Skip to main content
Log in

Recycling of Aluminum Chips in Die Casting Foundry

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

A Correction to this article was published on 27 November 2021

This article has been updated

Abstract

Aluminum alloys are widely used in the production of aerospace, aircraft, and automotive components. The die casting components are subjected to post-processing operations, such as milling and turning operations to get final shape, surface finish, and dimensional tolerances. During machining operations large quantities of material are removed from the cast components in the form of chips to achieve final shape and size. The chips that are produced during machining operations are mixed with oils, lubricants. This article discusses how effectively the aluminum can be recovered from the chips with maximum metal recovery and minimum melting loss without compromising quality and chemical composition. The different types of techniques are employed, and their results are discussed in this paper. Al-Si8Cu3Fe (LM24) alloy is selected for investigation purposes. The recovery techniques, such as with flux, without flux, with different melting furnaces, with different melting temperatures, with or without compacting, are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Change history

References

  1. G. Gyarmati, G. Fegyverneki, M. Tokár et al., The effects of rotary degassing treatments on the melt quality of an Al–Si casting alloy. Inter Metalcast 15, 141–151 (2021). https://doi.org/10.1007/s40962-020-00428-z

    Article  CAS  Google Scholar 

  2. S.O. Alexopoulos, J. Dersch, M. Roeb, R. Pitz-Paal, Simulation model for the transient process behaviour of solar aluminium recycling in a rotary kiln. Appl. Therm. Eng. 78, 387–396 (2015). https://doi.org/10.1016/j.applthermaleng.2015.01.007

    Article  Google Scholar 

  3. M.H.A. Aziz, M.H.D. Othman, N.A. Hashim, M.A. Rahman, J. Jaafar, S.K. Hubadillah, Z.S. Tai, Pretreated aluminium dross waste as a source of inexpensive alumina-spinel composite ceramic hollow fibre membrane for pretreatment of oily saline produced water. Ceram. Int. 45, 2069–2078 (2019)

    Article  CAS  Google Scholar 

  4. G. Bedeković, R. Trbović, Electrostatic separation of aluminium from residue of electric cables recycling process. Waste Manage. 108, 21–27 (2020). https://doi.org/10.1016/j.wasman.2020.04.033

    Article  CAS  Google Scholar 

  5. E. David, J. Kopac, Use of separation and impurity removal methods to improve aluminium waste recycling process. Mater. Today: Proc. 2, 5071–5079 (2015). https://doi.org/10.1016/j.matpr.2015.10.098

    Article  Google Scholar 

  6. M. Riestra, A. Bjurenstedt, T. Bogdanoff et al., Complexities in the assessment of melt quality. Inter Metalcast 12, 441–448 (2018). https://doi.org/10.1007/s40962-017-0179-y

    Article  Google Scholar 

  7. J.R. Duflou, A.E. Tekkaya, M. Haase, T. Welo, K. Vanmeensel, K. Kellens, W. Dewulf, D. Paraskevas, Environmental assessment of solid state recycling routes for aluminium alloys: can solid state processes significantly reduce the environmental impact of aluminium recycling? CIRP Ann. 64, 37–40 (2015). https://doi.org/10.1016/j.cirp.2015.04.051

    Article  Google Scholar 

  8. A.F. Ferrás, F.D. Almeida, E.C. Silva, A. Correia, F.J.G. Silva, Scrap production of extruded aluminum alloys by direct extrusion. Procedia Manuf. 38, 1731–1740 (2019). https://doi.org/10.1016/j.promfg.2020.01.100

    Article  Google Scholar 

  9. J. Haraldsson, M.T. Johansson, Review of measures for improved energy efficiency in production-related processes in the aluminium industry – From electrolysis to recycling. Renew. Sustain. Energy Rev. 93, 525–548 (2018). https://doi.org/10.1016/j.rser.2018.05.043

    Article  Google Scholar 

  10. M.I.A. Kadir, M.S. Mustapa, N.A. Latif, A.S. Mahdi, Microstructural analysis and mechanical properties of direct recycling aluminium chips AA6061/Al powder fabricated by uniaxial cold compaction technique. Procedia Eng. 184, 687–694 (2017)

