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Abstract  The objective of this study was to inte-
grate petrographic thin sections, SEM, XRD, routine 
core analysis, gas chromatography, and wireline logs 
to present a comprehensive petrographic and petro-
physical assessment of the shallow marine clastic 
reservoirs of the Coniacian-Santonian Matulla For-
mation and upper Turonian Wata Formation from the 
October field, Central Gulf of Suez Basin. The fine 
to very fine-grained glauconite-bearing subarkose 
quartz arenites of the Matulla and Wata reservoirs 
exhibit good intergranular primary porosity with 
good pore connectivity. Moderate to slight compac-
tion and grain to grain pressure solution resulted in a 
slightly inhomogeneous packing of framework grains. 

Feldspar dissolution contributed to the secondary 
porosity which improved the reservoir quality, while 
quartz overgrowth and minor calcite cementation 
are inferred as porosity destroying diagenetic agents. 
Pore-filling kaolinite and clay phases also had a nega-
tive effect on reservoir storage capacity. Routine core 
analysis indicated > 20% porosity and up to 412 mD 
permeability in the meso-megaporous sandstones of 
both the reservoirs. Permeability anisotropy analy-
sis of Matulla samples indicates the dominance of 
primary depositional fabric and isotropic pores with 
minor scattered/connected horizontal pores and verti-
cal pore connectivity. Wireline log-based quantitative 
petrophysical assessments exhibit low shale volume 
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and higher hydrocarbon saturation (up to 80%) on 
both the reservoirs, which is also supported by the 
gas chromatography data confirming the presence 
of oil in the Matulla, and Wata pay zones based on 
interpreted gas balance, wetness, and character ratios. 
The study concludes excellent reservoir properties in 
the Upper Cretaceous clastic intervals of the October 
field.

Highlights 

•	 Matulla and Wata reservoirs consist of meso-meg-
aporous glauconitic subarkose quartz arenites.

•	 Feldspar dissolution, calcite cementation and 
quartz overgrowth are inferred as principal diage-
netic factors controlling reservoir quality.

•	 Gas chromatography data confirms the presence 
of oil in Matulla and Wata reservoirs.

•	 Both reservoirs exhibit primary and secondary 
porosity, good permeability, and high hydrocarbon 
saturation in the pay zones.

Keywords  Petrography · Core analysis · 
Petrophysics · Matulla · Wata · Gulf of Suez

1  Introduction

The Gulf of Suez sedimentary rift basin, with aerial 
coverage of around 19,000 km2, is the most prolific 
hydrocarbon provincial basin of Africa. It is deline-
ated on both margins by large-scale NW-striking 
normal fault zones that define half-grabens (Jackson 
et  al. 2006). The basin is developed as a result of 
the separation of the Arabian plate from the African 
plate. The basin hosts more than eighty hydrocarbon 
fields established based on 240 discoveries made 
from thousands of exploratory well drilling and these 
finds include up to 1 million bbl in the Precambrian-
Quaternary reservoirs (Wescott et al. 2016), and thus 
of great interest to the Egyptian upstream industries 
(e.g., Alsharhan 2003). Recent discoveries in the 
Abu Rudeis Sidri development lease by ENI (2019) 
and Ramadan region by Dragon Oil (JPT 2022) had 
attracted the upstream community and rejuvenates 
the oil and gas exploration activities in the Gulf of 
Suez. The Gulf of Suez is structurally complex, and 

the new plays and untapped hydrocarbon pools can 
be accessed with new technological advancements 
(i.e., seismic imaging, drilling complex geometries 
etc.). Structural and property (facies and petrophysi-
cal) modeling are important can enhance the subsur-
face understanding of the potential reservoir intervals 
as well as producing reservoirs, that directly affects 
the forthcoming field development strategies, future 
well placements etc. (El-Gendy et al. 2017a, b, 2022; 
Nabawy and Barakat 2017; Barakat et  al. 2022; 
Nabawy et al. 2022).

The present study focuses on the Upper Creta-
ceous sandstones of the October field from the Cen-
tral Gulf of Suez Basin. The field started producing 
in 1977 and reached a time of peak production of 
136,000 BOPD (barrels of oil per day) (Askar et al. 
2020). Along with the Nubia sandstones, the upper 
Turonian Wata Formation and Coniacian-Santonian 
Matulla Formation of the Nezzazat Group formed 
key reservoirs in the October field (Lelek et al. 1992). 
Nezzazat reservoirs were developed later when Nubia 
was depleted (Hassan et  al. 2006). The latest pub-
lished production figure from the October field stands 
at 16,000 BOPD with high water cut (Noureldien and 
Nabil 2016).

