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Abstract Geothermal energy is a sustainable energy 
source that meets the needs of the climate crisis and 
global warming caused by fossil fuel burning. Geo-
thermal resources are found in complex geological 
settings, with faults and interconnected networks of 
fractures acting as pathways for fluid circulation. Iden-
tifying faults and fractures is an essential component 
of exploiting geothermal resources. However, accu-
rately predicting fractures without high-resolution 
geophysical logs (e.g., image logs) and well-core 
samples is challenging. Soft computing techniques, 
such as machine learning, make it possible to map 

fracture networks at a finer resolution. This study 
employed four supervised machine learning tech-
niques (multilayer perceptron (MLP), random forests 
(RF), extreme gradient boosting (XGBoost), and sup-
port vector regression (SVR)) to identify fractures in 
geothermal carbonate reservoirs in the sub-basins of 
East China. The models were trained and tested on 
a diverse well-logging dataset collected at the field 
scale. A comparison of the predicted results revealed 
that XGBoost with optimized hyperparameters and 
data division achieved the best performance than RF, 
MLP, and SVR with RMSE = 0.02 and  R2 = 0.92. 
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The Q-learning algorithm outperformed grid search, 
Bayesian, and ant colony optimizations. The blind 
well test demonstrates that it is possible to accurately 
identify fractures by applying machine learning algo-
rithms to standard well logs. In addition, the compara-
tive analysis indicates that XGBoost was able to han-
dle the complex relationship between input parameters 
(e.g., DTP > RD > DEN > GR > CAL > RS > U > CN
L) and fracture in geologically complex geothermal 
carbonate reservoirs. Furthermore, comparing the 
XGBoost model with previous studies proved supe-
rior in training and testing. This study suggests that 
XGBoost with Q-learning-based optimized hyperpa-
rameters and data division is a suitable algorithm for 
identifying fractures using well-log data to explore 
complex geothermal systems in carbonate rocks.

Graphical abstract 

Article highlights 

• Machine learning provides a promising solution to 
predict fractures in geothermal reservoirs.

• Multiple well-logging datasets were collected to 
train and test the models at the field scale.

• XGBoost provides the most accurate prediction 
out of four machine learning models.

• This study provides a template for predicting frac-
tures in enhanced geothermal systems.

Keywords Machine learning · Geothermal 
reservoirs · Natural fractures · Well logs · Extreme 
gradient boosting
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Abbreviations 
FMI  Formation micro-image
φF  Fracture porosity (%)
SVR  Support vector regressor
RF  Random forest regressor
MLP  Multi-layer perceptron
XGBoost  Extreme gradient boosting
GR  Gamma-ray
RS  Shallow resistivity
RD  Deep resistivity
DTP  P-wave sonic (μs)
DTS  S-wave sonic (μs)
DEN  Density (g/cm3)
CNL  Neutron porosity
CAL  Caliper
U  Uranium

1 Introduction

Advanced horizontal drilling techniques and mul-
tistage hydraulic fracturing have revolutionized the 
extraction of hydrocarbons from unconventional res-
ervoirs (Liu et  al. 2019; Yasin et  al. 2018b). These 
techniques have a significant potential for storing 
large volumes of carbon beneath complex subsur-
face geological conditions and enhancing geothermal 
systems (EGS) (Vo Thanh et  al. 2022; Yasin et  al. 
2022a). Therefore, the subsurface fracture network 
should be identified, mapped, and characterized to 
optimize completion designs for enhancing hydrocar-
bon production, developing high permeability zones 
for EGS, and determining reservoirs’ integrity for 
capturing and storing carbon. A natural fracture sig-
nificantly impacts reservoir behavior, affecting fluid 
flow and conductivity. Identifying and characteriz-
ing these fractures will allow us to understand better 
the subsurface and design completion strategies that 
maximize production and minimize costs (Siler et al. 
2019; Yasin et al. 2023a).

In recent years, the growing global energy demand 
has led to EGS becoming an attractive option for 
sustainable energy production and reducing carbon 
emissions (Okoroafor et al. 2022b). However, the suc-
cessful management of EGS reservoirs depends heav-
ily on reservoir simulation, which can be expensive 
due to factors like reservoir heterogeneity, matrix-
fracture interactions, and complex physical processes 
(Ishitsuka and Lin 2023). The development of EGS 

requires improving the permeability of hot crystalline 
rocks. Still, significant technical and non-technical 
challenges must be overcome for EGS reservoirs to be 
economically viable. EGS requires an increase in the 
permeability of deep rocks as their natural permeabil-
ity is usually insufficient (Jia et  al. 2022). Technical 
barriers include the need for better stimulation tech-
nologies, while non-technical obstacles include land 
access, permitting, and financing issues.

Geothermal energy exploration and development 
demand a complete understanding of geothermal 
reservoirs, including lithology, porosity, permeabil-
ity, reservoir temperature and pressure, stress, faults 
and fractures, and chemical composition. The avail-
ability of geochemical, geological, and geophysical 
information in oil-producing regions, along with an 
extensive understanding of geological models and 
geothermal resource assessment, are vital for evaluat-
ing and developing geothermal resources (Xiao et al. 
2023; Guo et al. 2024). A recent study conducted in 
Nevada and Oregon (USA) showed potential geother-
mal reservoirs in structurally complex geological set-
tings. Siler et al. (2019) reported that closely spaced 
and intersecting faults in such settings exhibit high-
temperature anomalies. The study also suggests that 
structurally complex geological settings may be con-
ducive to geothermal energy development. However, 
the complexity of the geological environment makes 
it challenging to identify, evaluate, and develop a 
fracture network. Further research in structurally 
complex geological settings could help unlock new 
renewable energy sources and contribute to a more 
sustainable future (Kölbel et al. 2020).

