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Abstract

Low-pressure die cast (LPDC) is widely used in high
performance, precision aluminum alloy automobile wheel
castings, where defects such as porosity voids are not
permitted. The quality of LPDC parts is highly influenced
by the casting process conditions. A need exists to optimize
the process variables to improve the part quality against
difficult defects such as gas and shrinkage porosity. To do
this, process variable measurements need to be studied
against occurrence rates of defects. In this paper, industry
4.0 cloud-based systems are used to extract data. With
these data, supervised machine learning classification
models are proposed to identify conditions that predict
defectives in a real foundry Aluminum LPDC process. The
root cause analysis is difficult, because the rate of defec-
tives in this process occurred in small percentages and
against many potential process measurement variables. A
model based on the XGBoost classification algorithm was

used to map the complex relationship between process
conditions and the creation of defective wheel rims. Data
were collected from a particular LPDC machine and die
mold over three shifts and six continuous days. Porosity
defect occurrence rates could be predicted using 36 fea-
tures from 13 process variables collected from a consid-
erably small sample (1077 wheels) which was highly
skewed (62 defectives) with 87% accuracy for good parts
and 74% accuracy for parts with porosity defects. This
work was helpful in assisting process parameter tuning on
new product pre-series production to lower defectives.

Keywords: low-pressure die casting, machine learning,
alloy wheels, industry 4.0, smart foundry, sustainable
metals processing

Introduction

Low-pressure die casting (LPDC) is a process broadly used

in industries requiring metal cast components with high

performance, precision, and volume, such as the production

of aluminum alloy wheel rims in the automotive industry.

Porosity discontinuities are one of the most frequent

defects found in LPDC aluminum products. They can be

difficult to avoid and can compromise the integrity and

performance of the components. Therefore, the cause and

prevention of porosity defects are important considerations

in quality control and create a demand to optimize the

process variables to improve the part quality. The causes of

porosity defects can come from a variety of different fac-

tors, such as metal composition, hydrogen content, casting

pressures, temperatures, and die thermal management to

obtain directional cooling rates.

When such casting defects arise, it is often difficult to

diagnose their exact root cause and thus make the correct

process parameters changes. A means is needed to monitor

and analyze the process settings and deviations which can

give rise to porosity defects. An Industry 4.0 quality
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control data system can associate recorded data from all

process measurement points to individual parts complete

with its inspection results. With this, machine learning

classifier algorithms are utilized to identify the combina-

tions of process settings that give rise to process defects.

These can then be used to help tune process control.

LPDC production historically has high defective rates,

typically every part in production is inspected using an

X-ray machine for porosity defects. While this work can

help predict porosity defectives, it cannot replace the X-ray

machine for inspection. However, it is helpful for quanti-

fying causes of porosity defects. A typical foundry will

have hundreds of different models and dozens of new

product models introduced each year. It is critical to

quickly tune process settings in pre-series production.

In the first section, challenges to identifying causes of

defects during production operation of a LPDC foundry are

presented and then related research is discussed. In

‘Industry 4.0 Foundry Data Collection,’ an Industry 4.0

data collection system is presented to means for digitally

timestamp and track parts and associated data through the

foundry. In ‘LPDC Porosity Defect Prediction,’ casting

defects monitored are discussed. Then in ‘Classification

Algorithm Model,’ statistical machine learning models are

presented that classify process conditions where porosity

defects arise.

Challenges in Foundry Quality Control and Root
Cause Analysis

Using factory data to construct machine learning models to

predict the onset of defective parts is challenging for sev-

eral reasons. The number of potential causal factors is vast.

It can be hard to instrument to collect all these process data.

Also features in the time series data must be identified.

This can include shifts high and low, or variability too

high, or jump in the data versus time. Features are exam-

ined that could be associated with a cause of a defect.

Furthermore, the process data collected must be associated

with the actual part being produced, so that those process

conditions can be associated to a pass or a failure indicator

on the part. It is not enough just to collect process data, the

process data must be tagged to the parts. This means the

part must be tracked through the foundry to know what

process data to associate to what part. This is one important

Industry 4.0 challenge of the Smart Foundry. A foundry

operates under harsh conditions, and it is difficult to track

and mark each part from the beginning of input material

flow to the final casting component.1–3

The second challenge is to preprocess the time series data

into features for machine learning statistical analysis.4 It is

useful not to consider full dataset but rather engineering

statistics which are understood by the process engineers.

For example, the time series pressure, temperature, and

cooling data can be separated into phases and statistics

within each phase computed. This might include separating

the data into phases such as fill and solidification and

computing features such as the mean and variance within

the phase. Process engineers wish to understand how mean

shifts and higher and lower variability in different phases

effect yield.

Lastly, given the features, there are also many alternative

classification methods available to associate these features

to the defective rate. Overall, research opportunity exists to

explore machine learning to better understand the sources

of defects and root causes.

Current state foundry process controls are generally

inspection-based acceptance procedures. Incoming mate-

rials, casting result quality control, and process controls are

inspected or monitored for compliance within specified

limits. Part defects are defined by visual inspection of

X-Ray images for the presence of porosity voids. Problems

in operations are defined by when inputs go out of

tolerance.

This current state makes defective control difficult. First,

the visual inspection and manual control can have sub-

stantial repeatability and reproducibility measurement

errors.5 Also, this approach can allow for combinations of

inputs in tolerance yet unknowingly giving rise to porosity

defects. A virtual model of the process is proposed, a so-

called ‘‘Digital Twin’’ constructed from machine learning

methods to predict passed and failed parts. This digital twin

will depend on the marking and tracking of the cast parts

through the foundry operations with extensive quality data

acquisition. Such Industry 4.0. digital twin models are not

widely common today. As introduced by Prucha,6,7 a step-

by-step knowledge-based approach will be taken to con-

struct artificial intelligence and data-driven process control

of foundry processes for higher quality outcomes.

Challenges in creating an Industry 4.0 smart foundry is

applying data science, machine learning, and artificial

intelligence methods to the foundry operations. There are

barriers of data silos within departments, a plethora of

available process measurement points, and a limited set of

part inspection points.

