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Abstract Rock strength criteria are the theoretical 
grounding of geotechnical design and stability esti-
mation, the Mohr–Coulomb (MC) and Hoek–Brown 
(HB) criteria are the widely accepted criteria at pre-
sent, due to their reasonability and unambiguous con-
cept, however they overlook the effect of intermedi-
ate principal stress, and contain six singular corners 
in π plane. Aimed at overcoming those limitations, 
the MC and normal parabolic criterion (NPC) were 
improved to their 3D versions that lead to smooth 
and convex for a wide range of strength parameters. 
The extended 3D strength criteria coincide with cor-
responding original forms in the triaxial compression 

and triaxial extension states, which not only take 
intermediate principal stress into account, but also 
provide great convenient in numerical calculation. 
Multigroup of poly-axial strength datasets gathered 
from the references are used to check the prediction 
accuracy of the proposed 3D criteria by the least 
absolute deviation method. Research proved that the 
3D NPC criterion has a relatively larger deviation 
on poly-axial strength data prediction, but the pro-
posed 3D MC criterion can describe peak strength 
with low misfit for soft or hard rocks. Peak strength 
σ1 increases first and then decreases with the increase 
of σ2, whether increasing or decreasing σ2, both will 
result in rock failure. Moreover, the 3D MC can fit the 
poly-axial strength data well for lower or higher val-
ues of σ3, which strongly suggests the proposed 3D 
MC criterion is adequate. Applicability of the pro-
posed strength criterion will be discussed in further 
research.

Article Highlights 

• The normal parabolic criterion and Mohr-Cou-
lomb criterion are modified to their 3D versions.

• The established criteria are checked for poly-axial 
data using the least absolute deviation method.

• The 3D MC can provide reliable predictions on 
poly-axial strength for various rock types.

• The 3D MC can provide reliable predictions on 
poly-axial strength for various rock types.
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List of symbols 
σ1, σ2, σ3  Maximum principal stress, intermediate 

principal stress, minimum principal stress
σn, τn  Normal stress, principal shear stress
co, �   Cohesive, internal frictional angle
σc  Uniaxial compressive strength
� , r, θ  Hydrostatic stress axis, radius of strength 

envelope to hydrostatic stress axis, Lode 
angle

I1, J2, J3  First stress invariant, second stress 
deviator invariant, third stress deviator 
invariant

�t
i
, �

p

i
  The tested rock strength, predicted rock 

strength
rt
i
, r

p

i
  The tested and criterion predictive diam-

eter vector to the original point in π plane
E
[
�t
i

]
  The expected or statistical mean value of 

rock strength
f  The least absolute deviation
R2  The regression square value
AAREP  The average absolute relative error 

percentage

1 Introduction

Rocks yield and failure are increasingly prominent 
as the underground mine gradually steeped into deep 
mining stage, which caused instability of wellbore 
during fossil energy extraction (Zhang et  al. 2020, 
2021a, b, 2020b; Fan et al. 2020a). Rock burst, water 
inrush, and a series of severe accidents occurred fre-
quently and even had an anabatic trend. Meanwhile, 
the effect of intermediate principal stress and nonlin-
ear characteristics of rock strength under deep in-situ 
state could not be described and characterized accu-
rately by traditional rock strength criteria (Kim and 
Lade 1984; Al-Ajmi 2006).

Subsurface rocks are under true triaxial stress con-
ditions (σ1 > σ2 > σ3) as tectonic stresses exist. At pre-
sent, the study of rock deformation and failure pro-
cess is based on the conventional triaxial stress state 
(σ1 > σ2 = σ3), but in the true triaxial stress environ-
ment, the deformation and failure characteristics of 
subsurface rock are different from the conventional 

triaxial stress environment (Zhang et  al. 2020;  Lee 
et  al. 2012b;  Boswell and Chen 1987; Carter et  al. 
1991). Therefore, the study of rock deformation and 
failure process under poly-axial stress has important 
reference significance for the geotechnical engineer-
ing construction. Rock mechanical scientists had 
done a great deal of works on the strength theories 
depicting the failure and yield of rocks under false 
or true triaxial stress condition. The MC theory and 
HB theory are the two mostly used and profound cri-
teria. MC criterion has been proposed by Mohr in 
1900, since its introduction, although it has irreplace-
able status, the controversy of neglecting intermedi-
ate principal stress has never stopped (Warnke and 
Warnke 1975; Sriapai et  al.  2013;  Colmenares and 
Zoback 2002;  Gudehus 1973;  Xu and Geng 1985; 
Zhang 2016). Furthermore, failure of rocks has a non-
linear character in meridian plane, but the MC crite-
rion gives a linear relationship between rock strength 
and confining pressure. This limitation was overcome 
by HB criterion, which has been developed by Hoek 
and Brown based on large amounts of experimental 
data. However, it also ignores intermediate princi-
pal stress and has six sharp corners in the deviatoric 
plane. Therefore, many efforts had been devoted to 
extending the 2D HB criteria to 3D, for example, Pan 
and Hudson (1988), Zan et al. (2002, 2004), Zan and 
Yu (2013), Priest (2005), Zhang and Zhu (2013), Cai 
and Zhu (2021), and so on had proposed a series of 
3D HB criteria, which also named modified 3D HB 
criteria. Unsmooth limit trace of strength criteria 
in deviatoric plane will result in singularities and 
numerical instability, the Drucker–Prager (DP) cri-
terion owning a circular limit trace in π plane is the 
most widely used criterion in numerical software, 
while its failure envelope yields an identical value for 
triaxial compression and extension regimes. When 
the yield curve of DP criterion is the circumcircle 
of MC criterion, it will overestimate rock strength, 
which is very dangerous in engineering (Kim and 
Lade 1984; Li et al. 2021; Lade 1975).

