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Abstract Thermal conductivity is a key parameter

for many soil applications, especially for dimension-

ing shallow and very shallow geothermal systems

based on the possible heat extraction rate and for

modelling heat transfer processes around high voltage

underground cables. Due to the limited purview of

direct thermal conductivity measurements, for an

investigation of extensive areas, usually other geo-

physical methods like electrical resistivity tomogra-

phy measurements are applied. To derive thermal

conductivity of soil from geoelectrical measurements

a relation between electrical and thermal conductivity

is needed. Until now only few approaches worked on a

direct correlation between both conductivities. Due to

the difficulties of a direct relation, within this study a

modular approach of a mediate correlation between

electrical and thermal conductivity was investigated.

Therefore, a direct relationship between a corrected

electrical conductivity and water content as well as the

standard and simple thermal conductivity model of

Kersten (Bull of the Univ Minnesota 28:1–227, 1949)

was used. To develop this concept soil types of sand,

silt loam and clay were investigated where different

saturation steps and pressure loads were applied. For

each configuration electrical and thermal conductivity

as well as water content and bulk density was

determined. To refine the results of the calculated

water content a corrective factor was applied. Fur-

thermore, bulk density as an inlet parameter of the

Kersten equation was also derived based on electrical

conductivity. The suggested proceeding enables the

determination of thermal conductivity solely based on

electrical conductivity without prior soil property

information.

Keywords ERT � Heat transfer � Kersten model �
Water content � Bulk density

1 Introduction

Thermal conductivity (TC), which is a valuable soil

parameter especially within the subjects of shallow

and very shallow geothermal applications (Berter-

mann et al. 2014; Sáez Blázquez et al. 2017; Vieira

et al. 2017; Di Sipio and Bertermann 2018) and high

voltage underground cable surroundings (de Lieto

et al. 2014; Salata et al. 2016; Chatzipanagiotou et al.

2017; Drefke et al. 2017; Rerak and Oclon 2017), is

tricky to determine accurately in the field. Since,

thermal conductivity itself can only be determined by

sensors with direct contact at selective points of

interest, indirect proceedings concerning other geo-

physical applications like electrical resistivity
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tomography (ERT) are needed to examine wide areas

in a small timeframe, also enabling a deeper penetra-

tion. Concurrently, TC is a very sensitive parameter

within further data processing such as calculations of

heat extraction rates or heat transport modelling: a

slight divergence within TC results can produce

critical deviations. Therefore, a simple, experience

based, and prone to failure estimation is insufficient.

Hence, a proper processing of measured data is key to

produce valid results and enables an adequate and not

time-consuming assessment.

By performing geophysical investigations non-

invasive and extensive measurements are possible

and physical properties of the subsurface can be

determined at low costs in a short time. However,

expert knowledge and a proper assessment of geo-

physical measurements as well as good and practica-

ble concepts and models to derive applicable soil

parameters like TC are essential. Results based on

examined derivations are just as meaningful as quality

of the implemented concept allows. Tian et al.

(2020a), for instance, made an investigation using

S-wave velocity and the microtremor survey method

for thermal conductivity correlation. The focus of this

study is the determination of TC based on geoelectric

measurements which is a standard application for

underground hydraulic assessments (Dahlin and Loke

2018; Ghalamkari et al. 2019)

Due to the fact, that EC and TC are basically

depending on the same soil parameters like water

content, bulk density and grain size distribution (Abu-

Hamdeh and Reeder 2000; Singh and Devid 2000;

Tarnawski et al. 2000; Bristow et al. 2001; Ochsner

et al. 2001; Abu-Hamdeh 2003; Cosenza et al. 2003;

Friedman 2005; Samouelian et al. 2005; Logsdon et al.

2010; Bai et al. 2013; Barry-Macaulay et al. 2013;

Usowicz et al. 2013, 2017; Bertermann and Schwarz

2017; Drefke et al. 2017) as well as temperature

(Campbell et al. 1994; Tarnawski et al. 2000; Nouveau

et al. 2016; Robert et al. 2019; Xu et al. 2020) a direct

correlation between both conductivities seems

feasible.

For developing a direct correlation between elec-

trical conductivity (EC) and TC of soil few investi-

gations and approaches, which are described in the

following lines, were realised (Singh et al. 2001;

Sreedeep et al. 2005; Fragogiannis et al. 2008, 2010;

Logsdon et al. 2010; Tokoro et al. 2016; Wang et al.

2017; Sun and Lü 2019). Singh et al. (2001)

established a general relationship between thermal

and electrical resistivity, where the percentage sum of

the gravel and sand fraction has to be predetermined.

This approach was based on a laboratory analysis of a

loam and a clay soil based on the USDA soil

classification. Additionally, the resulting correlation

was validated with soil samples which are CL or CH

according to the USCS soil classification (ASTM

D2487 2017). Thus, the validation includes samples

with a sand fraction\ 50% and a clay fraction\ 65%

which corresponds to their analysed soil probes.

Hence, it is an approach for mainly fine-grained soil

types.