The first challenge is the difference in time scales of the

data and locations within the foundry where the data are

generated and stored. Material data are at the batch level

and held within the melt shop. The process data are at a

one-second time interval and held within each separate

LPDC machine. The inspection data are at the part level

and held within the x-ray machine. These datasets are

typically siloed within the departments and rarely shared.
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Another challenge is the complexity of the data itself.

Some records such as material properties are manually

entered into excel spread sheets. On the other hand, LPDC

machines have gigabytes of time series data per day. The

stratified nature of the data record formats creates chal-

lenges to data processing into a cohesive dataset.

Finally, as quality improvements are applied, the data

structure of passed and fail parts becomes more imbalanced

with fewer failed parts. Such imbalanced datasets are more

difficult to analyze with machine learning techniques.

Further any mistakes in data entry become more sensitive

to the accuracy of the machine learning algorithm.

Overall, current state foundry process controls rely on

isolated workstation-level compliance measurements, to

ensure process and part variables remain within specified

tolerances. Here, a new cloud-based Industry 4.0 foundry

data collection whereby incoming material inspection,

process monitoring, and cast part quality control inspection

data are integrated to enable all inspection and process

monitoring attributes to be attributed to each produced

casting. This thereby enables correlation analysis of

defective parts with potential causal incoming material or

process conditions.

Related Work

A challenge mentioned was the imbalanced dataset.

Extreme gradient boosting (XGBoost) has been developed

for such imbalanced datasets and is a supervised machine

learning algorithm with a scalable end-to-end tree boosting

system.8 This algorithm has been shown to work well with

small sample sizes (800 samples).9

The XGBoost algorithm has been applied in various

domains of manufacturing, e.g., Machining processes for

predicting tool wear of drilling,10 predicting material

removal using a robotic grinding process,11 and correlating

the input parameters of CNC turning via predicting values

of surface roughness and material removal rate of the

process.12 It has also been applied to various joining pro-

cesses, including the prediction of metal active gas (MAG)

weld bead geometry,13 prediction of laser welding seam

tensile strength,14 and prediction of the geometry of multi-

layer and multi-bead wire and arc additive manufacturing

(WAAM).15

The XGBoost algorithm has also been applied to material

characterization and quality assessment, e.g., predicting the

fatigue strength of steels,16 optimizing steel properties by

correlating chemical compositions and process parameters

with tensile strength and plasticity,17 predicting aluminum

alloy ingot quality in casting,18 porosity prediction in oil-

field exploration and development,19 and diagnosing wind

turbines blade icing.20

Additionally, other works include optimizing die casting

process conditions making use of techniques such as

experimental robust design,21–23 model predictive con-

trol,24 and genetic algorithm optimization.25 For example,

Guo26 has created classifiers to identify defects in silicon

wafers coming from foundry operations. In machining

operations, machine learning research has more focused on

system health identification and tool wear.27 Wilk-Kolod-

ziejczyk28 studied use of various machine learning classi-

fiers to predict the material property outcomes of

austempered ductile iron from varying the chemical

compositions.

Another concern is computing the relative contributions of

the feature to the classification result. Recently, Shapley

values are starting to be used to interpret machine learning

models and their predictions29 in management, including

profit allocation,30 supply chains,31 and Financial data.32

Shapley indices are used in this study as they give accurate

and unbiased estimators of relative feature contribution

even with correlated and unbalanced data.

The focus of the work here is metal casting studies.

Problem solving methods, numerical simulations (espe-

cially computer-based heat flow simulations), and predic-

tive machine learning models have been used to understand

the influence of the casting parameters in the occurrence of

defects like porosities.

Kittur et al.33 developed equations based on experimental

data for high-pressure die casting (HPDC). These equations

were used to artificially generate a sufficiently large data

for training Neural Networks by selecting the values of the

input variables randomly. Rai et al. 34 trained an artificial

neural network (ANN) model using data generated by

FEM-based flow simulation software. They showed

porosity defects were related to input parameters such as

melt and mold initial temperatures and first- and second-

phase velocities. These model-based input quantities are

insufficient to cover all the effects of real LPDC machines,

here the complex relations among the process variables are

considered with measurement points both from machine

and actual sensor values.

In recent sophisticated work, Kooper-Apelian35 studied

HPDC mechanical properties of a die cast tensile testing

machine bar and the relationship to process features using

large dataset spanning many months of production. They

compared the regression models of Random Forest, Sup-

port Vector Machine (SVM), Neural Network, and

XGBoost. Their focus was on large datasets spanning many

months of production. They found Random Forest

Regression worked best for regression fitting the ultimate

tensile strength of produced parts. They also studied clas-

sifying good parts and process defectives for HPDC of

tensile testing machine bars,36 as well as illustrated

machine learning application by a case study using sand
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cast foundry data.37 The value of applying machine

learning to reduce foundry scrap has been studied. Blond-

heim4 introduced the critical error threshold as the maxi-

mum beyond which increased accuracy is not worth the

effort.

The studies above were conducted for mostly injection

molding and HPDC which is different than LPDC in terms

of process parameters, casting physics, and production

parts. These works also focused on large dataset and the

relationship between features and responses. Our work

focuses on LPDC initial production to help set up the

process with smaller datasets.

One of the earlier studies on LPDC, Reilly et al.38 used

computational process simulation modeling rather than

hardware experiments. They studied minimizing various

defects in LPDC of aluminum alloy automotive wheels via

simulating heat transfer and fluid flow during die casting.

These input quantities are quite difficult to measure for real

LPDC machines. Rather machine measurement points are

used here such as cooling channel’s activation time and

silicon content of molten metal. Zhang et al.39 studied an

experimental L-shape thin-walled casting with a laboratory

LPDC machine to predict and optimize the part quality.