Colmenares and Zoback (2002) examined seven 
strength criteria by fitting them to published poly-
axial datasets. The poly-axial criteria especially 
the Modified Wiebols and Cook (MWC) criterion 
achieved a good fit to the rocks with a highly σ2 
dependent failure behavior, but the triaxial failure 
criteria fitted the rocks that were less σ2 depend-
ently. Benz et  al. (2008) evaluated the six rock 
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failure criteria, results indicated Hoek–Brown–Mat-
suoka–Nakai (Matsuoka and Nakai 1974) gave the 
overall least misfit. You (2010a, b, 2011) pointed that 
the least square method would lead to the deviation 
of the overall fitting curve from most normal data 
because of the individual abnormal data, the least 
absolute deviation is suggested to obtain the unde-
termined parameters. Mogi (1967, 1971a, b, 2006) 
did a lot of work on the effect of intermediate prin-
cipal stress on rock failure, the amount of increas-
ing strength at failure is proportional to and smaller 
than the confining pressure. Also, the angle between 
the failure plane and maximum principal stress is 
reduced significantly with the increasing of second 
principal stress. The strength theory charactering 
smooth and convex in the deviate stress plane are 
preferred in a theoretical point of view, but the expo-
nential or linear Mogi criterion is neither smooth 
nor convex and hence violates Drucker’s convexity 
postulate (Drucker 1956). Singh et  al. (2011) modi-
fied the Mohr–Coulomb criterion by employing the 
concept of Barton’s critical state for rocks. In the fur-
ther research, the critical confining pressure is equal 
to the UCS of the intact rock. Authors extended the 
criterion to jointed rocks, which are anisotropic in 
nature, so the effect of minor and intermediate prin-
cipal stress on the strength of jointed rock mass 
can be accessed (Benz and Schwab 2008;  Haim-
son and Chang 2000;  Singh and Singh 2012;  Yang 
et al. 2018; You 2009, 2013; Zhou et al. 2008; Zhao 
2021; Zhang et al. 2017). Wang et al. (2021) proposed 
a new strength criterion for soft rocks, including two 
independent parameters, the UCS and the parameter 
characterizing the rock mass quality. Comparative 
analysis showed that this criterion balances accuracy 
and simplicity.

So far, the topic of rock strength is still active, over 
the years, scientists devoted to establishing a unified 
strength criterion (Argyris et al. 1974; Shi and Yang 
1987). Voigt (Timoshenko 1983) indicated that the 
strength problem is so complex that it is impossible 
to provide a single theory, Timoshenko (1983) reit-
erated Voigt’s conclusion. In the theoretical study-
ing of rock strength, except for the maximum shear 
stress in plane, the influence of shear stress on yield 
in other planes has not been included, besides, vari-
ous criteria have not been unified into a failure cri-
terion. The unified strength criterion established by 
Yu on basis of Drucker’s postulation (Drucker 1956) 

and the concept of twin shear theory is a great pro-
gress on this conundrum, which contained and lin-
early approximated various existing strength theories 
in a simple mathematical expression(Yu et al. 2017). 
However, this criterion owns singular feature in the 
π plane, which causes numerical singularity in the 
strength calculation. On account of this, Yu (2002, 
2007, 2014, 2017) and Zan (2002, 2004, 2013) fur-
ther investigated the series nonlinear limit surfaces 
of strength criteria in the π plane, established some 
nonlinear unified strength theories. The accuracy of 
laboratory rock strength experiments can’t distinguish 
singular corner or smooth curve at different Lode 
angle, but the smooth will be convenient for numeri-
cal application (Lee et  al. 2012b). The objective of 
this work is also aimed at modifying the limit trace 
of polygons to the smooth closed cures and eliminat-
ing singularity, based on shape function in π plane, 
the MC and NPC are improved to their 3D versions, 
their undetermined strength parameters are obtained 
by the minimum deviation absolute value. To check 
the applicability of the proposed strength criteria, 
they are applied to experimental data comprising of 
twelve sets of poly-axial strength data for hard and 
soft rocks, and the predictions are compared with the 
other popular criteria.

2  The new strength criterion

2.1  Reviews of rock strength criteria

Coulomb (1776) proposed that materials shear fail-
ure took place along the plane which had a maximum 
shear stress that can overcome the cohesive force 
and frictional force along the failure plane, Mohr 
(1900) systematically elaborated Coulomb criterion, 
and showed it by Mohr’s circle, the Coulomb crite-
rion, or linear Mohr–Coulomb criterion is referred as 
Mohr–Coulomb criterion (Al-Ajmi 2006),

In the principal stress form, the MC criterion can 
be written as,

(1)� = c0 + �n tan�

(2)�1=
1 + sin�

1 − sin�
�3 +

2c0 cos�

1 − sin�
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You (2010c) studied the mathematical equa-
tion and parameter determination of strength crite-
ria for rock, during the determination parameters of 
Fairhurst criterion. You (2010c, 2011) proposed the 
normal parabolic criterion (NPC), which has a more 
accuracy prediction result than MC criterion, is equal 
to or better than HB criterion, even if they contain 
two strength parameters. In Mohr stress space, the 
NPC is,

In the principal stress space, the Eq.  (3) can be 
rewritten as,

The strength criteria can be formulated into 
different expressions in different stress spaces 
(Zienkiewicz and Pande 1977). For instance, a 
failure surface can be geometrically defined as 
F
(
�1, �2, �3

)
= 0 in the principal stress space, 

F
(
�n, �n

)
= 0 in Mohr space, and F(r, �, �) = 0 , 

when the � remain constant, it represents failure 
envelopes in the π plane, when the θ is fixed, it rep-
resents failure envelopes om the meridian plane.

Figure  1 depicts how the stress state of point P 
i.e., 

(
�1, �2, �3

)
 in principal stress space can be char-

acterized in the deviatoric plane. ON is the hydro-
static axis 

(
�1 = �2 = �3

)
 , which has an identical 

angular separation with three principal stress axes. 
The plane passing through the point P and perpen-
dicular to ON is named deviatoric plane or π plane, 
it has a distance � from the origin, which is repre-
sented by OQ in Fig.  1. �∗

1
, �∗

2
, �∗

3
 are the projec-

tion of �1, �2, �3 on the π plane. And the Lode angle 
is defined as the departure of the stress state from 
axis of �∗

1
 , which varies in the range of 0° and 60°. 

