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Abstract Lithofacies identification plays a pivotal 
role in understanding reservoir heterogeneity and 
optimizing production in tight sandstone reservoirs. 
In this study, we propose a novel supervised work-
flow aimed at accurately predicting lithofacies in 
complex and heterogeneous reservoirs with interca-
lated facies. The objectives of this study are to utilize 
advanced clustering techniques for facies identifica-
tion and to evaluate the performance of various clas-
sification models for lithofacies prediction. Our meth-
odology involves a two-information criteria clustering 
approach, revealing six distinct lithofacies and offer-
ing an unbiased alternative to conventional manual 
methods. Subsequently, Gaussian Process Classifica-
tion (GPC), Support Vector Machine (SVM), Arti-
ficial Neural Network (ANN), and Random Forest 

(RF) models are employed for lithofacies prediction. 
Results indicate that GPC outperforms other models 
in lithofacies identification, with SVM and ANN fol-
lowing suit, while RF exhibits comparatively lower 
performance. Validated against a testing dataset, the 
GPC model demonstrates accurate lithofacies predic-
tion, supported by synchronization measures for syn-
thetic log prediction. Furthermore, the integration of 
predicted lithofacies into acoustic impedance versus 
velocity ratio cross-plots enables the generation of 
2D probability density functions. These functions, 
in conjunction with depth data, are then utilized to 
predict synthetic gamma-ray log responses using a 
neural network approach. The predicted gamma-ray 
logs exhibit strong agreement with measured data 
 (R2 = 0.978) and closely match average log trends. 
Additionally, inverted impedance and velocity ratio 
volumes are employed for lithofacies classification, 
resulting in a facies prediction volume that correlates 
well with lithofacies classification at well sites, even 
in the absence of core data. This study provides a 
novel methodological framework for reservoir charac-
terization in the petroleum industry.
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1 Introduction

Machine learning (ML) is a branch of artificial intel-
ligence (AI) that utilizes data analysis techniques 
such as classification, regression, and clustering to 
make predictions and identify patterns in large data-
sets (Ehsan and Gu 2020; Ashraf et al. 2024). The ML 
approach can be classified into two groups: super-
vised and unsupervised. Supervised ML involves 
using input parameters and desired outputs to train 
a model, while unsupervised ML identifies patterns 
without predefined outputs. In the oil and natural gas 
industry, machine learning has become a popular tool 
for solving geoscientific problems related to explo-
ration, development, and production. Wire-line logs 
have become a commonly used tool for geoscientists 
in the oil and gas industry (Anees et  al. 2022;  Ali 
et al. 2024). With the development of machine learn-
ing, various neural networks have been widely used 
in oil exploration (Antariksa et al. 2022; Song, et al. 
2021; Valentín et  al. 2019). Chawshin et  al. (2021) 
designed a convolutional neural network (CNN), that 
automatically predicted lithofacies from 2D core CT 
scan image slices. Alzubaidi et al. (2021) introduced 
a CNN-based method that utilized core images for 
automatic lithology prediction, although it exhibited 
poor performance in the subdivision of rock types. 
Al-Mudhafar et  al. (2022) developed a novel tech-
nique using boosting algorithms to classify lithofacies 
in carbonate reservoirs, specifically in the Majnoon 
oil field in Iraq. They compared five machine learn-
ing algorithms and achieved high accuracy. Lithofa-
cies predictions were validated against core data and 
compared with poro-perm interpretations, aiding in 
reservoir characterization and production optimiza-
tion. Moghanloo et  al., (2018) conducted pre-stack 
inversion analysis to extract P-wave and S-wave 
information from seismic data, offering advantages 
over post-stack inversion for reservoir fluid charac-
terization. They determined key parameters, such as 
k, KC, m, and mC, and developed angle-dependent 
wavelets to derive acoustic impedance, shear imped-
ance, and density sections. This method was applied 
successfully in identifying reservoir facies in an Ira-
nian hydrocarbon field. Ghanbarnejad Moghanloo 
and Riahi (2023) developed an integrated workflow 
using recent geoscience data to assess reservoir char-
acteristics and structural interpretation of the Burgan 
formation in SW Iran. They employed high-resolution 

SEM images for pore analysis, utilized a watershed 
segmentation algorithm, calibrated porosity logs, and 
employed supervised Bayesian classifiers for facies 
prediction. The approach was validated with seismic 
data, aiming to optimize drilling operations in simi-
lar geological settings. Zhang et al. (2021) employed 
convolutional neural networks to identify lithofacies 
from core images. Although these methods notably 
reduced the identification time, they still necessitated 
a considerable number of core sample images for net-
work training and labeling, posing a challenge. To 
overcome this challenge, Zhang et al. (2021) used rel-
atively low-cost well logs instead of core samples for 
lithofacies identification. This approach effectively 
provided a first-glance analysis of core data, even 
though the model’s generalization required improve-
ments. Despite the limitations, machine-led applica-
tions hold great promise in the oil and natural gas 
industry, enabling more efficient and accurate explo-
ration and production.

