Skip to main content
Log in

The Effect of Fe Content on the Solidification Pathway, Microstructure and Thermal Conductivity of Hypoeutectic Al–Si Alloys

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

In the present study, the solidification pathway, microstructure and thermal conductivity of Fe-rich Al–x Si (= 5, 7, 9, wt%, the same below) alloys were systematically investigated. The results showed that the thermal conductivity was firstly improved and then decreased with Fe content increasing. The improvement and decreasing rate of thermal conductivity was related to the Si content. The change of thermal conductivity was closely related to the change of microstructure and solidification pathway. The addition of Fe element resulted to the precipitation of ternary β (Al5SiFe) phase (βT) and binary β phase (βB). The precipitation of βT was benefited to improve the thermal conductivity. On the contrast, the precipitation of βB was prone to deteriorate the thermal conductivity. The precipitation amount of βT phase and βB phase was related to the critical value of Fe content (Fecrit). The calculation results showed that the Fecrit of Al–x Si alloys was about 0.20% (5% Si), 0.29% (7% Si) and 0.38% (9% Si), respectively. When the Fe content was less critical value (Fecrit), the precipitation amount of βT phase was increased by Fe increasing. Furthermore, when the Fe content was more than Fecrit, the precipitation amount of βT phase was changed slightly, and the precipitation amount of βB phase continued to increase with Fe content increasing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. C. Wen, J. Gan, C. Li, Y. Huang, J. Du, Comparative study on relationship between modification of Si phase and thermal conductivity of Al–7Si alloy modified by Sr/RE/B/Sb elements. Int. J. Metalcast. (2020). https://doi.org/10.1007/s40962-020-00436-z

    Article  Google Scholar 

  2. J. Gan, Y. Huang, J. Du, C. Wen, J. Liu, Synchronous improvement in thermal conductivity and mechanical properties of Al–7Si–0.6Fe–0.5Zn cast alloy by B/La/Sr composite modification. Mater Res Exp 7, 086501 (2020)

    Article  CAS  Google Scholar 

  3. A. Monroe, P. Sanders, The need for a new approach to soldering in high pressure die casting. Inter. Metalcast. (2020). https://doi.org/10.1007/s40962-020-00504-4

    Article  Google Scholar 

  4. Q. Li, Y. Zhu, S. Zhao, Y. Lan, D. Liu, G. Jian, Q. Zhang, H. Zhou, Influences of Fe, Mn and Y additions on microstructure and mechanical properties of hypoeutectic Al–7%Si alloy. Intermetallics 120, 106768 (2020)

    Article  CAS  Google Scholar 

  5. P. Orozco-González, M. Castro-Román, A.I. Martínez, M. Herrera-Trejo, A.A. López, J. Quispe-Marcatoma, Precipitation of Fe-rich intermetallic phases in liquid Al–13.58Si–11.59Fe–1.19Mn alloy. Intermetallics 18(8), 1617–1622 (2010)

    Article  Google Scholar 

  6. J.K. Chen, H.Y. Hung, C.F. Wang, N.K. Tang, Thermal and electrical conductivity in Al–Si/Cu/Fe/Mg binary and ternary Al alloys. J. Mater. Sci. 50, 5630–5639 (2015)

    Article  CAS  Google Scholar 

  7. A. Gorny, J. Manickaraj, Z. Cai, S. Shankar, Evolution of Fe based intermetallic phases in Al–Si hypoeutectic casting alloys: Influence of the Si and Fe concentrations, and solidification rate. J. Alloy. Compd. 577, 103–124 (2013)

    Article  CAS  Google Scholar 

  8. J. Maxwell, A Treatise on Electricity and Magnetism (Oxford University Press, Cambridge, 1904).

    Google Scholar 

  9. Q. Zhao, Z. Qian, X. Cui, Wu. Yuying, X. Liu, Optimizing microstructures of dilute Al–Fe–Si alloys designed with enhanced electrical conductivity and tensile strength. J. Alloy. Compd. 650, 768–776 (2015)

    Article  CAS  Google Scholar 

  10. F. Stadler, H. Antrekowitsch, W. Fragner, H. Kaufmann, E.R. Pinatel, P.J. Uggowitzer, The effect of main alloying elements on the physical properties of Al–Si foundry alloys. Mater. Sci. Eng., A 560, 481–491 (2013)

    Article  CAS  Google Scholar 

  11. J.K. Chen, H.Y. Hung, C.F. Wang, N.K. Tang, Effects of casting and heat treatment processes on the thermal conductivity of an Al–Si–Cu–Fe–Zn alloy. Int. J. Heat Mass Transf. 105, 189–195 (2017)

    Article  CAS  Google Scholar 

  12. P. Olafsson, R. Sandstrom, A. Karlsson, Comparison of experimental, calculated and observed values for electrical and thermal conductivity of aluminium alloys. J. Mater. Sci. 32, 4383–4390 (1997)

    Article  CAS  Google Scholar 

  13. W. Weng, H. Nagaumi, X. Sheng, W. Fan, X. Chen, X. Wang, Influence of silicon phase particles on the thermal conductivity of Al–Si alloys, in Light metals. (Springer, Cham, 2019), pp. 193–198

    Google Scholar 

  14. E. Vandersluis, C. Ravindran, Influence of solidification rate on the microstructure, mechanical properties, and thermal conductivity of cast A319 Al alloy. J. Mater. Sci. 54, 4325–4339 (2019)

    Article  CAS  Google Scholar 

  15. L. Tian, I. Anderson, T. Riedemann, A. Russell, Modeling the electrical resistivity of deformation processed metal–metal composites. Acta Mater. 77, 151–161 (2014)