Reservoir completion and production-related 
aspects are well published from the October field 
(Borling et al. 1996; Ibrahim et al. 1999; Hassan et al. 
2006; Ibrahim et  al. 2008; Nassar and Noureldien 
2013; Askar et al. 2020). El-Ghamri et al. (2002) pre-
sented the oil generation and migration aspects. Ser-
combe et al. (1997, 2012) and Gawad et al. (2021b) 
interpreted the structural geology of the field and res-
ervoir modeling aspects. Lashin and Mogren (2012) 
and Gawad et  al. (2021a) characterized the source 
rock properties and analyzed the petroleum system 
of the October field. Kassem et al. (2020) studied the 
organic geochemical and isotope data of the Cenom-
anian–Turonian shales and limestones from the 
October field and linked the sediments with oceanic 
anoxic event 2 (OAE2) which produced organic-rich 
intervals. Kassem et  al. (2021) inferred the geome-
chanical characteristics of the Cretaceous Nezzazat 
and Paleozoic Nubia reservoirs to infer the influences 
of fluid injection and depletion on reservoirs’ geome-
chanical stability and field development. Kassem 
et  al. (2022) presented a microfacies analysis of the 
Wata Formation and inferred intertidal /shelf deposi-
tional settings.
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Other works from the Nezzazat Group from the 
Central and Southern Gulf of Suez includes the 
analysis of reservoir geometry (Hasouba et al. 1992), 
glauconite effects on logs (El Bahr et al. 1992), lithol-
ogy evaluation (Marttila and El Bahr 1994) and 
petrophysical rock typing of Matulla Formation (El 
Sharawy and Nabawy 2016). A detailed petrographic, 
diagenetic and petrophysical investigation of the Mat-
ulla and Wata clastic reservoirs from the October oil 
field are lacking in the literature, which have been the 
primary objective of our study. In this work, we have 
combined thin section petrography, X-ray diffraction 
(XRD), scanning electron microscopy (SEM), routine 
core analysis (RCAL), wireline logs and gas chroma-
tography data to assess the reservoir properties of the 
Upper Cretaceous Matulla and Wata sandstone reser-
voirs from the October oil field, such integrated anal-
ysis were not attempted before. Principal objectives 

of the study include: (i) petrographic characteristics 
and rock constituents, (ii) diagenetic features, (iii) 
porosity and permeability distribution, (iv) perme-
ability anisotropy, (v) wireline log-based quantitative 
petrophysical assessment and (vi) hydrocarbon char-
acteristics based on gas chromatography data. Results 
have been discussed and inferences are drawn on the 
effect of diagenesis on reservoir properties.

2 � Geological settings

The Gulf of Suez is a shallow, slightly arcuate, north-
west-southeast-trending depression that is defined by 
longitude 32°10’ and 34°E and latitude 27° and 30°N 
(Fig.  1). It forms an elongated graben with a length 
of around 320 km, a breadth of 30–80 km, and a sea 
depth of 40–60  m. The separation between Arabian 

Fig. 1   Location of the stud-
ied field in the central Gulf 
of Suez Basin, as marked by 
red polygon. The structural 
trends are adapted from El-
Gendy et al. (2017a)
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and African plates during Cenozoic created this rift 
basin (Hempton 1987; Meshref 1990; Makris and 
Henke 1992; La Brecquet and Zitellini 1985). Rift-
ing started in the late Oligocene to early Miocene, 
and continued until the late Miocene (Bosworth et al. 
2020). The southern Suez rift ends by creating a tri-
ple junction with Gulf of Aqaba and Red Sea rifting. 
Meshref (1990) subdivided the Suez rift basin into 
various structural provinces based on dip variations 
within large fault blocks constituting of eroded horsts 
and deep grabens. The October Field is positioned in 
the central Gulf of Suez (Fig.  1) (EGPC 1996). An 
NNE striking cross fault divided the field into two 
main fault compartments with the northern compart-
ment being at the down thrown side. The pre-rift 
stratigraphy displays a relatively uniform dip towards 
NE. The overlying Lower Miocene beds also dip to 
the NE.

Figure 2 presents the lithostratigraphic succession 
of the October oil field, based on the interpreted and 
correlated formation tops from the four studied wells. 
Three major lithostratigraphic units classified the suc-
cessions according to rifting events with different 
thicknesses and facies characteristics are: post-rift 
(post-Miocene), Miocene syn-rift, and pre-rift (rang-
ing between Upper Eocene and Pre-Cambrian). The 
pre-rift mixed clastic and carbonate stratigraphy was 
deposited in terrestrial, shallow marine or marginal 
marine environments which were differentiated by 
non-depositional/erosional unconformities. The pre-
rift sediments exhibit highly heterogeneous distribu-
tion laterally with minimum thickness being reported 
in the southern region and highest thickness in the 
central province. The Late Cretaceous stratigraphy 
is classified into the Cenomanian Raha Formation, 
overlain by Turonian Wata Formation and the Conia-
cian–Santonian Matulla Formation, mostly of shallow 
marine origin (Hassouba et  al. 1992). The variation 
in thickness of the Wata and Matulla formations is 
clearly observed in the Gulf of Suez, indicating tec-
tonic activity after the deposition of the Turonian 
(Farouk 2015). These three units form the Nezzazat 
Group which is overlain by the Brown Limestone 
and Sudr Formations (Schütz 1994). Hydrocarbons 
in the October field are produced from four reser-
voir intervals: the Carboniferous-Lower Cretaceous 
Nubian Sandstones, the Upper Cretaceous Nezzazat 
Group, the Lower Miocene Nukhul Formation, and 
the Asl Member of the Lower Miocene Upper Rudeis 

Formation (El-Ghamri et al. 2002). Based on numer-
ous oil/source rock correlations, Abdine et al. (1992) 
concluded that the Brown Limestone Member of 
the mature Sudr Formation is the most probable 
source of oil in the October field. Middle Miocene 
regional uplift resulted in the Gulf of Suez becom-
ing an enclosed basin with the deposition of extensive 
evaporites (Belayim, South Gharib and Zeit Forma-
tions) which provide a regional seal across the region 
(Abdine et al. 1992). The presence of trap-bounding 
faults and their sealing properties were reported to 
be critical for charging the October field and related 
structures (El-Ghamri et al. 2002).