This work was early demonstration of using machine

learning in LPDC. They made use of artificial neural net-

works for modeling and genetic algorithms for optimiza-

tion. Their training data were collected from numerical

simulation and tested on an experimental part under labo-

ratory conditions. This work also did not focus on small

and imbalanced datasets as studied here typical of actual

industrial parts and processes.

The objective here is a method to collect LPDC foundry

process data and use machine learning models to correlate

the process parameters and tolerances with the occurrence

of critical defects that will invalidate a casting part from

being used. The method includes machine process data

collection, part tracking, and quality inspection of defect

data. This study differs as being representative of an

industrial foundry with a machine learning application on a

small dataset to help establish process settings. LPDC

machine and metal related features were utilized to predict

porosity defectives of LPDC processing of aluminum alloy

high-performance automotive wheels.

Industry 4.0 Foundry Data Collection

Low-Pressure Die Casting Process

LPDC machines consist of a holding furnace, heated

electrically, and placed in the lower part of the die casting

machine, and two die cavities located above. One cycle of

the casting process consists of pressurizing the holding

furnace, which contains the molten aluminum that is forced

to fill the mold cavity, followed by mold cooling amplified

by air and water coming from cooling channels and con-

sequent solidification of the cast.40 In Figure 1, the inter-

section of the LPDC mold is shown with the cooling

channels locations used in this study.

The overall process flow within the foundry includes

material loading, melting in a crucible, degassing, and

batch transfer to LPDC machine, casting into die mold,

directional cooling, X-ray inspection, heat treatment, and

further part cleanup and inspections. Of all the foundry

steps, the LPDC system is most critical to part quality, and

the study focus upon it here. The main process sequence for

a LPDC machine is shown in Figure 2.

The casting process of Figure 2 includes three main phases.

Phase 1 includes the application of pressure to the molten

metal in the fill tube allowing it to be forced up to the

runner and Phase 2 is the actual filling of the die mold

cavity with the molten metal. There is a threshold that can

be adjusted on the duration of these phases. It is important

to fill the mold cavity slowly to avoid any turbulence of the

liquid metal that would cause entrained air and create

porosity defects. On the other hand, if the metal fills too

slowly then there will be temperature differences between

the metal and the mold that would affect the liquidity and

result in cold and hot tearing failures. Phase 3 includes the

application of increased feeding pressure and integration of

directional solidification by use of cooling channels set into

the die mold (Figure 1). These cooling channels can be

bubbler style or though passages.

Within the LPDC process many time series data are

monitored and saved including pressure and temperatures

in the cooling channels used for directional solidification.

These measurements are taken on a one-second frequency

over a part cycle of around 5 min per rim. An example of

time series data is shown in Figure 3 of the molding

pressure, where the data shown cover two cycles that cre-

ated two castings. The dwell time between cycles can vary

due to operator and circumstances.

Causes of Porosity Defects in LPDC

There are several casting defects which may occur during

the LPDC of aluminum wheel rims. The most common

failures include gas and shrinkage porosity, shrinkage, cold

shut, and foreign materials.41 In this study, rather than

grouping all defects, porosity defects that occur as minute

voids are the focus, given that they are one of the most

common types of defects. Statistically fitting isolated

defects will correlate better to individual process condi-

tions and therefore fit better than trying to fit all defects as

one type.4 However, porosity defects mainly arise as two

types, gas porosity and shrinkage porosity. The current
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factory operations have limited ability to distinguish the

two so both are considered as one defect.

The wheel rims are 100% inspected using X-ray scanning

for porosity void defects which are observed as elongated

and round dark spots. The X-ray system used complies

with the requirements specified in non-destructive testing

standards- DIN EN ISO 19232-142 and DIN EN ISO

19232-5.43 For example, a defective is defined by when the

evaluated 20 by 20 mm wheel spoke zone area of the X-ray

image has either a flaw size above 3 mm or a when 3% or

more of the evaluation field is deemed a void. An example

defective wheel rim is shown in Figure 4. Historically, the

inspection data were measured, observed, and acted upon

locally to the inspection stations and not correlated to the

LPDC machine processes other than sequential repeated

failures. With this approach it is often hard to associate

process deviations with part defects.

Porosities occur when there’s poor feeding of the molten

metal to compensate the volumetric shrinkage related with

the solid-to-liquid transformation. When designing the die

and process settings careful consideration is taken to pre-

vent the loss of directional solidification by considering the

wall thickness, melting temperature, cooling rate, and

cooling temperature, among other process parameters.

Other factors that influence macro-porosities are alloy

modifications and the hydrogen content.44,45 Therefore,

these process parameters should be a focus of monitoring

and analysis. The porosity size is dependent on the volume

of entrapped liquid metal. Porosities cannot be accepted

where they compromise the functionality of the component

based on wheel design tolerances and the location. The

most critical location is at the intersection between the rim

and spoke. These locations on the rims are here a focus for

monitoring and analysis as shown in Figure 4.

Figure 1. Intersection of a die mold of LPDC machine.

Figure 2. Low-pressure die casting process cycle.

Figure 3. Time series pressure measurement on LPDC
machine.
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When porosity defects occur, it traps gases including

hydrogen which are released upon solidification. The

porosity size and volume are therefore also dependent on

initial hydrogen content, solidification conditions, and

macro-segregation of alloying elements.46 The porosity

defects are often more prone to happen at specific periods

of the year, such as summertime with overall higher tem-

peratures and higher humidity levels.40 Therefore, the data

shown in this example are from wheel rims manufactured 6

days in a row. The foundry runs for 24 h with three shifts.

The measurements were of 5 days of production and a sixth

day of one shift only, for a total of sixteen continuous

shifts. The first few parts in each batch are clean out parts

which are not used and recycled. The result was 1077 kept

parts.

Regarding the process parameters, studies have shown that

a decrease in melting temperature can reduce the amount

and size of the porosity. Further, decrease in holding time

and an increase in applied pressure promotes a finer grain

size which consequently reduces porosity.47–49 In this

study, the metal temperature and pressure are included as

monitored variables.

