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Abstract
Since the vast array of scientific contributions by Dr. C. R. Rao are difficult to sum-
marize in a short paper, we focus on (1) concepts relevant for applied statisticians 
including econometricians, (2) using the R software to explain the concepts to be 
better understood by Economics students who may lack sufficient background in 
mathematical statistics, (3) topics that are covered in publicly and freely available R 
packages. The range of R packages influenced by Rao’s research is impressive. Dr. 
Rao will be 100 years old in 2020, and it is high time the Economics profession rec-
ognizes and honors his foundational contributions to econometrics.

Keywords  Regression · Cramer-Rao lower bound · Score test · Entropy methods · 
Rao-Blackwellization

JEL Codes  C18 · C38 · C50

Introduction

A review of Professor C. R. Rao’s contributions in Statistics is available in Kumar 
et al. (2010). It shows the important role played by Professor Rao in the founding 
of the Indian Econometric Society, which recently held a 54-th Annual meeting in 
Jammu, India, attended by over 400 econometricians from all parts of India and 
abroad. Rao helped late Prof. P. C. Mahalanobis, his colleague and mentor at the 
Indian Statistical Institute in Calcutta, in formulating economic policies of free India 
upon achieving independence in 1947. He encouraged sound statistical training for 
economists and encouraged spending resources for good economic data collection. 
The journal Econometric Theory paid tribute to Rao by printing a 70-page long 
interview with him in Bera (2003), which includes detailed lists of Rao’s 458 publi-
cations and various honors received. The Government of India acknowledged Rao’s 
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leadership in helping to improve Indian economic data collection and policy—a 
worthy activity for a potential Nobelist in Economics.

Instead of revisiting Kumar et  al. (2010) in detail, this paper provides a short 
technical review, providing hands-on explanations of Rao’s ideas with the help of 
R software absent in the earlier reviews and retrospectives. We hope to encourage 
young Econometricians to find inspiration and new insights from Rao’s publications 
in their own research. Rao’s ideas are explained anew with references to over 20 R 
packages, which should allow students to get a quick start with practical applica-
tions, even though some packaged examples might be from other sciences.

The input code snippets in R software and outputs produced by R are distinctly 
highlighted in the sequel, such that the reader can copy and paste the input and com-
pare her locally produced output with our output reported here. Since the regression 
model is the bread and butter of applied econometrics, we use regressions to illus-
trate some ideas, even though some ideas can be more simply explained using the 
sample mean.

The usual linear regression model in matrix notation is

where we have T observations, X is the T × (p + 1) matrix of data on all regressor 
variables including the first column of ones to represent the intercept �0 , y is a T × 1 
vector of data on the dependent variable, � is a (p + 1) × 1 vector of regression coef-
ficients, and � is a T × 1 vector of unknown true errors.

For example, we let y be the stopping distance (’dist’) of a car (in feet), and x1 be 
the speed of the car in miles per hour (’speed’), using Ezekiel’s data called ‘cars’ 
always available in R. Our first R input code is:

#??datasets #this command lists all data sets available in R
cbind(head(cars,3),tail(cars,3)) # y=dist, x1=speed
nrow(cars) #how many observations=T?

The following output has the first set of three row-values in the first two columns 
and the last set of three rows-values in the last two columns. R does not print to the 
screen the tailing (last) three row numbers 48–50.

(1)y = �0 + �1x1 +⋯ + �pxp + � = X� + �,
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> cbind(head(cars,3),tail(cars,3)) # y=dist, x1=speed
speed dist speed dist

1 4 2 24 93
2 4 10 24 120
3 7 4 25 85
> nrow(cars) #how many observations=T?
[1] 50

Note that ‘cars’ data in R has T = 50 with y for a (50×1 ) vector of stopping 
distances (2, 10, 4, ...,93, 120, 85). We need to insert the first column of T ones in 
our (50×2 ) X matrix for the intercept. The second column of X has x1 representing 
car speeds. An R function for linear models (lm) creates an R object containing 
all regression results. We name the R object ‘reg’ in the following code.

library(stargazer)# for nice regression output
attach(cars) #to access columns by name
reg=lm(dist~speed) #standard R method for regression
stargazer(reg)

The output of the above code is in a form suitable to produce the following 
(Latex) Table 1, where standard errors of regression coefficients are in parenthe-
ses under the coefficient values.