In Fig.  1, the angle between QP and the �∗
1
-axis is 

the Lode angle. The variates in the π plane can be 
calculated in terms of principal stresses (Lee et al. 
2012; Yu et al. 2017; Cai et al. 2021),

(3)�2
n
= �n�c

(4)
(�1 − �3

2

)2

=
�1 + �3

2
�c

Inversely, the principal stress can be written in 
terms of (r, �, �) as (Lee et al. 2012; Yu et al. 2017; 
Cai et al. 2021),

Substitution of Eq.  (6) into MC and NPC, after 
some mathematical operations, the failure criteria 
in terms of variants in π plane can be expressed as 
Eqs. (7) and (8) respectively,

(5)

� =
I1√
3

, r =
√
2J2, � = arctan

�√
3
�
�2 − �3

�
2�1 − �2 − �3

�

(6)

⎧⎪⎪⎨⎪⎪⎩

�1=
�

2

3
r cos � +

�√
3

�2=
�

2

3
r cos

�
� −

2�

3

�
+

�√
3

�3=
�

2

3
r cos

�
� +

2�

3

�
+

�√
3

(7)

�√
3

sin� +
r√
2

sin

�
�

3
+ �

�

+
r

2
√
6

sin� cos

�
�

3
+ �

�
= c0 cos�

O

Q

PP2

P1

Nσ2

σ1

σ3

σ2 *

σ3 *

σ1*

Fig. 1  Representation of the stress state in principal stress 
space and the deviatoric plane or π plane. (Yu et al. 2017)
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In order to have a better understanding of peak 
strength criteria in practice, they must be assessed 
in 3-dimensional stress invariants space. The limit 
trace of the material in the π plane has triaxial sym-
metry, and the shape of the yield surface in the 
range of 360° can be obtained from lode angle in 
the range of 0°–60°. Setting the strength param-
eter �c = 138.6MPa for normal parabolic criterion, 
their failure envelopes in 3D principal stress space 
and deviatoric plane are shown in Fig. 2. When the 
Lode angle is 0°, namely the triaxial compression 
state ( 𝜎1 > 𝜎2 = 𝜎3 ), the distance of arbitrary point 
in the envelope line to the original point is the limit 
vector length rc in the π plane. While θ is π/3, it cor-
responds to triaxial extension state ( 𝜎1 = 𝜎2 > 𝜎3 ). 
The characteristics of NPC have never been inves-
tigated so far. As shown in Fig.  2, NPC has a 

(8)

r −

�
3

2
�2
c

�
cos � + cos

�
� +

2�

3

��2

+ 2
√
3�c�

�
cos � − cos

�
� +

2�

3

��2

�
cos � − cos

�
� +

2�

3

��2

−

�
3

2
�c

�
cos � + cos

�
� +

2�

3

��

�
cos � − cos

�
� +

2�

3

��2 = 0

nonlinear feature in meridian plane, and the shape 
of its limit trace in π plane changes with hydrostatic 
stress, with the increasing of ξ, the cross-section 
turns into a hexagonal curve from a curvilinear tri-
angular curve.

2.2  Smooth approximation

In order to eliminate singularity, make the failure cri-
teria possessing a smooth and convex failure envelope 
in π plane, rock mechanical masters proposed shape 
functions. Rock failure and yield function in terms of 
(r, �, �) can be defined as follows (Lee et al. 2012),

where r(θ) is the vector length to the origin point 
in π plane for the Lode angle θ. In this work, θ = 0° 

(9)F = r − g(�)rc = 0

(a) in 3D principal stress space (b) in deviatoric plane

0
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Fig. 2  Failure surface of normal parabolic criterion



 Geomech. Geophys. Geo-energ. Geo-resour.            (2024) 10:7 

1 3

    7  Page 6 of 16

Vol:. (1234567890)

represents the triaxial compression condition, θ = 60° 
represents the triaxial extension condition. Therefore, 
it should be noted that (Lee et al. 2012),

There are many forms of shape function g(θ) that 
have been proposed so far. The convexity of frequently 
used forms of g(θ) are listed in Table  1. To avoid 
numerical singularity and iterative non-convergence 

(10)
r(0◦) = rc, r(60◦) = rt, g(0◦) = 1, g(60◦) = rc∕rt = k

in the numerical simulation, namely, the failure sur-
face satisfies smooth and convex, the shape function 
requires (Jiang et al. 1988; Kim and Lade 1984; Lee 
et al. 2012; Lin et al. 1986),

The smooth and convexity of the existing shape 
functions had been examined by Rock mechanics 

(11)
{

g
�(� = 0

◦) = g
�(� = 60

◦) = 0

g
2 + 2g

�2 − gg
�� = 0

Table 1  The existing shape functions and their characteristics

Authors (year) Equations Characteristics Weakness

Gudehus (1973) 
and Argyris 
et al. (1974)

g(�) =
2k

(1+k)+(1−k) cos 3�
It violates Drucker’s postulation 

if k ≤ 7/9
Yes

Lin and Bažant 
(1986)

g(�) =
2k(C1+C2 cos 3�)

(C3+k)+(C3−k) cos 3�

(
C1 − C2 = 1, C1 + C2 = C3

) The convexity can be assured for 
entire range 0.5 ≤ k ≤ 1, and is 
dependent on value of  C2

Yes

 Warnke and 
Warnke (1975) g(�) =

2(1−k2) cos (�−(�∕3))+(2k−1)
√

4(1−k2) cos2 (�−(�∕3))+5k2−4k

4(1−k2) cos2 (�−(�∕3))+(2k−1)2
Developed from an elliptical 

approximation, but has a com-
plicated expression

No

Boswell and 
Chen (1987)

g(�) =

√
3k√

3−4(1−k2) sin2 �

It’s convex for 0.5 ≤ k ≤ 1, but not 
smooth as g ‘(60°) ≠ 0

Yes

Jiang and 
Pietruszczak 
(1988)

g1(�) =

�√
1+f−

√
1−f

�
k

k
√
1+f−

√
1−f+(1−k)

√
1−f cos 3�

It satisfies smooth and convex 
when 0.56 ≤ k ≤ 1 for f Infi-
nitely close to1, but violates the 
requirement of convexity when 
ξ is small or negative

Yes

Jiang and 
Pietruszczak 
(1988)

�
g2(�) = (1 − k)B +

√
(1 − k)2B2 + 4k − 3 g ≥

√
4k2 − 6k + 3

g2(�) = k∕ cos � g ≤

√
4k2 − 6k + 3

B = cos � +
√
3 sin �

It’s smooth and convex in the 
entire range 0.5 < k ≤ 1, but has 
a complicated expression

