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Abstract

A study was carried out on the possibility of using artificial
intelligence in the modification of the casting production
process. Proposed solution shows the model for our data
and how the changes may affect the cost of metal casting.
These activities are the subject of the research described in
this article. In the proposed solution, the cost function was
added to the prediction model developed and presented by

Hazela et al. (J Nanomater, 2022). The data obtained as a
result of the model operation were verified using a com-
puter simulation and a physical experiment.

Keywords: ductile iron, artificial intelligence, machine
learning, modification of casting production, cost function

Introduction

The works respond to part of the activities aimed at

developing an intelligent IT system supporting the casting

production process. The problem solved in the course of

the described works was a model enabling the modification

of production parameters. In order to develop the model, a

review of the literature was carried out, in which the

methods used to create models supporting the casting

production process were important. In the first study, an

approach for the application of machine learning in the

prediction and understanding of casting surface-related

defects is presented.1 This article is based on actual pro-

duction data from a medium-sized cast steel and cast iron

foundry (one foundry). The results of the work indicate

which of the algorithms selected and tested as part of the

work allow for the best results in the field of Prediction of

Casting Surface Defects, taking into account the

incomplete and heterogeneous character of data from the

foundry. In publication2 this article, based on data from a

pressure foundry, models were developed to detect three

types of defects. An important aspect is that these are

models for which trees and visualization methods have

been used to gain insight into the machine learning process.

In another position3, the next article deals with defects

resulting from inadequate pressure in the casting mold. The

article presents an interesting approach consisting in the

use of a method of predicting the quality of die castings

based on machine learning (XGBoost). Also, in position,4

the use of a model based on XGBoost to map the complex

relationship between the conditions of the die-casting

process and the formation of defective rims was indicated.

A slightly different approach is indicated in a subsequent

publication,5 where, machine learning methods and tech-

niques (in this case again support vector machine as the

classifier) allow to assess which microstructure images

represent modified samples. This is an indication of another

important activity in the process of casting production

process with the possibility of using methods described in

research works. Hazela et al.6 presents a general approach

how different AI algorithms can be applied to support

production in foundries (not specified in which ones). Sun

This paper is an invited submission to IJMC selected from presen-

tations at the 74th World Foundry Congress, held October 16 to 20,

2022, in Busan, Korea, and has been expanded from the original

presentation.
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et al.7 provides context for unbalanced, semi-supervised,

heterogeneous, and limited in sample size for sand cast

foundry data. Wilk-Kołodziejczyk et al.8 is an extension of

the topics presented in this article. (Co-authors of the

current article describe the prediction methods used and

interpret their results.) Park et al.9 indicates the application

of artificial intelligence methods also in relation to image

data. Similarly, in positions9–15, the problem solved as part

of the described works was a model enabling modification

of casting production parameters, mainly in order to

improve their quality, reduce costs and avoid defects. On

the basis of the possessed set of experimental data and the

possibility of verification of the results obtained as a result

of the operation of the model, the method of building the

model and the method of its verification were selected.

Based on the review of the literature, it can be seen that

various methods based on artificial intelligence can be used

to build the model. The literature also indicates an exem-

plary method of dealing with data from the production

process performed in the foundry. However, we still do not

know which model will be appropriate for our data and

how the changes may affect the cost of metal casting.

These activities are the subject of the research described in

this article.

Methodology

Obtaining the appropriate parameters of properties (phys-

ical and material properties) of castings is related to the

determination and later maintenance of appropriate pro-

duction parameters. In the case of castings, important

parameters that can be changed and controlled may be, for

example, the chemical composition of the molten metal,

melting and pouring temperature, time (in this process, for

example, the aspheritization time can be measured),

method of melting and pouring, the type of mold into

which the liquid metal is poured, and in some cases its

processing parameters. The manufacturing and resulting

casting cost are greatly influenced by such changes.

Reducing the cost of making a casting requires taking into

account the mutual influence of various factors important

in the production process. It may be helpful to try to define

this problem using a cost function presented in Figure 1.

An attempt of this type was undertaken as part of the

research presented in this paper. The first step leading to

the development of the cost function was to draw up a

diagram illustrating (Figure 1) the dependence of casting

parameters and its heat treatment on the price. The model

was presented as a function f (X0, X1, X2, X3, X4, X5). The

result of this function is the prediction of the mechanical

properties of the casting. Based on the information pre-

pared by experts,16 as well as tables describing the impact

of individual melting parameters on the price of the

finished part (assuming a part weight of 1 kg), the cost

function was developed:

C CC; HTPð Þ ¼ 1 þ cos t inc cc CCð Þ þ
X

htp2HTP

cos t inc htp htpð Þ
 !