Now we discuss the theory of linear regression to set up our notation needed 
for explaining Rao’s contributions, including Cramer-Rao lower bound on vari-
ance in the regression context. We have the following semi-parametric (when nor-
mality is not assumed) probabilistic structure for y and errors in matrix notation:

Table 1   Regression of stopping 
distance on speed by standard 
R method

∗p <0.1; ∗∗p < 0.05 ; ∗∗∗p < 0.01

Dependent variable
Dist

Speed 3.932∗∗∗

(0.416)
Constant −17.579∗∗

(6.758)
Observations 50
R2 0.651

Adjusted R2 0.644
Residual Std. error 15.380 ( df = 48)
F statistic 89.567∗∗∗ ( df = 1 ; 48)
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where IT is a T × T  identity matrix, suggesting homoscedasticity or constant vari-
ances and zero covariances among errors. Note thatE(y) = X� is also the conditional 
mean E(y|X) . If we further assume that (a) the X matrix of regressors has full col-
umn rank, (b) all columns of X are uncorrelated with errors, and (c) that y (and �) are 
multivariate Normal,y ∼ N(�,�2I ), then the usual t-tests and F tests on coefficients 
and the overall model are available. In particular, let the t-th error �t have the follow-
ing Normal density:

where�t is the t-th element of the vector(y − X� ) and is known only when� is known. 
Hence, the density f (�t) is a function of data on y, X at time t, given specified numer-
ical values of � and �2 . The density is usually written as: f (yt,Xt|� , �2 ), where we 
assume that the numerical values of all items after the vertical bar are known. The 
joint density for all T observations is the product of such densities for all t fromt = 1 
to t = T:

where f (�t) is defined in (3) and does depend on � through � = (y − X�).
Sir Fisher re-interpreted the same joint density function fjoint(⋅) as flkhd(�, �2|y,X ). 

Its log is called the log-likelihood (LL) function. It is useful when the object is to 
find the unknown parameters from the given data. For the regression model (2), we 
are not assuming the form of the density of � , only that we know its mean and var-
iance-covariance matrix. A quasi-log-likelihood function can be defined from the 
assumptions of (1), by pretending (hence quasi) that errors have the same mean and 
variance as the corresponding Normal without having to be actually Normal.

Now the quasi-LL and the usual LL by expanding the product in(4) after using (3) 
are given by

where

Now we assume that �2 is known for simplifying the following derivations and mini-
mize �′� with respect to � . An extension to the case where �2 is also unknown is 
obtained by maximizing the LL with respect to �2 is straightforward and available in 
textbooks. The matrix derivative of2�′X′y with respect to � is2X′y , and the deriva-
tive of the quadratic form �′X′X� is 2X′X� . Setting the derivative equal to zero, 
we get the first-order condition (FOC) from calculus given by −2X�y + 2X�X� = 0 . 
Upon canceling the 2 and solving for � , we have the ordinary least squares (OLS) 
estimator b as the solution:

(2)y = X� + �, E(�) = 0, E(���) = �2IT ,

(3)f (�t) = (2�)−1∕2�−1 exp{−(��
t
�t)∕2�

2},

(4)fjoint(y,X|�, �2) =

T∏

t=1

f (�t),

(5)LL = −(T∕2) log(2��2) + ���∕(2�2),

(6)��� = (y − X�)�(y − X�) = y�y − 2��X�y + ��X�X�.
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Let us use the ‘cars’ data to illustrate a numerical implementation of the above 
formula.

attach(cars) #access names speed, dist
beta0=rep(1,50)#vector of ones
X=cbind(beta0,speed)#create X matrix
XTX=t(X)%*%X #get X'X
XTy=t(X)%*%dist #get X'y
XTXinv=solve(XTX) #inverse of X'X
b=solve(XTX)%*%XTy #get OLS/ML estimator b

The output below of the above code shows that the OLS estimator b from first 
principles using the formula of Eq. (7) agrees with the R output in Table 1.

> b# OLS/ML estimator from first principles
[,1]
beta0 -17.579095
speed 3.932409
> reg=lm(dist~speed) #b by standard R methods
> coef(reg)
(Intercept) speed
-17.579095 3.932409

Score Function and Score Equation

We have verified that R software correctly estimates the OLS estimator derived by 
matrix algebra formulas. Next we verify that the OLS formula also maximizes the 
log-likelihood (LL). First, we define the score vector g∗ as the derivative of the LL 
function:

evaluated at the true parameter values. Since the first-order condition (FOC) for 
maximization of LL states that E(g∗) = 0 , also known as the score equation. We can 
cancel the 2 from the numerator and denominator of (8) and write the FOC as:

Now the LL maximizing solution upon setting the left-hand-side equal to zero is the 
same b defied above in eq. (7):

(7)b = (X�X)−1X�y.