With technological advances and a better under-
standing of geothermal systems, detecting and 
extracting proper quantities of energy from geother-
mal systems is becoming more accessible. Energy 
from geothermal sources can become the world’s 
largest energy source, displacing oil and natural gas 
combined in terms of energy supply potential (Okoro-
afor et  al. 2022a). Over the past few decades, it has 
gradually developed into a clean, renewable form of 
thermal energy in urban and rural areas. Geother-
mal energy is widely accepted due to its reliability, 
low cost, ease of maintenance, and the fact that there 
are no ground-related restrictions regarding laws 
and policies. US Geological Survey report estimates 
that at least 70 percent of the world’s geothermal 
resources remain unexplored (Siler et al. 2019). It is 
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found throughout the world. Developing geothermal 
resources safely and responsibly can significantly 
benefit local communities, the economy, and the 
environment.

Because of recent scientific and technological 
breakthroughs, several authors have tried to investi-
gate the true potential of geothermal fluid by apply-
ing the most advanced machine learning (ML) 
approaches, such as different inversion schemes used 
for seismic data (Qiang et  al. 2020). Soft comput-
ing techniques including convolutional neural net-
works (CNN) offer solutions to seismic inversion 
for predicting the spatial variation of rock proper-
ties. Okoroafor et al. (2022b) used the CNN method 
to predict fracture development zones in the geo-
thermal reservoir by mapping logging porosity and 
seismic multi-attributes. Dalgaard et  al. (2019) used 
artificial neural networks–Hidden Markov models to 
classify lithofacies and estimate porosity in geother-
mal reservoirs. Recently, Yasin et  al. (2023b) used 
a soft-porous petrophysics model combined with a 
CNN-LSTM-based deep neural network to extract 
porosity and fractures in geothermal reservoirs. They 
validated the model’s fracture prediction results using 
formation micro-image (FMI) logging. The applica-
tion of ML techniques to engineering problems has 
been successful due to their ability to predict out-
comes and optimize processes. Nevertheless, one 
of the significant challenges of this application is 
the presence of human bias in the selection of ML 
algorithms and hyperparameters (James et  al. 2022; 
Okoroafor et  al. 2022b). It is important to note that 
this bias is highly dependent on the expertise and 
domain knowledge of the operator, which may result 
in suboptimal selections that do not accurately reflect 
the problem at hand. The impact of human bias can 
be reduced through physics-informed ML. These ML 
models, incorporating informed prior knowledge and 
constraints on the issue, can offer consistent predic-
tion results in extrapolation tasks and remain robust 
to dataset limitations (Karniadakis et  al. 2021). The 
physics-informed neural network can predict the frac-
ture development zone, temperature, and pressure in 
various geothermal reservoirs in structurally complex 
geological settings (Ishitsuka and Lin 2023). The 
neural network trains the data with physics-informed 
knowledge to ensure that intelligent decision tools 
can be adopted for similar data characterization. 

Therefore, the physics-informed neural network has 
the potential to map natural fractures using well logs 
to optimize the fracture mapping for EGS at a low 
cost.

In addition to ML, thin section analysis FMI logs 
and scanning electron microscope (SEM) are use-
ful for identifying natural fractures. Examining rock 
samples under a petrographic microscope allows one 
to gain insight into their microscopic structure (Ren 
et al. 2022; Healy et al. 2017). With specialized stain-
ing techniques, fractures become more visible, and 
it is possible to differentiate between primary struc-
tures, such as bedding planes, and secondary features, 
like fractures (Golsanami et al. 2019). These are valu-
able methods for understanding the characteristics 
and nature of rock fractures, but they are time-con-
suming, labor-intensive, and prone to biases.

The geometries and fracture networks of natu-
rally fractured reservoirs play a significant role in the 
fluid flow of geothermal energy production. Iden-
tifying faults and fractures is, therefore, crucial to 
unlocking the full potential of a fault-bounded EGS 
(Okoroafor et  al. 2022a; Zhou et  al. 2021). A sonic 
and micro-resistivity imaging log has traditionally 
been used to describe natural fracture intensity (i.e., 
how many fractures are present per meter). However, 
these techniques have several significant disadvan-
tages, including the risk of human bias during the 
interpretation of logs and the long interpretation time 
required. Although these deficiencies are well-known 
within the industry, no standard procedures have been 
developed to address them. Recent research has dem-
onstrated that fracture zones have marked effects on 
the log reading (Aghli et  al. 2019, 2016; Aguilera 
2008; Tokhmchi et al. 2010; Tokhmechi et al. 2009). 
According to these studies, density, resistivity, sonic, 
and porosity logs, in particular, gamma-ray (ura-
nium), and caliper logs, in general, are the best tools 
for mapping fractures or fracture zones (Martinez 
et  al. 2002; Saboorian-Jooybari et  al. 2015; Yasin 
et al. 2018a). A resistivity log can detect changes in 
electrical conductivity caused by fractures. Fractures 
are generally characterized by lower resistivity values 
than the surrounding rock, making identifying their 
location and orientation possible. Additionally, sonic 
and density logs may help identify fractures, as they 
detect changes in rock mechanical properties associ-
ated with fractures (Yasin et al. 2022b).
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In this study, an analysis of fractures in geother-
mal carbonate reservoirs was performed using four 
supervised ML techniques: multilayer perceptron 
(MLP), random forest (RF), extreme gradient boost-
ing (XGBoost), and support vector regression (SVR). 
The ML models have been trained and tested based 
on diverse well-logging data, including the natural 
fracture density from acoustic borehole image logs. It 
has been demonstrated that ML algorithms with opti-
mized hyperparameters and data division can predict 
fractures with high accuracy from limited standard 
well logs through the application of ML algorithms. 
The application of ML algorithms in the exploration 
and exploitation of geothermal resources has been 
demonstrated to be successful in identifying fractures 
in heterogeneous reservoirs.