Log data is widely used in lithofacies identifica-
tion and evaluation due to its high vertical resolution 
and good continuity (Lai et al. 2018). The composi-
tion and structure of the reservoir will result in the 
division of various lithofacies, each exhibiting dif-
ferent logging responses (Hemmesch et  al. 2014; 
Ozkan et  al. 2011). Therefore, Bhattacharya et  al. 
(2016) input five one-dimensional logs and other 
derived parameters into the lithofacies model using 
three machine learning algorithms, such as Artificial 
Neural Network (ANN), and proved that lithofacies 
identification could be modeled in that way. Similarly, 
Wu et  al. selected deep resistivity (LLD), spontane-
ous potential (SP), Gamma (GR), Sonic (DT), Neu-
tron (NPHI), and Density (RHOB) to summarize the 
logging response characteristics of five lithofacies 
based on the experimental results of core composition 
analysis, and successfully predicted the distribution 
of each lithofacies in a single well (Wu et al. 2020). 
He et  al. (2016) optimized the identification model 
constructed by DEN, AC, RT, and other logs through 
the comparison of core observation, X-ray diffrac-
tion, and qualitatively identified lithofacies through 
the intersection diagram (He et  al. 2016). Com-
pared with GR DEN, DT, and other one-dimensional 
logs, resistivity images can directly observe forma-
tion changes and identify lithofacies boundaries. Its 
appearance improves the accuracy of lithofacies iden-
tification. Zhang and Pan (2011) utilized the Support 
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Vector Machine (SVM) algorithm to process conven-
tional logs, such as natural gamma and photoelectric 
absorption cross-section index. They elucidated their 
findings using micro-resistivity images and ultimately 
conducted a more comprehensive analysis of the vol-
canic lithofacies (Zhang and Pan 2011). However the 
SVM is difficult to achieve large-scale training sam-
ples, and the neural network is easy to fall into the 
local optimum (LeCun et  al. 2015). Therefore, Yu 
et  al. (2021) established a lithology identification 
and classification model using the gradient boosting 
decision tree (GBDT) ensemble learning algorithm. 
The model correctly identified the lithofacies of the 
volcanic rocks using core and FMI-calibrated conven-
tional logs as input (Yu et al. 2021). On this basis, to 
further improve the efficiency and accuracy of iden-
tification, research has been carried out. Lan et  al. 
(2021) a positive and unlabeled machine learning 
(PU-learning) technique was developed for traditional 
log data, which only marked restricted log samples, 
and five carbonate logging lithofacies were effectively 
created; nevertheless, the accuracy of the results 
required to be improved (Yu et  al. 2021). However, 
most of the above lithofacies identification methods 
require certain a priori judgment results for guidance. 
This kind of method is greatly influenced by manual 
subjective and has low precision and a huge work-
load. Therefore, it is necessary to identify lithofacies 
automatically. Tian et  al. (2016) used the multi-res-
olution graph-based clustering (MRGC) method to 
automatically cluster the log of the Amu Darya basin 
without prior knowledge and finally obtained differ-
ent lithofacies (Tian et al. 2016). Chai et al. designed 
an automatic lithofacies classification method for sed-
imentary facies of reef-shoal reservoirs (Chai et  al. 
2009). These above researchers once again proved the 
trend of design research of lithofacies automatic clas-
sification and identification method.

Therefore, the goal of this research is to investi-
gate how supervised classification can improve the 
recognition of lithological facies in a dataset. The 
dataset consists of complex geometrically pro-grada-
tional sequence environments that were formed dur-
ing a significant tectonic event. This event not only 
affects the distribution of different facies but also 
leads to the presence of a large volume of volcani-
clastic debris, which can negatively impact the qual-
ity of the reservoir. Accurately predicting facies is 
important because the Lower Goru formation in the 

Kadanwari gas field has the potential to produce sig-
nificant amounts of natural gas. The process of facies 
categorization involves creating new logs, generating 
synthetic Gamma ray logs using machine learning 
regression models, and creating artificial data to fill in 
gaps in the dataset. The final step is to train the data 
samples using four different classification algorithms 
and select the most accurate facies classifier from the 
validation dataset. This study uses "ensemble learn-
ing," which combines multiple models to improve 
accuracy.

2  Geological setting and data analysis

In this section, we provide a comprehensive overview 
of the geological setting and data analysis for the 
Kadanwari and Sawan gas fields in the Lower Goru 
formation within the Central Indus Basin, Pakistan 
(Fig. 1a). The section is structured as follows:

2.1  Geographical and geological description

The study area encompasses the Kadanwari and 
Sawan gas fields, focusing on the conventional sands 
in D, E, and F, and the tight G sand layer. This region, 
situated in the Central Indus Basin, is characterized 
by a complex geometrically progradational sequence 
environment, formed during three significant tec-
tonic events (Ahmad and Chaudhry 2002)–(Ali 
et al. 2020). The structural configuration of the field, 
shaped by these tectonic events, has a significant 
impact on the reservoir characteristics (Fig. 1a). The 
Lower Goru sands have been divided into seven sand-
bearing intervals (Fig. 1b) from bottom B-Sand to top 
H-Sand (Ahmad and Chaudhry 2002). The primary 
producing sands in the area are E-Sand and G-Sand, 
while D-Sand and F-Sand have also yielded produc-
tion from select wells (Ali et al. 2019, 2020, 2023). In 
Kadanwari, E-Sand, the main producer, is character-
ized as a conventional reservoir, forming an elongated 
body trending SW-NE parallel to the paleo shoreline 
of the Early Cretaceous time. However, B, C, D, G, 
and H exhibit tight characteristics. G-Sand has been 
productive post-hydraulic fracturing, and F-Sand 
exhibits hot sand characteristics in the field (Ashraf, 
et al. 2018; Ashraf et al. Oct. 2020).
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2.2  Deltaic system characteristics

The Kadanwari and Sawan (from C to H layers) 
of the Lower Goru represent a clastic delta system 
characterized by a river-dominant regime with addi-
tional wave and tidal transformations. River dynam-
ics leave their mark on both sand-prone "proximal" 

and fine-grained "distal" facies. Proximal facies 
exhibit cross-bedded medium to coarse sandstones, 
while distal facies are typified by hummocky cross-
lamination, associated with hyperpycnal flow dur-
ing massive seasonal storms and floods (Valzania, 
et  al. 2011). Distinctive variations in the size and 

Fig. 1  Presents a clear visual representation, highlighting a the geographical positioning, b the lithological composition within the 
study region, and c the sedimentology model
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shape of delta lobes deposited at different stages are 
evident (Fig. 1c).