(8)g∗ = (� LL∕��) = 2X�(y − X�)∕(2�2),

(9)X�(y − X�)∕�2 = 0 = (1∕�2)X��.
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Fisher Information Matrix

Fisher information matrix is defined as the variance-covariance matrix of the 
score vector (from the outer product of the score vector) as:

where we have used E(���) = �2IT from Eq. (2).
The second-order condition for a maximum from calculus is that the matrix 

of second-order partial derivatives should be negative definite. It can be stated in 
terms of the Fisher information matrix based on the second-order partials as:

Since the Fisher information matrix is a projection matrix, it is non-negative defi-
nite. Thus the ML estimator of the � in Eq. (7) satisfies both first and second-order 
conditions for a maximum. We use the usual estimate s2 of �2 from the residual sum 
of squares (RSS) divided by the degrees of freedom ( df = T − p − 1).

df=length(speed)-2;df
s2=sum(resid(reg)^2)/df;s2

In the above code, s2 equals RSS/df.

> df=length(speed)-2;df
[1] 48
> s2=sum(resid(reg)^2)/df;s2
[1] 236.5317

Note that this output agrees with the square of ‘Residual Std. Error’ of 15,380, 
reported in Table 1. A slight discrepancy is due to the superior numerical accu-
racy of R.

XTX=t(X)%*%X #get X X
s2*XTX

The information matrix for our cars example is s2X′X with the R output given 
next.

(10)Inf = E(g∗g∗�) = (1∕�4)X�E(���)X = (1∕�2)X�X,

(11)Iinf = −E

[
�2

���
LL

]
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> XTX=t(X)%*%X #get X X
> s2*XTX
beta0 speed
beta0 11826.58 182129.4
speed 182129.40 3128841.2

Having set up the basic notation, we are ready to discuss one foundational contri-
bution by Rao.

The Unified Theory of Linear Estimation

The familiar notation A− to denote generalized inverse was first developed by Rao in 
1955 based on an application to a study of long-term effects of radiation on Naga-
saki-Hiroshima victims, (Rao 1991, p. 33), independently of Penrose’s 1955 work 
leading to Moore-Penrose inverse. The properties of generalized inverse were fully 
worked out by Rao. For example, if A− is a left inverse of A, then pre-multiplication 
should yield the identity matrix: A−A = I

If we choose the left inverse A− = (A�A)−1A� as our generalized inverse of A, then 
the generalized inverse of A is very easy to compute by the following one-line code 
in R:

gen.inv=solve(t(A)%*%A) %*% A

Rao’s unified theory applies the generalized inverse to report some almost unbe-
lievable properties described in the sequel. What is the motivation? Equation (2) 
assumes that X is of full column rank, implying that X′X can be inverted and also 
that V = ��� is non-singular. What if these matrices are singular? Rao has provided 
an elegant solution to both problems and introduced an “inverse partitioned matrix,” 
which yields summary statistics for linear models.

where superscript (−) denotes any generalized inverse, and the matrices C1 to C4 are 
numerically known from the elements in a generalized inverse.

Now we have several relations providing all estimators and statistics needed for 
inference.

(12)
[
V X

X� 0

]−
=

[
C1 C2

C3 − C4

]
,

(13)𝛽 = C�
2
y = C3y,

(14)df = rank(V ∶ X) − rank(X),
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where P matrix defines a linear combination, df denotes degrees of freedom, where 
rank(V : X) denotes the rank of a matrix obtained by writing the two matrices side-
by-side, and where Var denotes variance-covariance matrix.

Now the R ode to verify these results for cars data is as follows.

attach(cars) #access names speed, dist
beta0=rep(1,50)#vector of ones
X=cbind(beta0,speed)#create X matrix
y=dist
T=nrow(cars)
p=2
V=diag(T)
zer=matrix(0,nrow=p,ncol=p)
A0=cbind(V,X)
A1=cbind(t(X),zer)
A=rbind(A0,A1)
dim(A)
Ainv=solve(t(A)%*%A) %*% A
C1=Ainv[1:T,1:T]
C2=Ainv[1:T,(T+1):(T+p)]
C3=Ainv[(T+1):(T+p),1:T]
C4=-Ainv[(T+1):(T+p),(T+1):(T+p)]

Now we can verify Eq. (13) by the following code:

bhat=C3 %*% y;bhat
t(C2)%*%y

The output agrees with Table 1.

> bhat=C3 %*% y;bhat
beta0 -17.579095
speed 3.932409
> t(C2)%*%y
beta0 -17.579095
speed 3.932409

Next, we can verify Eq. (14) for degrees of freedom.