2  Contributions to the current literature

The characterization of fractures is an essential part 
of the geothermal reservoirs. They play an impor-
tant role in increasing the efficiency of geothermal 
systems since they act as flow conduits and contrib-
ute significantly to reservoir permeability. Fractures 
are particularly important in EGS. Characterizing 
fractures involves determining their nature, network, 
density, and stress-related properties, which is rel-
evant for drilling wells and modeling and predicting 
geothermal reservoir performance (Okoroafor et  al. 
2022b; Yasin et  al. 2023a, b). Four main types of 
fractures are typically encountered in the reservoir 
rock: netted fractures, straight split fractures, oblique 
fractures, and horizontal fractures (Wang et al. 2023). 
A typical fracture density in the reservoir is 10 to 20 
fractures per 10 m, with an average fracture width of 
0.2 to 9 mm and an average fracture length of 0.5 to 
48 cm.

It is laborious and time-consuming to manually 
pick the fractures using resistivity image logs span-
ning over 1000 m. There is no doubt that human input 
is required in various processes. However, the qual-
ity of such input may not always be perfect. Conse-
quently, it is difficult to establish a ground truth for 
fracture density prediction, which is necessary to set 
a benchmark for an EGS. Moreover, this process is 
prone to human error, making it more challenging to 

achieve an accurate interpretation. As a result, manual 
fracture identification can take months to complete, 
and it is possible to consider the potential for human 
error in the interpretation process. Also, this process 
is often subject to bias due to the different levels of 
expertise present in the process of interpretation.

Figure  1 shows the resistivity-based image 
log analysis of the carbonate rock to pick faults 
and fractures for the EGS. The fault’s strike is 
mainly NEE-SWW, close to the strike of NEE-
SWW’s major fault in the region. The occurrence 
of unconformity and major faulting in the forma-
tion has caused significant instability, evidenced 
by the substantial changes in the attitude of the 
strata near depths of 4300  m and 4600  m (shown 
with arrow). The FMI images of the faults at these 
depths further demonstrate the significant changes 
in the deposition of the strata above and below 
the faults. These significant disparities emphasize 
the need for technology that can accurately moni-
tor and predict faults and fractures to eradicate the 
possibility of human bias and minimize the time 
and effort required for fracture analysis. Consid-
ering this critical need, Zhang et  al. (2015) pro-
posed a method for estimating fracture stiffness, 
in  situ stresses, and elastic parameters of a hypo-
thetical naturally fractured reservoir. The process is 
based on a hybrid artificial neural network (ANN) 
and genetic algorithm (GA) approach, commonly 
called displacement back analysis. ML techniques 
have gained popularity in geothermal exploration 
and production in recent years. A recent study by 
Okoroafor et  al. (2022a) and Zhou et  al. (2021) 
demonstrated using a deep neural network surro-
gate model to determine the fracture density and 
fractal dimension of a geothermal reservoir’s dis-
crete fracture network. Several researchers have 
highlighted the potential of ML techniques for 
improving geothermal exploration and production; 
however, they cannot identify fracture density in 
complex geothermal systems. Advanced algorithms 
and models can help us better understand geother-
mal reservoirs and improve the efficiency and sus-
tainability of geothermal energy production. In this 
study, we applied advanced ML algorithms and 
chose the most appropriate one for accurate frac-
ture density prediction using well logs.
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3  Geothermal settings and reservoir 
characteristics

Geothermal energy is a promising renewable energy 
source that can reduce greenhouse gas emissions and 
dependence on fossil fuels. Northeast China has sig-
nificant potential for geothermal projects. This region 
can greatly benefit from the use of geothermal energy. 
The study area’s Depression is a typical geothermal 
field that undergoes heat conduction. The primary 
sources of heat are the mantle and crust (Zhou et al. 
2023). Water supply comes from atmospheric precipi-
tation (Fig. 2b). In the south Zhuangdong Depression, 
in the north Bozhong Depression, and to the east and 
west, the Chengbei low uplift and Bonan low uplift, 
respectively. The subsurface structure is controlled 
by NNE and NE near EW basement faults, with a 

structural pattern of ’one uplift’, ’two depressions’, 
and many ’buried hills’ with high, middle, and low 
surrounding, EW zoning, and NS blocking (Fig. 2a).

There are mainly high-resistivity fractures and 
drilling-induced fractures. Both high-conductivity 
and high-resistivity fractures belong to structural frac-
tures, primarily formed by releasing regional palaeo-
tectonic stress. The high-resistivity fracture is formed 
by filling with high-resistivity material or closed frac-
ture (Fig. 1). Thin section and core analysis show that 
microfractures are relatively developed and corrobo-
rate the presence of natural fractures (Fig. 3). Accord-
ing to reservoir sample analysis, the porosity of the 
reservoir is 2.1% to 34%, and permeability is 0.01 to 
800 mD. The Paleozoic strata is the main geothermal 
reservoir, which belongs to the porous geothermal 
reservoir of high-resistivity fractures.

