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Abstract

This paper proposes a methodological framework to
develop a data-driven process control using pure industrial
production data from a cast iron foundry, despite the
limitation of complete casting traceability. The aim is to
help sand foundries to produce good castings. A reference
foundry, which produces mainly automotive and oven parts
with automatic sand molding and pouring machines, was
selected. Past data, where only good castings were pro-
duced, were extracted from the database to determine
parameter control limits (upper and lower control limits)
with the aid of statistical approach. To identify critical
process parameters associated with casting defects, pro-
cess data from the zero and high scrap production batches
were systematically compared. This method clearly iden-
tified unstable parameters without exact synchronization

between inline and part quality data. Molding sand mois-
ture, temperature and compactability, liquidus temperature
of the melt, phosphorus content, carbon equivalent and
pouring temperature were found to be the critical param-
eters to be stabilized. Finally, a regression model for
predicting and controlling of molding sand moisture and
liquidus temperature of the melt was created. The deter-
mined boundaries and the models were helpful for the
foundry in assisting ongoing production control and cor-
rection of process inputs to achieve target casting quality.

Keywords: cast iron, sand casting, casting defects,
process data, regression analysis, process control

Introduction

In recent years, several foundries have been running their

production process with modern machinery together with

inline sensors, enabling continuous process monitoring and

control. Consequently, a decent amount of casting process

data has been generated and collected by foundries, espe-

cially those with automatic molding and pouring processes.

The aim has always been to gain useful information out of

these data to improve existing process control and to avoid

casting defects. Despite the available data, many sand
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foundries are still faced with high rate of defective parts

and are looking for a robust solution from the data.

In the past, several approaches for analyzing the reason of

casting defects were introduced such as cause–effect dia-

grams and statistical approaches.1,2 In addition, many

works presented the use of machine learning methods, e.g.

artificial neural network, to find the cause and predict the

occurrence of casting defects.3,4 In general, machine

learning approaches require large amount of process data,

while some foundries try to reduce measurement costs,

resulting in insufficient data. In addition, to develop a

robust process control in industrial practice, not only the

causal parameters should be identified but also what in the

process should be adjusted and by how much. In other

words, some target functions for these parameters and an

appropriate operating range should be determined. The

problem is that most of these data-based approaches

require a proper experimental setup for accurate links

between inline data and quality data of the outgoing cast-

ings, which is not currently the case for most sand foun-

dries. There have been several published works and

commercial tools, proposing casting traceability solution

for foundries. Vedel-Smith et al. introduced a direct part

marking during the molding process using reconfigurable

pin-type tooling integrated into the pattern-plate.5 Simi-

larly, DISA TAG (Trace and Guidance), a pattern-inte-

grated automatic marking system with rotating dials, was

introduced by Norican Group.6 In addition, SinterCast

introduced SinterCast Cast Tracker which uses labeling of

cores, combined with RFID tag of each flask to provide

complete part traceability.7 However, due to cost reasons,

not all sand foundries are convinced to invest further in

implementing a fully traceable process. In our view, there

should be an optional solution for these foundries to make

use of their collected data. The authors, therefore, propose

a new methodology to identify critical process parameters

and develop a robust process control for sand foundries that

have been collecting process data but without full

traceability.

Materials and Methods

In this work, a large set of green sand casting production

data collected during the years 2018–2021 was provided by

Ortrander Eisenhütte GmbH, one of the most modern sand

foundries for machine-molded iron castings in Europe. The

foundry produces various cast iron products (part weight of

up to 35 kg) such as automotive and stove parts with an

annual production capacity of around 23,000 tons. The cast

materials are gray cast iron (GJL), vermicular cast iron

(GJV) and nodular cast iron (GJS). The annual rejection

rate was 5–7%. The typical casting defects found were gas

bubbles, sand inclusions, porosities, cold run and broken

molds. The inline process data (molding, melting and

pouring parameters) were recorded with the date and time

of measurement and the name of the corresponding cast

product. The date of pouring (but not the time of pouring)

are annotated on each casting. The number of defective

parts per day for each cast product was documented with

information on the defect group. Similar to most sand

foundries, all these collected data do not allow an exact

link between a specific piece of part and its inline data. For

instance, it is not possible to point out the actual value of

molding sand properties, chemical composition or pouring

temperature of a found defective part. With these condi-

tions, it is not feasible either to obtain quantifiable corre-

lations in the data or to model the process directly with

statistics or machine learning approaches, and this is where

our approach aims to assist. Before going through our

method, the authors first introduce the casting process and

the parameters that the foundry collects.