(15)𝜎2 = y�C1y∕df ,

(16)Var(P�𝛽) = 𝜎2P�C4P,
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library(fBasics)
rk(cbind(V,X))-rk(X)

The output agrees with Table 1.

> rk(cbind(V,X))-rk(X)
[1] 48

Next, we verify Eq. (15) for error variance.

s2=t(y)%*%C1 %*%y /df; s2

The output s2 below agrees with its square root reported in Table 1.

> s2=t(y)%*%C1 %*%y /df; s2
[,1]
[1,] 236.5317

Note that the matrix on the left side of Eq. (12) can be huge. If there are 500 ele-
ments in the rows of y, this is a 502 ×  502 matrix. Numerical mathematics using 
computers suggests that one should avoid computing inverses of large matrices, 
since numerical rounding and truncation errors can be difficult to control, Vinod and 
McCullough (2003).

Hence if V−1 and (X�X)−1 exist, Eq. (12) is mainly of theoretical interest for its 
ability to yield all summary statistics of interest in one matrix operation. It is par-
ticularly useful when the inverses of V and ( X′X ) do not exist.

If the left inverse is difficult to compute, one will need to use the singular value 
decomposition by the ‘svd’ function in R. We define an R object sv1 to store 
the decomposition of A into three matrices UDV, where D is diagonal. Note that 
A = UDV � and A− = UD−1V � . Once the generalized inverse is computed, it is quite 
simple to compute the matrices C1 to C4 by partitioning the generalized inverse 
matrix.
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sv1=svd(A)
U=sv1$u
d=sv1$d
V=sv1$v
Ainv=U%*%diag(1/d)%*%t(V)
C1=Ainv[1:T,1:T]
C2=Ainv[1:T,(T+1):(T+p)]
C3=Ainv[(T+1):(T+p),1:T]
C4=-Ainv[(T+1):(T+p),(T+1):(T+p)]
bhat=C3 %*% y;bhat
t(C2)%*%y

If the output of the above code does not give two nearly identical estimates of 
𝛽  (from C3 and C2) we have serious numerical (collinearity) problems, rendering 
the results from inverse partitioned matrix of Eq. (12) unreliable.

Cramer‑Rao Lower Bound (CRLB)

Let a log-likelihood function similar to Eq. (5) be twice differentiable, and the 
support of y does not depend on unknown parameters. If b is an unbiased estima-
tor of � , then using (10) we have:

which suggests that the variance-covariance matrix of the OLS/ML estimator, 
�2(X�X)−1 , reaches the Cramer-Rao lower bound. Hence b is Cramer-Rao efficient. 
Rao (1991) states that he established the inequality in 1943, when Rao was only 23, 
even though its publication was delayed due to the Second World War until 1945.

Now we illustrate the Cramer-Rao lower bound of Eq. (17) using ‘cars’ data. 
We use the usual estimate of �2 from the residual sum of squares (RSS) divided 
by the degrees of freedom ( df = T − p − 1).

df=length(speed)-2;df
s2=sum(resid(reg)^2)/df;s2
CRLB=s2*XTXinv;CRLB

In the above code, s2 equals (RSS/df), and CRLB denotes the Cramer-Rao 
lower bound matrix. The usual standard errors of regression coefficients are sim-
ply square roots of the diagonal elements of CRLB, which agree with the R out-
put in Table 1.

(17)Var(b) ≥ I−1
inf

= �2(X�X)−1,
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> df=length(speed)-2;df
[1] 48
> s2=sum(resid(reg)^2)/df;s2
[1] 236.5317
> CRLB=s2*XTXinv;CRLB #matrix

beta0 speed
beta0 45.676514 -2.6588234
speed -2.658823 0.1726509
> sqrt(diag(CRLB))
beta0 speed
6.7584402 0.4155128

It can be shown that the usual unbiased estimator of 𝜎2 = (𝜀̂, 𝜀)∕(T − p − 1) does 
not reach the CRLB, since its variance 2�4∕T .

Applications and Extensions of CRLB

In addition to the median, economists are often interested in other quantiles. For 
example, the top 5% or bottom 5% of incomes help understand the richest and the 
poorest persons. Estimation of such quantiles is optimal in the sense of reaching 
the Cramer-Rao lower bound is established in Godambe (2001) by showing that the 
quantile is also the score function under appropriate distributional assumptions. Kale 
(1962) expounds the role of CRLB to “estimating functions,” which has spawned a 
vast literature.