Fig. 1  An interpretation of fracture density in a test well 
(313). Columns 1, 2, 3, 4, 5, 6, 7, and 8 represent the depth, 
mixed logs (GR: gamma-ray; CAL: caliper), image log, classi-

fication of fractures based on image log, stereo-net plot, type of 
faults based on image log, induced and resistive fractures, and 
fracture aperture, and FMI log, respectively
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4  Materials and methods

The process of developing the ML model begins with 
collecting datasets. More than 6,000 data points were 
interpreted from FMI logging data in 7 wells (307, 
306, 302, 313, 301, 39, 40). For the model, we used 
five wells (306, 302, 301, 39, 40) for training, one 
well (307) for validation, and one well (313) for test-
ing. This data division allowed us to train our model 
and accurately assess its performance effectively. We 
chose this approach to ensure that our model was reli-
able and that the results of our tests were accurate. 
The model features were acquired using conventional 
well logs, including compressional velocity (DTP), 
gamma-ray (GR), shallow and deep resistivity (RS 

and RD), density, caliper, and neutron porosity (CNL) 
logs. We obtained the near-wellbore fracture density 
from a resistivity-based image log (FMI) for labeling 
and training purposes. The FMI log provides high-
resolution images of the formation, which can be used 
to characterize fractures in the near-wellbore region.

The steps in developing ML models are data pre-
processing, optimizing the model and hyperparam-
eters, and testing the performance of the best model 
on a blind well.

4.1  An Overview of data pre-processing

Pre-processing is essential for obtaining accurate and 
reliable results from data analysis. Scanning of all the 

Fig. 2  a A description of the regional tectonic framework of the study area, b geothermal evolution model for the study area (modi-
fied after Liu et al. 2023)

Fig. 3  Thin sections for identification of the fractures in wells a 302, b 306, c 307
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features present in the dataset is conducted as part of 
this process. For this purpose, the K-Nearest Neigh-
bor (KNN) imputation was used to fill in all missing 
values in the dataset. It is useful when less than 20% 
of data is missing for a specific feature (Troyanskaya 
et  al. 2001). This study employed the KNN imputa-
tion technique with 90% accuracy.

Additionally, control limit lines (CLLs) were used 
to identify outliers in the dataset. The CLL method 

utilized the mean of each batch of data (plus or minus) 
with standard deviations to establish the upper and lower 
control limit lines. This approach allowed the outliers for 
each feature to be identified and separated from the rest 
of the data points. The results were more accurate as the 
analysis did not consider the outliers. Statistical charac-
teristics of features are often studied in data science to 
identify underlying patterns in the data. Nevertheless, 
specific ML techniques may be challenging when fea-
tures present a nonstandard distribution. It is often nec-
essary to transform the features to a normal distribution 
using the quantile transformation to address this issue. 
A normal distribution of features tends to improve the 
performance of ML techniques. ML algorithms are 
often based on the Gaussian assumption, which assumes 
normal distributed data. Therefore, we can improve the 
performance of these algorithms by transforming non-
standard distributions into normal distributions. Table 1 
displays the statistical characteristics of input features. 
The high standard deviation of the GR and resistivity 
logs indicates a large variation in the data. The heteroge-
neous nature of the rocks and minerals in the formation 
or a change in lithology causes the variation.

Table 1  Basic statistics of the training wells

Variables Count Mean Standard devia-
tion

Min Max

CAL 6029 6.0 0.4 4.5 8.2
CNL 6029 5.6 7.6 −0.8 53.8
DEN 6029 2.6 0.2 0.8 2.9
DTP 6029 55.8 6.8 47.4 89.0
GR 6029 68.9 79.7 5.0 649.4
RS 6029 50.0 36.9 0.0 97.9
RD 6029 1366.6 5417.6 0.0 95,000.0
Uranium 6029 1.8 2.6 0.09 26.3

Fig. 4  Heat map correla-
tion matrix between final 
features
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Identifying highly correlated parameters in a 
dataset is an essential step in selecting and reduc-
ing features to improve the accuracy and efficiency 
of ML models. A highly correlated dataset contrib-
utes to multiple complexities during the training pro-
cess by reducing the variability of the input dataset. 
When two or more features are highly correlated, 
their effects on the target variable may be redun-
dant, resulting in redundant inferences during model 
training. In this case, the model may overfit, result-
ing in perfect results on the training dataset but poor 
results on the test dataset. The Pearson correlation 
coefficient and Spearman rank correlation coefficient 
are two methods for detecting positively correlated 
features. The Pearson correlation coefficient (r) is 
a statistical measure used to determine the strength 
and direction of the linear relationship between two 
variables. It has a range from −1 to + 1. When ’the 
r-value is 1, the two components being compared are 
perfectly linearly related. For this study, those fea-
tures with a 90% or more correlation were considered 
“strong” correlations and removed from the dataset. 
Removing highly correlated features from the data-
set helped improve the model’s accuracy and avoid 
overfitting. The number of features has been reduced 
from 12 to 8 after feature reductions (Fig.  4). This 
reduction was made possible through collinearity 
detection and feature transformation techniques.

4.2  Model selection and hyperparameter tuning

The dataset collected from the geothermal well logs 
consists of 13 training features and 6029 rows of 

records. The sampling interval was set at one record 
per 0.05 microsecond, significantly improving the 
ML algorithm’s data analysis and prediction capa-
bilities. With this level of precision in the data, the 
ML algorithm can better identify patterns and trends, 
leading to more accurate predictions. The target val-
ues for natural fractures obtained from the FMI log 
interpreted by individuals have the same number of 
rows. These values range from 0.0 to 2.2 natural frac-
tures per meter. All features were carefully selected 
to ensure accuracy and effectiveness. In addition, 
min–max normalization was used to normalize all 
features. This normalization ensures that all features 
are represented on a common scale to prevent one 
particular feature from dominating the analysis due to 
its relative importance.