No

Shi and Yang 
(1987)

g1(�) =
(7+2k)−2(1−k) sin 3�

9

g2(�) =
[
(1+k)+1.125(1−k)2

]
−
[
(1−k)−1.125(1−k)2

]
sin3�

2

They can be smooth and con-
vex when k > 5/9, but their 
deviatoric cross-section is only 
consistent with triaxial exten-
sion stress state

Yes

Lade (1975) 
and Matsuoka 
(1974)

⎧⎪⎪⎨⎪⎪⎩

g(�) =
cos

�
�

3
−

1

3
cos−1 A

�

cos

�
1

3
cos−1

�
A cos 3

�
�−

�

3

��� for cos 3

�
� −

�

3

�
≥ 0

g(�) =
cos

�
�

3
−

1

3
cos−1 A

�

cos

�
�

3
−

1

3
cos−1

�
−A cos 3

�
�−

�

3

��� for cos 3

�
� −

�

3

�
≤ 0

with ALade =
√
k1 − 27∕k1, k1 ≥ 27

AMatsuoka =

�
k2
1

�
k1 − 9

�
∕
�
k1 − 3

�3
, k1 ≥ 9

It’s smooth and convex for 
0.5 ≤ k ≤ 1, but has a compli-
cated expression

No

Yu and Liu 
(1990) g1(�) =

2k(1−k2) cos (�−�∕3)+k2
√

12(1−k2) cos2 (�−�∕3)+12k2−3

(2k+1)
�
4(1−k2) cos2 (�−�∕3)+(k−2)23k2

�

g2(�) =
2(1−k2)−

√
12(k2−1)+3(4−k2) sec2 (�−2�∕3)

4(1−k2)−3 sec2 (�−2�∕3)

√
6k

2+k
sec

�
� −

�

3

�

It is smooth and convex in 
the range of 0.5 < k ≤ 1, and 
approximate to shape func-
tion proposed by William and 
Warnke

No
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scientists based on geometrical or theoretical expla-
nation. The shape functions established by Warnke 
and Warnke (1975), Jiang and Pietruszczak (1988), 
Lade (1975) and Matsuoka (1974) conform to 
Drucker’s postulation and smooth in entire range 
of 0.5 ≤ k ≤ 1, but most of them have a complicated 
expression. Yu (2017) compared their hyperbolic 
shape function with MC, TSS, Gudehus and Argyr-
is’s formulation, Warnke and Warnke’s formulation, 
results indicated that William and Warnke’s formu-
lation was close to hyperbolic formulation, which 
is able to match with six experimental corners in π 
plane simultaneously. In this study, the hardly used 
shape function presented by Jiang and Pietruszczak 
(1988) is adopted which is also always convex and 
smooth,

In which,

According to Eq.  9, various approximations to 
strength criteria can be obtained by replacing g(θ) 
by a suitable shape function satisfying the con-
straint Eqs.  10 and 11. For this purpose, MC and 
NPC should rewritten as the general form of Eq. 9. 
Substituting θ = 0° and θ = 60° into Eq. 7, the vector 
length of MC criterion in π plane for triaxial com-
pressional state and triaxial extension state, and the 
ratio of rc to rt can be obtained,

Similarly, the normal parabolic criterion diameter 
vector to the origin point in π plane for triaxial com-
pressional state and triaxial extension state, and their 
ratio can be derived,

(12)
�

g(�) = (1 − k)B +
√
(1 − k)2B2 + 4k − 3 g ≥

√
4k2 − 6k + 3

g(�) = k∕ cos � g ≤

√
4k2 − 6k + 3

(13)B = cos � +
√
3 sin �

(14)rc_MC =
2
√
2 sin�

3 − sin�
� +

2
√
6c0 cos�

3 − sin�

(15)rt_MC =
2
√
2 sin�

3 + sin�
� +

2
√
6c0 cos�

3 + sin�

(16)k_MC =
rt

rc
=

3 − sin�

3 + sin�

Combining the ratio of triaxial extension diameter 
to triaxial compression diameter with Jiang and Pie-
truszczak’s formulation, substituting the result and rc 
into Eq. 9, strength criteria can be extended to their 

three-dimensional version, as well as the intermediate 
principal stress is considered.

Setting the strength parameters of 
c0 = 40MPa, � = 30◦ for MC, the principal stress 
space and deviatoric cross-section views of MC 
together with its extending 3D version and NPC 
together with its extending 3D are illustrated in Figs. 3 
and 4. The figures intuitively show that 3D MC (3D 
NPC) is smooth and convex, and circumscribes MC 
surface (NPC surface). Moreover, the extended 3D 
strength criteria coincide with corresponding origi-
nal forms in both the triaxial compression and triax-
ial extension states, which not only take intermediate 
principal stress into account, but also provide great 
convenient in numerical calculation. In the next sec-
tion, three sets of conventional triaxial strength data 
and twelve sets of poly-axial strength data collected 
from references are used to evaluate the performance 
of MC, NPC and their extended 3D version.

3  Rock strength dataset and method

3.1  Data source

The strength datasets of Berea sandstone, Vosges 
sandstone and Indian limestone were collected from 
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the reference published by Al-Ajmi (2006). One set of 
poly-axial strength data for Sandstone was obtained 
from Rukhaiyar and Samadhiya (2017), five sets of 
poly-axial strength data for Dunham dolomite, Solen-
hofen limestone, Yuubari shale, Shirahama sandstone 
and coarse grained dense marble were collected from 
Al-Ajmi (2006), another four sets data for Westerly 
Granite, Mizuho Trahchyte, KTB amphibolite, and 

Manazuru andesite were collected from Mogi (2006), 
two sets of poly-axial strength data for Limestone and 
Sandstone were collected from Yin (1987), one set of 
poly-axial strength data for Sandstone was collected 
from Zhang (1979), one set of poly-axial strength 
data for Sandstone was collected from Gao (1993). 
Furthermore, on set of poly-axial strength data for 

(a) in 3D principal stress space (b) in deviatoric plane
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Fig. 3  Failure envelope of MC corresponding to its 3D version
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soft rock, i.e. Maha Sarakham salt was collected from 
Sriapai et al. (2013).