Description of Casting Process and Collected
Data

The foundry produces cast products using the green sand

casting process with automatic vertical molding and

pouring lines. The production process starts with the

preparation of molding sand and molten iron. The molding

sand is prepared by two sand mixers, each of which sup-

plies approximately 4 tons of molding sand to all three

molding machines every 2 minutes via a conveyor, as

shown in Figure 1. The main compositions of molding sand

mixture are silica sand, bentonite, water and sea coal. The

molten iron is prepared with four induction melting fur-

naces, each with a capacity of 6 tons, treated with mag-

nesium if required and then transported by forklift to feed

the three induction-heated pouring furnaces. In the molding

machines, the prepared molding sand is blown into a ver-

tical molding chamber and pressed through two patterns to

form a piece of mold with two different side shapes. The

finished mold is then pushed out of the chamber. This

process step is repeated with a cycle time of 15–20 seconds

(depending on the weight and the number of castings in the

mold), forming a continuous chain of frameless molds that

are transported on a conveyor to the pouring furnace. The

molds are then filled with molten iron from the pouring

furnace and moved further along the conveyor at the same

speed as the molding process. From this stage, solidifica-

tion and cooling of the castings take place. At the end of

molding line, the castings are separated from the sand

molds on the shakeout conveyor (shakeout process) and

cleaned with shot blast machines. The used sand from the

shakeout process is transported to a sand recycling plant for

reuse in the future production with recycling rate of 99%.

Finally, the quality of each outgoing cast part is proved by

means of visual inspection, and the number of defective

parts is documented. Every half an hour, a piece of the cast

part is randomly taken for mechanical property testing.
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For process control purpose, continuous measurement of

the process parameters listed in Table 1 is carried out by

various sensors, machines and measuring devices. Several

molding sand parameters are measured inline by the sand

mixers, molding sand testers, molding machines and offline

by sand laboratory equipment. The chemical composition

and other properties of the melt are inspected by spec-

trometer and thermal analysis (TA). All these data are

stored in a foundry database.

In the next part, the authors describe in detail our proposed

methodological framework using the collected data. The

framework consists of three main steps; 1) determination of

parameter control boundaries, 2) determination of critical

process parameters and 3) creation of parameter control

models.

Determination of Parameter Control Boundaries

To ensure consistent casting quality, process parameter

values should be kept stable and at the right level. For this,

reliable control boundaries (upper and lower control limits)

for these parameters are required to help warn the foundry

operators. In principle, the foundry has been using expe-

rience-based boundaries. However, it was still question-

able, whether these boundaries are reliable due to

undesirable rejection rate. With the collected process data,

the authors came up with a new idea to obtain new reliable

control boundaries. To do this, the data from the production

dates where there were no casting defects were extracted

from the database with the aid of programming. The

authors call this ZD data (zero-defect data), for they

delivered only good castings. In principle, process param-

eter values should be kept within the range of the ZD data

for good casting results. However, uncertainty and mea-

surement error (extreme values) should be avoided. Using

statistics, the authors calculated the confidence interval

(CI) of the part-specific ZD data and considered them as

new control boundary. For the control tolerance, the

authors created two variants of CI, 1) CI where the ZD data

are within two standard deviations r of the mean of ZD

data �xZD or Sigma-2 boundary and 2) CI where the ZD data

are within three r of �xZD or Sigma-3 boundary. Both

boundaries are narrower than the range of the original ZD

data and can be determined using the following equation:

CI ¼ x� ZD � k � r Eqn: 1

where k = 2 for the Sigma-2 boundary, k = 3 for the Sigma-

3 boundary and r can be calculated using the following

equation:

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼0 xi � xZDð Þ2

n� 1

s

Eqn: 2

where n is the number of samples, and xi is the measured

data.

Figure 1. Layout of green sand casting process with three automatic molding lines.
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To give a better view of this, Figure 2 shows that the two

boundaries of a sample parameter (mold compactability

Cm) for a specific casting part can be obtained. The Cm data

from the production batches of the part analyzed with zero-

rejection rate (ZD data) are extracted from the database to

determine their Sigma-2 and Sigma-3 boundaries. The

distribution and the mean (the target value) of the ZD data,

together with the resulting boundaries, are shown in

Figure 2b.

This procedure can also be applied to other parameters

whose data are uniformly distributed to allow monitoring

and control of the entire production process. It should be

noted that the data used to obtain �xZD, Sigma-2 and Sigma-

3 boundaries were cast product-specific, to allow detailed

parameter control at product-specific level. Apart from

parameter control purpose, these boundaries could also be

used as reference to distinguish between good and bad data,

thus helping to identify unstable parameters.