3 � Data and methods

We have studied the Upper Cretaceous Matulla 
and Wata reservoirs from four wells drilled in the 
October field, A-10, B-6, A-3, and G-11 (Fig.  3). 
All these four wells were drilled till Nubia Forma-
tion, which was the primary producer of the Octo-
ber field. The well A-3 and B-6 were drilled in 
1981 and 1983, respectively, and both the wells are 
now in shut in phase. G-11 and A-10 were drilled 
in 1993 as development wells. Presently G-11 is 
oil producing and A-10 is being used as a water 
injector well. The Matulla Formation was encoun-
tered between 10,941–11,342 ft, 11,005–11,207 
ft, 10,204–10,915 ft, and 10,385–10,797 ft in the 
wells A-10, B-6, A-3, and G-11, respectively. 
The Wata Formation was encountered between 
11,342–11,688, 11,207–11,570, and 10,797–11,160 
ft in the wells A-10, B-6, and G-11, respectively. In 
the well A3, the Wata Formation was absent, and 
Matulla Formation directly overlies the Raha For-
mation due to tectonic uplift and faulting. Both the 
formations host mixed siliciclastic and carbonate 
intervals; however, this study focuses on the sand-
stone reservoir zones of the mentioned formations. 
The formation thicknesses in all the studied wells 
are presented in Fig. 2. A well log correlation panel 
is presented in Fig.  4. Conventional cores were 
retrieved from the Matulla and Wata Formations 
from three wells, A-10, G-11, and A-3. Thin sec-
tion petrography, SEM and XRD were performed 
on 6 Matulla samples and 8 Wata samples from the 
wells A-10 and G-11. These datasets are used to 
infer mineralogical distribution, texture, diagenetic 
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Fig. 2   Lithostratigraphic succession of the studied October oil 
field, Gulf of Suez Basin, Egypt based on the interpreted and 
correlated formation tops in the four studied wells. (Alsharhan 

2003; El Diasty et al. 2020). This study focuses on the clastic 
reservoirs of the Matulla and Wata formations
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Fig. 3   Location of the 
studied wells in the October 
field

Fig. 4   Well log correlation panel using the four studied wells in the October oil field
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effects, porosity types and clay mineral phases pre-
sent within the studied reservoirs. Gas chromatog-
raphy data was studied from the well A-10. Based 
on the total gas and chromatographs (C1–C5), fol-
lowing gas ratios were estimated (Haworth et  al. 
1985):

where Wh, Bh and Ch denote wetness, balance and 
character ratios, respectively. Based on the value 
ranges of the estimated gas ratios, reservoir fluid 
types are inferred (Haworth et  al. 1985; Mode et  al. 
2014; Pierson 2017).

Routine core analysis provided direct measure-
ments of porosity (Ф) and horizontal permeability 
(Kh) from 52 Matulla core plugs (46 measurements 
from the well A-3, 6 from G-11) and 6 Wata core 
plugs from A-10 and G-11. Vertical permeability 
(Kv) data was also available from the 46 Matulla 
plugs of the well A-3, which was utilized to infer 
the permeability anisotropy:

Wireline logs were recorded in all the wells, 
which were utilized for quantitative petrophysi-
cal interpretation. We determined the essential 
petrophysical parameters that include shale vol-
ume (Vsh, using gamma ray log), total and effec-
tive porosity (Φt and Φe, respectively, using neu-
tron porosity, density and Vsh), water saturation 
(Sw, using Indonesian model), and bulk volume of 
water (BVW) (Buckles 1965; Poupon and Leveaux 
1971; Asquith and Gibson 1982). Pickett plot was 
constructed to infer the input parameter values for 
Sw estimation (Pickett 1973). Net reservoir pay 
interval was distinguished based on the petrophysi-
cal cut offs of Vsh = 0.35 v/v, Фe = 0.1 v/v and 
Sw = 0.5 v/v, as commonly reported from Gulf of 
Suez (Ali et al. 2022).