3.2  Fitting and evaluating method

The classical regression tool, least squares method 
is sensitive to abnormal data, as a result, few abnor-
mal strength data may lead to a great deviation when 
this method is applied. Therefore, the least absolute 
deviation method is applied to determine the unknow 
strength parameters, the objective function used to fit 
false triaxial strength data is expressed as (Cai et al. 
2021),

The regression square value R2 and the average 
absolute relative error percentage (AAREP), which 
are dimensionless, are used to access the performance 
of the strength criteria. Their definitions, respectively 
are written as (Wang et al. 2021),
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Replacing the �t
i
, �

p

i
 by rm

i
, r

p

i
 , the objective func-

tion i.e., Eq. 20 can be used to fit poly-axial strength 
data and calculate the undetermined parameters in 
3D strength criteria. And the Eqs. 21 and 22 can be 
used to evaluate the performance of the 3D strength 
criteria.

4  Results and discussion

4.1  Fitting index of the new criteria

The minimum absolute deviation method, namely 
Eq.  20 is applied to fitting the proposed 3D MC 
and 3D NPC to poly-axial strength data, which may 
not be exposed with huge misfit by a few abnormal 
data. As a result, it is better than the grid search 
method used by Colmenares and Zoback (2002), 
and the minimum squares method employed by Lee 
et al. (2012b). Once the best fitting strength param-
eters are determined, the rock failure strength pre-
dicted by the failure criteria are compared with the 
experimental data, meanwhile the Eqs.  21 and 22 

(22)AAREP =

N∑
i=1

|||||
�t
i
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p

i

�t
i

|||||
∕N × 100%

Table 2  The best fitting strength parameters and evaluating index of 3D MC and 3D NPC for each rock type

Strength data 3D MC 3D NPC

c0/MPa φ/° f/MPa R2 AAREP/% σc/MPa f/MPa R2 AAREP/%

Shirahama sandstone 19.70 35.90 2.82 0.98 2.531 60.9 8.73 0.876 9.124
Westerly Granite 49.90 50.30 9.54 1.00 2.27 284.88 70.38 0.81 20.01
Mizuho Trahchyte 52.70 27.20 7.57 0.94 4.09 98.36 9.26 0.90 4.98
KTB amphibolite 57.50 44.90 18.07 0.99 4.46 304.67 65.86 0.86 21.01
Manazuru andesite 64.20 43.30 5.76 0.99 1.41 231.22 28.02 0.83 7.25
Dunham dolomite 107.10 30.30 8.43 0.98 2.08 222.60 18.22 0.91 4.43
Solenhofen limestone 97.10 28.20 6.45 0.94 1.80 167.65 7.38 0.92 1.97
Yuubari shale 29.30 27.20 2.75 0.97 2.021 55.27 5.00 0.884 3.647
Marble 10.90 45.90 8.35 0.95 7.034 51.39 19.17 0.710 16.553
Limestone-Yin 17.50 43.20 4.53 0.99 3.270 89.67 16.76 0.879 18.219
Sandstone-Yin 19.80 40.00 4.06 0.99 3.958 74.46 13.64 0.888 14.605
Sandstone-Zhang 4.70 50.20 1.08 0.99 4.628 17.64 4.38 0.782 15.395
Sandstone-Rukhaiyar 6.23 50.09 1.25 0.99 1.98 32.69 7.76 0.76 13.40
Sandstone-Gao 11.00 48.60 1.68 0.99 2.107 44.39 7.00 0.853 10.820
Maha Sarakham salt 7.30 44.80 3.05 0.87 6.046 27.04 4.57 0.844 12.217
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are employed to evaluate the failure criteria perfor-
mance. The best fitting strength parameters for 3D 
MC and 3D NPC are listed in Table 2.

Table 1 showed clearly although the normal para-
bolic criterion containing single strength parameter 
may be able to fit conventional triaxial strength data 

quite well, its extended 3D form has a relative larger 
deviation on poly-axial strength data prediction. 
While the 3D MC can provide reliable predictions 
on poly-axial strength for various rock types. The 
histograms of the least absolute deviation method, 
the regression square value and the average absolute 
relative error percentage are plotted in Fig.  5a, b 
and c, respectively.

As indicated in Fig.  5, f or AAREP associated 
with using the 3D NPC for poly-axial strength data 
of Westerly Granite and KTB amphibolite are sev-
eral times of those using 3D MC, R2 also indicates 
the 3D MC has a better performance than 3D NPC 
in poly-axial strength data fitting. But R2 for 3D MC 
and 3D NPC have little difference, its values of 3D 
MC for different rock types are close to 1, mean-
while, R2 of 3D NPC for most rock types are larger 
than 0.8, which may be not able to distinguish the 
fitting accuracy of the propose failure criteria obvi-
ously. The evaluating index f and AAREP have 
huge difference as displayed in Fig. 5a and c, which 
is able to estimate data fitting effect.

In order to observe the effect of intermediate prin-
cipal stress on rock failure, the rock strength of dif-
ferent rock types predicted by 3D MC are compared 
with the experimental data in the σ1-σ2 plane. As dis-
played in Fig. 6, which illustrates rock failure under 
relative high confining pressure, Fig.  7 plots rock 
failure under low confining pressure, which presents 
that all rock types possess intermediate principal 
stress effect. Peak strength σ1 increases firstly then 
decreases with the increase of σ2. It should be noted 
that whether increasing or decreasing σ2, both will 
result in rock failure. Moreover, the 3D MC can fit the 
poly-axial strength data well for lower or higher val-
ues of σ3, which strongly suggests the proposed 3D 
MC criterion is adequate.

4.2  Comparison of fitting precision of existing 
criteria and the new criteria

In order to verify the fitting precision of the new 
proposed criteria, the fitting indexes of four existing 
criteria should be obtained and compared with those 
predicted by the new proposed criteria (Bahrehdar 
and Lakirouhani 2022). Except for the MC and MWC 

Fig. 5  Evaluating index of failure criteria performance for dif-
ferent rock lithologies

Fig. 6  The best fitting results of 3D MC with poly-axial 
strength data for hard rocks

◂
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criterion, the Mogi–Coulomb criterion (MGC) and 
Modified Lade criterion (ML) are also widely used 
in rock failure analysis, so these four existing strength 
criteria are used to test the fitting accuracy of the new 

criterion, the evaluated parameters of these four exist-
ing criteria are shown in Table 3.