Within the concept of Sreedeep et al. (2005) a

relation between electrical resistivity and saturation in

dependence of the pooled gravel and sand fraction was

developed, serving as basis for a renewed correlation

between EC and TC. This approach is based on the

same general relationship stated by Singh et al. (2001).

In Addition, a dependence on saturation of soil was

pointed out and additionally incorporated. To calcu-

late the multiplier also three variables, depending on

the gravel and sand fraction, must be ascertained.

Thus, to deliver this multiplier for the relation between

EC and TC, also a soil saturation and a grain size

distribution must be known priorly.

Fragkogiannis et al. (2010) also proposed a stand-

alone approach of a correlations between TC and EC,

but with the need of consideration of specific soil type

groups. Furthermore Fragkogiannis et al. (2010)

described edge effects of the EC measurements, as

stated also by Kowalczyk et al. (2014). When EC

measurements are burdened with edge effects caused

by a small sample case, trends and coherences can be

showcased, but the results are hardly to compare to

other approaches or to in situ measurements.

Within another survey, established by Logsdon

et al. (2010), a derivation of EC (Ewing and Hunt

2006) and a derivation of thermal conductivity (Lu

et al. 2007), both related to water content, were

confronted. Both conductivities were investigated and

discussed, but not directly correlated.

Tokoro et al. (2016) also compared EC and TC of

soil. They investigated two sands and one volcanic

soil. Inside this study, the measurements of EC were

performed in a different container as the TC measure-

ments, by applying the same soil conditions (dry

density and water content). A general coherence

between EC and TC was stated with the help of two
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constant values and one variable value. However, this

variable value is depending on each measured soil

type, and with that a general application is actual

impossible.

Wang et al. (2017) provided another laboratory

approach, where the relation between EC and TC was

examined with a similar idea of an inlet parameter

restriction as within this study. There four grain size

groups were used to define 8 soil types. The relation

itself should be invented without considering satura-

tion and soil type, while dry density is kept constant

for all measurements. As a result, a direct correlation

between electrical resistivity and TC was suggested.

Wang et al. (2017) concluded, that there is no obvious

relation to soil gradation, which is in contrary to other

experiences.

Also, Sun and Lü (2019) investigated a semi-

empirical correlation between TC and EC. Within this

study the relation was evaluated merely for silt and

silty clay, two very similar soils. Therefore, the

correlation is hardly transferable to other soil types.

These mentioned investigations are all valuable

within their own research focus. However, all these

approaches are in the need of a priori soil information

or are just valid for a distinct soil type. Hence, it is hard

to transfer these correlations on a general application.

This is not surprising, since the dependence between

EC and TC and the physical soil parameters differs and

thus a direct correlation between both conductivities

without further known inlet parameters is intricate.

Yet, the aim of this study was to provide the

opportunity to perform non-invasive ERT measure-

ments and a following deduction of the parameter

thermal conductivity without any other expense. The

introduced method should be practicable for extensive

ERT field measurements with none or only few

selective verification samplings. Such an approach is

just possible by operating without any a priori

information and purview for all soil types, as described

within this study.

Therefore, the mentioned difficulties must be

bypassed by the help of a method with a mediate

relation between EC and TC, introduced within this

study. This data analysis is referred to laboratory soil

property measurements from 2016 (Bertermann and

Schwarz 2017, 2018), which are comparable to

measurements performed by Barry-Macaulay et al.

(2013), Giordano et al. (2013) or Liu et al. (2013).

Within the first step of correlation, EC values are

related to soil parameters, which are relevant for

implementation in a TC determining model. In this

case, the relevant parameters are water content and

bulk density as well as a grading of grain size

fractions. The dependence of water content, bulk

density and the amount of different grain size fractions

on soil TC is evidenced by many common thermal

conductivity models (Kersten 1949; de Vries 1963;

Johansen 1975; Côté and Konrad 2005; Lu et al.

2007, 2014; Tokoro et al. 2016; Markert et al. 2017),

whereas EC is predominantly influenced by soil water

content and only subordinately affected by the other

mentioned physical soil parameters (Zhou et al. 2001;

Friedmann 2005; Ewing and Hunt 2006). Regarding

the significant relation between EC and water content

some correlations had been established (Archie 1942;

McCutcheon et al. 2006; Ozcep et al. 2010; Berter-

mann and Schwarz 2018). Thus, such correlation can

be applied within the introduced operation without

concerns. The derivation of bulk density on the other

hand side has no high accuracy which is evidenced by

mid-level correlation factors. In a second step the TC

model is applied. Due to the few inlet parameter,

within this study the TC model according to Kersten

(1949) modified by Farouki (1981) was opted. Due to a

great variety of TC models, in further approaches this

method can also be adapted to other TC models. With

these two steps, a holistic relation between EC and TC

was processed, which is practicable without any

ancillary information.

2 Methods

2.1 Data acquisition

To ensure proper framework conditions with known

physical soil parameters, the investigations were

performed in a laboratory environment. To avoid edge

effects of the electrical field (Kowalczyk et al. 2014)

by measuring the EC, a remarkable sample size

of[ 50 l was required (Bertermann and Schwarz

2017).