(1)Wh =

[

C2 + C3 + C4 + C5

C1 + C2 + C3 + C4 + C5

]

∗100

(2)Bh =
C1 + C2

C3 + C4 + C5

(3)Ch =
C4 + C5

C3

(4)�k =

√

Kh

Kv

4 � Results

4.1 � Petrographic investigation

4.1.1 � Matulla reservoir

Thin section analysis indicates that the Matulla sand-
stones are well to moderately sorted, mature, fine to 
very fine-grained, subrounded to subangular. Frame-
work grains are predominantly quartz, feldspar, minor 
rock fragments along with well-rounded glauconite 
grains/peloids (Fig.  5). Moderate to slight compac-
tion and grain to grain pressure solution results in 
a slightly inhomogeneous packing of framework 
grains. Leaching of feldspar, quartz cementation and 
overgrowths along with minor pyrites are commonly 
observed in all the Matulla thin sections (Fig.  5). 
Matrix consists predominantly of clayey pseudoma-
trix which results from the compaction/alteration of 
argillaceous rock fragments (Fig. 5). Pore-filling kao-
linite clay forms as an alteration product of the pseu-
domatrix which resembles detrital matrix (Fig.  5). 
Calcite cementation is not common, it was observed 
in one of the thin sections (Fig.  5d). Primary inter-
granular porosity is dominant which exhibits good 
interconnectivity, indicated by blue dye impregna-
tion in all the thin sections (Fig.  5). Dissolution of 
unstable framework grains produced secondary pores 
(Fig.  5a, c, d). Permeability is reduced due clayey 
pseudomatrix, pressure solution among quartz grains, 
and the discontinuous nature of the organic-rich, 
clayey lamina. SEM images indicated quartz frame-
work grains with overgrowth and dominant inter-
granular porosities (Fig.  6). Pore-filling authigenic 
clay (Fig.  6a, b, d) and kaolinite booklets (Fig.  6c, 
d) are commonly observed along with minor calcite 
cements (Fig. 6d).

4.1.2 � Wata reservoir

Thin section analysis indicates that the Wata sand-
stones are moderate-well sorted, mature, very fine- to 
fine-grained, subrounded to subangular, containing 
abundant clayey material (Fig. 7). Moderate compac-
tion, pressure solution, quartz overgrowth cement, and 
calcite cement has given the rock a spotty "welded" 
appearance and resulted in a slight inhomogeneity of 
packing. Framework grains are predominantly quartz, 
feldspar, and lesser amounts of rock fragments. Minor 
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siderite is observed in few thin sections (Fig.  7a). 
Matrix consists predominantly of clayey pseudoma-
trix (Fig.  7b–d) which results from the compaction/
alteration of argillaceous rock fragments. Some 

detrital clay is suspected as matrix due to the finely 
laminated texture of the rock, but it is often difficult 
to distinguish from pseudomatrix. Extensive feld-
spar leaching (Fig. 7a, c), quartz overgrowth cements 

Fig. 5   Optical photomicrographs of Matulla sandstones under 
plane polar at a 10,716 ft, sample 11A, b 10,723 ft, sample 
18A, c 10,732 ft, sample 27A, and d 10,773 ft, sample 53A 
from the well G-11, indicating subangular to subrounded 
quartz (Q), feldspar (F), minor rounded glauconite (G), illitic 

lithic fragments (L), pore-filling kaolinite (K), clayey pseu-
domatrix (C), pyrite (P), feldspar dissolution (red arrows), 
quartz overgrowth cementation (yellow arrows), pore-filling 
calcite cement (blue arrows). Intergranular porosity is repre-
sented by blue dye. Field of view is 1 mm

Fig. 6   SEM images of 
Matulla sandstones at a 
10,723 ft, sample 18A, b 
10,732 ft, sample 27A, c 
10,777.5 ft, sample 57A, 
and d 10,773 ft, sample 
53A from the well G-11, 
indicating quartz framework 
grains (Q) with inter-
granular porosities (green 
arrows), fine crystalline 
pore-filling authigenic 
clays (C), quartz over-
growth cementation (yellow 
arrows), pore-filling kaolin-
ite (K), calcite cementation 
(blue arrow). Scale bar is 10 
microns
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Fig. 7   Optical photomicrographs of Wata sandstones under 
plane polar at a 11,580.2 ft, sample 22A, Field of view is 
0.5 mm, b 11,569.5 ft, sample 17A, Field of view is 1 mm, c 
11,581.3 ft, sample 23A, and d 11,584.7 ft, sample 26A from 
the well A-10, indicating subangular to subrounded quartz 
(Q), feldspar (F), lithic fragments (L), minor rounded glau-

conite (G), pore-filling kaolinite (K), clayey pseudomatrix (C), 
pyrite (P), feldspar dissolution (red arrows), quartz overgrowth 
cementation (yellow arrows), pore-filling calcite cement 
(blue arrows), chlorite rims surrounding quartz grains (black 
arrows), minor siderite (Sid). Intergranular porosity is repre-
sented by blue dye

Fig. 8   SEM images of 
Matulla sandstones at a 
11,580.2 ft, sample 22A, 
b 11,569.5 ft, sample 
17A, c 11,581.3 ft, sample 
23A, and d 11,584.7 ft, 
sample 26A from the well 
A-10, indicating quartz 
framework grains (Q) with 
intergranular porosities 
(green arrows), feldspar (F) 
dissolution along the cleav-
age planes, alteration rim 
formed of chlorite (black 
arrows) defining relict 
grain, fine crystalline pore-
filling authigenic clays (C), 
quartz overgrowth cementa-
tion (yellow arrows), pore-
filling kaolinite booklets 
(K). Scale bar is 10 microns
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(Fig.  7a–c), pressure solution among quartz grains, 
authigenic kaolinite (Fig. 7a, c) and chloritization of 
argillaceous rock fragments (Fig.  7d) are commonly 
observed in the Wata thin sections. Pore system con-
sists of primary intergranular porosity with good pore 
connectivity and feldspar dissolution-induced second-
ary porosity. SEM images indicated quartz frame-
work grains with overgrowth and intergranular poros-
ities (Fig. 8b–d). Dissolution of feldspar grains along 
the cleavage planes are observed in SEM (Fig.  8a) 
contributing to secondary porosity. SEM also reveals 
abundant pore-filling kaolinite booklets (Fig.  8c, d), 
authigenic clays (Fig. 8b, d) and alteration rims com-
posed of chlorites (Fig. 8b).