The evaluating parameters of fitting precision 
determined by the exiting criteria and new criteria 
are compared by radar map, as shown in Figs. 8 and 
9 respectively. It can be concluded that the 3D MC 
criterion owns the minimum absolute deviations f for 
different strength datasets, which indicate it is better 
than the mostly used existing criteria. Furthermore, 
the 3D NPC, ML, MWC and MWC have similar 
prediction accuracy, the MC criterion gets the maxi-
mum value of f and has a maximum prediction error 
for true triaxial compression strength. Meanwhile, as 
shown in Fig.  9, the regression squares R2 obtained 
by fitting the 3D MC criterion to experimental data 
is mainly above 0.9, which proved that this newly 
established criterion has high fitting accuracy to true 
triaxial strength experimental data. The fitting accu-
racy of 3D NPC criterion is close to the existing rock 
strength criteria for the same strength tested data, the 
minimum regression squares R2 obtained by MC cri-
terion also indicated it has a large error in predicting 
rock strength under real stress environment, due to 
the ignoring of intermediate principal stress.

5  Conclusions

Rock strength criteria are the theoretical grounding 
of geotechnical design and stability estimation, the 
widely used MC and HB criteria not only ignore the 
effect of intermediate principal stress but also have 
six singular corners in π plane. In order to solve the 
above problems, one of the proposed shape func-
tions in π plane, which is smooth and convex in the 
entire range of 0.5 < k ≤ 1, was selected for modify-
ing conventional failure criteria, i.e., MC and NPC, 
to accommodate the requirements of both convexity 
and smoothness, meanwhile the effect of interme-
diate principal stress on failure can be considered. 
The extended 3D strength criteria coincide with 
corresponding original forms in both the triaxial 
compression and triaxial extension states, which not 
only take intermediate principal stress into account, 
but also provide great convenient in numerical cal-
culation. The proposed 3D MC and 3D NPC share 
identical meridian sections and strength parameters 
with their original forms, their deviatoric sections 
are modified to be convex and smooth for numerical 
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Fig. 9  Comparison of R2 determined by existing criteria and 
new criteria

simulation. The applicability of the proposed 
strength criterion was verified by applying them to 
fifteen sets of poly-axial experimental data from lit-
eratures. Fitting results indicate that 3D NPC has a 
relative larger deviation on poly-axial strength data 
prediction, while the 3D MC can provide reliable 
predictions on poly-axial strength for various rock 
types under low or high confining pressure, which 
strongly suggests the proposed 3D MC criterion is 
adequate. The comparison of fitting precision indi-
cates that the 3D MC criterion has a better fitting 

ability than the existing criteria, and the 3D NPC is 
close to the fitting accuracy of the existing criteria. 
Moreover, the peak strength σ1 increases first and 
decreases with the increase of σ2. It should be worth 
that whether increasing or decreasing σ2, both will 
result in rock failure.
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Shirahama sandstone 12.05 0.90 10.93 0.94 11.68 0.92 13.50 0.91
Westerly Granite 52.75 0.95 62.28 0.93 70.29 0.92 52.01 0.95
Mizuho Trahchyte 25.33 0.87 16.22 0.92 13.89 0.95 19.50 0.90
KTB amphibolite 92.46 0.89 79.23 0.92 81.63 0.91 74.87 0.93
Manazuru andesite 47.74 0.83 40.36 0.89 43.21 0.88 39.72 0.91
Dunham dolomite 46.54 0.86 22.12 0.96 23.49 0.96 27.66 0.95
Solenhofen limestone 33.69 0.74 16.24 0.94 19.21 0.92 22.83 0.88
Yuubari shale 9.69 0.88 8.93 0.91 10.77 0.88 14.23 0.79
Marble 41.12 0.56 22.75 0.84 20.76 0.87 22.34 0.86
Limestone-Yin 22.49 0.89 18.70 0.93 20.31 0.93 19.82 0.92
Sandstone-Yin 18.89 0.92 11.63 0.96 14.14 0.95 12.23 0.95
Sandstone-Zhang 4.87 0.79 7.28 0.55 7.93 0.49 7.55 0.55
Sandstone-Rukhaiyar 8.97 0.84 5.41 0.93 4.85 0.88 5.10 0.94
Sandstone-Gao 10.81 0.81 16.97 0.67 16.42 0.57 14.92 0.69
Maha Sarakham salt 13.22 0.51 6.49 0.82 4.85 0.88 6.37 0.81

Fig. 8  Comparison of f determined by existing criteria and 
new criteria



 Geomech. Geophys. Geo-energ. Geo-resour.            (2024) 10:7 

1 3

    7  Page 14 of 16

Vol:. (1234567890)

Author contributions Conceptualization, MZ, and XG; 
methodology, XG, and MZ; formal analysis, MW, and MZ; 
resources, XG, and CL; data curation, WW, and CL; writing-
original draft preparation, XG, and MZ; writing-review & edit-
ing, XG, CL and MZ; visualization, XG, and MZ; supervision, 
MZ, and XG; project administration, XG.

Funding This paper is supported by the team construction 
project of the young innovative talents inducing and cultivat-
ing program of Shandong Province "Research and Innovation 
Team of Complex Oil and Gas Well Drilling Engineering" 
(Grant No. 2019035).

Data availability The data and materials used in this study 
are available upon request. Please contact Mingming Zhang 
(zhangmm60862.sripe@sinopec.com) to inquire about the 
availability of the data and materials, including any restrictions 
that may apply due to privacy or confidentiality concerns.

Declarations 

Competing interests The authors declare no competing inter-
ests.

Ethics approval and consent to participate All research 
activities were conducted in accordance with the ethical guide-
lines and principles outlined by the Committee on Publication 
Ethics.

Consent for publication All individuals involved in this 
study have provided their consent for the publication of the 
study findings. Any personal or identifying information that 
could potentially compromise privacy has been carefully 
removed or anonymized.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any 
medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Crea-
tive Commons licence, and indicate if changes were made. The 
images or other third party material in this article are included 
in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your 
intended use is not permitted by statutory regulation or exceeds 
the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit 
http://creativecommons.org/licenses/by/4.0/.