To cover a wide spectrum of soil types regarding

the grain size distribution, samples of sand, silt loam

and clay were investigated (Bertermann and Schwarz

2018). Following description was performed with all

three soil types: First the complete sample material

was dried to start the measurements with a water
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content almost around 0%. Within a mixing machine

water was added to the sample material and mingled,

to adjust the next step of soil water content. To achieve

a more homogeneous distribution of the added water

after mixing, the material was left for 60 min covered

by a clingfilm. After the material was blended the

sample with an adjusted water content was filled in a

box (& 63 l). In a further step, incremental pressure

loads of 75, 1000, 3000, and 5000 kg inter alia

39.3 g cm-2, 524 g cm-3, 1572 g cm-2,

2620 g cm-2 were applied on this material for each

set water content. Thus, the physical soil properties of

every sample material were measured within different

saturation steps and for four bulk densities. Due to the

insufficient compaction by the first pressure load, for

further data processing only the pressure loads of

524 g cm-3 and higher were considered.

Within each water content and each incremental

pressure load following physical soil parameters were

determined: Water content and bulk density were

measured subsequent according to DIN 18121

(2012) and DIN 18125-2 (2011), respectively. TC

was measured with the TR-1 probe of the KD2 Pro

application according to the ASTM D5334 (2014) and

EC was determined by using a four-point electrode

configuration performed with the 4point light appli-

cation (https://www.l-gm.de) by applying the Wenner

array and an electrode spacing of 5 cm. The electrode

penetration was around 2 cm depending on how

smooth the sample surface was. The used TC reference

value is a mean of two repeat measurements. For

further evaluation, the EC values (r) were corrected to

the temperature of 25 �C (1 ? 2) according to Sheets

and Hendrickx (1995) (Corwin and Lesch 2005).

r25 ¼ fT � rT ð1Þ

fT ¼ 0:4470 þ 1:4034 � e�T=26:815 ð2Þ

Within this study, the EC as well as the other soil

parameters were measured at temperatures of

16–20 �C. For data analysis the measurement results

given in Tables 1, 2 and 3 were used.

Due to the undisturbed measurements within this

laboratory setup avoiding the edge effects a highly

diagnostic comparison between TC and EC is possi-

ble, which enables a transfer to in situ field

measurements.

2.2 Concept setup

Within this study the principle intention was the

determination of TC exclusively out of EC measure-

ments. Due to the lack of a direct correlation between

both conductivities a determination concept (Fig. 1)

with the simple thermal conductivity model (3)

according to Kersten (1949) modified by Farouki

(1981) was applied. There it should be considered that

only the equation intended for soils of a grain size

distribution with[ 50% sand content was used within

this concept.

k ¼ 0:1442 0:7 log
hw
qb

� �
þ 0:4

� �
� 100:6243�qb ð3Þ

Thus, to use this model to determine TC (k) only by

applying EC, both soil properties, volumetric water

content (hw) and bulk densitiy (qb), must be derived

from EC. To do so a correlation between EC and water

content was applied and an EC depending correction

factor which manages soil type depending differences,

was developed. A similar procedure was carried out

regarding the relation between EC and bulk density.

The evolved segmentation goes approximately in

conformity with the supposed separation of the GGU

(Gesellschaft für Geophysikalische Untersuchungen

mbH 2011), which is 0–20 Xm for clay; silt:

20–100 Xm and sand:[ 100 Xm (Bertermann and

Schwarz 2018). This separation relies on soil moisture

ranges around field capacity, which is usually

expectable below a soil depth of around 1,0 m within

unsaturated conditions. Based on this EC separation

also within this study the soil types were divided in a

sand range (\ 0.01 S m-1), a silt loam range

(0.01–0.05 S m-1) and a clay range ([ 0.05 S m-1).

Also, Fragkogiannis et al. (2010) separated their

results into sand (fine, medium and coarse), loamy

soil (loam, loamy sand and sandy loam) and fine-

grained material (silty clay; silt loam, kaol). For each

mentioned range inter alia grain size fraction, a

separate determination of both input parameter for

the TC model is proposed, which represents the soil

type dependent aspect. The derivation of this input

parameter definitions is described within the next

sections and based on the laboratory measurement

results.

The concept can be used as a stand-alone tool to

derive TC from EC for soils with a water content
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around field capacity. Organic matter, saltwater

effects, effects of frozen soils or other EC and TC

biasing boundary conditions cannot be considered.

However, when further information concerning water

content or bulk density is available, it can be

implemented just by integrating the existing parameter

into the thermal conductivity model (10), too.