4.1.3 � XRD results

The XRD measurements from the Matulla samples of 
the well G-11 indicates quartz to be the most domi-
nant mineral with abundance ranging between 69 and 
95%, along with 1–7% total feldspar (average ~ 4%), 
minor siderite (0.5–1%) and pyrite (0–0.5%) (Fig. 9a). 
Based on the petrographic analysis, the studied Mat-
ulla and Wata reservoirs are classified as glauco-
nitic subarkose quartz arenites, following the sand-
stone classification scheme provided by Dott (1964). 

Carbonates are present in trace amounts, however one 
sample (no. 53A) exhibits ~ 5% calcite, which was 
also observed in the thin section (Fig. 5d) and SEM 
images (Fig.  6d) as pore filling cements. The total 
clay volume of the Matulla samples varies between 
4 and 23%, which is composed of mostly kaolinite, 
chlorite, and mixed clay (illite/smectite) (Fig. 9b).

The Wata sandstone samples from the wells A-10 
and G-11 also exhibits similar characteristics, with 
quartz being the most dominant mineral (60–83%) 
along with 6–13% feldspar (average ~ 8%) (Fig. 10a). 
Siderite and pyrite are present in trace quanti-
ties. Average clay volume in the eight samples is 
18% (Fig.  10a), dominated by kaolinite and chlorite 
(Fig. 10b), as also seen in SEM images (Fig. 8b–d).

4.2 � Petrophysical assessment

4.2.1 � Routine core analysis

Porosity and permeability of the two studied reser-
voirs are inferred from direct core measurements from 
three wells, A-10, G-11, and A-3. The Matulla sand-
stones exhibit a wide porosity (4.5–27.1%) and hori-
zontal permeability (0.03–170 mD) distribution indi-
cating micro- to megaporosity (Fig. 11). The average 

Fig. 9   XRD results of Matulla sandstone from the well G-11, indicating a mineral constituents and b clay fraction
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Fig. 10   XRD results of Wata sandstone from the wells A-10 and G-11, indicating a mineral constituents and b clay fraction

Fig. 11   Relationship 
between core-derived 
porosity and horizontal 
permeability (Kh) of the 
Matulla and Wata sandstone 
reservoirs from the October 
field. R35 denotes the pore 
throat radius (Kolodzie 
1980)



	 Geomech. Geophys. Geo-energ. Geo-resour.           (2023) 9:106 

1 3

  106   Page 12 of 23

Vol:. (1234567890)

porosity and permeability of Matulla sandstone are 
higher in the well G-11 (2 µm < R35 < 10 µm, meg-
aporous) than well A-3. The Wata samples, in com-
parison, exhibit 21.3–25.6% porosity and 63.7–412 
mD permeability indicating macro- to megaporosity 
(Fig. 11).

Vertical permeability measurements were available 
only for Matulla reservoir from the well A-3, which 
ranges between 0.02 and 185 mD (Fig. 12a). Most of 
the measurements indicate Kv/Kh < 1 representing 
predominantly primary depositional fabric over sec-
ondary fabrics (Fig. 12a). A cross plot between hori-
zontal permeability and permeability anisotropy is 
presented in Fig. 12b (Leila et al. 2023). Permeability 
anisotropy of the Matulla sandstones range between 
0.17 and 19.5, however majority of the data distribu-
tion indicates 1 < λk < 2, indicating dominantly iso-
tropic pore system (Fig. 12b). Certain degree of hori-
zontal pore communication (scattered or connected) 

is also observed with minor vertical pore connectiv-
ity. Such inferences could not be made on Wata res-
ervoir due to the unavailability of Kv measurements 
in any of the wells. Statistical summary of the core-
measured porosity and permeability of the two stud-
ied sandstone reservoirs is presented in Table  1. A 
higher CV (coefficient of variation) value is indica-
tive of wider data distribution, as has been the case in 
the Matulla porosity and permeability measurements, 
especially from the well A3.

4.2.2 � Wireline log analysis

Wireline log-based petrophysical assessment was 
utilized to quantify the reservoir properties of the 
Matulla and Wata sandstones. The analysis involves 
the estimation of key petrophysical properties and 
net pay thickness. The results from three of the stud-
ied wells are presented in Figs.  15, 16, 17 and 18. 