Determination of Critical Process Parameters

In this part, the authors present the method of identifying

critical process parameters (possible reasons of casting

defects) without traceability of individual castings. The

authors focus on the three main defect groups defined and

documented by the foundry which are 1) gas bubbles, sand

inclusions and porosities (GSP defects), 2) cold run and 3)

broken molds. Ideally, the gas bubbles, sand inclusions and

porosities should actually be documented separately in

their own defect group. However, such a distinction of

Table 1. List of Process Parameters

Parameters Symbol Process Parameter data
source

Frequency of
measurement

Return sand temperature Trs MSP Sand mixer Every sand mixture
(every 2–3 minutes)Return sand moisture Mrs MSP Sand mixer

Dosed bentonite Bd MSP Sand mixer

Dosed water Wd MSP Sand mixer

Dosed sea coal Cd MSP Sand mixer

Dosed water temperature Tdw MSP Sand mixer

Mixing time tmix MSP Sand mixer

Vacuum cooling time tvac MSP Sand mixer

Target sand compactability Ct MSP Sand mixer

Molding sand compactability Cms MSP Inline molding
sand tester

Molding sand shear strength Sms MSP Inline molding
sand tester

Molding sand temperature Tms MSP Pyrometer on
sand conveyer

Molding sand moisture Mms MSP Sand laboratory 2 times/shift

Molding sand compressive strength CSms MSP Sand laboratory

Molding sand bentonite content Bms MSP Sand laboratory

Cast iron chemical compositions: C, Si, Mn, S, P, Cr, Mo, Cu,
Mg, Sn, Zn, Ni, Al, Co, Nb, Ti, V, W, Pb, As, Ce, N and Fe

Chem MIP Spectrometer and
thermal analysis

Every melting charge
(every half an hour)

Carbon equivalent CE MIP Thermal analysis

Liquidus temperature Tliq MIP Thermal analysis

Mold compactability Cm Molding Molding machine Every mold (every
15–20 seconds)Mold thickness Wm Molding Molding machine

Molding line cycle time tcyc Molding Molding machine

Pouring temperature Tpour Pouring Pyrometer at
pouring furnace

Pouring time tpour Pouring Time counter at
pouring unit

Pouring stream width Wpour Pouring Pouring furnace

Pouring furnace power Ppf Pouring Pouring furnace

MSP molding sand preparation and MIP molten iron preparation
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these defects could not be realized by the shop-floor

workers who do not have enough time and metallurgical

background for detailed visual inspection of individual

parts. Sand inclusions are defects that occur when molding

sand particles (torn away by the molten metal stream

during pouring process) float to the surface of the casting.

Such defects are often inspected on or just under casting

surface. Broken molds are defects in shape caused by

partial breakage or tearing off of the sand mold during the

molding process (mold separation). The defects are caused

by the mold that is too brittle and/or excessive compaction

with insufficient flowability of the sand.

To describe the analysis method, the authors graphically

compared process data between production batches with

zero- and high rejection rate in order to identify parameters

that show instability. The data were visualized together

with the created Sigma-2 and Sigma-3 boundaries gener-

ated from the previous step. This should help to visualize

the difference in parameter values and point out the causal

parameters. For a clear comparison, several production

batches with considerably high rejection rate (more than

20%) with a prominent defect group were chosen for the

analysis (Table 2). The parameters whose more than 20%

of batch data exceed the Sigma-2 boundary (exceedance

rate ER2r[ 20%) were considered as critical parameters,

and they are presented later on in the results and discussion

part.

Now for process control, it is important to stabilize the

critical parameters by having a good control of their related

initial process inputs. In the next part, the authors show a

method on how to create some parameter control models

using the available production data from the years 2018 to

2020, to help stabilize the quality of molding sand and

molten iron. After that, the data from the year 2021 were

used for model testing.

Creation of a Molding Sand Moisture Prediction
Model

For green sand casting, moisture content of the molding

sand is one of the most important parameters to be well

Figure 2. Mold compactability. (a) Measured data and (b) histogram of the data from the batch with
0% rejection rate and its 95% and 99% confidence intervals (Sigma-2 and Sigma-3 boundaries).