The process of partitioning data is essential to the 
development of ML models. This step separated the 
dataset into two groups: testing and training. Train-
ing groups develop training models while testing 
groups evaluate the performance of predictive mod-
els. The ratio of partitioning data into training and 
testing has not been established according to any 
specific principle. Earlier research has shown that 
the percentage of training data affects the accuracy 
of ML models (Vo Thanh et  al. 2022). To improve 
the accuracy of ML models’ outputs, the data pro-
portions for the training model need to be consid-
ered in several ways. We partitioned the entire data-
base into four segments (training and test datasets): 
60–40%, 70–30%, 80–20%, and 90–10%, where the 
first partition represents the training group and the 
second part describes the testing group. Table  2 

Table 2  Regression 
algorithms with associated 
optimized hyperparameters

ML models Hyperparameter Specific range Optimal values

Support vector regressor γ [10–200] 120
C [5–1000] 120

Random forest N_estimator [100–6000] 6000
Min_sample split [10–100] 60
Min_sample leaf [0.5–1.0] 1

XGBoost N_estimator [100–10000] 8000
Reg_lamda [0.01–100] 6
Max_depth [10–1000] 400
Learning_rate [0.001–1] 0.01
Reg_alpha [0.001–1] 0.01

Multilayer perceptron γ [10–200] 120
C [5–1000] 120
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illustrates various regression algorithms, their cor-
responding hyperparameters, the models evaluated, 
and the parameters used to optimize their perfor-
mance. The pre-processing of the data, selection 
of the ML model, and optimization of the hyper-
parameters were significantly faster than expected; 
the entire process took approximately an hour. This 
workflow is much more efficient than manual pre-
processing, yielding excellent results. This workflow 
illustrates the power of automation and its ability to 
accelerate workflows.

4.3  Workflow of developing machine learning 
models for fracture identification

Several steps were involved in the ML model for pre-
dicting fractures in carbonate geothermal reservoirs. 
The workflow is summarized into five steps, as shown 
in Fig. 5.

1. The conventional logging data along with FMI 
and thin sections were collected and pre-pro-
cessed to develop ML models.

2. Cross-plot of logging curves were drawn for 
the fracture labels and non-fracture labels, the 
response characteristics of conventional logging 
of fractures were defined, and sensitivity curves 
were selected. Then one or more wells are ran-
domly selected as blind wells, and the rest of the 
data is used for training, validation, and testing 
the model.

3. Due to the huge difference in the proportion of 
fractured and unfractured label data, it is easy to 
ignore the fractured label data with a small pro-
portion when it is directly used for model train-
ing, resulting in a poor fracture identification 
effect. The data balancing method used in this 
study was under-sampling. After under-sampling, 
the unfractured label data that was originally too 
high is relatively balanced.

4. Supervised ML techniques for target data were 
proposed using the four scenarios of database 
segments. Then, the models with good recogni-
tion effects in both the training set and test set 
were selected as the optimal model for fracture 
recognition.

5. From four ML algorithms developed for predict-
ing fractures in carbonate rocks, the best model 
was determined based on the performance of 
each model.

6. The final step was a blind well test to evaluate the 
validity of the best model. In detail, one or more 
wells not used for training are used as inputs, and 
the output of the model was compared with the 
FMI and thin sections description results. If the 
fourth and fifth steps are completed, it is consid-
ered that the established model has high accuracy 
and can be applied to fracture identification.

4.4  Evaluation metrics

The fracture prediction model performance was 
evaluated using  R2, RMSE, and mean absolute error 
(MAE) metrics (Eqs. 1–3).

Start

Conventional logs and fracture labels form core and FMI 

Sensitivity analysis and log optimization

Data balancing

Conventional logging data set

Training and test data

D
ata 

preprocessing

Blind well data

Data balancing method

Performance of ML models

No Meet requirement

Model verification

Yes

Blind well test

Meet requirement

Yes
Model’s application in

spatial fracture distribution

No

End 

Fig. 5  Workflow of fracture identification using ML models
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where fracture prediction is estimated using Ŷ
i
 , while 

Y
i
 represents the measured fracture value, Y is the 

average value of measured fracture, and N indicates 
the total number of samples.

5  Results and discussion

5.1  Sensitivity analysis of well logs for fractures

Sensitivity analysis of logging curves is fundamental 
to fracture identification and is crucial in ensuring the 
accuracy of fracture. By analyzing log response char-
acteristics using well logs labeled by fracture descrip-
tions from thin sections and FMI logging fracture 
interpretations, the fracture logging response char-
acteristics of the reservoirs can be determined. Fig-
ure 6 shows the cross plots of the fracture and non-
fracture development segment. The data distribution 
represents the fracture development section and the 
non-fractured section of the curve, respectively. The 
more obvious the differentiation between the fracture 
and non-fracture curves, the better the differentiation 
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effect of the curve. There is a difference in the peak 
values of the curves between fractured and non-frac-
tured samples.

It is important to note that there are specific physi-
cal property changes along the fracture development, 
such as low density, high neutron porosity, differen-
tiation of shallow and deep resistivity, and variations 
in borehole diameter. These features are often used to 
identify and evaluate the development of fractures. 
However, each logging curve is a result of the com-
bined effects of lithology, fractures, fluids, boreholes, 
and other factors, making the logging response char-
acteristics very complex.

5.2  Performance of ML models on validation and 
test dataset

When selecting the most appropriate ML method, 
there is no one-size-fits-all solution. A careful consid-
eration of the characteristics of the data is essential to 
choosing the most appropriate method for the particu-
lar scenario (Vo Thanh et  al. 2022). Four scenarios 
were examined to determine the most suitable ML 
method for a given database segment. Table  3 sum-
marizes the predictions made by four ML models. 
We observe that the training and testing phases of the 
developed ML models are accurate to 70 to 90% in all 
scenarios of data proportions. XGBoost and RF mod-
els were found to predict fractures based on 6029 data 
samples accurately.