2.3 Determination of water content

Within the performed laboratory experiments the sand

sample was measured from a volumetric water content

of 2% until wet conditions of 10%. The silt loam

sample and the clay sample were measured accord-

ingly form dry conditions until[ 30% and nearly

50%, respectively (Tables 1, 2 and 3). The appropriate

field capacity ranges for sand (4–11%), silt loam (14–

36%) and clay (28–41%) were applied according to

Bertermann et al. (2014). The correlation between the

corrected EC (r25) and water content (11) stated by

Bertermann and Schwarz (2018) has a correlation

coefficient of R2 = 0.95 and serves as base to

determine water content of soil. It is a linear relation

between a natural logarithm of EC and volumetric

water content (hw). The correlation coefficient under-

lines predications of similar approaches (McCutcheon

et al. 2006) and indicates that this relation is basically

soil type independent.

hw ¼ e0:3415�ln r25ð Þþ4:228 ð4Þ

Nevertheless, within this study a correction factor

implying grain size fractions was evolved. This factor

is based on the comparison between the measured EC

and the divergence from the measured water content to

the water content, calculated by applying Eq. 4

(Fig. 2). Correlating the differences in water content

with EC shows, that for the sand sample there are just

minor deviations (\ 5%). Whereas, the silt loam

(significant R2 = 0.85) and the clay sample (not

significant R2 = 0.13) show differences in water

content, which are in dependence of EC. Within

ranges of lower EC, the calculated water content is

higher than the measured one. Regarding increasing

init ia l e lectrical conductivity 

corrected 
electrical 
conduc vity

(σ25)

measured and 
inverted electrical
conduc vity 

(σ)

temperature
correc on
Eq. 8+9

bulk
density

attribut ion

w ater
content
determinat ion

soil type ranges

clay   >0.05 S m-1

silt     0.01-0.05 S m-1

sand <0.01 S m- 1water content

correc on factors
for clay or silt
Eq. 12+13

corrected water content

subtrac on of 
correc on factor
Eq. 14

direct correla on
Eq. 11

soil type ranges

clay  >0.05 S m-1

silt     0.01-0.05 S m-1

sand <0.01 S m-1

bulk density
soil type 
dependent 

Eq. 15 + 16
ρbsand=1.4 g cm-3

thermal conductivity model

thermal
conduc vity (λ)

Eq. 10

-

Fig. 1 Workflow of the

introduced mediate

determination of thermal

conductivity of soil by

solely using electrical

conductivity
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EC values it swaps to lower calculated water contents

in relation to the measured results. To compensate this

effect these correction factors are applied.

With the outcome of this comparison (Fig. 2) the

calculated water content can improve by applying the

relation of the trend lines as correction factors (5–7).

Due to the minor deviations for sand no further

correction referring to the separation sand range

(\ 0.01 S m-1) is needed.

Separation clay range ([ 0.05 S m-1):

Xclay ¼ �34:122 � r25 þ 5:1063: ð5Þ

Separation silt loam range (0.01–0.05 S m-1):

Xsilt ¼ �204:75 � r25 þ 5:2482 ð6Þ

Thus, the calculation of volumetric water content is

set up with an EC depending correction factor as

follows:

hw ¼ e0:3415�ln r25ð Þþ4:228 � X clayorsiltð Þ: ð7Þ

2.4 Attribution of bulk density

The second parameter, which must be implemented

for TC calculation by only applying EC within this

concept (Fig. 1; Eq. (3)), is bulk density. To do so, the

measured bulk density was compared to the measured

EC (Fig. 3). Regarding the clay and silt loam sample

bulk density increases with increasing EC values.

Roughly outlined, bulk density for clay is around

1.1–1.4 g cm-3 and for silt loam from 1.3 g cm-3 up

to 1.65 g cm-3. Regarding the sand sample after the

first appropriate pressure load all measured bulk

densities are around 1.4 g cm-3. Regarding the cor-

relation coefficients the relation between EC and bulk

density (Rsilt loam
2 = 0.6 and Rclay

2 = 0.4) is not as

profound as between EC and water content.

In this case, it is not possible to establish a soil type

independent, direct correlation between bulk density

and EC. Thus, for determining bulk density also the

separation between sand, silt and clay as described in

the concept setup was applied. The attribution of bulk

density was carried out in accordance with the

derivation of the correction factor regarding the

determination of water content before. Due to the

inability to compact sand solely by pressure (DIN

18125-2 2011) the suggested and in this concept

applied bulk density for sand is just 1.4 g cm-3.-

Regarding the other separation ranges of clay and silt

loam, following relations between EC (r25) and bulk

density (qb) were used as calculation models (8 ? 9).

Bulk density for the separation clay range

([ 0.05 S m-1):

qb clay ¼ 0:9565 � r25 þ 1:1683 ð8Þ

Bulk density for the separation silt loam range

(0.01–0.05 S m-1):

qb silt ¼ 4:6015 � r25 þ 1:3362 ð9Þ

By applying these bulk density equations, the

deviations of the calculated thermal conductivity

within the displayed concept is around 0.05 W

(m*K)-1 less than by using just a single value of

1.4 g cm-3 for every soil type. After determining the

inlet parameter, volumetric water content and bulk

density, by only applying EC the Kersten (1949) TC

model (Eq. 3) can be carried out.