Table 2. Chosen Production Batches with High Rejection Rate for Comparative Analysis of Process Data

Production
batch

Cast part Cast
material

Part weight
(kg)

Date of
production

Casting defect
groups

Rejection rate
(%)

Batch 1 Water drain grate GJS-500 5.2 20.04.2018 GSP defects 21

Batch 2 Oven door A GJL-150 12.5 30.03.2020 GSP defects 45

Batch 3 Oven front wall GJL-150 22.4 21.09.2021 GSP defects 74

Batch 4 Water drain part GJS-500 0.9 10.04.2018 Cold run 47

Batch 5 Oven side wall GJL-150 4.9 11.06.2018 Cold run 50

Batch 6 Oven door plate GJL-150 3.75 13.10.2020 Cold run 21

Batch 7 Oven door B GJL-150 21.7 31.03.2020 Broken molds 94

Batch 8 Water drain part
B

GJS-500 7.6 22.11.2019 Broken molds 31

Batch 9 Oven door C GJL-150 10.1 12.02.2020 Broken molds 20

GSP: gas bubbles, sand inclusions and porosities
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controlled because of its influence on many molding sand

properties such as bonding, flowability, compactability, gas

permeability and strength.8,9 Therefore, dosing the right

amount of water during the preparation of a sand mixture is

highly important and should be adjusted according to the

initial sand condition (the return sand) to achieve final

target moisture content. Table 3 shows that the average

value of some green sand properties measured and recor-

ded at the sand laboratory during the years 2018–2020.

In the foundry, return sand moisture Mrs, temperature Trs

(initial sand conditions) and the corresponding dosed water

Wd (during the mixing process) were measured inline and

recorded for each sand mixture (4 tons/mixture). After

analyzing the sand data from the years 2018 to 2020 of a

sand mixer (approximately 150,000 mixtures in total), it

was found that there were large variations in Mrs and Trs.

The reasons for this could be either changing weather

conditions or different settings of sand cooling at the sand

recycling plant by different workers. Furthermore, the

authors found correlations between Wd and Mrs as well as

Wd and Trs, with Pearson correlation coefficient r of -0.76

and 0.92, respectively (Figure 3a and b). This indicates that

Wd was adjusted according to the initial return sand con-

dition. The higher the Mrs, the lower the Wd. Conversely,

the higher the Trs , the higher the Wd. Based on this finding,

a regression model with two predictors could be developed.

Due to the noticeable linear characteristic, the authors

started by fitting the linear model which gives a coefficient

of determination R2 (the goodness of the model fit, ranging

from 0 to 1) of 0.879. Polynomial models of degree of 2, 3

and 4 were also fitted and the resulting R2 are 0.883, 0.884

and 0.885, respectively, indicating no significant

improvement in goodness of fitting over the linear model.

Overall, with such a set of comparable R2, the linear model

was chosen, because it has a much smaller number of

regression coefficients which makes it much easier to

interpret the influence of each parameter in the real-world

application (in this case, the variation of the amount of

dosed water during the molding sand preparation process

via different regression slopes and intercepts). The linear

model shown in Figure 3c can be presented as follows:

Wd ¼ b1 �Mrs þ b2 � Trs þ b0 Eqn: 3

where b0, b1 and b2 are the regression coefficients.

In summary, there is already a moisture correction system

at the foundry to achieve the target molding sand moisture

Mms, and its schematic is presented in Figure 4.

For quality control of Mms, a cup of molding sand was

manually taken from the sand conveyer after mixing pro-

cess for offline moisture measurement using a digital sand

moisture tester at the sand laboratory. However, the mea-

surements were conducted only twice per shift (3–4 mea-

surements per day). In summary, out of 150,000 mixtures,

only about 1800 mixtures were with measurement of Mms.

There is no inline measurement to control the Mms of each

mixture.

Nevertheless, the 1800 measured values of Mms from the

sand laboratory allow us to see the variation in the moisture

content. Despite the moisture correction system, the vari-

ation in Mms was relatively high (2.80–3.73%). In our view,

a solution for more accurate water dosing to reduce the

variation in Mms was needed, and this is where the avail-

able collected data and process modeling can support. For

this, the authors started to investigate in detail the effect of

Table 3. Properties of the Green Sand

Properties Average measured value

Grain size 0.185 mm

Moisture content Mms 3.27%

Compressive strength CSms 21.5 N/cm2

Permeability number Pms 69

Compactability Cms2 38.6%

Bentonite content Bms 8.9%

Figure 3. Correlations between dosed water and return sand parameters. (a) Moisture; (b) temperature and
(c) regression model with return sand moisture and temperature as predictors.
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the dosed water Wd on the molding sand moisture Mms. The

Mms data from the sand laboratory (of the 1800 mixtures)

were classified into five different moisture levels and

plotted in five different colors as shown in Figure 5a.