Fig. 12   Relationship between a horizontal permeability (Kh) and vertical permeability (Kv), b permeability anisotropy (λk) and Kh, 
from Matulla sandstone reservoir from the well A-3

Table 1   Statistical summary of the core-measured porosity, 
horizontal and vertical permeability of the Matulla (52 sam-
ples) and Wata (6 samples) sandstone reservoirs from the three 

cored wells. ‘Avg’ and ‘CV’ denote the average values and 
coefficient of variation

Core-measured Petrophys-
ical properties

Matulla (Wells A3 and G11) Wata (Wells A10 and G11)

Min Max Avg CV Min Max Avg CV

Porosity (%) 4.5 27.1 17.82 0.34 21.3 25.6 23.25 0.08
Kh (mD) 0.03 1490 78.96 3.66 63.7 412 160.37 0.7942
Kv (mD) 0.02 185 11.89 2.73 – – – –
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To characterize the lithologies, we generated the 
cross-plots between bulk-density and neutron poros-
ity (Fig. 13) and matrix density vs. matrix slowness 
(Fig.  14). Both the studied formations exhibit the 
influence of carbonates. It is to be noted that pore-fill-
ing carbonate cements were observed in the thin sec-
tions as well as SEM images, which corroborates well 
with the observations from the mentioned cross-plots. 
For estimating Sw, we have utilized a = 1, m = 2, n = 2 
and Rw = 0.03 ohmm. It is to be noted that using 
default input parameter values in Sw calculation and 
constant Rw regardless of change in the formation 
temperature may introduce uncertainties in the Sw 
estimation.

The core-measured porosity available from routine 
core analysis of three wells (A-3, A-10, and G-11) 

were plotted along with the petrophysical composite 
plots (Figs. 15, 16, 17) which correlates well with the 
log-based porosity (Фt) estimations. Matulla Forma-
tion exhibits a lower average shale volume, higher 
effective porosity, and Sw in the well A-10 than G-11, 
thus contributing to higher net pay thickness based on 
the utilized petrophysical cut-offs. Key observation 
from the Matulla Formation of the well A-10 is that 
Matulla hosts two potential pay zones in the upper 
(0.1 < Фt < 0.22, Sw ~ 0.4 v/v, 0.1 > BVW > 0.06) and 
lower (0.1 < Фt < 0.25, 0.3 > Sw > 0.1, BVW < 0.06) 
intervals (Figs. 15, 16, 17), which were also observed 
in the well G-11. The middle Matulla in G-11 
also consists of pay intervals with 0.1 < Vsh < 0.3, 
0.2 < Фt < 0.3, 0.5 > Sw > 0.2, 0.12 > BVW > 0.06 
(Figs. 15, 16, 17); the same correlated interval in the 

Fig. 13   Cross-plot between bulk-density and neutron porosity of the Matulla and Wata Formations (including the reservoir pay 
zones) indicating the lithological composition, from the well A-10
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well A-10 exhibits Sw > 0.5 v/v, therefore not inferred 
as pay zone (Figs. 15, 16, 17).

The Wata Formation from the well A-10 (Fig. 18) 
exhibits a very consistent clean GR (< 30 api), high 
resistivity (~ 200 ohmm) zone with density-neutron 
porosity cross over in the lower interval. This inter-
val exhibits 30 > Vsh > 5, Фt up to 0.25 v/v, and 
0.25 > Sw > 0.20, and a 65 ft of net pay is inferred.

4.3 � Gas chromatography

Mudlogging data was analysed from the well A-10, 
where Matulla and Wata pay zones are inferred based 
on petrophysical cut offs. Calculated wetness (Wh) 
varies between 17.5 and 40, which indicates the 
presence of oil (Fig. 19) along with Ch < 0.5. In the 

Matulla pay zones, Bh ≥ Wh due higher C1 and C2 
peaks, while Wata reservoir exhibits good separation 
between Wh and Bh. Usually, Bh <  < Wh indicates 
the possibility of residual oil, which is not the case 
for the studied reservoirs here (Fig. 19). We utilized 
C1/C2 ratio as a quick look indicator. The Matulla 
pay zones indicate C1/C2 varying between 3 and 7, 
which suggests the presence of low gravity (10–15 
API) to medium gravity oil (15–35 API). The Wata 
pay zone indicates C1/C2 ~ 10.74 in the top part, 
which is indicative of gas, then it decreases to < 10, 
i.e., oil zone (Fig.  19). This may indicate a gas-oil 
contact within Wata. This observation is also sup-
ported by that fact that Ch > 0.5 in the top part of the 
Wata pays which indicates high GOR oil. However, 
such fluid contacts need to be confirmed by formation 

Fig. 14   Cross-plot between matrix density (RHOMAA) and matrix slowness (DTMAA) (Schlumberger 1972) of the Matulla and 
Wata Formations from the well B-6 indicating the effect of calcareous matrix within the studied reservoirs
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pressure measurements and change in fluid gradients, 
which were unfortunately not recorded in the studied 
wells. Since both the reservoir zones exhibit C1/C4 
ratio higher than C1/C3 ratio, we infer that the stud-
ied reservoirs are not water wet (Fig. 19).