� avg iron cos t

Eqn: 1

where:

• CC (chemical composition)—a set of parameters

of the chemical composition of the melt

• HTP (heat treatment parameters)—a set of heat

treatment parameters, which includes the follow-

ing elements:

• Austenitizing temperature,

• Austenitizing time,

• Ausferritization temperature,

• Ausferritization time,

• cost_inc_cc (cost increase)—a function that

returns the percentage of the cost increase

depending on the chemical composition (precisely

on the content of nickel, copper and

molybdenum),

• cost_inc_htp (cost increase)—a function that

returns the percentage of the cost increase

depending on the value of the heat treatment

parameter,

• avg_iron_cost (average iron cost)—average price

of ductile iron,˙
• htp—parameter from the set of heat treatment

parameters, e.g., austenitization temperature,

880 �C,

Cost Function

A review of various casting properties tests shows that

these tests are often carried out in the form of experiments

in which sets of parameters that are not used in mass

production are explored. Such parameter sets may be

considered unreliable by the system user. For this purpose,

a function was proposed to determine the quality of

parameters for user-defined nominal ranges of parameters

and weights of these parameters. The value of such a

function will determine how much the parameters returned

by the system are in line with the user’s expectations. The

function has following form:

where:

Q Pð Þ ¼
X

p2P
in range pð Þ � wpð Þ Eqn: 2
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• P—set of production parameters (chemical com-

position, heat treatment)

• p—parameter from the set P
• in_range—a function that determines whether the

value of a given parameter is within a user-defined

range

• wp—weight of the p parameter, defined by the

user

Heuristic Optimization

The work assumes the use of various heuristic algorithms

in the field of single-criteria optimization. There is also a

need to define a set of parameters that will be explored by

algorithms.

A Set of Parameters

The construction of a set of production parameters will be

based on:

• Possible changes in heat treatment parameters

adopted by cast iron manufacturers, i.e., temper-

ature changes by ± 5 degrees Celsius, time

changes by ± 15 min. This is a numerical range

indicating what changes are possible for the time

and temperature of heat treatment of castings (i.e.,

for auspheritization temperature),

• Assumption that the set of chemical compositions

is finite and limited to compositions that occurred

during training and testing of the predictive model

and compositions entered by the user,

• Minimum and maximum values of production

parameters that occurred during training and

testing of the predictive model.

In the case of using single-criteria optimization algorithms,

there is a need to bring the previously defined criteria, i.e.,

cost and quality, to one criterion. One way to do this is to

use weighted scalarization, which consists in normalizing

the criteria values to the same range of values, e.g., [0,1],

and then summing these values multiplied by the weights

of these criteria. In this approach, it will be assumed that

the user enters the weights of the optimization criteria. The

weighted scalarization problem for normalized price and

quality criteria looks like this::

min
cc:HIPð Þ2X

QC C norm CC; HTPð Þ; 1�Q norm CC [ HTPð Þ; 0ð Þ

Eqn: 3

where:

• CC—a set of parameters of the chemical compo-

sition of the melt,

• HTP—set of heat treatment parameters

• X—set of all possible parameters,

• C_norm—normalized value of the cost function,

Figure 1. Diagram of the dependence between the parameters of the casting and
heat treatment on the physical properties of the casting and the impact on the price
of the detail.
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• Q_ norm—normalized value of the quality

function,

• qH a set of cost and quality criteria weights,

• QC function of the following form:
QC X1;X2; 0ð Þ ¼ X1 � 0 X1ð Þ þ X2 � 0 X2ð Þ Eqn: 4

the problem presented above consists in minimizing the

QC function for production parameters. In order for the

solutions found by the algorithm to be correct, restrictions

resulting from the parameter values applicable to the

species ordered by the customer must be introduced. As

can be seen from the above, one of the elements of cost

reduction is the control of the chemical composition of the

cast detail. Selected methods of creating predictive models

used in the process were described in the work8 by the co-

authors of this article. In this work, work was also

undertaken to better develop the predictive model. The

cost function is one of the elements supporting the casting

production process and is very important in the context of

the prediction models described in previously publication.