Economists are often interested in certain functions of regression coefficients 
f (�) besides the individual coefficients � . A practical problem arises regarding the 
efficiency of the plug-in estimator f (𝛽) obtained by replacing the unknown by its 
estimate, where CRLB can help.

Econometric practice often involves assuming normality or linearity in their para-
metric models. However, one fears misspecification in making these assumptions. 
Anytime functional forms of some components of the model are unknown, and we 
have so-called semi-parametric models. Newey (1990) reviews the statisticians’ 
approach to these problems by using the CRLB with explicit econometric applica-
tions in mind. One considers parametric submodels of the semiparametric model 
and use the CRLB for submodels and their supremum. He proves that “The asymp-
totic variance of any semiparametric estimator is no smaller than the supremum of 
the Cramer-Rao bounds for all parametric submodels.”

If one admits autocorrelation and heteroscedasticity among regression errors, we 
must rewrite Eq. (2) to replace the identity matrix by V. That is, we assume a non-
spherical variance-covariance matrix of regression errors: E(���) = �2V  . A feasi-
ble generalized least squares (FGLS) estimator extends the OLS estimator of (7) by 
inserting an estimate V̂  of the matrix V as follows:
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Newey argues that the semiparametric efficiency bound for FGLS is the asymptotic 
variance of the GLS estimator, which does reach CRLB.

The Generalized method of moments (GMM) is a popular econometric tool. Its 
main selling point is that it reaches the CRLB. GMM is closely related to ‘opti-
mal estimating functions’ (OptEF) similar to g∗ of Eq. (8). Vinod (2008) (Sec. 10.3) 
shows that the OptEF are optimal in the sense that they reach the CRLB.

Rao showed in a Sankhya paper in 1961 a notion of the first-order efficiency of a 
consistent estimator readily verified by the unit correlation between it and the score. 
This avoids linking efficiency to the variance and also avoids an anomaly created 
by Hodge’s example of the nonexistence of lower bound on variance in some cases, 
(Rao 1991, p. 30). Hall and Mathiason (1990), almost never cited in Econometrics 
literature, shows with detailed proofs that CRLB provides a basis for defining effi-
ciency and that ML estimators and certain ‘one-step’ variations achieve such effi-
ciency. These results extend to models with nuisance parameters commonly present 
in Econometrics. Three useful results based on CRLB are: 

1)	 Roots of score equations, g∗ = 0 , in the neighborhood of any preliminary root-n-
consistent estimates provide efficient estimates.

2)	 Replacing nuisance parameters with consistent estimates continues to retain 
asymptotic efficiency.

3)	 A test statistic based on a quadratic form (e.g. g∗�I−1
inf
g∗ ) is asymptotically efficient 

and is distributed as a Chi-square random variable.

Rao’s Tests in R Packages

We list some R packages inspired by Rao’s contributions with potential applications 
in Econometrics. 

1)	 ‘aSPU’ Package by Il-Youp Kwak provides R code for ‘adaptive sum of powered 
score test.’ It has applications in genetics focusing on pathways for genetic traits. 
See details at https​://githu​b.com/ikwak​2/aSPU. These may be useful for the eco-
nomic traits of sub-populations in econometric panel (longitudinal) data studies.

2)	 ‘weightedScores’ Package by Aristidis K. Nikoloulopoulos has R code for 
weighted scores for regression models with dependent data. It reports the results 
of an intermediate step for variable selection for longitudinal categorical and 
count data.

3)	 ‘mdscore’ Package by Antonio Hermes M. da Silva-Junior has a set of R functions 
to obtain a modified score test for generalized linear models.

4)	 ‘IPWsurvival’ Package by Y. Foucher has propensity score based adjusted sur-
vival curves and their log-rank statistic, where the adjustment acknowledges the 
presence of confounding factors. The log-rank test based on inverse probability 
weighting (IPW) is implemented. www.r-proje​ct.org, www.labco​m-risca​.com.

(18)bgls = (X�V̂−1X)−1X�V̂−1y.

https://github.com/ikwak2/aSPU
http://www.r-project.org
http://www.labcom-risca.com
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5)	 ‘mr.raps’ package by Qingyuan Zhao implements methods for two-sample Men-
delian randomization with summary statistics by using Robust Adjusted Profile 
Score (RAPS).

6)	 ‘VGAM’ Package by Thomas Yee has Vector Generalized Linear and Addi-
tive Models (VGAM) and reduced rank regressions inspired by Rao and used in 
Econometrics. See https​://www.stat.auckl​and.ac.nz/~yee/VGAM.