5 � Discussions

5.1 � Comments on depositional environment

The pre-rift sediments of the Gulf of Suez Basin 
were deposited in continental margin sags. The first 
subsidence cycle deposited clastic Nubia Formation 
during Carboniferous-Lower Cretaceous period, 
while the second subsidence cycle commenced from 
Upper Cretaceous and deposited mixed siliciclastic-
carbonate sediments (Atia et  al. 2015). Hassouba 
et  al. (1992) reported shallow marine origin of the 
Matulla and Wata formations. Based on the palyno-
facies assemblages, El Diasty et al. (2014) inferred 
that Matulla sediments were deposited in a shelf set-
ting, possibly near the shorelines. El-Azabi and El-
Araby (2007) interpreted the primary sedimentary 
structures and architectural elements of the Matulla 

interval and interpreted that the Matulla clastic 
facies were deposited in a foreshore-shoreface to 
shallow subtidal environment under the influence 
of variable wave energy conditions. Kassem (2018) 
inferred lower intertidal to slightly deep subtidal 
settings for Matulla sandstones and deciphered that 
the main oil reservoir of lower Matulla consists 
of a tidal channel. In a recent work, Kassem et  al. 
(2022) presented a microfacies analysis of the Wata 
Formation and inferred an intertidal/shelf deposi-
tional setting. The fine to very fine-grained sand-
stones of the studied Matulla and Wata reservoirs 
include glauconites, as seen in the thin sections 
(Figs. 5a, 5d, 7b). Glauconites are widely reported 
from Cretaceous marine sediments deposited in 
a warm climate (Banerjee et  al. 2016). There are 
many reported examples of glauconitic sandstones 
from Egypt which were deposited in a shoreface-
shallow shelf environment during Tethys transgres-
sion which had occurred during Cretaceous (Said 
1990; Catuneanu et  al. 2006; Khalifa and Catune-
anu 2008; Baioumy and Boulis 2012). Glauconites 
are also reported from the Matulla sandstones from 
the nearby July oil field (Ali et al. 2022). Based on 
the petrographic observations, a shallow marine 

Fig. 15   Petrophysical interpretation of the Matulla Forma-
tion from the well A-3 indicating key petrophysical properties 
assessed from wireline logs (GR = gamma ray, RHOB = bulk-

density, NPHI = neutron porosity). Red dots on the Total 
porosity (Фt) track represent the measurements from routine 
core analysis in the Matulla interval in A-3



	 Geomech. Geophys. Geo-energ. Geo-resour.           (2023) 9:106 

1 3

  106   Page 16 of 23

Vol:. (1234567890)

depositional environment is assigned to the studied 
reservoirs, which corroborates with the findings of 
previous researchers from other parts of the Gulf of 
Suez Basin.

5.2 � Diagenetic factors

Thin section and SEM analyses indicate that the stud-
ied Matulla and Wata reservoirs have been largely 
affected by diagenetic alterations. The early dia-
genetic changes include clay infiltration (Figs.  5a, 
7b–d), quartz overgrowth cements and pressure solu-
tion among quartz grains (Figs.  5a–c, 7a–c). Later 
stage of diagenesis resulted in extensive leaching 
and dissolution of feldspar grains (Figs.  5c, 7c, 8a), 
chloritized alteration rims surrounding quartz grains 
(Figs.  7d, 8b), calcite cementation (Figs.  5d, 6d, 

7b) and kaolinite precipitation (Figs. 5, 6c, d, 7a, d, 
8b–d). Pyrites formed at much later stage (Fig. 5a, d). 
Concavo-convex grain boundaries and point to point 
boundaries along with grain to grain pressure solu-
tions resulted in a slightly inhomogeneous packing of 
framework grains, which indicate variable degrees of 
compaction affecting the two studied reservoirs.

Cementation can have a tremendous negative 
effect on reservoir quality. Worden and Morad 
(2000) reported loss of almost half of the original 
rock porosity due to cementation. Both the reser-
voirs indicated certain degree of calcite cementation 
(Figs.  5d, 6d, 7b); however not observed in every 
sample. XRD indicates 0.5–5% calcite in Matulla 
and Wata reservoirs. Thin sections and SEM indi-
cate kaolinite is the most prominent clay mineral 
phase present in both the reservoirs. Kaolinite is 

Fig. 16   Petrophysical interpretation of the Matulla Formation from the well A-10 indicating key petrophysical properties assessed 
from wireline logs (GR = gamma ray, RHOB = bulk-density, NPHI = neutron porosity)



Geomech. Geophys. Geo-energ. Geo-resour.           (2023) 9:106 	

1 3

Page 17 of 23    106 

Vol.: (0123456789)

observed in all the samples in the form of booklets 
filling the pore spaces (Figs. 5, 6c, d, 7a, d, 8b–d). 
Cao et al. (2017) inferred that kaolinites commonly 
occur because of feldspar dissolution in warm and 
humid climatic conditions. Chlorites were not seen 
in Matulla samples; however, it occurs as coatings 
surrounding quartz grains (Fig. 7d) which generally 
forms in the early diagenesis (Dowey et  al. 2012; 
Freiburg et al. 2016) and favoured by the presence of 
iron-rich clays (Zhu et al. 2017). Such chlorite rims 
reduce surface area for further quartz cementation 

and stops overgrowth, thus helps in porosity pres-
ervation (Nguyen et  al. 2013; Hansen et  al. 2017). 
Clay pseudomatrix is commonly observed in all the 
samples from Matulla and Wata, which results from 
the compaction/alteration of argillaceous rock frag-
ments. Some detrital clay is suspected as matrix due 
to the finely laminated texture of the rock, but it is 
often difficult to distinguish from pseudomatrix.