Within excel an operation, combining Eqs. 3–9,

can be used as follows:

y = -204,75x + 5,2482
R² = 0,8538

y = -34,122x + 5,1063
R² = 0,1251
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Fig. 2 Relation between

the electrical conductivity

and the difference of the

measured and calculated

water content by using

Eq. (4) regarding the three

main soil types (sand, silt

loam and clay)
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Row 1: = 0.1442*(0.7*LOG((EXP(0.3415*LN(r25)

? 4.228))

Row 2: -(IF(r25\0.01;0;IF(r25\0.05; - 204.75

*r25 ? 5.2482; - 34.122*r25 ? 5.1063))

Row 3: /(IF(r25\ 0.01;1.4;IF(r25\ 0.05;4.6015*

r25 ? 1.3362;0.9565*r25 ? 1.1683))))) ? 0.4)

Row 4: *POWER(10;(0.6243*(IF(r25\ 0.01;1.4;

IF(r25\ 0.05;4.6015*r25 ? 1.3362;0.9565*r25
? 1.1683)))))

There, within the framework of the thermal

conductivity model, it starts with the direct correlation

between EC and water content (Row 1) and the

deduction of the corrective value for sand, silt and clay

(Row 2). The hereby determined volumetric water

content has to be divided by the bulk density for sand,

silt and clay, to get the gravimetric water content (Row

3). In Row 4 the last part of the thermal conductivity

model is listed with the input of the bulk density.

3 Results and discussion

Although, EC as well as TC are depending on the same

soil properties, a direct correlation between both

conductivities is not possible. For one soil type or a

group of similar soil types there are valuable

approaches (Singh et al. 2001; Tokoro et al. 2016;

Sun and Lü, 2019), but a single correlation for the

whole spectrum of soil types seems impossible. To

face this challenge, within this study a mediate relation

between EC and TC was introduced, without a need of

any further information.

0,50

0,75

1,00

1,25

1,50

1,75

2,00

0,25 0,50 0,75 1,00 1,25 1,50 1,75 2,00 2,25

Ca
lc

ul
at

ed
 T

C 
(W

/(
m

*K
))

Measured TC (W/(m*K))

sand

silt loam

clay

Fig. 4 Comparison

between measured and

calculated TC of sand, silt

loam and clay samples [W

(m*K)-1]. TC values of

appropriately compacted

soil mixtures in a nearly dry

until full saturated state. Red

arrows display bounds at the

soil type depending EC

segmentation boundaries

y = 4,6015x + 1,3362
R² = 0,6013

y = 0,9565x + 1,1683
R² = 0,3913

1,0

1,1

1,2

1,3

1,4

1,5

1,6

1,7

1,8

0,00 0,05 0,10 0,15 0,20 0,25

M
ea

su
re

d 
bu

lk
 d

en
sit

y 
(g

/c
m

³)

Electrical conduc vity (S/m)

sand

silt loam

clay

Fig. 3 Comparison of the

measured bulk density and

the measured EC (sand, silt

loam and clay)

123

Geomech. Geophys. Geo-energ. Geo-resour. (2020) 6:50 Page 7 of 16 50



Due to the significant correlation between EC and

soil water content (R2 = 0.95), it is straightforward to

determine water content for implementation in the TC

model. Nevertheless, a soil type depending correction

factor was added for improving this correlation.

However, it must be considered that the correction

factor for clay is not significant. Although, the

correlation coefficient is not definite, it improves the

already significant correlation between EC and soil

water content slightly. Hence, the correction factor for

silt loam should be applied but the factor for clay is not

imperatively required.

The relation between EC and bulk density is only

obvious for a single soil type (R2 = 0.5) and even then,

it is not as significant as the correlation with water

content (Bertermann and Schwarz 2018). Due to

overlapping bulk density ranges it is not characteristic

for each soil type. Under certain conditions like full

saturation and considering single values bulk density

might be more soil type characteristic (Bertermann

et al. 2018) but by declaration of bulk density ranges

from a loose to a more compacted state this is not true

anymore. Hence, a direct correlation regarding bulk

density is unpromising and must be bypassed for

instance by applying different separation ranges. The

segmentation, as applied within this study includes

electrical resistivity ranges that are continuous (clay

0–20; silt 20–100; sand[ 100 Ohm�m) and they are
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corresponding to a medium soil moisture around field

capacity. A continuous cover of electrical resistivity or

rather EC is mandatory for a general EC based

calculation.

For verifying the introduced approach, the calcu-

lated TC was compared to the measured values

(Figs. 4? 5). In Fig. 4 all in the laboratory determined

values, besides the very low-density measurements of

the first pressure load, are used (Tables 1, 2, and 3). It

displays, that there are some distinct differences

(average difference = 0.31 W (m*K)-1) between the

calculated and the measured values. TC of clay with

low water content is overpredicted and TC for pure

sand is too conservative. However, for soils with a fine

grain fraction and a medium water content range, TC

is fitting well.

Since, values of investigated soil sample mixtures

with very high and very low water contents were

considered, EC of one soil type is not limited to the

related EC separation range causing bounds within the

data of one soil type itself. This issue is obvious

regarding the silt and clay data (red arrows in Fig. 4).

For this reason, the delineation of ‘natural conditions’

according to Bertermann and Schwarz (2018) was

applied. This implies that only soil mixtures with a

saturation appropriate to their characteristic field

capacity range were concerned (Fig. 5). This is in

accordance with the soil type depending separation

ranges since these segmentations are also suggested

for soil with a moisture around field capacity. With

this field capacity constraint the result is improved

evidently. Nevertheless, this bound at a relatively high

level of water content (& 28%) within the range of the

silty soil remains and depicts the segmentation

boundary between silt and clay (red arrow, Fig. 5).