7)	 ‘SCGLR’ Package by Guillaume Cornu extends the Fisher-Rao scoring algorithm 
to combine Partial Least Squares (PLS) regression with a Generalized Linear 
Model (GLM). It allows joint modeling of variables from different exponential 
family distributions, searching for common PLS-type components.

8)	 ‘robustrao’ Package by Maria del Carmen Calatrava Moreno provides R code to 
compute the Rao-Stirling diversity index (Porter and Rafols, 2009) and its exten-
sion to acknowledge missing data.

9)	 ‘RSarules’ Package by Xiaoying Sun has random sampling association rules from 
a transaction dataset. It implements the Gibbs sampling algorithm by Qian et al. 
(2016) .

10)	‘StatCharrms’ Package by Joe Swintek has repeated measures and multi-gen-
eration studies. It has Rao-inspired weighted ANOVA, mixed-effects ANOVA, 
repeated measures ANOVA, and the Dunnett test. https​://CRAN.R-proje​ct.org/
packa​ge=StatC​harrm​s

11)	‘Select’ Package by Daniel Laughlin determines species probabilities based on 
functional traits. It optimizes Rao’s Q, a closed-form functional diversity index 
that incorporates species abundances, subject to other linear constraints. This 
framework optimizes both functional diversity and entropy simultaneously.

12)	‘Iboot’ Package by Nicola Lunardon has iterated bootstrap tests and confidence 
sets. The package implements a general algorithm to obtain iterated bootstrap 
tests and confidence sets for a p-dimensional parameter based on the un-studen-
tized version of the Rao statistic.

13)	‘minque’ Package by Jixiang Wu is designed (i) to construct a user-defined lin-
ear mixed model, (ii) to employ minimum norm quadratic unbiased estimation 
(MINQUE) for variance component estimation and random effect prediction; 
and (iii) to employ jackknife resampling tests. The package has an application to 
Maize variety trial with two years and multi-locations in China.

14)	‘cpca’ Package by Andrey Ziyatdinov is for Principal Component Analysis (PCA), 
and Trendafilov’s stepwise estimation of common principal components. See 
https​://githu​b.com/varia​ni/cpca.

15)	‘FactoMineR’ package by Francois Husson implements using principal compo-
nent analysis (PCA) when variables are quantitative, correspondence analysis 
(CA), and multiple correspondence analysis (MCA) when variables are categori-
cal, Multiple Factor Analysis when variables are structured in groups. See http://
facto​miner​.free.fr.

16)	‘svdvis’ Package by Neo Christopher Chung provides Singular Value Decomposi-
tion (SVD) visualization useful for principal component analysis (PCA), factor 
analysis (FA) and related methods.

17)	‘RMThreshold’ Package by Uwe Menzel determines an objective threshold for 
signal-noise separation in random matrices by using eigenvalue spectrum analy-

https://www.stat.auckland.ac.nz/%7eyee/VGAM
https://CRAN.R-project.org/package=StatCharrms
https://CRAN.R-project.org/package=StatCharrms
https://github.com/variani/cpca
http://factominer.free.fr
http://factominer.free.fr
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sis. The algorithm unravels the modular structure of a matrix - or the correspond-
ing network.

18)	‘CEC’ Package by Konrad Kamieniecki does Cross-Entropy Clustering (CEC) 
to divide the data into Gaussian type clusters. It allows the simultaneous use of 
various types of Gaussian mixture models. See https​://githu​b.com/azure​blue/cec.

19)	‘CEoptim’ Package by Benoit Liquet is a Cross-Entropy R Package for Optimiza-
tion.

20)	‘afCEC’ Package by Krzysztof Byrski uses Rao’s cross-entropy to construct a 
function for cross-entropy clustering done by partitioning n-dimensional data 
into clusters. It is preceded by finding the parameters of the mixed generalized 
multivariate normal distribution, that optimally approximates the scattering of the 
data in the n-dimensional space. See https​://githu​b.com/Geige​nPrin​zipal​/afCEC​

21)	‘pcaL1’ Package by Paul Brooks is designed for L1-Norm principal components 
analysis methods pioneered by Rao in the 1950s. See http://www.optim​izati​on-
onlin​e.org/DB_HTML/2012/04/3436.html and http://www.coin-or.org.

There are likely many more R packages which use, if not explicitly cite, Rao’s work.

LM test in Econometrics is Rao’s Score Test

One is often interested in testing a null hypothesis involving k restrictions as func-
tions of parameters:

Aitchison and Silvey (1960) consider this test by setting up a Lagrangian involving 
the log-likelihood, LL(�) as:

where the Lagrangian coefficients are �j and � has (p+1) parameters. Setting 
the derivative of L̃ with respect to � equal to zero. Let 𝜆̃ denote a k × 1 vector of 
Lagrange multipliers upon solving the first-order condition (FOC), and F̃ denote a 
(p + 1) × k matrix of partial derivatives �fj∕�� evaluated a the solution of the FOC.