The selection of the gas field stems from its com-
plex geological features, particularly within the 
Lower Goru formation of the Central Indus Basin, 
Pakistan. The structural configuration, shaped by 
significant tectonic events, presents an ideal scenario 
for testing the efficacy of our proposed model. How-
ever, the data from this field indeed poses challenges, 
especially when conventional statistical approaches 
struggle to differentiate between facies solely based 
on logging data. This complexity underscores the 
need for more advanced analytical techniques, such as 
machine learning, to extract nuanced geological fea-
tures from multivariate datasets effectively.

3  Data and methodology

This study utilized a dataset comprising wireline log 
measurements of six parameters, namely gamma ray 
(GR), laterolog deep resistivity (LLD), neutron poros-
ity (NPHI), compressional wave velocity (DT), Pho-
toelectric Effect (PEF), and bulk density (RHOB), as 
well as two petrophysical parameters estimated from 
the data: volume of shale and porosity. The wells 
are in the Lower Goru formation of the Kadanwari 
gas field block, which is situated in the central Indus 
Basin (Fig. 2).

K-15 and K-14 are wells that provide facies logs 
and facies descriptions derived from geological 
data, which we utilized as the targeted output for the 

Fig. 2  The location of the wells is in the Lower Goru formation of the Kadanwari gas field block, situated in the central Indus Basin

Table 1  Facies 
classification of Lower 
Goru

Facies Description

Sh Shale to silty (Shelf deposits)
Slst Silstone to silty-shaly sandstone (prodelta shales with turbiditic layers)
Css Low-porosity, low permeability cemented sandstone (very distal mouth bar fringe)
Lss Low-medium porosity, low permeability sideritic/chamositic sandstoe (shoreface 

to distal mouth bar)
Ss High-porosity, high permeability sandstone (mouth bar)
Hs Highly chamositic/siderite affected lithologies (chamositized mouth bar)
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machine learning (ML) algorithms in our study. The 
lithology of the research area is classified into six cat-
egories, with each category identified through metic-
ulous petrophysical analysis and core investigation. 
Table 1 contains the data and serves as a useful rep-
resentation of the fluvial-based depositional system, 
using the mentioned facies’ nomenclature.

For any machine learning approach to be effec-
tive data analysis and statistical representation of 
samples are essential, which includes visualizing 
the input–output correlation function. Figure  3 pre-
sents a flowchart outlining the process of generating 

synthetic GR logs from predicted rock facies and con-
structing a facies model.

3.1  Data cleaning

The Pauta criteria method is used to identify anom-
alies in logging data. The logging data often has 
imperfections resulting in significant deviations from 
the normal distribution (Zheng et al. 2021). However, 
the logging data still follows a standard distribution 
with some minor deviations (Zheng et  al. 2021). To 
identify these anomalies, the Pauta criterion method 
is utilized. This method uses a formula that involves 
three standard deviations to determine the convic-
tion probability of determining gross error, which is 
99.7%. If a value is outside the range of uncertainty, 
it cannot be considered a mere statistical error but 
rather a significant one, and hence, it is considered a 
gross error. The Pauta criteria method is depicted in 
Fig. 4, and it is used to identify these gross errors in 
the logging data. Once these gross errors are identi-
fied, this study uses Lagrange interpolation to fill 
these outliers (Li et al. 2016).

3.2  Clusters selection criteria

The K-15 well in the study area has limited core 
facies data, as depicted in Fig. 5. Therefore, it is cru-
cial to select an appropriate number of clusters that 
accurately represent the facies in the study area before 
utilizing machine learning algorithms for predic-
tion. Overfitting or underfitting can introduce bias 
into the model, so two information criteria have been 
employed to maximize the number of clusters that 
best fit the data in the study area. The first criterion 

Fig. 3  Flowchart illustrating the method for generating syn-
thetic GR logs based on predicted rock facies and constructing 
a facies model

Fig. 4  Illustration of the 
Pauta criteria method uti-
lized to identify gross errors 
in logging data, employing 
a formula based on three 
standard deviations to deter-
mine anomalies
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is the Akaike Information Criterion (AIC) (Akaike 
1974), which assesses the probability of a model 
accurately predicting or estimating future values 
based on in-sample fit. A model with the lowest AIC 
is deemed to be the most appropriate. AIC is also 
helpful in selecting between the multiplicative and 
additive Holt–Winters models. Another criterion is 
the Bayesian Information Criterion (BIC) (Stone and 
Javid 1979), which balances the trade-off between 
model complexity and fit. Lower AIC or BIC values 
indicate a better fit. The study provides the equations 
to calculate the AIC and BIC values of a model.

where k refers to the number of parameters estimated, 
N denotes the recorded measurements and L is the 
likelihood value (Fig. 5).

3.3  One-class support vector machine (SVM)

The method is based on Soentpiet’s (1999) exten-
sion of the original SVM algorithm developed by 

(1)AIC = −2 ∗ ��(L) + 2 ∗ k

(2)BIC = −2 ∗ ��(L) + 2 ∗ ��(N) ∗ N

Fig. 5  Visualization of core facies data from a section of well K-15, indicating limited data availability
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Cortes and Vapnik (1995). Since their introduction, 
the SVMs have proven to be popular due to their 
good performance in capturing complex decision 
boundaries for supervised classification. In contrast 
to traditional SVM classification problems, where 
there may be multiple classes, the one-class exten-
sion is an unsupervised approach that seeks to trace 
the boundary of the training data in multidimensional 
space. What both methods have in common is the key 
idea of choosing a subset of training data samples, 
the so-called support vectors to define the decision 
boundary. The support vectors are chosen by an opti-
mization routine, for further details see (Hastie et al. 
2019). A vector of facies measurements at support 
vector i is denoted by xi, and the optimization routine 
also provides weights αi associated with each of the N 
support vectors. The support vectors define the SVM 
score for any test vector x as follows:

where b is a bias term that depends on the outlier 
fraction, and K is a Gaussian kernel function:

Based on the SVM scores, we can define a deci-
sion function that provides a classification of a test 
vector x, as follows:

The decision function equals 1 when the test vec-
tor is inside the boundary of the training data and the 
SVM score is positive; in this case, the test vector 
is classified as a normal measurement. The decision 
function equals -1 when the SVM score is negative, 
and the test vector is classified as an outlier (outside 
of the training data distribution). The decision func-
tion effectively partitions the multi-dimensional space 
of clusters into normal and outlier regions separated 
by a boundary, which we term the clusters of a train-
ing dataset. A well may have multiple clusters when 
partitioning the available logs into related groups 
such as quad combo, etc. A well can also have mul-
tiple clusters formed by partitioning its logs by strati-
graphic zone, facies, or fluid type.