This offset is caused by the mismatch between the soil

type depending separation ranges defined by EC and

the applied field capacity extent defined by water

content ranges.

Apparently, also these three separation ranges must

be applied cautiously. The correction used for the

computed water content and the determination of bulk

density are both based on the three main soil type

segmentations for sand, silt, and clay. These three soil

types are defining rigid boundaries in the range of

gradual increasing or decreasing grain sizes. On the

one hand side the used segmentation implements an

easy to handle and reasonable soil type differentiation,

but on the other hand there are always soil types

traversing these boundaries. For softening those

boundaries investigations with focus on a broader

data pool concerning different soil types could enable

more precise corrections. But within this concept also

the application of more soil types might be difficult

due to an indistinct soil type depending EC attribution.

It should be noted, that the effect of the mentioned

boundary issue mainly arises from the rough deriva-

tion of bulk density, since the relation between EC and

water content is a profound direct correlation (Fried-

man 2005; McCutcheon et al. 2006; Bertermann and

Schwarz 2018) where just the correction factors are in

dependence of this segmentation.

To display the difficulties regarding a soil type

independent relation between EC and TC the results of

this study were compared with the approach of Wang

et al. (2017) (Fig. 6). There, a similar idea of an inlet

parameter restriction was introduced but a conclusion

was, that there is no obvious relation to soil gradation.

By applying the calculation by Wang et al. (2017) the

results for all three investigated soil types are divided

in three domains. The results for silt loam are

matching most with the measured TC values. The

clay and sand domain are deviating significantly more

than the TC values determined by the mediate relation

introduced within this study. Thus, an approach taking

a soil type depending differentiation into considera-

tion is worthwhile.

In this case, volumetric water content and bulk

density are provided to calculate thermal conductivity

by applying the Kersten (1949) model. These basic

parameters can be used similarly for applying one of

many other thermal conductivity models (Johansen

1975; Campbell et al. 1994; Tarnawski et al. 2000;

Côté and Konrad 2005; Lu et al. 2014; Markert et al.

2017; Yan et al. 2019). However, for most other

methods a precise grain size distribution is necessary,

which cannot be determined by solely using the

measured electrical conductivity. Besides the two

mentioned inlet parameter also other relevant param-

eter could be considered. Regarding the TC of soil

there are other relevant parameters like the amount of

quartz (Usowicz et al. 2017), organic matter or the

quality of grain contact. But while focusing the

relation between EC and TC it needs to be considered

how each particular parameter can be derived from

EC. Moreover, bulk density covers the aspect of the

grain contact quality already to some extent.
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Due to the lack of accuracy regarding the determi-

nation of bulk density a TC model with a low emphasis

on bulk density should be preferred. Furthermore, it

should be considered, that TC models also might have

a focus on special soil types and with that they are not

generally applicable (Dong et al. 2015, Wang et al.

2020). For instance, the calculation model introduced

by Bi et al. (2018) has a selective scope on fine-grained

soils and the study of Xu et al. (2020) was focused on

silty clay. But within future investigations, regarding

such a mediate relation between EC and TC, other

thermal conductivity models should be kept in mind,

although the Kersten (1949) model is still common

(Tokoro et al. 2016).

The application of data measured with similar

laboratory setups (Barry-Macaulay et al. 2013; Gior-

dano et al. 2013; Liu et al. 2013) could enable more

insights. For an intended data comparison, a sufficient

amount of elaborated soil material to avoid edge effects

as experienced by Kaufhold et al. (2014) or Kowalczyk

et al. (2014) should be considered. Both used inlet

parameters, water content and bulk density, are soil

depth-depending (Bertermann et al. 2014). Thus, on

this concept an additional application of different soil

depth ranges may be imprinted prospectively.

It must be concerned, that these outcomes are only

true for common soil or unconsolidated sediments.

The influence of soil organic matter is not included.

And it is not tested for other porous materials like

construction materials or artificial modified soils.

Furthermore, the results are not transferable to frozen

soil conditions. For frozen soil also Kersten (1949) or

another TC model (e.g. Tian et al. 2020b) could be

utilized. By applying EC within such a concept, it has

also to be considered, that these findings were

developed for normal unsaturated freshwater condi-

tions. For studies within salt water or brackish water,

the results of ERT measurements have to be adapted

(Ronczka et al. 2017; Dahlin and Loke 2018). With the

influence of groundwater, soil thermal properties

would differ, accordingly (Jiang et al. 2016).

By applying the presented concept, ERT measure-

ments bring also worthwhile results to the table, with

regard to investigations of shallow geothermal sys-

tems or high voltage underground cable surroundings.

Deploying this non-invasive method for TC determi-

nation, a validation of assumptions for modelling heat

transfer processes or heat extraction rates is possible.

As tested by Fragkogiannis et al. (2010), an approach

as described within this study may prospectively be an

alternative to thermal response tests (TRT) for shallow

geothermal systems.

However, further investigations of a wide variety of

soil types should help to improve the in this study

treated mediate relation between EC and TC, for

example in terms of an upgraded determination of the

inlet parameters.