Primary intergranular porosity is dominant, while 
feldspar dissolution contributed to secondary poros-
ity. Dissolution has been observed along the feldspar 

Fig. 17   Petrophysical interpretation of the Matulla Formation 
from the well G-11 indicating key petrophysical properties 
assessed from wireline logs (GR = gamma ray, RHOB = bulk-

density, NPHI = neutron porosity). Red dots on the Total 
porosity (Фt) track represent the six measurements from rou-
tine core analysis in the Matulla interval in G-11
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cleavage planes (Fig.  8a) and inferred as reservoir 
quality enhancing diagenetic agent. With increase in 
overburden burial and temperature, feldspar becomes 
chemically unstable (Ma et  al. 2017) and can expe-
rience dissolution due to its interaction with low pH 
meteoric water (Zhang et al. 2018).

5.3 � Inferences on reservoir petrophysical properties

Reservoir storage capacity and flow potential directly 
affects the production scenario, economics, and field 
development strategies. The studied Matulla and Wata 
reservoirs predominantly consist of primary inter-
granular porosity, as seen in all the thin sections. All 
samples have good, interconnected pores, but vary-
ing pore-throat sizes based on packing and grain-size 

distribution. Diagenesis has critical effects on the 
reservoir quality, i.e., it can significantly enhance or 
diminish reservoir qualities. This study identifies 
dissolution as a porosity enhancing factor. Second-
ary pores, such as grain moulds and "honey-comb" 
micropores, are the result of dissolution of unstable 
feldspar grains. At the same time clay infiltration, 
silica and calcite cementation occurred as contributed 
to porosity reduction. Majority of the feldspar grains 
of both the reservoirs are observed to be affected by 
dissolution. Cross plots between total feldspar content 
(from XRD) and core-measured porosity (Fig.  20a) 
and permeability (Fig.  21a) indicate that these 
increase with the increase in feldspar content within 
Matulla and Wata reservoirs. Figures  20b and 21b 

Fig. 18   Petrophysical interpretation of the Wata Formation 
from the well A-10 indicating key petrophysical properties 
assessed from wireline logs (GR = gamma ray, RHOB = bulk-

density, NPHI = neutron porosity). Red dots on the Total 
porosity (Фt) track represent the four measurements from rou-
tine core analysis in the Wata interval in A-10
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Fig. 19   Gas analysis of the Matulla and Wata Formations, well A-10 using the chromatograph data [Wh = wetness, Bh = balance, 
Ch = character ratio]. Grey shaded intervals indicate the net pay zones based on petrophysical cut offs

Fig. 20   Effect of a feldspar (dissolution) and b clay content on reservoir porosity
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represent the negative effect of pore-filling clay on 
reservoir porosity and permeability.

In general, the Wata Formation shows higher 
hydrocarbon saturation when compared with the 
Matulla interval. However, Matulla Formation hosts 
multiple pay intervals when compared to Wata. The 
Matulla contributed to net pay in the well G-11 but 
exhibited higher water saturation in the well A-10. 
Also, to be noted that, the studied formations exhibit 
large thickness variations in these wells indicat-
ing high heterogeneity vertically as well as laterally. 
The absence of the Wata Formation in the well A3 
is contributed by the faults or tectonic uplift, where 
we encountered Raha Formation right below the Mat-
ulla interval. This indicates lateral variability within 
Matulla and Wata. Similar observations were also 
reported by El-Ghamri et  al. (2002) who inferred 
that the Matulla and Wata sandstones have high lat-
eral and vertical heterogeneity in terms of continuity, 
thickness, and oil–water boundary.

6 � Conclusions

Based on the integrated analysis using the petro-
graphic thin sections, SEM, XRD, routine core analy-
sis, gas chromatography, and wireline logs, we have 
assessed the reservoir characteristics of the Matulla 

and Wata clastic reservoirs from the October field. 
Our conclusions are summarised as below:

•	 The analysed sandstones of the Matulla and 
Wata reservoirs are inferred as glauconite-
bearing subarkose quartz arenites. The general 
composition of each sample is very similar with 
only subtle differences in relative percentages of 
feldspars, argillaceous rock fragments, clayey 
pseudomatrix, and/or calcite cement.

•	 These changes correspond with the overall rock 
texture/fabric, in that with increasing planar 
lamina, there is a general increase in the pseu-
domatrix content of the rock. The feldspathic 
and lithic content of the sands is thought to be 
slightly lower than the original content due to 
the dissolution and partial dissolution of many 
of these unstable constituents.

•	 Gas chromatography and wireline log-based 
quantitative petrophysical assessment indicates 
that the Matulla and Wata sandstones are oil 
bearing reservoirs with high vertical and lateral 
heterogeneities in net pay distribution.

•	 The meso-megaporous reservoirs are dominated 
by primary intergranular porosity along with the 
secondary porosity contribution by feldspar dis-
solution. Clay infiltration and carbonate cemen-
tation reduced the reservoir qualities to a certain 

Fig. 21   Effect of a feldspar (dissolution) and b clay content on reservoir permeability
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degree but overall, both the reservoirs exhibit 
excellent properties.
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