(3)f (x) =

N
∑

i=1

aiK
(

xi, x
)

+ b

(4)K
�

xi, x
�

= e−‖xi−xj‖
2∕�

(5)g(x) = sgn

(

N
∑

i=1

aiK
(

xi, x
)

+ b

)

3.4  Gaussian process classifiers (GPCs)

Gaussian process classifiers (MGPCs) are a type 
of Bayesian method that is highly effective for non-
parametric multiclass classification. This method pro-
duces probabilistic outputs that are useful for quanti-
fying prediction uncertainty. GPCs are unique in that 
they are purely statistical models derived from Gauss-
ian processes used in regression (Berczi et al. 2015; 
Gibbs and MacKay 2000). In GPCs, the value of a 
latent function at a given input is closely related to 
the likelihood of belonging to a particular class. Infer-
ence in MGPCs involves inferring a posterior over 
the latent function and the hyperparameters that gov-
ern it, given a prior over the latent function and the 
observed data. However, performing accurate Bayes-
ian inference in MGPCs is often computationally pro-
hibitive, making it necessary to use approximations 
such as Markov-chain Monte Carlo sampling, the 
Laplace approximation, or expectation propagation to 
achieve efficient and scalable solutions for Gaussian 
process classification. These approximations allow 
for the practical use of Gaussian process classification 
techniques in real-world applications.

Based on the GPC scores we can define an approx-
imate inference that provides a classification of a test 
vector y * , as follows:

3.5  Random forest (RF)

Random forest is a popular machine-learning algo-
rithm developed by Breiman (2001) and has been suc-
cessfully used in various classification and regression 
problems (Akkurt et al. 2018). The algorithm works 
by creating a large number of decision trees from 
bootstrap samples of the training data. At each node 
of a tree, a random selection of variables is made to 
split on, and only a random subset of predictors is 
considered for splitting. The size of this subset is one 
of the few tuning parameters of the algorithm, along 
with the minimum number of samples in each node 
of the tree (Granitto et al. 2007). A significant advan-
tage of random forests is their ability to perform well 
without extensive tuning of these parameters. The 
algorithm creates N decision trees using bootstrap 
sampling, and the values of each tree are aggregated 

(6)p(y ∗= +1∕y) = Zdf ∗ �(f ∗)p(f ∗ ∕y)
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to obtain a final prediction. The figure below shows 
the basic structure of the random forest algorithm.

The building of the mth decision tree �n(x) is based 
on the Sm random sampling subset. The RF model F(x) 
integrates the independent creation in parallel N base 
trees. The prediction of sample  x0 demonstrates that 
the predictions of N trees are initially established. The 
predicted value is the conditional probability for the kth 
class of  X0.

The bagging algorithms have been demonstrated uti-
lizing a variety of performance models, as well as the 
ensembles and robustness of group models. The unique 
form of suitcase trees that RF receives from nature. Due 
to the optimization of more random nodes, the variety 
is greatly increased. The RF is more accurate due to 
this characteristic than standard bagging trees without 
randomization.

3.6  Artificial neural networks (ANN)

The term ’artificial neural networks’ refers to a category 
of numerical optimization algorithms that were initially 
conceived through research into the human brain and 
nervous system (Haykin 2011; Guresen and Kayakutlu 
2011). Artificial neural networks (ANNs) are a type of 
nonlinear dynamical system that, through training, can 
improve their pattern recognition abilities. Training 
an ANN involves feeding it a series of inputs and tar-
get outcomes (training patterns). In practice, the ANN 
learns its complex predictive function during training. 
After initial training, the ANN can be used to predict 
the values of its output variables using trained data as 
input (Haykin 2011; Guresen and Kayakutlu 2011).

Assume neural networks with a hidden signal and 
an input layer n and output layer m, b j indicates the 
output of the hidden signals, �j is the value of the 
hidden layer’s threshold, the value �k represents the 
threshold for the output signal, f1 is indicated the 
transfer factor of the hidden signal, while represents 
the transfer function of the output signal, input layer 
to hidden layer weights of wij , while hidden layer to 
output layer weights wjk . Subsequently, we can obtain 

(7)prob
(

y = yk|x = x�
)

=
1

N

N
∑

n=1

I(�n(x�) = yk)

(8)F(x�) = argmaxprob
(

y = yk|x = x�
)

the output of the network, which is denoted by yk , 
while the output of the neuron of the hidden layer is 
denoted by tk.

Calculating the output of the output layer is:

Defining the error function by the network’s actual 
output, that is:

The purpose of network training is to decrease net-
work error to a predetermined minimum or stop at a 
specific training step by continuously adjusting the 
weights and threshold. The prediction samples are 
then entered into the trained network, and the findings 
of the prediction are obtained.

3.7  Data split and cross-validation

In the field of machine learning, data partitioning is 
a crucial step to ensure that machine learning mod-
els are evaluated on previously unseen data  (Thanh 
et  al. 2022). In particular, data is typically split into 
a training set and a testing set (Alghazal and Krinis 
2021), with the former used for training the models 
and the latter reserved for the final evaluation.

For small datasets, in particular, overfitting the 
training data is a common concern. To address this 
issue, a technique called cross-validation is often 
employed. During cross-validation, the training set is 
divided into several folds, and the machine learning 
estimator is sequentially evaluated on each fold while 
being trained on the remaining folds. This approach 
ensures that the models are evaluated on multiple 
partitions of the training data reducing the risk of 
overfitting.

