhang, R. Li, P. Chen, X. Li, Z. Liu, Microstructural evolution of Al2Cu phase and mechanical properties of the large-scale Al alloy components under different consecutive manufacturing processes. J. Alloys Compd. 808, 151634 (2019). https://doi.org/10.1016/j.jallcom.2019.07.346

    Article  CAS  Google Scholar 

  19. J.L. García-Hernández, C.G. Garay-Reyes, I.K. Gómez-Barraza, M.A. Ruiz-Esparza-Rodríguez, E.J. Gutiérrez-Castañeda, I. Estrada-Guel, M.C. Maldonado-Orozco, R. Martínez-Sánchez, Influence of plastic deformation and Cu/Mg ratio on the strengthening mechanisms and precipitation behavior of AA2024 aluminum alloys. J. Mater. Res. Technol. 8, 5471–5475 (2019). https://doi.org/10.1016/j.jmrt.2019.09.015

    Article  CAS  Google Scholar 

  20. A. Ghosh, M. Ghosh, A.H. Seikh, N.H. Alharthi, Phase transformation and dispersoid evolution for Al–Zn–Mg–Cu alloy containing Sn during homogenisation. J. Mater. Res. Technol. 9, 1–12 (2020). https://doi.org/10.1016/j.jmrt.2019.08.055

    Article  CAS  Google Scholar 

  21. A. Woźnicki, B. Leszczyńska-Madej, G. Włoch, J. Grzyb, J. Madura, D. Leśniak, Homogenization of 7075 and 7049 aluminium alloys intended for extrusion welding. Metals 11, 338 (2021). https://doi.org/10.3390/met11020338

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikunj Patel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, N., Manani, S. & Pradhan, A.K. Influence of Copper Addition on Microstructure, Mechanical and Thermal Properties of Al–12.6%Zn–Mg Alloys. Inter Metalcast (2023). https://doi.org/10.1007/s40962-023-01202-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40962-023-01202-7

Keywords

Navigation