Finally, metal properties can also affect the generation of

porosity. Therefore, the quality of an aluminum sample

ought to be evaluated through the density index (DI), which

specifies the weight of a sample hardened in vacuum (free

of voids) as opposed to a sample hardened under atmo-

spheric pressure. Jang et al. found that increasing the mold

pre-heating temperature increased the DI of an aluminum

alloy up to a point after which further temperature

increases decreased the DI.50 In this study, the DI is

included as monitored variables.

The most frequently used alloying element in aluminum is

elemental silicon. The heat of fusion of silicon is about five

times that of aluminum and therefore it significantly

improves the fluidity. Moreover, silicon expands on

solidification and counteracts the solidification shrinkage

of aluminum.51,52 Overall, the silicon content is important

in porosity failures since it affects the mold filling and

solidification shrinkage. In this study, silicon content is

included as monitored variable.

Another set of defect causes include directional solidifi-

cation effects. It is important to ensure that a controlled,

non-turbulent fill exists to eliminate air entrapment. To do

this, a ready supply of molten metal in the direction of

solidification is needed to reduce the shrinkage. The use of

a metal die with integral cooling passages allows for con-

trolled cooling of the casting. This can further improve

mechanical properties through refinement of the

microstructure.53 In this process, there are both water and

air cooling channels whose flow rate and activation times

are monitored and adjusted according to the most recent

X-ray results. This operator-to-operator skill at adjustment

compensation of the water and air cooling could be a

source of defects or lack of defects. Machine learning can

help quantify proper water and air cooling times.

Sui et al.54 also found cooling effects to be important. They

implemented a numerical simulation to study the influence

of the cooling process of a LPDC on the porosity of an

aluminum alloy wheel and concluded that it is difficult to

promote sequential solidification and eliminate hot spots.

Fan et al.46 simulated the hydrogen macro-segregation and

micro-porosity formation in die casting and found good

Figure 4. X-ray scan of die cast wheel rim with a porosity defect on a spoke.
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prediction of pore size range at the but considerable error in

predicting the number density of pores. Blondheim et al.55

further discuss the macro-porosity in HPDC and the impact

of part shape in porosity.

While the mentioned causes of porosity defects are known,

it remains unclear what combination of causes and their

extent will give rise to actual onset of porosity defects in

the specific parts of wheel rims being cast. This study

proposes to associate the collected process data to indi-

vidual parts and then use the quality inspection result of the

parts to establish relationships between process conditions

and when porosity defects arise.

Industry 4.0: Measurements Process of the Part
Defects

Given these process physics that give a rise to porosity

defects as discussed above, these causal process variables

need to be monitored and statistically controlled. The

foundry process is monitored at several locations such as

the metal chemical analysis, LPDC machine, and X-ray.

To complete any statistical analysis of the process inputs

for causes of defects, the multiple time series datasets must

be associated to the casting. This requires part tracking in

the foundry. Most importantly, the time that each part is

initiated in the LPDC machine needs to be recorded. This

creates a dataset of time and a part identifier with a

machine identifier. With this, the subset of recorded LPDC

machine process data (e.g., such as pressure shown in

Figure 3) can be associated to a part. This similarly holds

true for associating batch material from the furnace with

parts. This tracking-data collection is an important addition

required over and above what most foundry data systems

include. This represents more than simple workstation

monitoring to remain within process tolerances.

The LPDC machine is setup and adjusted by the machine

operators in accordance to process control rules established

over time. There are default settings but also inherent

flexibility to adjust these by the operator according to the

rules and given tolerances. For example, changes are made

if the X-ray results indicate a porosity problem over a

repeated sample of parts. The operators will change certain

settings within limits. Therefore, the actual values of pro-

cess parameters in the LPDC machine are time series

monitored and available for statistical machine learning

analysis.

The LPDC machine time series monitors values during

serial production include molding pressure, temperature,

time, air, and water channel cooling. These values are

continuously monitored at one- and two-second intervals to

assure they remain within the LPDC machine tolerances.

The data itself are stored as time series data with each

machine’s identifier, material batch identifier, and the

monitored LPDC machine values. This forms the first

database of LPDC time series data.

The other set of variables important to porosity are the

Aluminum alloy metal batch properties. The LPDC

machine is refilled every 17 to 20 parts. To reheat the mold

and eliminate mixed material, the first three rims are not

used. A sample is taken at the furnace, the time and loca-

tion are recorded, and the sample sent to a microstructures

laboratory for chemical analysis. Among other chemical

properties, the analysis includes the batch’s density index

and silicon fraction which is causal to porosity defects as

discussed in ‘Causes of Porosity Defects in LPDC.’ The

data are stored with each batch sample’s time, material

batch identifier, and chemical properties. This forms the

second database of Aluminum alloy properties, time

stamps, and identifiers.

The last set of measurements are the X-ray inspection

results of each casting. These results are stored as a dataset

of the time of inspection, the part identifier, the X-ray

image, and the pass/fail result.

These datasets themselves are insufficient for the machine

learning study. Additionally, part tracking data are needed

to identify when the X-rayed part was in the LPDC

machine. To do this, a part tracking system that tracks

when each rim was in the LPDC machine and in the X-Ray

is introduced in this study. This database consisted of time

as rows and part number at the LPDC machine and a part

number at the X-Ray machine. With this, LPDC machine

process parameters and Aluminum metal properties with

the X-ray results can be associated.

In summary, the result of these data collections are process

time series data, batch metal material properties, part level

tracking location data, and porosity quality results.

LPDC Porosity Defect Prediction

At this point, we have a dataset composed of part identi-

fication numbers, the porosity inspection results, and the

sections of the process time series data associated with the

identified part. We now seek to characterize the time series

data into features of that data to which we can then build

statistical prediction models. The data discussed here are as

collected from a particular LPDC machine and die mold in

the production of automotive wheels castings, at Cevher

Wheels Casting Plant, Izmir, Turkey, as supplied to the

European automotive market.
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Data Preprocessing and Feature Engineering

The focus here is on the casting metal and process variables

as likely causal factors of void defects. The initial dataset

consisted of 1077 parts in total of which 62 were of

porosity failures. The time series process data is taken and

partitioned according to the rim tracking data. The result is

approximately 300-time increments (seconds) of process-

ing time data points for each of the 1077 rims.