4 Conclusion

Within this study an empirical mediate correlation

concept between a measured EC and a derived TC was

investigated by the help of laboratory soil sample

measurements. This suggested approach may be one

way to bypass the complication of a direct correlation

between EC and TC. In this case, bulk density, water

content, EC and TC was analysed upon a huge sample

volume (& 63 l) to avoid edge effects of the EC

measurement. To consider a wide spectrum of grain

size distributions, three different soil types (sand, silt

loam and clay) were examined.

The concept declares no direct correlation between

EC and TC, but a relation with a detour through a TC

model. The Kersten (1949) TC model is applied due to

the few inlet parameters, which must be defined in

advance. Thus, water content and bulk density must

firstly be derived from EC and secondly inserted in the

TC model. The correlation between EC and water

content is significant and generally accepted, but the

relation between EC and the bulk density is rough.

Thereby, it is easy to optionally integrate existing

water content or bulk density information within the

second step.

This mediate correlation between EC and TC can

help to deploy ERT measurements within soil thermal

conductivity issues. It could allow the verification of a

pre-defined heat extraction rate for shallow geother-

mal systems or of thermal conductivity arrangements

around high voltage underground cables.

Within future investigations also other TC models

can be evaluated. The divergences of the calculated

TC to the measured ones are good enough for an initial

assessment. But the results also reflect the difficulties

of the correlation between EC and TC and the need of

soil type depending input, mainly regarding the bulk

density. Within the introduced concept the soil type

depending input is implemented in form of three
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different EC segmentation ranges, which causes some

boundary issues. But on the other hand, it is an

approach for a wide spectrum of soil types.
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Appendix

See Tables 1–3.

Table 1 Measured and calculated values regarding water content, bulk density and thermal conductivity as well as the temperature,

EC25 and field capacity range of the investigated sand sample (measured values form Bertermann and Schwarz 2018)

EC25 Field

capacity

rangea

Measured

water

content

(Vol. %)

Calculated and

corrected water

content (Vol.%)

Measured

bulk

density

(g cm-3)

Calculated

bulk

density

(g cm-3)

Measured

thermal

conductivity

(W (m*K)-1)

Calculated

thermal

conductivity

(W (m*K)-1)

Temperature

(�C)

0.00037 Sand 4.22 4.62 1.41 1.40 0.75 0.82 19.34

0.00039 4-11 2.88 4.71 1.45 1.40 0.71 0.83 19.23

0.00039 Vol.% 2.24 4.68 1.42 1.40 0.59 0.83 19.12

0.00040 2.48 4.73 1.41 1.40 0.72 0.83 19.23

0.00041 2.04 4.78 1.44 1.40 0.82 0.83 19.24

0.00057 2.51 5.36 1.39 1.40 0.51 0.87 18.87

0.00058 1.51 5.39 1.46 1.40 0.64 0.87 19.00

0.00080 1.98 6.00 1.49 1.40 0.65 0.91 18.94

0.00134 7.09 7.16 1.40 1.40 1.20 0.97 18.93

0.00163 6.52 7.66 1.43 1.40 1.35 0.99 18.95

0.00177 6.52 7.88 1.45 1.40 1.37 1.00 18.92

0.00223 10.25 8.53 1.40 1.40 1.37 1.02 18.90

0.00213 9.42 8.39 1.44 1.40 1.38 1.02 18.85

0.00250 9.18 8.87 1.45 1.40 1.57 1.04 18.86

0.00307 10.58 9.51 1.40 1.40 1.48 1.06 19.44

0.00314 8.96 9.58 1.44 1.40 1.54 1.06 19.38

0.00303 9.17 9.46 1.45 1.40 1.50 1.06 19.37

0.00267 9.34 9.07 1.36 1.40 1.42 1.04 19.45

0.00317 10.27 9.61 1.42 1.40 1.46 1.06 19.42

0.00298 9.21 9.41 1.45 1.40 1.69 1.06 19.36

aField capacity ranges are according to Bertermann et al. (2014)
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Table 2 Measured and calculated values regarding water content, bulk density and thermal conductivity as well as the temperature,

EC25 and field capacity range of the investigated silt loam sample. (measured values from Bertermann and Schwarz 2017)

EC25 Field

capacity

rangea

Measured

water

content

(Vol. %)

Calculated and

corrected water

content

(Vol. %)

Measured

bulk

density

(g cm-3)

Calculated

bulk

density

(g cm-3)

Measured

thermal

conductivity

(W (m*K)-1)

Calculated

thermal

conductivity

(W (m*K)-1)

Temperature

(�C)