According to these levels, five average values of moisture

Mms;L1�5 were determined. The Mrs, Trs and Wd data of the

1800 sand mixtures were then visualized in 3D scatter plot,

colored according to the defined moisture level (Figure 5b).

When fitting regression planes by moisture level, an

orderly classification of the data (from low to high mois-

ture) was clearly observed, indicating a direct influence of

Wd on Mms (Figure 5c). The equation for these regression

planes can be described as follows:

Wd;n ¼ b1;n �Mrs þ b2;n � Trs þ b0;n Eqn: 4

where b0, b1 and b2 are the regression coefficients, and n is

the number of moisture levels (1–5).

From the plot, it can be seen that for constant Mrs and Trs,

the higher the Wd, the higher the Mms. In addition, at high

Mrs and/or Trs, the change in Wd becomes more sensitive to

the level of Mms (more difficult to control). On top of that,

the plot with regression planes actually allows us to predict

the Mms of a sand mixture. By observing Mrs, Trs and Wd of

a sand mixture, it is possible to locate the plane of moisture

level in which the data coordinate falls. And from this, Mms

of the coordinate can be estimated by linear interpolation

within these five average moisture values (Mms;L1�5).

To better illustrate this, Figure 6 shows an example of how

Mms of a sand mixture for specific Mrs, Trs and Wd is pre-

dicted. In step 1, the five regression models (Eq. 4) are used

to determine five different values of the dosed water

Wd,L1–5 , given return sand conditions (Mrs = 0.6%, Trs = 50

�C). In step 2, the determined Wd,L1–5 from step 1 and the

known Mms;L1�5 are then paired to create a corresponding

linear regression model (Eq. 5), which can be used to
Figure 4. Schematic of molding sand moisture and
compactability correction during the mixing process.

Figure 5. (a) Measured molding sand moisture; (b) relationship between return sand moisture,
temperature and dosed water and (c) fitted regression planes for each moisture level.
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predict Mms, given Wd (the interpolation within five

moisture levels).

Mms ¼ a �Wd þ b Eqn: 5

where a is the slope and b is the intercept of the regression,

both of which vary by sand mixture due to the changing

sand conditions (different Mrs and Trs). This linear

regression model in step 2 is, therefore, mixture-specific

(recreated per mixture). For this example, the model with a

slope a of 1.026 and an intercept b of 0.103 is created and,

with dosed water Wd of 3.0 wt%, molding sand moisture

Mms of 3.18% is predicted.

More importantly, the five regression models in step 1 also

allow us to determine an appropriate amount of dosed

water Wd based on Mrs and Trs to achieve a specific target

Mms. For this example, if the return sand has a moisture

content of 0.6% and a temperature of 50 �C, then to

achieve molding sand moisture level 3 (Mrs = 3.26%),

water of 3.08 wt% (Wd,L3) should be dosed to the sand

mixer. In other words, 123.2 kg of water should be dosed

to a 4-ton sand mixture.

Apart from the moisture control, compactability is also one

important property of the molding sand and was found to

have correlation with the moisture content.9 In this work,

similar correlations were also realized. Figure 7 shows how

the molding sand compactability Cms correlates with the

molding sand moisture Mms , as well as the molding sand

bentonite content Bms (offline measurement with equip-

ment at the sand laboratory, ranging from 8.0 to 9.9%). The

higher the Mms, the higher the Cms. On the contrary, the

higher the Bms, the lower the Cms. Besides, at low Mms, the

Bms has stronger influence on Cm, which aligns with the

past work.10 The relationship (Figure 7b) allows quantita-

tive control of the Cms based on dosed water Wd and dosed

bentonite Bd. At the foundry, the bentonite additions was

manually adjusted once per sand cycle based on the mea-

sured compressive strength of the mixed sand CSms

(measured offline by the sand mixer operators). Based on

the CSms, the operators decide from experience how much

bentonite is added to the system. The higher the CSms, the

lower the bentonite added to the system and vice versa.

Creation of a Liquidus Temperature Prediction
Model

Producing good castings requires not only quality control

of the molding material but also of the casting material.

Many past works reported that casting defects, such as

shrinkage, are associated with liquidus temperature and

carbon equivalent of the melt.11,13,14 To avoid such defects

and premature solidification of the melt (risk of cold run

defect), the authors proposed models to control the liquidus

temperature of the melt Tliq for each type of iron (GJL,

GJV and GJS) using the data from spectral and thermal

analysis, performed at the foundry. For this, the carbon

equivalent CE from spectrometer, calculated on the basis

of carbon content C, silicon content Si and phosphorus

content P (CE = C ? Si/4 ? P/2), was used as the inde-

pendent variable and Tliq as the dependent variable of the

model.