Research was described, the purpose of which was to check

which of the algorithms will allow the optimization of cost

and quality criteria presented in the form of weighted

scalarization (QC function). The research involved the

preparation of the following elements: initial solutions that

will allow to show how algorithms will cope with cases

very distant from optimal solutions—for this purpose, 2

initial solutions were selected in 300 random steps, one of

which was selected with the largest value of the cost

function and the other with the smallest value of the quality

function,

• Weights of criteria which, due to the greater

complexity of the cost function, were selected

with greater consideration of this criterion -

weights: [cost - 1.0, quality 0.0], [cost - 0.7,

quality - 0.3], [cost - 0.5, quality - 0.5],

• Maximum search time - a value of 10 seconds has

been set,

• Melt thickness - a value of 30mm has been set,

• Grade from the PN-EN 1564:2012 standard - the

GJS-800-10 standard was selected,

• Values of parameters on which the cost function

depends: – average price of cast iron - 1350, –

average load weight - 200, – nickel cost - 16, –

cost of copper - 12, – cost of molybdenum - 7.

• Mechanical properties - models trained with the

XGBoost algorithm were selected due to the speed

of operation.

Selected initial solutions:

• Highest cost solution:

• Chemical composition - [C = 3.45, Si = 2.48,

Mn = 0.4, Mg = 0.05, Cu = 0.3, Ni = 1.5, Mo =

0.5, S = 0.012, P = 0.013, Cr = 0.0, V = 0.0, CE

= 4.281],

• Thermal treatment parameters - [aust_temp =

830, aust_czas = 60, ausf_czas = 735,

ausf_temp = 430],

• Cost function value - 509136.538,

• Quality function value - 31.

• The solution with the lowest quality:

• Chemical composition - [C = 3.45, Si = 2.48,

Mn = 0.4, Mg = 0.05, Cu = 0.3, Ni = 1.5, Mo =

0.5, S = 0.012, P = 0.013, Cr = 0.0, V = 0.0,

CE = 4.281],

• Thermal treatment parameters - [aust_temp =

835, aust_czas = 45, ausf_czas = 615,

ausf_temp = 440],

• Cost function value - 466137.584,

• Quality function value - 23.

In the case of the Tabu Search, Metropolis Search or Par-

allel Tempering algorithms, they adopt values that affect

their operation. They have been tested in the following

configurations:

• Tabu Search - tabu table size with values: [5, 10,

50],

• Metropolis Search - initial temperature: [20, 50],

• Parallel Tempering - in the case of this algorithm,

values for the parameters should be provided:

• ’num_replicas’ (number of replicas of Metropolis

Search algorithm instances),

• ’minTemperature’ (minimum temperature for a

new Metropolis Search installation),

• ’maxTemperature’ (maximum temperature for a

new instance of Metropolis Search).

Configurations have been selected:

• {’num_replicas’:5, ’minTemperature’:1,

’maxTemperature’:200},

• {’num_replicas’:10, ’minTemperature’:10,

’maxTemperature’:100}

Taking into account two initial solutions, 3 different sets of

criteria weights and 9 algorithms (including different

configurations for Tabu Search, Metropolis Search and

Parallel Tempering), the optimization process was run a

total of 54 times.

Running the algorithms resulted in saving the results

together for runs with the same initial solution and the

same criteria weights.

The results of all launches in such a group are presented in

tabular form, with the following columns:

• ’algo’ - the name of the algorithm along with the

configuration of parameters, for example,

’METRO_50’ means the Metropolis Search algo-

rithm with the initial temperature parameter of 50,
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• ’step’ - step of the algorithm in which the best

solution was found,

• ’millis’ - the number of milliseconds after which

the best solution was found,

• ’qce’ - the number of QC function evaluations

until the best solution is found,

• ’me’ - the number of evaluations of mechanical

properties until the best solution is found,

• ’qc’ - the value of the QC function for the best

solution.

Then, the best 5 algorithms were selected from each group

and their course was presented together on graphs. The x-

axis in the graphs is the number of milliseconds since the

start, and the y-axis shows the values of the QC function.

Results for the first solution with weights [cost - 1.0,

quality 0.0].

In Table 1 showing the results of running the algorithms for

the configuration contained in the title of this subsection,

we can see that the last two algorithms did not cope very

well with the optimization task in this case. The first two

places were taken by the Tabu Search algorithm with a tabu

table of size 10 and 50 minimizing the QC function to the

same value. The difference here was the time, which was

longer for the second configuration, probably due to more

operations performed on the larger tabu table. In addition,

the configuration from the first position needed the least

time to find the optimal solution. The waveforms of the five

best configurations are shown in Figure 2.