    Article  CAS  Google Scholar 

  16. E. Vandersluis, P. Emadi, B. Andilab, C. Ravindran, The role of silicon morphology in the electrical conductivity and mechanical properties of As–Cast B319 aluminum alloy. Metall. Mater. Trans. A 51A, 1874–1886 (2020)

    Article  Google Scholar 

  17. M. Akoshima, B. Hay, M. Neda, M. Grelard, Experimental verification to obtain intrinsic thermal diffusivity by laser-flash method. Int. J. Thermophys. 34, 778–791 (2013)

    Article  CAS  Google Scholar 

  18. W.J. Parker, R.J. Jenkins, C.P. Butler, G.L. Abbott, Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys. 32(9), 1679–1684 (1961)

    Article  CAS  Google Scholar 

  19. A.C.E.O. Measurements, Standard Test Method for Determining Thermal Diffusivity by the Flash Method (ASMT International, West Conshochcken, 2007).

    Google Scholar 

  20. A. Pithan, H. Koch, Modifications of aluminum alloys for high thermal stress. Inter. Metalcast. 9, 67–71 (2015). https://doi.org/10.1007/BF03355603

    Article  Google Scholar 

  21. L. Lu, A.K. Dahle, Iron-rich intermetallic phases and their role in casting defect formation in hypoeutectic Al–Si alloys. Metall. Mater. Trans. A 36(3), 819–835 (2005)

    Article  Google Scholar 

  22. S. Farahany, A. Ourdjini, M.H. Idrsi, S.G. Shabestari, Evaluation of the effect of Bi, Sb, Sr and cooling condition on eutectic phases in an Al–Si–Cu alloy (ADC12) by in situ thermal analysis. Thermochim. Acta 559, 59–68 (2013)

    Article  CAS  Google Scholar 

  23. P. Villars, A. Prince, H. Okamoto, Handbook of Ternary Alloy Phase Diagrams, vol. 5 (ASM International Materials Park, OH, 1995).

    Google Scholar 

  24. J.A. Taylor, G.B. Schaffer, D.H. St John, The role of iron in the formation of porosity in Al–Si–Cu–based casting alloys: Part I. Initial experimental observations. Metall. Mater. Trans. A 30A, 1643–1650 (1999)

    Article  CAS  Google Scholar 

  25. J.A. Taylor, G.B. Schaffer, D.H. St John, The role of iron in the formation of porosity in Al–Si–Cu-based casting alloys: Part II. A phase-diagram approach. Metall. Mater. Trans. A 30A, 1651–1655 (1999)

    Article  CAS  Google Scholar 

  26. T. Seymour, P. Frankel, L. Balogh, T. Ungar, S.P. Thompson, D. Jadernas, J. Romero, L. Hallstadius, M.R. Daymond, G. Ribarik, M. Preuss, Evolution of dislocation structure in neutron irradiated Zircaloy–2 studied by synchrotron x–ray diffraction peak profile analysis. Acta Mater. 126, 102–113 (2017)

    Article  CAS  Google Scholar 

  27. I.N. Andryushinan, L.A. Reznichenko, L.A. Shilkina, K.P. Andryushin, S.I. Dudkina, The PZT system (PbTixZr1−xO3, 0≤x≤1.0): High temperature X–ray diffraction studies. Complete x–T phase diagram of real solid solutions (Part 3). Ceram. Int. 39, 2889–2901 (2013)

    Article  Google Scholar 

  28. N. Naveen Kumar, K.V. Mani Krishna, S. Chandra, R. Tewari, Influence of dislocations and grain boundaries on diffraction line profiles of nano-crystalline materials: a numerical study. Comput. Mater. Sci. 171, 109213 (2020)

    Article  CAS  Google Scholar 

  29. Z. Wang, R. Tian, Aluminum Alloy Andprocessing Manual, 3rd Ed (Central South University Press, Changsha, 2005), pp. 216–234. (in Chinese)

    Google Scholar 

  30. Z. Cui, Y. Qin, Metallography and Heat Treatment (in Chinese) (China Machine Press, Beijing , 2015), p. 65

    Google Scholar 

  31. W.H. Bragg, W.L. Bragg, The reflection of X–rays by crystals. Proc R Soc Lond Ser A 88(605), 428–438 (1913)

    Article  CAS  Google Scholar 

  32. R.B. Dingle, The electrical conductivity of thin wires. Proc R Soc A 201, 540–545 (1950)

    Google Scholar 

  33. F. Heringhaus, H.-J. Schneider-Muntau, G. Gottstein, Analytical modeling of the electrical conductivity of metal matrix composites: application to Ag–Cu and Cu–Nb. Mater. Sci. Eng., A 347, 9–20 (2003)

    Article  Google Scholar 

  34. Z.M. Shi, K. Gao, Y.T. Shi, Y. Wang, Misrostructure, processing, microstructure and mechanical properties of rare-earth-modified Al–1Fe binary alloys. Mater. Sci. Eng., A 632, 62–71 (2015)

    Article  CAS  Google Scholar 

  35. H. Jiang, S. Li, Q. Zheng, L. Zhang, Y. Song, C. Deng, J. Zhao, Effect of minor lanthanum on the microstructures, tensile and electrical properties of Al Fe alloys. Mater. Des. 195, 108991 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Industry-University-Research Combined Project of Guangdong Province (No. 2013B090500091), and Shenzhen Jiansheng Technology Inc. Cooperation Project (Contract No. 20180358).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, J., Du, J., Wen, C. et al. The Effect of Fe Content on the Solidification Pathway, Microstructure and Thermal Conductivity of Hypoeutectic Al–Si Alloys. Inter Metalcast 16, 178–190 (2022). https://doi.org/10.1007/s40962-021-00580-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-021-00580-0

Keywords

Navigation