    Article  Google Scholar 

  11. T. Gao, Z. Li, Y. Zhang et al., Phase evolution of β-Al5FeSi during recycling of Al–Si–Fe alloys by Mg melt. Inter Metalcast 13, 473–478 (2019). https://doi.org/10.1007/s40962-018-0279-3

    Article  CAS  Google Scholar 

  12. A.R. Khoei, I. Masters, D.T. Gethin, Design optimisation of aluminium recycling processes using Taguchi technique. J. Mater. Process. Technol. 127, 96–106 (2002). https://doi.org/10.1016/S0924-0136(02)00273-X

    Article  CAS  Google Scholar 

  13. A.R. Khoei, I. Masters, D.T. Gethin, Numerical modelling of the rotary furnace in aluminium recycling processes. J. Mater. Process. Technol. 139, 567–572 (2003). https://doi.org/10.1016/S0924-0136(03)00538-7

    Article  CAS  Google Scholar 

  14. J.K. Odusote, P.A. Ajayi, Mechanical properties and microstructure of recycled aluminum cast with zinc and copper additions. Inter Metalcast 10, 483–490 (2016). https://doi.org/10.1007/s40962-016-0060-4

    Article  Google Scholar 

  15. G. Lazzaro, M. Eltrudis, F. Pranovi, Recycling of aluminium dross in electrolytic pots. Resour. Conserv. Recycl. 10, 153–159 (1994). https://doi.org/10.1016/0921-3449(94)90048-5

    Article  Google Scholar 

  16. P. Li, J. Wang, X. Zhang, X. Hou, B. Yan, H. Guo, S. Seetharaman, Molten salt-enhanced production of hydrogen by using skimmed hot dross from aluminum remelting at high temperature. Int. J. Hydrog. Energy 42, 12956–12966 (2017)

    Article  CAS  Google Scholar 

  17. G.K. Sigworth, R.J. Donahue, The metallurgy of aluminum alloys for structural high-pressure die castings. Inter Metalcast 15, 1031–1046 (2021). https://doi.org/10.1007/s40962-020-00535-x

    Article  CAS  Google Scholar 

  18. M. Mahinroosta, A. Allahverdi, A promising green process for synthesis of high purity activated-alumina nanopowder from secondary aluminum dross. J. Clean. Prod. 179, 93–102 (2018)

    Article  CAS  Google Scholar 

  19. K. Martinsen, S. Gulbrandsen-Dahl, Use of post-consumer scrap in aluminium wrought alloy structural components for the transportation sector. Procedia CIRP 29, 686–691 (2015)

    Article  Google Scholar 

  20. A. Kudyba, S. Akhtar, I. Johansen, J. Safarian, Aluminum recovery from white aluminum dross by a mechanically activated phase separation and remelting process. Jom 73, 2625–2634 (2021). https://doi.org/10.1007/s11837-021-04730-x

    Article  CAS  Google Scholar 

  21. R. Gallo, I. Soto, Improving competitiveness through in-house aluminum chip melting: a case study. AFS Trans. 119, 1–8 (2011)

    Google Scholar 

  22. H. Puga, J. Barbosa, D. Soares, F. Silva, S. Ribeiro, Recycling of aluminium swarf by direct incorporation in aluminium melts. J. Mater. Process. Technol. 209, 5195–5203 (2009)

    Article  CAS  Google Scholar 

  23. S.N.A. Rahim, M.A. Lajis, S. Ariffin, A review on recycling aluminum chips by hot extrusion process. Procedia CIRP 26, 761–766 (2015)

    Article  Google Scholar 

  24. Y. Li, X. Chen, B.E.I. Liu, Experimental study on denitrification of black aluminum dross. JOM 73, 2635–2642 (2021). https://doi.org/10.1007/s11837-021-04771-2

    Article  CAS  Google Scholar 

  25. S.K. Padamata, A. Yasinskiy, P. Polyakov, A review of secondary aluminum production and its byproducts. JOM 73, 1–12 (2021). https://doi.org/10.1007/s11837-021-04802-y

    Article  CAS  Google Scholar 

  26. G.K. Sigworth, Refining of secondary aluminum important chemical factors. JOM 73, 2594–2602 (2021). https://doi.org/10.1007/s11837-021-04774-z