The next step is to take the time series data for each wheel

rim and form features that can be used to classify good and

defective rims. For example, features might include the

average and variance of a pressure over a phase of the

casting cycle. Different phases of the pressure cycle are

more important than others,56 for instance phase 3 inten-

sification pressure disturbances can affect porosity defects

more than other phases, as shown in Figure 5. These dis-

turbances are considered in terms of the standard deviation

in this phase as understood by the process operators.

The pressure and cooling channels machine set points and

actual measured point are both captured. However, the

machine settings were highly correlated with the mean

feature values and therefore not used. The result of the

feature extraction is 36 features from the 13 measurement

points. There are more features than the measurement

points since a single time series measurement might be

extracted into multiple phases each with means, standard

deviations, and durations.

From this, a dataset for machine learning analysis was

prepared. This dataset consists of a 1077 9 37 matrix,

where each row represents a production rim casting, and 36

columns of input variable feature data and 1 inspection

pass/fail column. The 36 input features are shown in

Table 1. Eleven of the acceptable castings had process

settings far out of specification as outliers due to mainte-

nance and adjustment. These outliers were removed from

the data. The result was a dataset of 1066 parts in total.

Classification Algorithm Model

Next, the approach for fitting the part defect outcome is

discussed. This classification is difficult since the dataset is

Figure 5. An example of an intensification pressure
cycle with high variability.

Table 1. Input Features

Label Name (detail) Label Name (detail)

ac7 t Air flow duration—bossage ac1 std Air flow std—bottom center left hub

ac1 t Air flow duration—bottom center left hub ac11 std Air flow std—side wall

ac2 t Air flow duration—bottom center right hub ac6 std Air flow std—top center core

ac11 t Air flow duration—side wall ac8 std Air flow std—top center hub

ac6 t Air flow duration—top center core ac10 std Air flow std—top outer spoke

ac8 t Air flow duration—top center hub ac9 std Air flow std—top spoke center

ac10 t Air flow duration—top outer spoke wc15 t Cooling water activation time

ac9 t Air flow duration—top spoke center wc15 mean Cooling water mean

ac7 mean Air flow mean—bossage wc15 std Cooling water std

ac1 mean Air flow mean—bottom center left hub DI Melt density index

ac2 mean Air flow mean—bottom center right hub Si Melt silicon content

ac11 mean Air flow mean—side wall Temperature mean Melt temperature mean

ac6 mean Air flow mean—top center core Temperature std Melt temperature std

ac8 mean Air flow mean—top center hub Pressure mean Overall pressure mean

ac10 mean Air flow mean—top outer spoke Pressure std Overall pressure std

ac9 mean Air flow mean—top spoke center Faz 3 t Intensification pressure duration

ac7 std Air flow std—bossage Faz3 mean Intensification pressure mean
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biased to many good parts with few defective parts. This

creates an unbalanced dataset in which traditional machine

learning methods are not suited. A second challenge is the

small quantity of defective datapoints (rims) to train a

generalized model. Methods to overcome these obstacles

are explored.

Classification Problem Formulation

The aim is to predict which parts have porosity defects,

which can be approached as a binary classification prob-

lem. When developing machine learning models, the

dataset is split into training and testing subsets. Typically,

the split uses 70–80% of the data for training and the

remaining for model validation testing. However, in this

case, leaving 20% for validation leaves too few defectives.

Therefore, a 50% split was used for a reasonable number of

defectives in the validation dataset which is not included in

the model training and hyperparameter optimization. The

dataset was split in a random and stratified fashion to

ensure an even allocation of the defectives into the training

and testing sets.

For fitting models of defectives, multiple evaluation met-

rics could be used. These include accuracy, precision,

recall, and the f1 score given in Eqns. 1, 2, 3, and 4,

respectively. Accuracy is the percentage of good and

defective parts that model correctly labels out of all the

parts, where TP is the number of true positives, FP is the

number of false positives, and TN and FN are the number

of true negatives and number of false negatives,

respectively.

Accuracy ¼ ðTP þ TNÞ
ðTP þ TN þ FP þ FNÞ Eqn: 1

While it would seem accuracy is a good measure, for

unbalanced datasets with a high number of good parts over

defective parts, total accuracy can be misleading by simply

being accurate on the good parts alone and misclassifying

many of the defective parts. Two other metrics are

precision and recall which indicate the percent of

correctly labeled parts and the percent falsely labeled.

Precision ¼ TP

ðTP þ FPÞ Eqn: 2

Recall ¼ TP

ðTP þ FNÞ Eqn: 3

These are more informative with respect to the minority

class of defective parts. The f1 score is a combination of

correct and incorrect labels into an overall model score.

F1 ¼ 2 � ðPrecision � RecallÞ
ðPrecision þ RecallÞ Eqn: 4

In this paper, all these scores are utilized to ensure a quality

model. Machine learning algorithms include

hyperparameters that are tuned to fit the best model. This

tuning is a crucial task for optimizing performance of the

XGBoost algorithm used here. This consists in defining a

set of values and searching for a combination that

maximizes the classification results. Various approaches

can be used for the search from full factorial grid search to

random selection.57 Here, an informed automated

hyperparameter tuning approach is used, the Bayesian

Optimization algorithm from the Hyperopt library58 for

model selection and hyperparameter optimization. This

method has been proven efficient in terms of computational

work and algorithm performance compared to the

uninformed hyperparameter searching methods such as

grid search.

XGBoost Implementation

In this section, the setup and implementation of the

defective classification using XGBoost are presented. First,

the repartitioning and resampling of the training data are

described to promote a higher concentration of the minority

class defective set. Then, the objective function for finding

the best fit using hyperopt is described.