At the end of the cross-validation process, the 
model with the best cross-validation score is selected 
and used to predict the testing set for final evaluation. 

(9)

bj = f1

(

n
∑

i=1

wijxi − �j

)

(i = 1, 2, ...., n;j = 1, 2, ..., s)

(10)

yk = f2

(

s
∑

j=1

wjkbj − �k

)

(j = 1, 2, ...., s;k = 1, 2, ...,m)

(11)e =

m
∑

k=1

(

tk − yk
)2
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In this study, the available dataset consisted of multi-
ple wells, which were randomly split into a 70% train-
ing set and a 30% testing set. To prevent overfitting 
and evaluate multiple candidate machine-learning 
models, K-fold cross-validation was used, with a 
four-fold size, chosen to resemble the number of sam-
ples in the final evaluation testing set. Figure 6 illus-
trates the overall machine-learning workflow and the 
adopted K-fold cross-validation technique.

3.8  Feature selection

Feature selection is a crucial pre-processing technique 
frequently used to minimize dataset dimensionality 
by systematically deleting pointless features from a 
set of available features. The use of feature selection 
in a machine-learning workflow has numerous advan-
tages (Ali et al. 2021; Li et al. 2017; Guyon and Elis-
seeff 2003). These include reducing the model’s com-
plexity, which improves knowledge of the processes 
that produced the predictions, shortening model 
training timeframes, which reduces the computing 
cost associated with modeling, decreasing the risk of 
model overfitting, avoiding the "curse of dimensional-
ity”, and minimizing the effects of "garbage in, gar-
bage out".

The univariate and Pearson’s Correlation (r) fea-
ture selection techniques were selected for this lat-
est study. The best features are found via univariate 
feature selection, which is based on univariate linear 
regression tests. This approach examines each feature 
independently and determines how it relates to the 
goal feature rather than considering all the features at 
once. A statistical method known as Pearson’s Cor-
relation assesses the strength of a linear relationship 

between two variables (a and b). The approach seeks 
to find the line of greatest fit through the data, with 
values ranging from − 1 to + 1. A value of 0 indicates 
that there is no correlation between the variables. A 
negative correlation is shown by a value between -1 
and 0, whereas a positive correlation is indicated by a 
value between 0 and 1.

3.9  Criteria for verifying model performance

The classification performance of the models was 
verified using a standardized confusion matrix, which 
detailed statistical results for both correctly and incor-
rectly classified lithofacies (Alghazal and Krinis 
2021). Precision, recall, and F  −  1 scores were all 
employed as verification metrics (Eqs. (13)–(15)).

Additionally, the ROC AUC curve serves as a met-
ric to evaluate the performance of classification tasks 
across various threshold settings. The ROC (Receiver 

(12)

Pearson�s correlation(r) =
n
(

Σab

)

− (Σa)(Σb)
√

[

nΣa2 −
(

Σa

)2
]
[

nΣb2 −
(

Σb

)2
]]

(13)Precision =
True positive

True positive + False positive

(14)Recall =
True positive

True positive + False negative

(15)
1

F1

=
1

2

(

1

Precision
+

1

Recall

)

Fig. 6  Illustration of the 
division of the dataset into 
two sets: the first set is for 
training, and the second set 
is for testing the machine 
learning model
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Operating Characteristic Curve) illustrates the rela-
tionship between sensitivity and specificity, while the 
AUC (Area Under the Curve) quantifies the separabil-
ity between classes (Meyer-Baese and Schmid 2014). 
Essentially, it indicates the model’s ability to differen-
tiate between classes. A high AUC value, approach-
ing 1, suggests excellent separability, whereas a low 
value near 0 indicates poor separability. An AUC of 
0.5 implies that the model lacks the capacity to distin-
guish between classes altogether. TPR (16) and FPR 
(17) are categorized into two groups:

4  Result and discussion

This section contains multiple parts. The initial part 
explains the statistical summary of all variables and 
the correlation between them. The second part com-
putes the number of clusters in the study area using a 
novel clustering algorithm as mentioned in Sect. 3.2. 
In the third part, feature selection techniques are 
employed to reduce the dimensionality of the dataset 
by systematically removing irrelevant features and 
correlating them with the target variable. We normal-
ize each feature using the mean operator to ensure 
uniform scaling of input characteristics in machine 
learning applications, which aids in the convergence 
of the algorithm more quickly. In the fourth part, the 
results of each model’s lithology identification are 
compared after establishing the model parameters. In 

(16)TPR =
True positive

True positive + False negative

(17)FPR =
False positive

False positive + True negative

the final step, the efficiency of the algorithm is exam-
ined, and finally, the final model is utilized to predict 
the facies of multiple/blind wells and check the pre-
diction accuracy of facies similarity based on syn-
chronization measures to predict synthetic logs.

4.1  Exploratory data analysis

A successful machine learning project must begin 
with the essential step of data exploration. Data 
exploration helps us to detect anomalies and patterns 
in the data at the initial investigation stage. A few 
summary statistics and graphical visualizations have 
been generated to better understand the input data 
(Table  2). The table contains descriptive statistics 
that summarize the count, mean, standard deviation, 
minimum (min), and maximum (max) as well as 25, 
50, and 75 percentiles of the data except for unde-
fined data points. It is evident that the data count of 
the LLS feature is lower than others because of some 
undefined values, and hence all feature data corre-
sponding to these undefined points have been dropped 
for any future analysis. The training data hence com-
prises 720 data points only.

To analyze the bivariate measure of association 
between all the features, we have generated a heatmap 
of their correlation coefficients in Fig. 7. Among the 
feature pairs, GR-LLD, GR-NPHI, GR-DT, NPHI-
PEF, NPHI-DT, NPHI-LLD, NPHI-GR, RHOB-SP, 
LLD-DT, LLD-NPHI, LLD-GR, and SP-RHOB have 
a high magnitude of correlation. Any pair with a very 
high correlation would have helped us identify feature 
redundancy and hence decrease the feature dimension 
to improve classification time.