Analysis of the results

The analysis of the conducted research brings the following

conclusions:

Random Descent and Steepest Descent algorithms ended

up in local minima in each case and were always outside

the top five,

• the Parallel Tempering algorithm achieved the

best results in the configuration with 5 replicas

and temperatures from 1 to 200. It was in the top

five 4 times, but compared to competitors it was

characterized by a longer time needed for finding

the optimal solution,

• the Tabu Search algorithm was in the top five 11

times, and the best solutions were found in the

configuration with a tabu table of size 50,

• Metropolis Search turned out to be the best

algorithm, appearing with all its configurations

in every top five. The best configuration turned out

to be the one with a temperature of 50, which

always found an optimal or very close to optimal

solution.

The analysis shows that the best algorithms turned out to

be:

• Tabu Search with tabu table size 50,

• Metropolis Search with a starting temperature of

50.

For these two configurations, the search times for near-

optimal solutions, the number of calls to the QC function,

and the number of calls to evaluate the mechanical prop-

erties model were averaged. The results are presented in

Table 2. They show that the Tabu Search algorithm needed

on average almost 29 less time to find optimal solutions.

When comparing the average number of QC function calls,

here the difference is almost 20 times in favor of the Tabu

Search algorithm. Similarly for the average number of

model evaluations, where the difference here is about 2

times. The values in the table in parentheses were calcu-

lated without taking into account the results for TABU_50

from Table 2, because in this case the algorithm did not

approach the optimal solution and its results distort the

collected statistics to some extent.

Table 1. Results Achieved by the Examined Search Algorithms for the First Solution with Weights [Cost - 1.0,
Quality 0.0]

No Algo Step Mills qce me qc

1 TABU_10 72 655 785 7240 1.146

2 TABU_50 72 962 785 7240 1.146

3 METRO_50 9139 1181 6675 9140 1.315

4 TABU_5 57 914 697 5759 1.337

5 METRO_20 19,653 3018 13,670 19,654 1.349

6 STEEPEST_DESCENT 54 846 661 5509 1.477

7 PARALLEL_5_1.0_200.0 4 9273 6436 8858 1.851

8 RANDOM_DESCENT 187 75 135 188 28.943

9 PARALLEL_10_10_100.0 2 10447 7557 9945 39.526

2684 International Journal of Metalcasting/Volume 17, Issue 4, 2023



Taking into account all the results and comparisons, it can

be concluded that the Metropolis Search algorithm will be

the right choice for the environment in which the evalua-

tion of the mechanical properties model and the evaluation

of the QC function will not be a bottleneck because it will

be affected by the amount of time needed to find optimal

solutions. The Tabu Search algorithm, requiring less time

and remembering what solutions are suboptimal, will work

when the evaluation of QC models and functions will be

more time-consuming.

Predictive algorithms indicated exemplary casting param-

eters. These data were verified by performing a computer

simulation using the MAGMASOFT software and by per-

forming a physical experiment to confirm the validity of

the obtained results.

Computer Simulation

Based on the conducted research, certain chemical com-

positions of cast iron were simulated to obtain prediction of

mechanical properties and microstructure. Simulation was

conducted in MAGMASoft with the MAGMAIron module

which allows for prediction of microstructure and

mechanical properties based on chemical composition. For

the virtual casting trials, the Y-sample model was used. The

geometry of CAD model is presented in Figure 3 and the

area of samples analysis.

The iteration setup was prepared based on planned labo-

ratory experiment. The alloy of GJS 500-7 with chemical

composition presented in Table 3 was simulated along with

filling and solidification. In simultaion pouring temperature

was similar to the experimental. Tpour = 1400 �C, as

molding material, the green sand was used. For the

spheroidization process simulation software allows to set

the influence of the modification and inoculation based on

3 possible scenarios which is based on the foundry practice.

Based on the three scenarios of melt treatment, the pre-

diction of mechanical properties was conducted. Use of

FeSiMg9 allows to obtain optimal process parameters and

final material properties. Visualization of filling process is

presented in Figure 4.

Filling time was set to 11s. The temperature drop during

filling is approximately 50 �C. Next, the solidification

simulation was analyzed. In Figure 5, the solidification

path is presented.

The simulation run includes the solidification and cooling

to temperature 600 �C, since the phase transformation for

cast iron occurs below 720 �C. Time of the solidification

and cooling process is approximately 43 min. The solidi-

fication occurs from the mold wall toward hot spot, which

is located in the center of the feeder part of the casting. The

Y-shape sample forces the porosity to occur in the feeder

area, which allows to obtain the sample without any

defects. Predicted porosity is located in the feeding area

(Figure 6).