References

Al-Ajmi A (2006) Wellbore stability analysis based on a new 
true-triaxial failure criterion. Doctoral dissertation, KTH

Argyris JH, Faust G, Szimmat J et al (1974) Recent develop-
ments in the finite element analysis of prestressed con-
crete reactor vessels[J]. Nuclear Eng Design 28(1):42–75

Bahrehdar M, Lakirouhani A (2022) Evaluation of the depth 
and width of progressive failure of breakout based on dif-
ferent failure criteria, using a finite element numerical 
model. Arab J Sci Eng 47(9):11825–11839

Benz T, Schwab R (2008) A quantitative comparison of 
six rock failure criteria. Int J Rock Mech Min Sci 
45(7):1176–1186

Benz T, Schwab R, Kauther RA, Vermeer PA (2008) A Hoek–
Brown criterion with intrinsic material strength factoriza-
tion. Int J Rock Mech Min Sci 45(2):210–222

Boswell LF, Chen Z (1987) A general failure criterion for plain 
concrete. Int J Solids Struct 23(5):621–630

Cai W, Zhu H, Liang W, Zhang L, Wu W (2021) A new ver-
sion of the generalized Zhang–Zhu strength criterion and 
a discussion on its smoothness and convexity. Rock Mech 
Rock Eng 54:1–17

Carter BJ, Duncan ES, Lajtai EZ (1991) Fitting strength crite-
ria to intact rock. Geotech Geol Eng 9(1):73–81

Coulomb CA (1776) Essai sur une application des regles de 
maximis et minimis a quelques problemes de statique, 
relatifs a l’architecture, Memoires de Mathematique et de 
Physique, presentes a l’ Academie, Royale des Sciences 
par divers Savans, et lus dans ses Assemblees 7:343–382

Colmenares LB, Zoback MD (2002) A statistical evaluation 
of intact rock failure criteria constrained by polyaxial 
test data for five different rocks. Int J Rock Mech Min Sci 
39(6):695–729

Drucker DC (1956) On uniqueness in the theory of plasticity. Q 
Appl Math 14(1):35–42

Fan X, Zhang M, Zhao P, Yao B, Zhou Y (2020a) Investiga-
tion of failure region around the wellbore based on the 
extended Mogi–Coulomb criterion for rock matrix. 
Geomech Geoeng 10:1–12

Fan X, Zhang M, Zhang Q, Zhao P, Lv D (2020b) Wellbore 
stability and failure regions analysis of shale formation 
accounting for weak bedding planes in ordos basin. J 
Nat Gas Sci Eng 77:103258

Gao Y, Tao Z (1993) Test and analysis of true triaxial pres-
sure test for rock strength criterion. Chin J Geotech Eng 
15(4):26–32 (in Chinese)

Gudehus DH (1973) Radius-parameter and surface brightness 
as a function of galaxy total magnitude for clusters of 
galaxies[J]. Astronomical J 78:583–593

Haimson B, Chang C (2000) A new true triaxial cell for test-
ing mechanical properties of rock, and its use to determine 
rock strength and deformability of Westerly granite. Int J 
Rock Mech Min Sci 37(1–2):285–296

Jiang J, Pietruszczak S (1988) Convexity of yield loci for pres-
sure sensitive materials. Comput Geotech 5(1):51–63

Kim MK, Lade PV (1984) Modelling rock strength in three 
dimensions. Int J Rock Mech Min Sci Geomech Abstr 
21(1):21–33

Lade PV, Duncan JM (1975) Elastoplastic stress–strain 
theory for cohesionless soil. J Geotech Eng Div 
101(10):1037–1053

Lee H, Ong SH, Azeemuddin M et  al (2012b) A wellbore 
stability model for formations with anisotropic rock 
strengths[J]. J Petrol Sci Eng 96:109–119

Lee YK, Pietruszczak S, Choi BH (2012) Failure criteria for 
rocks based on smooth approximations to Mohr–Coulomb 

http://creativecommons.org/licenses/by/4.0/


Geomech. Geophys. Geo-energ. Geo-resour.            (2024) 10:7  

1 3

Page 15 of 16     7 

Vol.: (0123456789)

and Hoek–Brown failure functions. Int J Rock Mech Min 
Sci 56:146–160

Li C, Li C, Zhao R, Zhou L (2021) A strength criterion for 
rocks. Mech Mater 154(3):1–9

Lin FB, Bažant ZP (1986) Convexity of smooth yield surface 
of frictional material. J Eng Mech 112(11):1259–1262

Matsuoka H, Nakai T (1974) Stress-deformation and strength 
characteristics of soil under three different principal 
stresses. Proc Jpn Soc Civ Eng 232:59–70

Mogi K (1967) Effect of the intermediate principal stress on 
rock failure. J Geophys Res 72(20):5117–5131

Mogi K (1971a) Fracture and flow of rocks under high triaxial 
compression. J Geophys Res 76(5):1255–1269

Mogi K (1971b) Effect of the triaxial stress system on the 
failure of dolomite and limestone. Tectonophysics 
11(2):111–127

Mogi K (2006) Experimental rock mechanics, vol 3. CRC 
Press, Boca Raton

Mohr O (1900) Welche Umstände bedingen die Elastizitäts-
grenze und den Bruch eines Materials. Zeitschrift des Ver-
eins Deutscher Ingenieure 46(1524–1530):1572–1577

Pan XD, Hudson JA (1988) A simplified three-dimensional 
Hoek–Brown yield criterion. In: ISRM international sym-
posium. OnePetro

Priest SD (2005) Determination of shear strength and three-
dimensional yield strength for the Hoek–Brown criterion. 
Rock Mech Rock Eng 38(4):299–327

Rukhaiyar S, Samadhiya NK (2017) Strength behaviour of 
sandstone subjected to polyaxial state of stress. Int J Min 
Sci Technol 27(6):889–897

Shi S, Yang G (1987) Improvement of commonly used yield 
functions for rock masses[J]. Chinese J Geotech Eng 
9(4):60–69

Singh M, Singh B (2012) Modified Mohr–Coulomb criterion 
for non-linear triaxial and poly-axial strength of jointed 
rocks. Int J Rock Mech Min Sci 51:43–52

Singh M, Raj A, Singh B (2011) Modified Mohr–Coulomb 
criterion for non-linear triaxial and polyaxial strength of 
intact rocks. Int J Rock Mech Min Sci 48(4):546–555

Sriapai T, Walsri C, Fuenkajorn K (2013) True-triaxial com-
pressive strength of Maha Sarakham salt[J]. Int J Rock 
Mech Mining Sci 61:256–265

Timoshenko S (1983) History of strength of materials: with 
a brief account of the history of theory of elasticity and 
theory of structures. Courier Corporation, Chelmsford

Wang Z, Liu Q (2021) Failure criterion for soft rocks consid-
ering intermediate principal stress. Int J Min Sci Tech-
nol 31:565–575

Warnke KWE, Warnke EP (1975) Constitutive model for 
triaxial behaviour of concrete[J]. Proc. Concrete Struc. 
Subjected to Triaxial Stresses, Int. Ass. for Bridge and 
Structural Engineering, Zurich pp 1–30.