The overall performance of the ML model on 
each data division shows that the XGBoost method 
is more accurate with high fracture prediction accu-
racy than RF, MLP, and SVR. XGBoost achieves 
stable prediction results both in the training data-
set and testing dataset. Also, XGBoost achieves 

Fig. 6  Sensitivity analysis of well logs, a K3 vs CNL porosity cross plot, b AC vs 1/RS cross plot (Yasin et al. 2022b)
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the highest prediction accuracy for all data por-
tions, ranging from 80 to 20%. According to the 
results, the XGBoost model reached the highest 
level of accuracy out of all four ML models, both 
on the training and testing data portions. The SVR 
model, on the other hand, has the lowest accuracy 
among the four models. As a result, XGBoost, RF, 
MLP, and SVR were ranked in order of overall per-
formance. The models were further evaluated by 
dividing the data into 80%–20%. Table 3 compares 
the prediction performance achieved for different 
regression problems based on the percentage of 
data division. It is important to note that the opti-
mal ratio of data division may vary depending on 
the specific regression problem. Therefore, it is rec-
ommended to carefully consider this factor when 
developing regression models and selecting the 
appropriate percentage of data division. The effec-
tiveness of ML methods depends significantly on 
the division of the data during training and testing. 
Carefully selecting the data division can enhance 
prediction performance and lead to successful ML 
results.

A cross plot of testing performance based on data 
division 80–20% by four ML models for fracture 
prediction is shown in Fig. 7. Specifically, XGBoost 
and RF models have proven to be highly effective 
in fitting FMI log data to predictive results (Fig. 7a, 
b). In addition to their accuracy, both models are 
well known for their ability to handle large datasets. 
The MLP and SVR models show overfitting and fail 
to establish a good correlation between the FMI 
logs data and predicted fracture density (Fig. 7c, d).

Figure 8 compares fracture density prediction for 
four ML models in the blind test well. The XGBoost 
predicts relatively close results to the original frac-
tures, indicating good prediction accuracy. In con-
trast, the MLP and SVR models have many predict-
ing points spreading far from the original fractures, 
indicating a lower prediction accuracy (Fig. 8c, d). 
This finding emphasizes the importance of select-
ing the appropriate ML algorithms for a given 
problem to achieve accurate predictions. Thus, the 
results presented in a blind test well demonstrate 
that XGBoost is the most reliable model with opti-
mized hyperparameters among all the tested models 
for fracture density prediction. XGBoost outper-
forms all other models in accuracy and robustness. 
The testing points of the XGBoost distribution 
in the blind well are consistent with the FMI data 
(Fig. 8a). The study’s findings are expected to sig-
nificantly contribute to the development of more 
accurate and reliable models for fracture density 
prediction.

5.3  Relative importance of influence predictors

It is important to note that a variety of critical fac-
tors influence fractures. To understand how each 
input feature affects the fracture prediction for 
geothermal reservoirs, it is essential to analyze the 
crucial variables in the XGBoost model. Figure  9 
demonstrates the results of ranking important fea-
tures for fracture prediction in the present study. 
Figure 9 shows that DTP is an essential feature of 
fracture identification in a geological formation. 
A fracture in a rock formation, which consists of 
a break or crack, can significantly affect transmis-
sion speed. This is because fractures create spaces 
within a formation that are less dense than the 

Table 3  The performance of ML models for predicting frac-
tures

Dataset Models Fractures

Training Test

R2 RMSE R2 RMSE

60–40% SVR 0.58 0.08 0.49 0.19
RF 0.92 0.03 0.86 0.06
XGBoost 0.97 0.01 0.89 0.03
MLP 0.79 0.06 0.73 0.08

70–30% SVR 0.55 0.09 0.49 0.19
RF 0.94 0.02 0.90 0.05
XGBoost 0.98 0.01 0.90 0.02
MLP 0.80 0.06 0.62 0.10

80–20% SVR 0.56 0.08 0.46 0.19
RF 0.96 0.02 0.88 0.06
XGBoost 0.99 0.01 0.93 0.02
MLP 0.78 0.06 0.72 0.08

90–10% SVR 0.66 0.08 0.58 0.19
RF 0.90 0.02 0.86 0.06
XGBoost 0.98 0.01 0.91 0.02
MLP 0.88 0.04 0.78 0.07
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surrounding rocks. A lower density may reduce the 
ability of the formation to transmit signals. Fur-
thermore, open fractures allow fluid to flow more 
quickly through the formation. This phenomenon 
can further reduce the density of the formation, 
making it even more difficult for signals to pene-
trate. Thus, fractured zones will likely experience 
slower transmission speeds (Yasin et  al. 2018a, 

2022b). Therefore, sonic logs are the best fracture 
indicator.

Identifying fractures and fluid content in a res-
ervoir using deep and shallow resistivity is criti-
cal in the oil and gas industry. The deep resistivity 
(RD) values are typically lower in fracture zones 
containing fluid invasion, typically salt water. As 
a result, the fluid in fractures can significantly 

Fig. 7  Comparison of fracture density estimation from FMI logs and ML models for the validation well (307)
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Fig. 8  Optimization of regressor models for geologically complex geothermal reservoirs with a test well (313)

Fig. 9  Essential features ranked for the XGBoost model. Where DTP = compressional velocity, GR = gamma-ray, RS = shallow 
resistivity, RD = deep resistivity, DEN = density, CAL = caliper log, CNL = neutron porosity
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decrease RD. The lower the RD value, the greater 
the probability of fractures in the reservoir (Saboo-
rian-Jooybari et  al. 2015). According to previous 
research, it has been observed that density (DEN) 
tends to decrease notably at fracture zones (Yasin 
et  al. 2022b). Kölbel et  al. (2020) reported that it 
is caused by an increase in fluid volume in these 
areas, as the density of fluids is lower than that of 
rocks (Aghli et  al. 2019). Therefore, a developed 
model incorporating appropriate input features can 
simplify utilizing ML models to map fracture net-
works in EGS. Streamlining this process will ena-
ble the researchers to map fracture networks more 
quickly and easily.