Figure 2. Graph showing the history of the 5 best algorithms for the first solution
with weights [cost - 1.0, quality 0.0].

Table 2. Comparison of Tabu Search and Metropolis
Search Algorithms in Terms of Average Time, Number of
QC Function Calls and Number of Mechanical Properties

Model Evaluation Calls

Algo Avg time Avg qc eval Avg model eval

TABU_50 1539.17
(2117.75)

1162.17
(1580.25)

2699.17
(17197.75)

METRO_50 2932.83 20657.33 29368.17
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Figure 3. Dimensions of Y-sample geometry and cutting area of visualization of simulation results.

Table 3. Predicted Mechanical Properties for Different
Melt Treatment Scenarios

Sample Modification
conditions

Mean,
UTS, MPa

Mean,
YS, MPa

Mean,
A, %

Melt
treatment
1

Best 920 632 3.6

Melt
treatment
2

Average 905 550 2.9

Melt
treatment
3

Fair 803 485 2.5

Figure 4. Visualization of filling process.

Figure 5. Solidification path of the Y-shape casting.

Figure 6. Prediction of porosity in the casting.
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Based on the chosen area of the sample (Figure 3) in

Table 3, predicted mechanical properties for different melt

treatment scenarios are gathered.

Possibility of using numerical analysis allows to check

different boundary and melt treatment conditions and its

possible influence on the mechanical properties of the

casting (Figure 7).

Experiment

The experimental melt was prepared in a 50-kg-capacity

crucible with neutral lining using an electrical induction

furnace of an intermediate frequency Radyne AMF 45/100.

The furnace charge consisted of pig iron: 4.04 wt% C, 0.77

wt% Si, 0.03 wt% Mn, 0.005 wt% S, 0.043 wt% P), Fe-

Si75, Fe-Mn80, carburizer, technically pure Cu and Ni,

ductile iron scrap returns. After being melted, the liquid

metal was held for about 2 minutes at 1450 �C, than tapped

into slim ladle where spheroidization and inoculation pro-

cesses were performed. As spheroidizing agent a FeSiMg9

master alloy while as inoculant FeSi75 were used. The cast

iron was poured at about 1400 �C into 25-mm-thick YII

keel-blocks (according to EN 1563 standard) in a green

sand mold. The chemical composition tests of the experi-

mental ductile iron were carried out using a GNR S3

MiniLab 300 emission spectrometer with spark excitation.

The obtained chemical composition is presented in

Tables 4 and 5.

Conclusions and Discussion

Models that use combined methods of classification and

prediction allow for obtaining new production parameters

without performing high-volume experiments. Additional

introduction of the cost function to the built model results

in the possibility of reducing the production costs of the

cast element. The first important element of model devel-

opment is the preparation of output data that take into

account the parameters of phenomena and mechanisms

occurring in the material during casting solidification and

are controlled during the production process. It has been

proven that a set of parameters normally measured during

the production process, even with a small number of test

results, can be modeled (reproduced) using machine

learning methods and computer simulation. The adaptation

of the classification algorithms and their combination with

Figure 7. Depicts the microstructure of experimental cast iron which consists of graphite nodules embedded in
pearlitic matrix consisting of up to 2% of ferrite. Samples for tensile testing where taken from the bottom part of the
YII ingots. All the mechanical properties were determined on 5 samples.

Table 4. The Chemical Composition of Ductile Iron

Chemical composition, wt%

C Si Mn P S Mg Cu Ni Cr

3.60 2.02 0.23 0.034 0.007 0.038 0.75 1.5 0.05

Table 5. Mechanical Properties

Sample UTS, MPa YS, MPa A, %

GJS 1 796 503 3.6

GJS 2 808 506 3.2

GJS 3 786 514 3.0

GJS 4 818 536 3.8

GJS 5 796 529 3.2

Avg. 801 ± 15 518 ± 15 3.4 ± 0.4
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machine learning algorithms have been verified using a

computer simulation, which gives the opportunity to obtain

a very precise set of data close to the real ones. The results

obtained in the classification process were verified by

simulation and a physical experiment was carried out. The

algorithm has been enhanced to train the model based on

user responses if the microstructure is misclassified. Such

an action may lead to a reduction in the number of real tests

and thus is associated with a reduction in costs and greater

protection of the environment.
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