    Article  CAS  Google Scholar 

  27. L.A. Godlewski, J.W. Zindel, Capability study of a filtration process to predict aluminum melt quality. AFS Trans. 109, 555–565 (2001)

    CAS  Google Scholar 

  28. A.A. Reis, J.R. Oliveira, R.M. Oliveira, E.A. Vieira, Thixoforging of Al–3.8% Si alloy recycled from aluminum cans. Mater. Sci. Eng., A 607, 219–225 (2014). https://doi.org/10.1016/j.msea.2014.03.129

    Article  CAS  Google Scholar 

  29. M.A. Reuter, K. Heiskanen, U. Boin, A.V. Schaik, E. Verhoef, Y. Yang, G. Georgalli, Chapter 14 Simulating a Rotary Furnace for Aluminium Recycling in The Metrics of Material and Metal Ecology (Elsevier, Hoboken, 2005), pp. 453–478. https://doi.org/10.1016/S0167-4528(05)80028-6

    Book  Google Scholar 

  30. J. H. L. van Linden, C. Vild, R.S. Henderson,, "LOTUSS-CHIP MELTING SYSTEM FOR ALUMINUM DIECASTERS AND FOUNDRIES.," AFS International Conference on Molten Aluminum Processing Conference Proceedings MAP Vol. 5 November 1998, p., pp. 377-390., 1998.

  31. V. Rundquist, M. Paci, R. Gal, The development of an ultrasonic degassing process for aluminium casting. Mater. Today: Proc. 10, 288–295 (2019). https://doi.org/10.1016/j.matpr.2018.10.408

    Article  CAS  Google Scholar 

  32. R. Saravanakumar, K. Ramachandran, L.G. Laly, P.V. Ananthapadmanabhan, S. Yugeswaran, Plasma assisted synthesis of γ-alumina from waste aluminium dross. Waste Manage. 77, 565–575 (2018). https://doi.org/10.1016/j.wasman.2018.05.005

    Article  CAS  Google Scholar 

  33. L. Smith, The role of coreless induction furnaces for recycling aluminium scrap. Resour. Conserv. Recycl. 10, 185–191 (1994). https://doi.org/10.1016/0921-3449(94)90052-3

    Article  Google Scholar 

  34. P.E. Tsakiridis, Aluminium salt slag characterization and utilization – A review. J. Hazard. Mater. 217–218, 1–10 (2012). https://doi.org/10.1016/j.jhazmat.2012.03.052

    Article  CAS  Google Scholar 

  35. B. Wan, W. Li, F. Liu, T. Lu, S. Jin, K. Wang, A. Yi, J. Tian, W. Chen, Determination of fluoride component in the multifunctional refining flux used for recycling aluminum scrap. J. Market. Res. 9, 3447–3459 (2020). https://doi.org/10.1016/j.jmrt.2020.01.082

    Article  CAS  Google Scholar 

  36. L. Wu, K. Liu, Y. Zhou, J. Wang, H. Wang, Predicting the thermodynamics of aluminum dross denitrification of flue gas. Calphad 74, 102315 (2021). https://doi.org/10.1016/j.calphad.2021.102315

    Article  CAS  Google Scholar 

  37. N. Ünlü, M.G. Drouet, Comparison of salt-free aluminum dross treatment processes. Resour. Conserv. Recycl. 36, 61–72 (2002). https://doi.org/10.1016/S0921-3449(02)00010-1

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Sundaram Clayton high pressure die casting foundry management and staff for their continuous support extended throughout this work. The author doesn’t receive funding from any source for carrying out this research work.

Author information

Authors and Affiliations

Authors

Contributions

MB carried out original work. GA, TN, Koilraj, and PS were involved in editing, drafting, and proofreading.

Corresponding author

Correspondence to M. Bhaskar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: G. Anand's affiliation and Tamilselvam Nallusamy's last name were corrected.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhaskar, M., Anand, G., Nallusamy, T. et al. Recycling of Aluminum Chips in Die Casting Foundry. Inter Metalcast 16, 1575–1583 (2022). https://doi.org/10.1007/s40962-021-00707-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-021-00707-3

Keywords

Navigation