Table 2  Statistical 
summary of the dataset

GR NPHI RHOB DT PEF LLD CALI LLS

Count 794 794 794 794 794 794 794 720
Mean 69.56371 0.163429 2.570256 71.42107 6.584696 12.67923 5.852819 11.3372
Std 31.38799 0.058181 0.115976 6.310227 2.810509 13.65903 0.336832 10.8894
Min 11.189 0.0166 2.3211 60.567 -0.9673 2.2065 5.011 2.20018
25% 43.9843 0.122975 2.498225 66.84135 4.653375 4.164275 5.6059 3.79210
50% 70.62605 0.1661 2.56235 70.22625 5.5659 6.61595 5.69055 5.51954
75% 99.04713 0.194725 2.63595 74.2924 7.385175 19.88548 6.1986 18.2483
Max 129.6746 0.4255 3.1343 89.0704 17.7259 123.8858 7.0775 100.254
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4.2  Cluster analysis

The most critical step in clustering analysis is the 
visual evaluation of the two-information criteria plot 
to establish the number of clusters (facies) for the 
dataset. The clusters are identified by selecting spe-
cific inflection points based on the Euclidean dis-
tance. Inflection points on the plot indicate where the 
advantages of having more clusters do not improve 
data characterization. The AIC/BIC curves leveling 
off at six clusters, as depicted in this plot (Fig. 8), are 
related to a model that accurately describes the clus-
ters (facies) mentioned in the study area well logs.

4.3  Feature selection

Before proceeding with model training, it is crucial 
to select the appropriate feature curve that exhibits a 
strong correlation with the target curve. In this study, 
a set of eight logging curves was chosen from the 
dataset, representing commonly measured parameters 
within a well. For the purpose of evaluating the rank-
ing mechanism, specific curves such as TVD, LLM, 
and LLS were excluded as they are not utilized in 

facies evaluation. The results obtained from the fea-
ture selection methods can be seen in Fig. 9. Among 
the selected features, the Gamma (GR) curve demon-
strated the most significant impact, with an Influence 
Factor value of 36.21. The subsequent relevant feature 

Fig. 7  Correlation between 
all the features

Fig. 8  Two-information criteria plot depicting AIC/BIC 
curves leveling off at six clusters, crucial for determining the 
optimal number of clusters (facies) in the dataset
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was the Deep Resistivity (LLD) with an Influence 
Factor of 16.04, followed by Compressional Sonic 
(DT) (13.17), Density (RHOB) (9.85), and Neutron 
(NPHI) (7.70), each showing a relatively smaller 
decrease in influence. On the other hand, features 
such as Photoelectric Factor (PEF), Spontaneous 
Potential (SP), and Caliper (CAL) inputs were ranked 
as the least impactful and relevant with Influence Fac-
tors of 6 and less than 6, respectively. Based on these 
findings, it can be suggested that the top four ranked 
inputs (GR, LLD, DT, and RHOB) are the most sig-
nificant features to consider for facies evaluation.

Once the number of clusters is estimated from 
the novel two-information criteria plot, the core 
facies along with selected conventional logs from 
the feature selection method are inserted together 
into the training data, referring to the dataset with-
out the blind/testing well. A set for one of the wells 
was removed from the training data and used to 
evaluate how well the algorithms performed. The 
distribution of each facies in the training dataset is 
shown in Fig.  10, revealing that the High-porosity 
and high permeability sandstone (Ss) facies are 
underrepresented in comparison to the other facies. 
Thus, we can search for more samples of these 
facies to enhance the effectiveness of the prediction 
models.

In Fig.  11, we combined kernel-density plots of 
the good logs to compare the distribution of different 
features for each facies class. The probability den-
sity function (PDF) of a continuous random variable 
can be estimated using the nonparametric technique 
known as kernel density estimation (Koehrsen 2018). 
When features need to be compared between differ-
ent classes, these plots provide a smooth representa-
tion of a histogram and scatter plot that is estimated 
from the data. The X and Y-axis show the value of 

Fig. 9  Results of feature 
selection methods showing 
the Influence Factors of 
selected logging curves for 
facies evaluation

Fig. 10  Distribution of facies in the training dataset
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the features on the scatter plot, while the histogram 
shows the probability density function for each fea-
ture. Different features can differentiate the facies to 
varying degrees, and this inherent property in data 
will be learned by the classification algorithms.

However, the kernel-density plots demonstrate 
that all facies class overlap, which is indicative of 
the sub-surface data set and difficult to distinguish 
utilizing conventional statistical approaches. This 

visualization supports the use of machine learning to 
enhance the analysis of a multivariate set of data and 
extract complex geologically significant features. Fig-
ure  12 shows the data visualization distribution and 
facies classes of our labeled data in 2-dimensional 
space, which is obtained by radial coordinate visuali-
zation (RadViz). Radviz is a visualization technique 
that maps a series of large points in high-dimen-
sional space and converts it into 2-dimensional space 

Fig. 11  Kernel-density plots comparing feature distributions for each facies class in logs
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through a nonlinear method. The RadViz visualiza-
tion method distributes each attribute variable in the 
dataset equally on a unit circle. The m radius of the 
unit circle represents the m-dimensional space, and a 
point in the RadViz visualization graph represents a 
row of sample data. The design idea comes from the 
force balance theorem of objects. In Fig. 12a, it can 
be observed that all attributes from the existing data-
set result in a non-informative representation for the 
reason that its demonstrations of all classes overlap. 
Nevertheless, in Fig. 12b, it can be observed that the 
three most appropriate features can be preponderantly 
separated classes. We can see from the positions of 
the data points in this diagram that some samples of 
Ss and LSs are close to the placements of the NPHI 
attribute, indicating that SS and LSs are more influ-
enced by NPHI than by RHOB or VP, in contrast to 
Sh and CSs, which are more influenced by VP meas-
urements with the remaining class presented between 
them all.