5.4  Error analysis and comparison of XGBoost 
model optimization

The XGBoost model is evaluated for its applicabil-
ity and performance based on William’s plot. These 
plots allow researchers to gain insight into the most 
significant variables in their data. The plot is drawn 
by considering the standardized residual (SR) and 
leverage values (Vo Thanh et al. 2022). The calcula-
tion of leverage parameters involves several statistical 
steps. These steps are described in detail in Hemmati-
Sarapardeh et  al. (Hemmati-Sarapardeh et  al. 2016). 
Figure  10 shows William’s plot of the XGBoost 
regression model used for data applicability and error 
analysis. It is evident from the figure that the major-
ity of data points are bounded close to the zero line, 

indicating that the prediction of fracture density is 
statistically valid and the proposed models are reli-
able. The training and testing results analysis reveals 
that a significant portion of the data falls within the 
3 ≤ SR ≤ 3 range. Distribution of this kind is desir-
able in many modeling and prediction tasks because 
it allows for greater accuracy and precision. How-
ever, few data points deviate from the zero line, which 
can be attributed to outliers in the dataset. The data 
analysis suggests that the XGBoost model has high 
reliability and statistical trueness and is suitable for 
predicting fracture density.

A comparative analysis was performed to assess 
the performance of the XGBoost model using sev-
eral optimization algorithms such as Q-learning, 
grid search, Bayesian optimization, and ant colony 
optimization. Table  4 presents a comparison of the 
prediction accuracy and computational time for 
each algorithm. It is important to note that all the 
algorithms were executed on the same computer 
configuration.

Fig. 10  Applicability of data and error analysis of XGBoost model

Table 4  Accuracy and computational time comparison of 
optimization algorithms

Optimization algorithms Accuracy (%) Time (s)

Q-learning 95 93
Bayesian optimization 92 131
Ant colony optimization 91 102
Grid search 89 951
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Figure 11 compares the fracture prediction perfor-
mance of XGBoost models optimized with different 
algorithms. The XGBoost model using Q-learning 
achieves an  R2 of 0.95 and an RMSE of 0.0018%.

5.5  Comparison of the performance of XGBoost 
with the previous study

The XGBoost model in this study has been found to 
have the highest accuracy compared to other popu-
lar ML models like RF, MLP, and SVR. However, 
it is essential to assess the stability and robustness 
of the XGBoost model to ensure its reliability. We 
compare the performance of the XGBoost model 
with previously developed ML models proposed by 
Fathi et  al. (2022). The comparison confirms that 
the XGBoost model performs consistently and pro-
vides accurate predictions. Table 5 summarizes the 

statistical indicators for the XGBoost model with 
the proposed features and hyperparameters tuning 
based on an improved Q-learning algorithm.

XGBoost is superior to the previous KNeigh-
bors model in producing the highest  R2 and low-
est RMSE values throughout the training and test-
ing phases. The performance metrics indicate that 
the XGBoost model makes accurate and consistent 
predictions.

5.6  XGBoost model verification

5.6.1  Fracture porosity and permeability

XGBoost’s application perspective is verified by 
comparing its predictions to actual measurements 
of reservoir fracture porosity. The results can help 
determine the effectiveness of the XGBoost model 
in predicting porosity and identifying potential res-
ervoirs. Figure  12 shows the regression analysis for 
XGBoost prediction and reservoir fracture porosity 
in a blind test well of carbonate rocks. The results 
shown in the figure are well-fitting, with  R2 values of 
0.72. On comparing, it can be observed that the pre-
diction performance of XGBoost closely corresponds 
with that of reservoir fracture porosity. In addition, 
Table 6 compares the fracture density measured from 
FMI logs and the XGBoost model. The comparative 
analysis conducted in a blind test well indicated posi-
tive results regarding the efficacy of the developed 
XGBoost model. The results confirm that the model 
is suitable for exploring EGS. The model’s success 

Fig. 11  Comparison of performance for the XGBoost models 
optimized by different algorithms

Table 5  The comparison analysis demonstrates the robustness of the nominated ML model

Training Testing

Methods Hyperparameters Input features R2 RMSE R2 RMSE

XGBoost (Our study) N_estimator = 8000, Reg_
lamda = 6, Max_depth = 400, 
Learning_rate = 0.01, Reg_
alpha = 0.01

DTP, RD, DEN, CAL, CNL, GR, 
RS, Uranium

0.99 0.01 0.93 0.02

KNeighbors (Fathi et al. 2022) Generation’: 5, ’mutation_count’: 
2, ’Crossover_count’:0, ’prede-
cessor’ (’KNeighbors (input_
matrix, KNeighbors__n_neigh-
bors = 90,

KNeighbors__p = 2, KNeigh-
bors__weights = distance), 
’Operator_count’:1

Travel time, Rate of penetration, 
Revolutions Per Minute, Vibra-
tion (x, direction), Shock (x 
direction), Gamma-ray

0.96 0.02 0.92 0.03
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in the blind test well further solidifies its potential for 
future EGS exploration applications.

Permeability is a crucial property of carbonate 
rocks, and its influence on fracture density distribu-
tion is essential. We conducted sensitivity analyses to 
determine the effect of permeability on fracture den-
sity distribution.