A resampling is made with over-sampling to increase and

balance the minority defective class in the training data,

and with under-sampling to obtain a cleaner space. This is

done with Synthetic Over-Sampling (SMOTE)59 and the

Edited Nearest Neighbor Rule (ENN) under-sampling.60

For a pass–fail problem, the under-sampling ENN algo-

rithm can be described in the following way: for each

wheel rim in the training set, its three nearest neighbors are

found. If the wheel rim belongs to the majority class and

the classification of its three nearest neighbors do not, then

the wheel rim is removed. Similarly, the over-sampling

smote algorithm forms new minority class examples by

interpolating between several minority class defective

wheel rim samples that lie together. The original data had a

16.1 to 1 ratio of good parts to defective parts, in mini-

mizing the training error the oversampled set resulted in a

ratio of 0.8 to 1.

Given the resampled training data, the fitting approach

must be selected. Here, a Bayesian optimization approach

is taken, where initial hyperparameters are estimated and

fit, and subsequently that fit is optimized with more trials.

The automated hyperparameter tuning library Hyperopt is

used. The objective function searches over the selected

hyperparameters to minimize the validation error of train-

ing set. With informed Bayesian optimization, the next

values selected are based on the past evaluation results.

The evaluation metric chosen is the area under the curve

(AUC) which represents the ability to differentiate between
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the positive and negative classes (good and defective

parts). The fitting algorithm XGBoost’s built in cross val-

idation is utilized for creating validation sets to tune the

model on the training data. Cross validation is generally a

better approach than a simple single split of the training

data since it provides more generalized error. For this

study, a 10-fold cross validation was used in a stratified

fashion, meaning the hyperparameter set is validated and

trained ten times and the mean of these results is the

objective function. The testing data remain reserved for

validating the machine learning prediction model.

Results and Interpretation

The summary results of the model performance are shown

using the confusion matrix in Figure 6. The confusion

matrix shows the ability to identify good and defective

parts. 440 out of 505 good parts were correctly labeled as

good, whereas 65 out of 505 good parts were mislabeled as

defective, an 87% recall rate. Similarly, the algorithm was

able to correctly identify the defective parts with 23 out of

31 defective parts were correctly labeled as defective, and

8 out of 31 defective parts were mislabeled as good, a 74%

recall rate.

The statistical summary report is shown in Table 2. Note

that the test data were biased with many good parts (505 of

536, 94%) and only a small fraction of defective parts (31

of 536, 6%) make classification difficult. Also, this sample

yield is from the data selected and is not necessarily

indicative of the actual foundry yield rates. The results

show that the classifier was able to correctly predict a good

and defective part using the process and material input data

alone.

XGBoost Classification Prediction Model

The predictor equation consisted of a set of 77 separate

binary decision tree estimators with maximum depth of

four layers. Each tree contributes an increment to the

random variable of a logistic distribution function. One

such decision tree is shown in Figure 7. Given a set of

material and process input valuesx
*

, a decision tree i can be

evaluated for that particular set x
*

which can indicate the

partial probability of that set passing or failing by the leaf

node loaded value Zi. Repeating this all over 77 trees and

adding up summing the resulting leaf nodes of each tree

i indicates the logit value for that feature set.

Z x
*

� �
¼

X
Zi

Then, applying the logit function computes the probability

of failure of that feature set.

Prðx*Þ ¼ 1

1 � e�Zð x*Þ

Interpreting the tree of Figure 7, if the normalized standard

deviation value of Air Channel 2 is less than - 0.502 the

probability of failure is around 0.37 which is the

probability value of the loaded leaf value - 0.5434.

Similarly, if the normalized standard deviation value of Air

Channel 2 is more than - 0.502 and the normalized value

of the Density Index is smaller than 1.106 and the Mean

Value of Phase 3 intensification pressure is larger than -

1.284 and the Silicon Content of the metal is smaller than

1.021, then the probability of failure increases to larger

than 0.64, which is the probability of the loaded leaf value

0.561. In general, large leaf values in any tree indicate

combinations of features give rise to defects.

Feature Importance Scoring

The classifier used 36 input features, some are more

important than others to determine whether a part is good

or defective. To determine the relative importance of the

features, the Shapley index of each feature is computed.

The Shapley index is the (weighted) average of marginal

contributions of the input feature.61

As a check for feature importance scoring, a random noise

variable was added and the analysis with this added
Figure 6. Confusion matrix of the XGBoost model for
part quality.

Table 2. Statistical Summary Report

Precision Recall F1 Score Support

Good parts 0.98 0.87 0.92 505

Defective parts 0.26 0.74 0.39 31
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variable was rerun. Such a random noise variable will not

contribute to prediction accuracy. This resulted in a

Shapley index of 0.3 to the insignificant random variable,

indicating all features below 0.3 are also insignificant.

The results are shown in Figure 8, with the features ordered

according to contribution as shown by the Shapley index.

The results show that 15 of 36 features contribute, and the

remaining 21 features combined contribute less than a half

of the most contributing variable. Note that these

contributions do not sum to one since each Shapley index

includes interaction effects.

Looking at the results shown in Figure 8, three out of the

top four contributors are air cooling channel flow rates. The

most important contributing feature is the standard devia-

tion of the air flow in the channel closest to the center hub

on the bottom mold. The air channel standard deviation

varies due to equipment process control during operation of

the machine; this analysis shows it indeed has an impact on

porosity defects. The second highest contributor was the

Figure 7. Example binary decision tree estimator.
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Figure 8. Feature importance order.
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Melt Silicon Content of the molten metal. This corresponds

with known casting physics, where the silicon content of

the aluminum effects the fluidity which in turn effects

porosity formations.51,52 The third highest contributor is

again an air channel flow standard deviation but of the top

mold center hub. The Shapley indices indicate that the

upper and lower air channels at the center have highest

influence on porosity, this corresponds with understood

physics since that is the thickest area of the casting as

shown in Figure 1.

The fourth contributor is the air channel flow of the top

spoke near the center hub. These air channels are located

next to the center and are also at a relatively thick location.