4.4  Facies predictions utilizing ML models and 
comparison

The next step in our study involved evaluating the 
accuracy of various machine learning (ML) models 
for predicting facies, as described in the methodol-
ogy section. Initially, several default models were 
tested using the training dataset, and the results were 

evaluated using a confusion matrix. A confusion 
matrix is a matrix that summarizes the accuracy of 
predictions in a classification problem. The matrix 
contains counts of both accurate and inaccurate pre-
dictions, with each class being further subdivided. 
This tool is essential for evaluating the effectiveness 
of classification models and can be used to calculate 
several evaluation indicators, such as true positive 
rate, false positive rate, true negative rate, false nega-
tive rate, accuracy rate, and F1 index. Moreover, the 
confusion matrix can help estimate the predicted loss 
due to misclassification of the classification model by 
differentiating false positives from false negatives. 
Overall, the use of a confusion matrix is a vital step in 
evaluating the performance of machine learning mod-
els and provides valuable insights into the effective-
ness of classification algorithms.

To measure the effectiveness of identification per-
formance, various metrics such as precision, recall, 
and F1-score can be utilized. Figure  13 illustrates 
the identification performance of several models. 
The results indicate that the GPC model achieved 
the highest identification accuracy followed by SVM 
and ANN, while RF performed the worst. In the 
case of lithology identification, ensemble models are 
more suitable than RF, and better identification per-
formance can be achieved using the GPC approach. 
Moreover, each model produces different identifi-
cation results for different facies types. All models 

Fig. 12  RadViz demonstrates the distribution of facies classes in a two-dimensional space. a Shows the overlap of all attributes in 
the dataset, while b illustrates the predominant separation of classes based on three key features
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demonstrate high accuracy when identifying LSs, Ss, 
CSs, and Sh. However, RF achieves the worst iden-
tification outcome with an F1 score of 0.00 while 
identifying Ss. On the other hand, the GPC model 
overall performs the best slightly outperforming ANN 
in identifying all classes. Additionally, SVM has a 
weaker identification ability for Hs, LSs, CSs, and Sh 
compared to ANN. These results highlight the sig-
nificant advantage of ensemble models when dealing 
with non-uniformly distributed facies data.

Figure 13 displays the confusion matrices for the 
models, which show how the predicted facies com-
pare to the actual facies for each lithofacies. Using 
the GPC model’s confusion matrix as an example, 
the most common types of incorrect classifications 
are as follows: (1) 3% of samples were misclassified 
as Hs, CSs, and Sh, 1% for each Slst sample; (2) 3% 
of CSs samples were misclassified as Sh. Because 
the misclassified lithofacies have overlapping log-
ging features, it can be challenging to identify these 
misclassifications. Nevertheless, the GPC model out-
performs other models, and its prediction accuracy of 

lithofacies is high, as shown by the total amount of 
lithofacies in Fig. 13.

However, to gain deeper insights into the efficiency 
of different model performances, we constructed a 
multiclass ROC curve, as shown in Fig. 14. We ana-
lyzed the ROC curves individually for each of the 
four models. The results indicate that the GPC model 
achieved the highest identification accuracy followed 
by SVM and ANN, while RF performed the worst. In 
the case of lithology identification, ensemble models 
are more suitable classifiers for predicting lithofacies 
since they make fewer prediction errors, indicating 
that they performed well in the Lower Goru Forma-
tion. This confirms that the classifier is capable of 
perfectly separating the six clusters with a true posi-
tive rate. The GPC results for Slst, Hs, LSs, Ss, CSs, 
and Sh were strong with ROC scores of 0.88, 0.89, 
0.96, 0.99, 0.93, and 0.98, respectively. It is evident 
that the GPC technique performs better than the other 
techniques because it can identify individual facies 
Slst, Hs, LSs, Ss, CSs, and Sh with reasonable accu-
racy, while SVM yields low accuracy in predicting 
facies Slst and Hs compared to ANN. However, RF 

Fig. 13  Confusion Matrix illustrating the facies prediction outcomes of SVM, ANN, GPC, and RF models. Specific facies are iden-
tified by their labels, which are explained in the accompanying table
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achieves the worst identification outcome with ROC 
scores of 0.67, 0.55, and 0.50 while identifying Slst, 
Ss, and CSs. These results clearly reveal that the GPC 
model accurately distinguishes each facies class in the 
dataset.

Once the final model has been extracted from the 
previous comparative results, in the last step, we uti-
lized the final model (GPC) to predict the lithofacies 
in the remaining/testing dataset and assess the pre-
diction accuracy of facies similarity based on syn-
chronization measures for predicting synthetic logs. 
Leveraging available core data from K-15 wells, we 
successfully extended facies predictions across the 
remaining wells, even in areas where core data were 
unavailable. This process not only allowed us to fill 
gaps in our dataset but also provided valuable insights 
into lithofacies distribution across the study area. The 
resulting facies distribution on a blind well using the 
final model (GPC) is depicted in Fig. 15. As depicted, 

the first four log tracks illustrate the measured logs as 
a function of depth (in meters), while the last track 
showcases the facies track predicted by GPC. This 
comprehensive analysis underscores the effectiveness 
of our approach in accurately predicting lithofacies 
and facilitating informed decision-making in explora-
tion and production activities.