Based on the scatter of the data (Figure 8), there exists a

clear negative correlation between CE and Tliq at CE \

Figure 6. Molding sand moisture prediction procedure, given initial return sand moisture, temperature and dosed
water.
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4.3% which is consistent with the past work.15 For accurate

prediction, the authors decided to fit seven different

regression models, which covers prediction for hypoeu-

tectic, eutectic and hypereutectic compositions for all irons.

Similar to the past work and the Fe–C phase diagram, the

GJL and GJS irons show an eutectic point at CE &
4.3%.11,12 Whereas, the GJV iron shows a slightly different

eutectic point at CE & 4.38%. Moreover, the hypoeutectic

compositions for GJV iron show a nonlinear correlation

between CE, and the authors decided to fit a polynomial

model of degree of 2.

The models for GJL (M1, M2 and M3), GJS (M4 and M5)

and GJV (M6 and M7), created using data from the years

2018 to 2020, were then tested for their prediction per-

formance using another set of data from the year 2021, and

Figure 7. Correlation between the resulting molding sand moisture, bentonite content and
compactability.

Figure 8. Correlations and regression models for predicting and controlling liquidus
temperature of the three different irons (GJL, GJS and GJV) based on carbon
equivalent.
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the results are presented later on in the results and dis-

cussion section. The equations obtained for all the models

are as follows:

Model M1 (for GJL with CE � 4.3 % ):

Tliq¼�105.98CE + 1599

Eqn: 6

Model M2 (for GJL with CE [ 4.3 % and Tliq � 1144 �C):

Tliq¼ 93.355CE + 742:74

Eqn: 7

Model M3 (for GJL with CE [ 4.3 % and Tliq \1144 �C):

Tliq¼�44.073CE + 1332:4

Eqn: 8

Model M4 (for GJS with CE � 4.3 % ):

Tliq¼�97.164CE + 1563:3

Eqn: 9

Model M5 (for GJS with CE [ 4.3 % ):

Tliq¼ 106.32CE + 687:31

Eqn: 10

Model M6 (for GJV with CE � 4.38 % ):

Tliq¼ 105.76CE2 �955.48CE + 3300:9

Eqn: 11

Model M7 (for GJV with CE [ 4.38 % ):

Tliq¼ 86.974CE + 764:85

Eqn: 12

Model Validation

For model validation, the models for predicting molding

sand moisture Mms and liquidus temperature Tliq, created

using the data from the years 2018 to 2020, were tested with

another set of production data from the year 2021. To eval-

uate accuracy of the models, the root-mean-square error

(RMSE), which is the standard deviation of the prediction

errors, was used. The RMSE shows how far the predicted

values ŷi are from the measured values yi. The closer the

RMSE is to zero, the better the prediction performance of the

model. The RMSE can be calculated as follows:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼0 yi � ŷið Þ2

N

s

Eqn: 13

where N is the number of test samples.

Results and Discussion

Critical Process Parameters Based on the GSP
Defect

In order to investigate the possible cause of GSP defects,

the process data of Batches 1–3 were visualized in com-

parison with zero-defect batches. As a result, the batch data

of the parameters with an exceedance rate ER2r of more

than 20% (the critical parameters) are shown in Figure 9.