The fifth highest contributor is the Density Index, which

refers to the oxide level in melt quality which is a direct

effect on the porosity defects.44,45

Overall, the contributors of the casting defects are improper

air channel operations combined with improper variations

in material properties. This work quantifies the combina-

tions of the features needed to result in defective wheel

rims. That is, a quantified prediction model has been cre-

ated to predict when porosity will arise on this machine for

this wheel.

Tradeoff Between Good and Defective Part
Prediction

The hyperparameters were searched to improve the

XGBoost model fit. However, the model also includes

hyperparameters to tune the tradeoff between the rate of

false positives and false negatives. For example, XGBoost

implementation includes a hyperparameter scale_-

pos_weight, which scales the gradient of the minority class

of false negatives. We explore a tradeoff curve by varying

the model to generate a ratio of true positives to true

negatives between 0 and 1. The results are shown in Fig-

ure 9. As can be seen, predication of defectives can get

above 90% defective part accuracy based on these data and

models; however, it would also suffer about 50% accuracy

on the good parts. If one were equally concerned on pass

and fail accuracy, a reasonable tradeoff value for this

dataset would be 80% accuracy on both. For this study, fail

accuracy is of more concern.

Discussion

Use of machine learning on production process data offers

the ability to improve statistical quality control. Here,

causes of casting defects were identified. The Extreme

Boosted Decision Tree (XGBoost) model did well in pre-

dicting good parts from defective parts, with 87% accuracy

for the good parts and 74% accuracy for the defective parts.

Keeping the data fixed, it is possible to increase the

defective part prediction accuracy above 74%, but at the

expense of reduced good part prediction accuracy. The cost

of a false positive versus the cost of a false negative can be

used to determine an appropriate tradeoff point. That is, the

cost of calling a percentage of good parts defective and

unnecessarily reworking them can be optimized against the

cost of calling a percentage of defective parts as good and

performing unnecessary downstream steps such as

machining and painting. This enables the foundry man-

agers to decide on which classifier has the higher expected

benefit.

One critical decision point is how to capture features of the

time series data. We chose to consider averages and stan-

dard deviations of each phase in a cycle. As pointed out by

Blondheim,62 taking averages of time series data can mask

patterns in the data. They make use of auto-encoded neural

nets to consider the full time series data to detect anoma-

lies. This approach appears promising for increase anomaly

detection. We chose here to use the statistics from the

process to compare the average with machine set points for

the operation and compare the standard deviations with

given machine and process tolerances. Future work would

include comparing this approach with use of the full time

series data and understanding what patterns give rise to

defectives.

This work studied porosity defects at all locations across

the spoke of the rim to determine a defective. The accuracy

could be improved with more refined details of defects. For

example, combining multiple defects into a single defec-

tive classification can lead to worse performance.5 The

porosity failures could be separated by zone of a wheel to

enable linking the cooling channels by their locations. This

could provide a better understanding of the effects of the

mean and standard deviation of the flow rate of the chan-

nels as well as the operation times. However, it also

requires substantially more data, and therefore would be

more suitable for analysis during full production. To enable

such high volumes of process and quality inspection data to

be analyzed, automated data collection and tracking are

needed. Here, we have a semi-automated approach asso-

ciating the X-Ray and LPDC machine. In future work, a

totally automated parts tracking method should be imple-

mented starting from the earliest stages of production. The

current laser QR code marking system starts the marking

after X-Ray in the middle of the production and is inade-

quate. Further, the visual inspection system currently used

at the X-ray could be automated to isolate the defects to

types. More data gathered on failed rims and the coordi-

nates of the failures could be classified and a multiclass

classification algorithm applied.

This work made use of the XGBoost classification algo-

rithm. Other methods were explored including Support

Vector Machine (SVM) and logistic regression with
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performance results shown in Table 3. The logistic

regression provided poor accuracy on predicting good and

defective parts. The SVM provided sufficient accuracy on

defective parts but very poor accuracy on predicting good

parts. Overall XGBoost did much better.

Beyond the cost of quality, identifying a defective part

early reduces the carbon footprint of the foundry by

eliminating the unnecessary machining, painting, and

recycling. One of the main carbon footprint impacts is the

high carbon emission of paint removal when recycling

rims. Even with false positives and false negatives, this

model approach could possibly be used for predicting

porosity failures in the early stages by taking the model

predicted and possibly defective parts into quarantine for a

deeper quality inspection. Dispositioning into such quar-

antine parts would not automatically reject the false neg-

atives but rather quarantine them for deeper defect

analysis.

This work did not make use of big data. Rather with a small

dataset of a thousand units the quality control of new

production lines can be formed. While large datasets can

provide better and more robust models, practically a LPDC

foundry operation needs to make use of early smaller

datasets. Foundry operations can use this machine learning

methods to predict failures in short time periods. For

example, the process optimization can be started immedi-

ately to decrease the porosity defect rims for an existing or

a new wheel rim production start. The model can be

expanded to a more general and robust as more data are

gathered. Analysis of small datasets offers a means for

foundries to begin to make use of machine learning in their

production.

Overall, Industry 4.0 data collection and machine learning

worked well to identify causes of casting defects within

process data. This required a sophisticated part tracking

and data collection in the foundry as well as application of

state-of-the-art machine learning algorithm, while it is not

sufficiently accurate for dispositioning acceptable versus

defective parts in production but is useful for assisting in

identifying root causes.
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47. M. Uludağ, R. Çetin, L. Gemi et al., Change in

porosity of A356 by holding time and its effect on

mechanical properties. J. Mater. Eng. Perform. 27,

5141–5151 (2018). https://doi.org/10.1007/s11665-

018-3534-0

48. S.G. Lee, A.M. Gokhale, G.R. Patel, M. Evans, Effect

of process parameters on porosity distributions in

high-pressure die-cast AM50 Mg-alloy. Mater. Sci.

Eng. A 427(1–2), 99–111 (2006). https://doi.org/10.

1016/j.msea.2006.04.082

49. K.N. Obiekea, S.Y. Aku, D.S. Yawas, Effects of

pressure on the mechanical properties and

microstructure of die cast aluminum A380 alloy.