Figure 13 presents the results of a sensitivity anal-
ysis of permeability and fracture density distribu-
tion derived from the XGBoost model. The results 
show higher permeability values are associated with 
higher fracture density distribution values. The analy-
sis suggests that the XGBoost model can be used to 
explore EGS accurately. The model can capture the 

relationships between permeability and fracture den-
sity distribution, providing a reliable and efficient tool 
for analyzing EGS.

5.6.2  Thin section analysis

Understanding the distribution, orientation, and 
connectivity of fractures in geothermal reservoirs 
through thin-section analysis is crucial for assessing 
reservoir permeability and fluid flow pathways and 
ultimately optimizing geothermal energy extraction 
strategies (Kölbel et  al. 2020). Figure  14 corrobo-
rates the presence of natural and healed fractures, 
supporting the accuracy of identifying natural frac-
tures from the XGBoost model. The agreement 
between the ML predictions and thin section anal-
ysis strengthens the reliability of the results and 
provides valuable insights for geothermal reservoir 
characterization. The research contributes to under-
standing fracture networks in geothermal systems 
and can aid in optimizing geothermal energy extrac-
tion strategies. Further studies could explore the 
integration of ML with other geophysical and geo-
logical data for a more comprehensive analysis of 
fracture systems in geothermal reservoirs.

5.7  XGBoost model’s application in spatial fracture 
distribution

We employed the XGBoost model to determine frac-
ture density spatial distribution (Fig. 15a, b). The frac-
ture density from the XGBoost model in the study area 
is high along the highly fractured wells (302, 307, 313), 
evidenced by the thin sections of these wells (Fig. 14). 
Furthermore, promising areas for EGS based on high 

Fig. 12  Correlation between fracture density from XGBoost 
models and reservoir fracture porosity in a blind test well

Table 6  Comparison of the 
fracture density from FMI 
logs and XGBoost model in 
a blind test well

Top Depth (m) Bottom 
depth (m)

Thickness (m) Fracture density 
(1/m) (FMI)

Fracture density 
(1/m) (XGBoost)

Fracture 
porosity 
(%)

4180 4219 39 3.9 3.8 0.005
4298 4364 66 3.2 2.9 0.004
4499 4513 14 3.3 3.6 0.002
4552 4561 10 8.2 8.3 0.004
4568 4588 20 9.2 9.3 0.008
4757 4783 25 1.4 1.2 0.003
4801 4832 32 5.7 6.2 0.015
4846 4865 19 4.1 3.8 0.007
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fracture density can be selected for hydraulic fracturing 
operations. Therefore, comprehending the characteris-
tics and distribution of these fractures is imperative for 

optimizing hydraulic fracturing design. The red color 
in the seismic profile shows the areas of high fracture 
density where fluid flow and heat transfer are expected 

Fig. 13  Correlation between fracture density from XGBoost models and reservoir permeability in a blind test well

Fig. 14  Thin section interpretation for identification of fractures in wells a 306, b 301, c 307, d 302
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to be most efficient. These locations optimize geother-
mal wells and maximize energy extraction from the 
subsurface.

6  Conclusions

• ML workflows have remarkable potential for 
reducing the time and cost of fracture mapping 
in EGS while producing accurate, robust, repro-
ducible, and assessable results. ML algorithms 
facilitate data analysis more quickly, accurately, 
and highly reliably. Furthermore, selecting ML 
models with optimizing hyperparameters and data 
division can eliminate human bias from the deci-
sion-making process, leading to more accurate and 
impartial results.

• For predicting fractures in carbonate geothermal 
reservoirs, the XGBoost model was found to be 
the most reliable model. XGBoost performs bet-
ter in both phases (training and testing) for a blind 
test well than other ML algorithms: RF, MLP, 
and SVR. XGBoost is faster and more accurate, 
achieving the highest correlation factor  (R2 = 0.92 
and RMSE = 0.02). Optimization of the XGboost 
model using Q-learning outperformed the grid 

search, Bayesian optimization, and ant colony 
optimization.

• Fracture network mapping plays a vital role in 
understanding the behavior of EGS reservoirs and 
optimizing their performance. An effective frac-
ture network mapping can be achieved with the 
appropriate input features, resulting in improved 
reservoir management and optimization.

• The XGBoost model selected in this study pro-
vides a reliable and accurate method for predict-
ing fractures in any geological formation for EGS. 
Analysis, evaluation, and validation demonstrate 
its utility and potential for widespread application.

• An analysis of permeability and thin-section con-
firmed the presence of natural fractures that may 
affect the reservoir’s potential as a source of high-
temperature fluid.

7  Limitations

ML models exhibit strong stability and scalability, as 
they can handle both large-scale and small-sample data 
and are capable of efficiently processing data of varying 
sizes. However, ML models have certain limitations.

Fig. 15  XGBoost model’s application for spatial fracture distribution in the study area
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• The feature representation process needs to be 
strengthened. Since the original feature vectors are 
high-dimensional, the enhanced feature vectors 
used in the XGBoost model can easily be over-
whelmed.

• As a supervised learning method, these models 
place high demands on the quality of the labels 
in the original data. Therefore, for the problem of 
intelligent identification of fractures in conven-
tional well logs using core and FMI logs, it is cru-
cial to select fracture label data located in the mid-
dle of a continuous fracture development segment 
and discard marginal label data to ensure label 
quality.

• The issue of data imbalance in the original dataset 
should not be ignored. Choosing an appropriate 
data balancing method to improve the distribution 
proportion of different labels in the dataset is cru-
cial for ensuring the training effectiveness of the 
fracture identification model.
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