The result indicates that there could be several reasons of

the GSP defects. Too high bentonite content was observed

(Batch 1), which is consistent with the fact that too much

binding material can lead to insufficient permeability of the

molding sand (poor ventilation of gases formed during

pouring) and thus gas porosities and bubble-like surface

defects (GSP defect group).16,17 Furthermore, too high

molding sand temperature was observed (Batch 2), which

is consistent with DISA’s molding sand instruction manual

that this can lead to non-uniform sand permeability and

strength, as well as decreased mixability.18 Additionally,

too high mold compactability was observed (Batch 3),

which is consistent with the fact that it leads to high

deformability of the molds, dimensional variation and thus

an increased chance of shrinkage defects.19,20 For the melt,

irons with relatively high phosphorus content were

observed (Batch 1), which is consistent with the fact that it

can negatively impact the properties of ductile iron and

cause shrinkage porosities.21,22 Moreover, irons with too

low carbon equivalent CE were observed (Batch 2), which

is consistent with an existing report that low CE iron

promotes low graphite expansion during solidification and

thus insufficient material volume to push out existing

shrinkage porosities in castings.23

Critical Process Parameters Based on the Cold
Run Defect

Next, the batches with high rate of cold run defect (Batches

4–6) were analyzed. Cold run defect can be seen on the

surface of the casting and is caused by premature solidifi-

cation of the melt during casting.24 Based on the analysis

result, too low pouring temperature (Batches 5 and 6), too

low carbon equivalent CE and/or too high liquidus tem-

perature (Batch 4) are associated with the cold run defect

(Figure 10). This is consistent with the fact that all of these

factors usually promote premature solidification and thus

the risk of cold run.19,25

Critical Process Parameters Based
on the Broken Molds Defect

The batches with high rejection rate due to broken molds

(Batches 7–9) were analyzed. Broken molds defect is vis-

ible on the cast part surface with large cods and occur when

the separation resistance of the molding sand is greater than

its strength (too high compaction and/or too low sand

strength).26 From the analysis result, it was observed that

for the same value of the return sand moisture Mrs, the

dosed water in the sand mixer of the defective batches

(Batches 7–9) were noticeably higher than that of the

batches with no defect (Figure 11a–c). In other words, an

excessive amount of dosed water appears to be associated
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Figure 9. Scatter plots of unstable inline parameters based on GSP defects in comparison with zero-defect
batches.

Figure 10. Scatter plots of unstable inline parameters based on cold run defect in comparison with zero-defect
batches.
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with the broken molds defect. Additionally, the data of

Batch 8 show a large variation in the mold compactability

(Figure 11d). These results are consistent with the fact that

the mold can break during the molding or pouring process,

if the moisture and/or compactability of the molds is too

low (dry and friable) or too high (low strength and high

deformability).19

The comparison of inline process data between batches

with zero- and extremely high rejection rate allows us to

see a distinctive degree of data variation, especially when

visualizing with the created confidence interval (CI) of the

ZD data (Sigma-2 and Sigma-3 boundaries). As a result,

the authors were able to identify the process parameters

that are sensitive to casting defects, even though the inline

data of individual outgoing parts could not be traced.

Regardless of the defect groups, it is in any case very

important that the foundry can maintain the values of these

parameters within the created boundaries to ensure good

castings. The analysis also shows that the Sigma-2

boundary can be a good reference to classify the data

between good and defective batches. Therefore, it is rec-

ommended to keep inline process data within the Sigma-2

boundary.

Control Issue in Sand Preparation System

Due to the high variability of the sand data, especially the

resulting sand moisture and compactability, further inves-

tigation on molding sand preparation system was con-

ducted. This was done by visualizing the sand data

recorded during the production of a specific oven door

casting over different batches (A–G) (Figure 12). It was

found that the target compactability Ct (Figure 12c) was

being changed, which should not be the case, as this affects

the moisture correction. It was realized that the mixer

operators also do offline measurements of the resulting

molding sand compactability once per sand cycle (ap-

proximately every 20 mixtures) and then change the target

compactability Ct based on what was measured to

strengthen or weaken the existing moisture and com-

pactability correction of the system. This appears to be a

double moisture correction (one by the system and one by

the operators), which could be the cause of the high vari-

ability in the resulting molding sand compactability Cms

and Cm (Figure 12f and g). In addition, Figure 12e (Batch

A) shows insufficient bentonite addition, resulting in higher

level shift of Cms and Cm. This is consistent with the cor-

relation found (Figure 7b) and past work.10 A solution to

Figure 11. Scatter plots of unstable inline parameters based on broken molds defect in comparison with zero-
defect batches.
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this could be the installation of inline measurement of the

return sand compressive strength (compared to the mixed

sand compressive strength and bentonite content) in order

to estimate a correct bentonite addition during the mixing

process.

Model Performance

Based on the test result, the model for predicting molding

sand moisture Mms has an RMSE of 0.16%, which is not a

small number, considering the range of measured Mms

between 2.80 and 3.73%, but still less than a standard

deviation of the moisture data (0.17%). The first reason for

the error could be the fact that the moisture probe at the

sand mixer does not always measure the correct value due

to sand accumulating on the probe over time. Another

reason could be due to the uncertainty in the offline

moisture measurement at the sand laboratory due to non-

uniform sand mixture, moisture loss during transport of the

sample sand and seasonal changes. A comparison of the

measured and predicted molding sand moisture is shown in

Figure 13. The diagonal line indicates the minimum

Figure 12. Scatter plots of molding sand data during production of a specific oven door casting from different
batches.

Figure 13. Correlation between the measured and pre-
dicted molding sand moisture.
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difference between measurement and prediction. The

smaller the data spread around the diagonal line, the

smaller the RMSE and therefore the better the prediction

performance.