0.00533 Silt loam 9.26 11.48 1.32 1.40 0.29 1.12 18.64

0.00739 14–36 8.60 12.84 1.34 1.40 0.31 1.16 18.59

0.00765 Vol.% 8.99 12.99 1.42 1.40 0.77 1.16 18.56

0.00765 9.52 12.99 1.33 1.40 0.68 1.16 18.35

0.01010 10.66 11.10 1.40 1.38 1.01 1.09 18.33

0.01183 11.23 12.24 1.40 1.39 1.18 1.13 18.34

0.01180 12.83 12.23 1.25 1.39 0.99 1.13 19.15

0.01495 14.36 14.14 1.43 1.40 1.08 1.20 19.03

0.01797 14.68 15.81 1.41 1.42 1.24 1.26 18.94

0.01452 15.33 13.89 1.35 1.40 1.11 1.19 18.60

0.01827 16.89 15.98 1.39 1.42 1.28 1.26 18.45

0.02019 18.34 16.97 1.47 1.43 1.44 1.30 18.59

0.01546 14.41 14.43 1.39 1.41 1.12 1.21 18.61

0.02339 15.83 18.56 1.45 1.44 1.46 1.35 18.62

0.02553 16.66 19.58 1.61 1.45 1.67 1.39 18.50

0.02012 18.55 16.94 1.41 1.43 1.24 1.30 18.05

0.02695 21.82 20.23 1.55 1.46 1.56 1.41 17.92

0.02943 21.01 21.35 1.60 1.47 1.70 1.45 17.81

0.03639 23.82 24.32 1.48 1.50 1.46 1.56 16.82

0.04496 28.93 27.73 1.55 1.54 1.74 1.69 16.88

0.05148 27.82 21.55 1.61 1.22 1.86 1.06 16.70

0.05054 29.20 21.36 1.46 1.22 1.74 1.05 16.74

0.05599 31.70 22.43 1.58 1.22 2.19 1.07 16.65

0.05830 30.86 22.86 1.69 1.22 2.25 1.08 16.60

0.06868 40.10 24.71 1.55 1.23 1.99 1.11 17.69

aField capacity ranges are according to Bertermann et al. (2014)
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Table 3 Measured and calculated values regarding water content, bulk density and thermal conductivity as well as the temperature,

EC25 and field capacity range of the investigated clay sample (measured values from Bertermann and Schwarz 2018)

EC25 Field

capacity

rangea

Measured

water

content

(Vol. %)

Calculated and

corrected water

content

(Vol. %)

Measured

bulk

density

(g cm-3)

Calculated

bulk

density

(g cm-3)

Measured

thermal

conductivity

(W (m*K)-1)

Calculated

thermal

conductivity

(W (m*K)-1)

Temperature

(�C)

0.01044 Clay 10.91 11.33 1.21 1.38 0.27 1.10 20.17

0.01599 28-41 14.04 14.73 1.20 1.41 0.28 1.22 20.11

0.02322 Vol.% 16.28 18.48 1.22 1.44 0.41 1.35 20.08

0.02479 17.18 19.23 1.20 1.45 0.35 1.38 19.72

0.04461 18.22 27.60 1.31 1.54 0.50 1.69 19.71

0.05926 19.24 23.04 1.32 1.22 0.63 1.08 19.65

0.03451 17.85 23.54 1.17 1.49 0.43 1.53 19.37

0.05465 18.97 22.17 1.26 1.22 0.57 1.07 19.35

0.05953 19.79 23.09 1.28 1.23 0.79 1.08 19.43

0.04058 19.74 26.02 1.17 1.52 0.52 1.63 20.07

0.06483 20.36 24.05 1.20 1.23 0.65 1.10 20.14

0.08794 22.71 27.79 1.26 1.25 0.79 1.17 19.99

0.05235 23.54 21.72 1.13 1.22 0.59 1.06 19.64

0.09194 25.91 28.39 1.28 1.26 0.76 1.18 19.59

0.12230 26.29 32.53 1.32 1.29 0.89 1.26 19.58

0.07977 23.41 26.53 1.13 1.24 0.62 1.15 19.58

0.11596 25.38 31.71 1.21 1.28 0.84 1.25 19.45

0.15106 28.14 36.01 1.32 1.31 1.06 1.34 19.36

0.11351 27.66 31.39 1.08 1.28 0.71 1.24 18.79

0.17850 29.64 39.06 1.25 1.34 1.00 1.41 18.80

0.21277 30.85 42.58 1.37 1.37 1.28 1.50 19.00

0.05821 28.61 22.85 1.16 1.22 0.82 1.08 19.64

0.09582 31.28 28.95 1.31 1.26 1.04 1.19 19.63

0.12507 32.46 32.88 1.37 1.29 1.30 1.27 19.65

0.07652 30.74 26.02 1.18 1.24 0.69 1.14 19.63

0.12766 33.38 33.21 1.30 1.29 1.20 1.28 19.58

0.16304 37.57 37.37 1.43 1.32 1.44 1.37 19.52

0.07810 33.72 26.27 1.19 1.24 0.76 1.14 18.63

0.14087 38.66 34.82 1.36 1.30 1.33 1.31 18.52

0.15298 39.35 36.23 1.44 1.31 1.49 1.34 18.48

0.17638 42.58 38.83 1.28 1.34 1.32 1.40 19.21

0.17254 45.22 38.42 1.35 1.33 1.39 1.39 19.19

0.17196 43.88 38.35 1.37 1.33 1.39 1.39 19.01

0.17942 49.80 39.16 1.33 1.34 1.27 1.41 19.41

0.18830 48.95 40.09 1.32 1.35 1.34 1.43 19.32

aField capacity ranges are according to Bertermann et al. (2014)
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