Now Lagrange Multiplier (LM) test statistic:

which is a quadratic form involving the information matrix of Eq. (10) and which 
uses Rao’s score vector stated above in Eq. (8) was published in 1948.

Note that the second equality in Eq. (21) above requires some simplification and 
is proved by Breusch and Pagan (1980). They remark that the latter form of the LM 
test statistic is Rao’s efficient score test statistic and recommend using Rao’s ver-
sion, even though they continue to call it the LM test. Recall that both Eqs. (10), 
and (11) yield Fisher’s Information matrix, and the researcher’s convenience can 
dictate which one to use in a particular application. There is considerable literature 

(19)H0 ∶ fj(�) = 0, (j = 1,… , k).

(20)L̃ = LL(𝛽) + Σk
j
𝜆jfj(𝛽),

(21)LM = 𝜆̃�F̃�I−1
inf
𝜆̃F̃ = g∗�I−1

inf
g∗,

https://github.com/azureblue/cec
https://github.com/GeigenPrinzipal/afCEC
http://www.optimization-online.org/DB_HTML/2012/04/3436.html
http://www.optimization-online.org/DB_HTML/2012/04/3436.html
http://www.coin-or.org
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involving comparison of LM, likelihood ratio (LR) and Wald tests, sometimes called 
the ‘holy trinity’ of tests. It is shown that the three are asymptotically equivalent, 
that the LR test alone is unbiased and that simulations favor Rao’s formulation of the 
LM test, which is devoid of explicit Lagrange multipliers. Rao (1991) reports papers 
where Rao’s LM test works even better when the bias is removed and goes on to 
mention econometric references explicitly citing Rao.

Breusch and Pagan (1980) describe important applications of Rao’s score test 
(LM) for a model involving a test for the liquidity trap in monetary policy. Durbin’s 
h test for autocorrelated residuals when a lagged dependent variable is present, and 
Box-Pierce test for autocorrelations are shown to be “essentially LM” tests. They 
also recommend the score test for error components, non-spherical error covari-
ances, Zellner’s seemingly unrelated regression systems, and non-nested hypotheses 
testing.

When ML estimators are too difficult to calculate due to the presence of Iinf  in the 
expression for the LM statistic based on Eq. (21), Section 4 of Breusch and Pagan 
(1980) suggests a pseudo-LM procedure using the following four steps: (1) first 
compute consistent estimates of the parameters under the null to get regression 
residuals ē . (2) Regress ē on all scores g∗ evaluated at the null so that the coefficient 
of determination is R∗ = g�∗I−1

inf
g∗ . (3) Regress ē on scores g∗

2
 evaluated at the null on 

a subset of k coefficients (or coefficient functions) involved in the test, so that the 
coefficient of determination, R∗∗ = g�∗

2
I−1
inf
g∗
2
 . (4) Now N(R∗ − R∗∗) is a �2(k) varia-

ble, allowing a test of the null. Many econometricians use this trick without being 
aware that it emanates from Rao’s score test.

Breusch and Pagan (1980) also show that small sample distribution of the LM 
statistic can often be determined by numerical means. Thus Rao’s statistic remains 
appealing and relevant in a modern computing environment.

Rao‑Blackwellization and Sufficient Statistics

Econometric models are often used for policy decisions by politicians and other 
non-professionals, where it is convenient not to use the entire sample, but discuss 
only a relevant sample statistic. A formal justification for this common practice 
requires us to use only so-called “sufficient statistics,” defined by Fisher as requir-
ing that no other statistic from the same sample provides any additional information. 
Rao established the following result in 1945, showing a reduction in mean squared 
error (MSE).

Rao-Blackwell Result If t is an unbiased estimator of a parameter � and if 
T is a sufficient statistic, then t∗ = E(t|T) is a function of T,   unbiased for � and 
MSE(t∗) ≤ MSE(t).

Its use in improving the asymptotic efficiency of estimators is referred to as Rao-
Blackwellization in the literature since Blackwell had independently published a 
similar result a bit later in 1947. It can be shown that sample mean and variance 
are jointly sufficient statistics for corresponding population parameters. The above 
result implies that if a crude estimate of a function f (�) is available, its conditional 
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expectation given a sufficient statistic gives an estimator which is optimal in the 
sense that its variance is ‘small.’