Although the offline measurement of molding sand mois-

ture at the sand laboratory is carried out only 3–4 times a

day, over a period of 3 years, it has provided sufficient

amount of data (from 1800 mixtures) to create useful

models for parameter control. The first benefit for the

foundry is that the model can be used to predict and control

the Mms of all prepared sand mixtures by observing the

initial sand conditions (return sand moisture and tempera-

ture) and the dosed water, instead of spending additional

costs on a new inline sand moisture sensor.27 Secondly,

more precise control of the dosed water based on the initial

sand conditions (Eq. 4) helps to achieve more

stable molding sand moisture. In order to reduce the vari-

ability in the resulting molding sand moisture and com-

pactability, the foundry should avoid the situation shown in

Figure 12c (changing target molding compactability Ct).

For the prediction of liquidus temperature of the melt Tliq

based on carbon equivalent CE, the models for GJL, GJS

and GJV irons show good prediction performance with

RMSE of 4.24, 4.35 and 2.50 �C, respectively. The RMSE

values are less than the standard deviation of the measured

Tliq (8.8 �C), which is accurate enough for use in predictive

process control. According to the correlation between the

measured and predicted Tliq shown in Figure 14, the pre-

diction errors are relatively higher at low Tliq (below

1160 �C) for all irons. This is due to the unclear correlation

between CE and Tliq in the hypereutectic composition zone

(see Figure 8).

The models with CE as a predictor allow quantitative

control of Tliq based on the chemical elements C, Si and P.

Last but not least, it is important to note that irons with

high Tliq are prone to premature solidification of the melt

(risk of cold run defect), if the pouring temperature Tpour is

kept constant. For this reason, the Tliq prediction model is,

therefore, very helpful for foundry operator in setting the

right Tpour for each melt according to Tliq.

Overall, this work focuses on stabilizing the key inline

parameters within the determined boundaries (confidence

interval of zero-defect data) and creating their target

functions, rather than attempting to establish a direct

relationship between initial process inputs and cast part

quality (which requires experimental design or complete

process traceability). In industrial practice, if the quality of

the molding sand, the melt and the pouring data are met as

they were from the zero-defect batches, then good castings

can be expected. This method of data analysis and mod-

eling is not limited to only green sand casting, but should

also be applicable to other casting processes and even to

those from other manufacturing industries.

Conclusion

This paper presents a methodological framework on how to

utilize casting production data from a sand foundry in order

to identify critical process parameters create a data-driven

process control. Based on the work outcomes, the follow-

ing conclusions were drawn:

• Despite the limitation of complete process trace-

ability, critical parameters could be identified with

the aid of the comparative analysis (data visual-

ization and comparison between production

batches with zero- and high rejection rate).

• Unstable molding sand temperature Tms and

compactability Cms were found to be the possible

reasons of GSP (gas bubbles, sand inclusions and

porosities) and broken molds defects.

• Unstable phosphorus content P, carbon equivalent

CE, liquidus temperature Tliq and pouring tem-

perature Tpour were found to be the possible

reasons of GSP and cold run defects.

Figure 14. Correlations between the measured and predicted liquidus temperature of the melt.
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• Parameter control boundaries (upper and lower

limits) for each process parameter were deter-

mined by calculating the confidence interval CI of

the data from the production dates with zero

rejection (ZD data).

• The Sigma-2 boundary (CI where the ZD data are

within two standard deviations of the mean of the

ZD data) was found to be a good separator

between good and defective production batches.

• With the molding sand data provided, the authors

were able to create a molding sand moisture

prediction model with a prediction error RMSE of

0.16%. The cause of the error could be an

inaccurate measurement of the return sand mois-

ture by a moisture sensor at the sand mixer due to

sand being stacked over time.

• With the iron data provided, the authors were able

to create a liquidus temperature prediction model

for each iron (GJL, GJS and GJV) with RMSE of

2.50–4.35 �C, which is acceptable considering the

range of Tliq between 1137 and 1230 �C with

standard deviation of 8.80 �C.

• The foundry could save the cost of procuring new

sensors by using the models as soft sensors instead

for online prediction and parameter control.

As a suggestion for future work, the implementation of

traceability of individual castings at the foundry will defi-

nitely be helpful for accurate root cause analysis and better

process model performance. Several part marking methods

for tracking aluminum alloy parts with cost evaluation

were introduced,28 and it would be interesting to apply the

concept to iron castings as well. To ensure the overall

monetary benefit of scrap reduction, traceability should be

implemented at a fair cost.
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