To evaluate the results obtained from the GPC 
in the absence of ground truth label data (e.g., core 
data) in Fig. 15, we utilized a novel technique to con-
firm the facies prediction accuracy in the blind well 
(K-14). Therefore, we employed elastic parameters, 
such as acoustic impedance and velocity ratio, which 
are directly associated with reservoir quality, lithofa-
cies, and the corresponding petrophysical response. 
Subsequently, we constructed the acoustic impedance 
vs. velocity ratio cross-plot of the blind well based on 
predicted lithofacies to generate 2D probability den-
sity functions plotted on the top (Fig. 16a, b). These 

Fig. 14  ROC curves for each facies class score are depicted for SVM, ANN, RF, and GPC models are analyzed
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probability density functions (PDFs) are defined for 
each sample indicating a point that is similar to the 
data points in its cluster and its dissimilarity to the 
data points not within its cluster. Once the PDFs were 
extracted by predicted lithofacies, we utilized them as 
input along with depth in the neural network to pre-
dict synthetic gamma-ray log responses (Fig.  16c). 
Since the gamma-ray log is a lithology indicator that 
plays a vital role in differentiating rock types, we 
predict the synthetic gamma-ray log response and 
assess the prediction accuracy of the facies similar-
ity based on synchronization measures. In Fig.  16d, 
a comparison of the actual gamma log (GR) from 
these wells with the predicted gamma log (Syn_GR) 
from the neural network is presented. Qualitatively, 
the obtained results are visually satisfactory, and the 
average log trends are almost identical (Fig.  16d). 
Cross-plots between the measured GR and predicted 
Syn_GR from the machine learning algorithm at 
blind wells are shown in Fig. 16e. These cross-plots 
provide a quantitative measure of the predictive 

ability of the machine learning algorithm, with quite 
satisfactory R2 values (0.978), respectively.

Similarly, we have also applied the proposed final 
model to another well to predict lithofacies across 
the wells in the area where core data were unavail-
able. The result of the facies distribution is given in 
Fig.  17. As seen, core facies exhibit a fairly good 
match with predicted facies along the depth intervals 
with core facies description. This validation under-
scores the robustness and reliability of our predictive 
model in capturing lithofacies variations in diverse 
geological settings.

After predicting the lithofacies across all wells in 
the area with available and unavailable core data, the 
inverted Acoustic Impedance (AI) and Vp/Vs vol-
umes were used to classify the predicted lithofacies. 
Subsequently, this information was leveraged to con-
struct a facies prediction volume. Figure 18a displays 
a cross-section of wells in the area, exhibiting the pre-
dicted facies volume derived from an inversion with 
the predicted lithofacies obtained from the well log. 
Non-reservoir facies are depicted in grey and green, 

Fig. 15  Prediction results 
of the final model for the 
blind well (K-14) showcas-
ing lithofacies distribution 
based on predicted logs and 
synchronization measures
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Fig. 16  Result of the blind well a predicted lithofacies b 
based on lithofacies extract PDFs c utilized neural network to 
predicted synthetic log d actual and predicted gamma-ray log 

response comparison trend e check the prediction accuracy 
result by the least square method

Fig. 17  Comparison of 
Core Facies with Predicted 
Distribution in Well: Vali-
dating the Accuracy of the 
Predictive Model
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while good reservoir facies are represented in orange 
and yellow, and medium reservoir facies are shown 
in blue and purple. A notable correlation between 
the predicted classification of lithofacies and the pre-
dicted volume of facies can be observed at the well 
locations.

To ensure quality control, Fig.  18b provides a 
detailed illustration of the Vp log, the Vp modeled 
from the predicted porosity volume generated from 
inversion utilizing the facies model, and the Vp mod-
eled from the original porosity log. The modeled Vp, 
calculated based on the porosity log, exhibits a strong 
correlation with the Vp log. Moreover, the predicted 
Vp from inversion demonstrates good alignment with 
the measured log, particularly in the upper section of 
the well where the reservoir facies are predominant. 
However, in the lower section of the well where non-
reservoir facies are prevalent, the correlation is less 
significant. Despite this, overall, the model’s perfor-
mance remains quite high effectively distinguishing 
between different rock types.

5  Conclusion

This study presents a comprehensive workflow for 
predicting lithofacies using a combination of super-
vised machine learning algorithms and innovative 
data-driven clustering techniques. By employing a 
novel two-information-criteria clustering approach, 
bias from subjective human judgment in traditional 
manual approaches is minimized. Following lithofa-
cies identification, four supervised machine learning 
classifiers, including a voting ensemble classifier 
were deployed. The drilling dataset was split into 
training and testing subsets with the former used to 
train models for target prediction. GPC exhibited 
the highest identification performance followed by 
SVM and ANN, while RF showed the lowest per-
formance. Next, the GPC model was utilized to pre-
dict lithofacies in the testing dataset. The accuracy 
of facies similarity was assessed through synchro-
nization measures to predict synthetic logs. Using 
the predicted lithofacies, a 2D probability density 

Fig. 18  Two panels are depicted: a shows the facies prediction 
volume created by classifying the predicted lithofacies using 
the inverted Acoustic Impedance and Vp/Vs volumes, and 
b presents a comparison of the original Vp log, Vp predicted 

from the facies model applied to the original porosity log, 
and modeled Vp obtained from the predicted porosity volume 
derived from inversion using the facies model
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function was generated from an acoustic imped-
ance versus velocity ratio cross plot of a blind well. 
This, along with depth, was input into a neural net-
work to predict synthetic gamma-ray log responses. 
The results from the neural network were visually 
satisfactory, showing nearly identical average log 
trends of the gamma-ray log and a high correlation 
between the measured GR and predicted Syn_GR 
from the machine learning algorithm at blind wells 
 (R2 of 0.978). Finally, the predicted lithofacies 
were used to create a facies prediction volume by 
employing inverted acoustic impedance and Vp/Vs 
volumes. These predicted facies volumes correlated 
well with the predicted lithofacies classification in 
both wells with and without core data. The compar-
ative application and analysis of this workflow serve 
as a reference for sedimentary lithofacies logging 
identification in other study areas. It offers practical 
value in addressing challenges related to applying 
machine learning to well log data providing con-
sistent, reliable, and efficient results while saving 
time and effort in data processing and interpreta-
tion. The methodology and results of this study are 
applicable to a wide range of earth science studies, 
facilitating more accurate lithofacies prediction and 
improving the understanding of subsurface geologi-
cal formations.
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