Although I am not aware of any econometric application of Rao-Blackwell-iza-
tion, it remains worth exploring. For example, let us consider the maximum entropy 
bootstrap from Vinod and López-de-Lacalle (2009) implemented in the R pack-
age ‘meboot.’ It attempts to approximate a population ensemble Ω of time series 
such that the observed time series xt is a realization from Ω . The construction of 
Ω is useful for the bootstrap inference for ubiquitous nonstationary time series in 
Econometrics.

One begins with the empirical cumulative distribution function (ecdf) of xt , 
where ecdf is known to be a sufficient statistic and uses random numbers from a 
uniform density to construct a large number of incarnations of xt denoted as Ωi as 
i-th approximation to the true Ω . Note that ‘meboot’ approximately preserves time 
dependence properties of xt such as autocorrelation coefficients of various orders 
and general shape of the spectral density of xt without imposing any parametric 
constraints. Hence meboot permits computer-intensive bootstrap inference, without 
injecting misspecifications of the original economic model by converting commonly 
occurring nonstationary economic time series (e.g., GDP, Consumption) into sta-
tionary series by differencing or de-trending, just for statistical inference.

Each Ωi satisfies the ‘ergodic theorem’ since ensemble average of all time series 
in it equals the time average x̄ . Hence Ωi is an unbiased estimate of Ω . Since it is 
based on a sufficient statistic ecdf, the Rao-Blackwell result implies that condi-
tional mean E(Ωi|ecdf ) denoted by Ω̄ satisfies MSE(Ω̄) ≤ MSE(Ωi) . Fenga (2020) 
has recently used ‘meboot’ for forecasting covid-19 diffusion in Italy, relying on the 
ergodic theorem. If an econometric estimator is not already a function of a sufficient 
statistic, Rao has suggested a way to improve it.

Rao’s U‑Test for Additional Information

It is a common problem in empirical work having access to (p + q) data series, 
whether the use of any additional q series is worthwhile. The usual variance ratio 
or F test used for this purpose in econometrics is a variant of Rao’s U test from Rao 
(1948b).

Hotelling’s canonical correlations have been applied in Econometrics for estima-
tion of joint production functions with outputs wool and mutton and the usual capi-
tal and labor inputs, Vinod (1968) and Vinod (1976). Hotelling maximizes the cor-
relation between a linear combination of outputs and inputs. However, Rao seems to 
maximize the ‘within input’ and ‘within output’ correlations plus ‘between input’ 
and ‘between output’ correlations.

Rao’s Miscellaneous Contributions Relevant to Econometrics

Professor Rao’s contributions relevant to Econometrics are too many to give an 
exhaustive survey. This section lists some of them not yet covered. 
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1)	 In the new world of Big Data, Rao’s tools for dimension reduction based on sepa-
ration theorems described in his articles in the Journal of Multivariate Analysis 
should become more and more relevant.

2)	 Multivariate analysis of variance (MANOVA) was first conceived by Rao as a 
multivariate analysis of dispersion.

3)	 Edgeworth expansions for a vector of variables in non-regular cases described in 
Bai and Rao (1991) have potential applicability in the bootstrap literature.

4)	 Kotz and Johnson have edited a book entitled “Breakthroughs in Statistics: 
1889–1990,” which includes a reprint of Rao (1948a). Calling it a breakthrough 
is particularly appropriate for economists, since it had considerable influence on 
asymptotic econometrics.

5)	 Rao’s new probability distributions called weighted distributions are applied in 
Econometrics in Vinod (1991) for studying unemployment statistics and Okun’s 
law.

6)	 Maximum entropy concepts commonly used in Econometrics owe a great deal to 
the characterization of probability distributions developed by Rao and coauthors 
from Russia in Kagan et al. (1973).

7)	 Rao’s quadratic entropy (Rao 1991, p. 58) was motivated by trying to under-
stand diversity between two groups by considering the average distance between 
two randomly chosen points. Rao’s cross-entropy generalizes Kulback-Liebler 
‘directed divergence.’ Financial economists who want to diversify their portfolios 
can use these divergence measures.

Final Remark

There is enough information here to justify treating Rao as eminently eligible to 
receive the Nobel prize in Economics. Dr. Rao’s contributions have influenced a 
huge range of R packages. A sample of 21 such packages listed in this paper has 
been downloaded thousands of times every month. Dr. Rao obviously continues to 
be relevant for practicing researchers in all quantitative fields, including economics. 
Perhaps, awarding Dr. Rao the economics Nobel will further enhance the prestige of 
the award.
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