Xu D, Geng N (1985) The variation law of rock strength with 
increase of intermediate principal stress. Acta Mech 
Solid Sin 1(1):72–80 (in Chinese)

Yang Q, Zan Y, Xie LG (2018) Comparative analysis of 
the nonlinear unified strength criterion for rocks and 
other three-dimensional Hoek–Brown strength criteria. 
Geomech Geophys Geo-Energy Geo-Resour 4(1):29–37

Yin G, Li H, Xian X, Xu J (1987) Experimental study on the 
influence of engineering stress variation on rock strength 
characteristics. Chin J Geotech Eng 9(2):20–28

You M (2009) Characteristics of exponential strength crite-
rion of rock principal stress space. Chin J Rock Mech Eng 
28(8):1541–1551 (in Chinese)

You M (2010a) Mechanical characteristics of the exponential 
strength criterion under conventional triaxial stresses. Int J 
Rock Mech Min Sci 47(2):195–204

You M (2010b) Three independent parameters to describe con-
ventional triaxial compressive strength of intact rocks. J 
Rock Mech Geotech Eng 2(4):350–356

You M (2010c) Study of mathematical equation and parameter 
determination of strength criteria for rock. Chin J Rock 
Mech Eng 29(11):2172–2184 (in Chinese)

You M (2011) Comparison of the accuracy of some conven-
tional triaxial strength criteria for intact rock. Int J Rock 
Mech Min Sci 48(5):852–863

You M (2013) Discussion on unified strength theories for 
rocks. Chin J Rock Mech Eng 32(2):258–265 (in Chinese)

Yu MH (2002) Advances in strength theories for materials 
under complex stress state in the 20th century. Appl Mech 
Rev 55(3):169–218

Yu M (2007) Linear and nonlinear unified strength theory. 
Chin J Rock Mech Eng 26(4):662–669 (in Chinese)

Yu M (2014) Advances in strength for materials under complex 
stress state in the 20th century. Adv Mech 34(4):529–560

Yu M, Zan Y, Xu S (2017) Rock strength theory and its appli-
cation. Science Press, Beijing (in Chinese)

Zan Y, Yu M (2013) Generalized nonlinear unified strength 
theory of rock. J Southwest Jiaotong Univ 48(4):616–624 
(in Chinese)

Zan Y, Yu M, Wang S (2002) Nonlinear unified strength cri-
terion of rock. Chin J Rock Mech Eng 21(10):1435–1441 
(in Chinese)

Zan Y, Yu M, Zhao J (2004) Nonlinear unified strength theory 
of rock under high stress state. Chin J Rock Mech Eng 
23(13):2143–2148 (in Chinese)

Zhang J, Lin T (1979) Stress states and failure properties 
of rocks in triaxial tests. Chin J Mech 15(2):3–10 (in 
Chinese)

Zhang Q, Zhu H, Zhang L (2013) Modification of a general-
ized three-dimensional Hoek–Brown strength criterion. 
Int J Rock Mech Min Sci 59:80–96

Zhang M, Liang L, Liu X (2017) Impact analysis of different 
rock shear failure criteria to wellbore collapse pressure. 
Chin J Rock Mech Eng 36(S1):372–378

Zhang Q, Fan X, Chen P et  al (2020) Geomechanical behav-
iors of shale after water absorption considering the com-
bined effect of anisotropy and hydration[J]. Eng Geol 
269:105547

Zhang M, Fan X, Zhang Q, Yang B, Zhao P, Yao B, Ran J 
(2021a) Parametric sensitivity study of wellbore stabil-
ity in transversely isotropic medium based on poly-axial 
strength criteria. J Pet Sci Eng 197:108078

Zhang M, Fan X, Zhang Q, Yang B, Zhao P, Yao B, He L 
(2021b) Influence of multi-planes of weakness on unsta-
ble zones near wellbore wall in a fractured formation. J 
Nat Gas Sci Eng 93:104026



 Geomech. Geophys. Geo-energ. Geo-resour.            (2024) 10:7 

1 3

    7  Page 16 of 16

Vol:. (1234567890)

Zhang D (2016) The historical evolution of rock-like materi-
als’ strength theory. Master’s thesis, Nanjing University 
(in Chinese)

Zhao Y (2021) Retrospection on the development of rock mass 
mechanics and the summary of some unsolved centennial 
problems. Chin J Rock Mech Eng 40(7):1297–1336 (in 
Chinese)

Zhou X, Qian Q, Yang H (2008) Strength criteria of deep rock 
mass. Chin J Rock Mech Eng 27(1):117–123 (in Chinese)

Zienkiewicz OC, Pande GN (1977) Some useful forms of 
isotropic yield surfaces for soil and rock mechanics. In: 
Finite element in geomechanics, pp 179–190

Publisher’s Note Springer Nature remains neutral with regard 
to jurisdictional claims in published maps and institutional 
affiliations.


	A new three-dimensional rock strength criterion based on shape function in deviatoric plane
	Abstract 
	Article Highlights 
	1 Introduction
	2 The new strength criterion
	2.1 Reviews of rock strength criteria
	2.2 Smooth approximation

	3 Rock strength dataset and method
	3.1 Data source
	3.2 Fitting and evaluating method

	4 Results and discussion
	4.1 Fitting index of the new criteria
	4.2 Comparison of fitting precision of existing criteria and the new criteria

	5 Conclusions
	Acknowledgements 
	References