J. Miner. Mater. Charact. Eng. 02(03), 248–258

(2014). https://doi.org/10.4236/jmmce.2014.23029

428 International Journal of Metalcasting/Volume 17, Issue 1, 2023

https://doi.org/10.1016/J.JMATPROTEC.2008.04.057
https://doi.org/10.1016/J.JMATPROTEC.2008.04.057
https://doi.org/10.1016/j.matdes.2008.04.016
https://doi.org/10.1007/s10822-020-00314-0
https://doi.org/10.1007/s10822-020-00314-0
https://doi.org/10.1515/fman-2017-0020]
https://doi.org/10.17981/ingecuc.13.1.2017.06
https://hal.archives-ouvertes.fr/hal-03320300
https://doi.org/10.1007/s40962-015-0001-7
https://doi.org/10.1007/s40962-015-0001-7
https://doi.org/10.1016/J.JMATPROTEC.2007.10.011
https://doi.org/10.1016/J.JMATPROTEC.2007.10.011
https://doi.org/10.1007/s40962-021-00606-7
https://doi.org/10.1007/s40962-021-00606-7
https://doi.org/10.1007/s40962-020-00506-2
https://doi.org/10.1007/s40962-020-00506-2
https://doi.org/10.1007/s11837-005-0025-1
http://www.astm.org
https://doi.org/10.1016/j.msea.2011.01.084
https://doi.org/10.1016/j.msea.2011.01.084
https://doi.org/10.1007/BF03355440
https://doi.org/10.1007/s11665-018-3534-0
https://doi.org/10.1007/s11665-018-3534-0
https://doi.org/10.1016/j.msea.2006.04.082
https://doi.org/10.1016/j.msea.2006.04.082
https://doi.org/10.4236/jmmce.2014.23029


50. H.S. Jang, H.J. Kang, J.Y. Park, Y.S. Choi, S. Shin,

Effects of casting conditions for reduced pressure test

on melt quality of Al–Si alloy. Metals 10(11), 1422

(2020). https://doi.org/10.3390/MET10111422

51. M. Di Sabatino, L. Arnberg, Castability of aluminium

alloys. Trans. Indian Inst. Met. 62(4), 321–325 (2009)

52. B. Dybowski, L. Poloczek, A. Kiełbus, The porosity

description in hypoeutectic Al-Si alloys. In Proceed-

ings of the Key Engineering Materials (vol. 682,

pp. 83–90). Trans Tech Publications Ltd (2016)

53. G.T. Gridli, P.A. Friedman, J.M. Boileau, Manufac-

turing processes for light alloys. . In Proceedings of

the materials, design and manufacturing for light-

weight vehicles, pp. 267-320. Woodhead Publishing

(2021)

54. D. Sui, Z. Cui, R. Wang, S. Hao, Q. Han, Effect of

cooling process on porosity in the aluminum alloy

automotive wheel during low-pressure die casting. Int.

J. Met. 10(1), 32–42 (2016). https://doi.org/10.1007/

s40962-015-0008-0

55. D. Blondheim, A. Monroe, Macro porosity formation:

a study in high pressure die casting. Int. J. Metalcast.

16(1), 330–341 (2022). https://doi.org/10.1007/

s40962-021-00602-x

56. T. Prucha, From the editor—signals within signals.

Int. J. Met. 9(2), 4 (2015)

57. D. Krstajic, L.J. Buturovic, D.E. Leahy, S. Thomas,

Cross-validation pitfalls when selecting and assessing

regression and classification models. J. Cheminform.

6(1), 10 (2014). https://doi.org/10.1186/1758-2946-6-

10

58. J. Bergstra, D. Yamins, D.D. Cox, Making a science

of model search: hyperparameter optimization in

hundreds of dimensions for vision architectures. To

appear in Proc. of the 30th International Conference

on Machine Learning (ICML 2013)

59. G. Lemaı̂tre, F. Nogueira, C.K. Aridas, Imbalanced-

learn: a python toolbox to tackle the curse of

imbalanced datasets in machine learning. J. Mach.

Learn. Res. 18(1), 559–563 (2017)

60. D.L. Wilson, Asymptotic properties of nearest neigh-

bor rules using edited data. IEEE Trans. Syst. Man

Commun. 2(3), 408–421 (1972)

61. L.S. Shapley, Notes on the N-person Game—I:

characteristic-point solutions of the four-person game.

Rand Corporation (1951)

62. D. Blondheim Jr., Utilizing machine learning autoen-

coders to detect anomalies in time-series data.

NADCA Die Casting Engineer (2021)

Publisher’s Note Springer Nature remains neutral with

regard to jurisdictional claims in published maps and

institutional affiliations.

International Journal of Metalcasting/Volume 17, Issue 1, 2023 429

https://doi.org/10.3390/MET10111422
https://doi.org/10.1007/s40962-015-0008-0
https://doi.org/10.1007/s40962-015-0008-0
https://doi.org/10.1007/s40962-021-00602-x
https://doi.org/10.1007/s40962-021-00602-x
https://doi.org/10.1186/1758-2946-6-10
https://doi.org/10.1186/1758-2946-6-10

	Industry 4.0 Foundry Data Management and Supervised Machine Learning in Low-Pressure Die Casting Quality Improvement
	Abstract
	Introduction
	Challenges in Foundry Quality Control and Root Cause Analysis
	Related Work

	Industry 4.0 Foundry Data Collection
	Low-Pressure Die Casting Process
	Causes of Porosity Defects in LPDC
	Industry 4.0: Measurements Process of the Part Defects

	LPDC Porosity Defect Prediction
	Data Preprocessing and Feature Engineering

	Classification Algorithm Model
	Classification Problem Formulation
	XGBoost Implementation
	Results and Interpretation
	XGBoost Classification Prediction Model
	Feature Importance Scoring
	Tradeoff Between Good and Defective Part Prediction

	Discussion
	Open Access
	References




