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Abstract An artificial neural network (ANN) is an

artificial intelligence technique in which performance

can be improved by adapting to the changes in the

environment. The efficient manipulation of large

amounts of data and the ability to generalize results

are the main advantages of neural networks. Consider-

ing the advantages of this technique, this present paper

aims to perform a comparison between linear methods

like Multivariate Regression Analysis (MVRA) and

different ANN techniques such as back propagation

with regression analysis (BPNN), layer recurrent neural

network (LRNN), generalized regression neural net-

work (GRNN) and radial basis neural network (RBNN).

This comparison was performed to predict the approx-

imate values of Langmuir volume constant (LVC) and

Langmuir pressure constant (LPC) for CO2 adsorption

in coal using proximate and maceral properties of

India’s major coalfield as input parameters. It is found

that RMSE value for RBNN is least followed by

GRNN, LRNN, BPNN and MVRA for both LVC and

LPCmodels. Based on the best network, it is found that

coal seams from Narayankuri coal mine has highest

adsorbing capacity of CO2 (0.0019791 mol/gm) as

compared to other coal seams of this study.

Keywords ANN � Sequestration � CO2 � Gondwana
coals � Langmuir volume constant � Langmuir pressure

constant

1 Introduction

Coalbed methane (CBM) production with CO2 injec-

tion combination is presently a worldwide topic of

research and studies. The role of CO2 injection is not

only to enhance CBM production (ECBM) but also in

subsurface storage of huge amount of CO2 which are

contributing in reduction of greenhouse gas percent-

age in atmosphere. Storing CO2 in deep unminable

coal beds has become one of the promising technolo-

gies of geological sequestration (Busch and Gen-

sterblum 2011).

The entiremethane gas in aCoalbedMethane (CBM)

reservoir is stored into the micropores and cleats within

the coal matrix in adsorbed form. For enhance purpose,

the CO2 captured is being injected into the subsurface

coal beds which get adsorb to the coal pores surfaces.

CO2 can move in the finest pores and adsorb to the coal

at a near-liquid density firmly with nominal chances of

being released lately. (Krooss et al. 2002). Coal has

higher affinity to CO2 gas. Thus, CO2 replaces adsorbed

methane from the coal, accelerating methane recovery

inECBMprocess. Therefore, CO2 for ECBM is a value-

added selection. Although, relative sorption affinity of

coal tomethane andCO2 is the primary parameter factor
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which is needed to be consider for site suitability

analysis of CO2–ECBM (Dutta et al.,2011). A good

understanding ofmethane andCO2 sorption behavior on

coal is an underlying requirement for the estimation of

methane recovery and CO2 storage capacity of a coal.

In coal matrix, mainly the CO2 storage occurs by

physical sorption (e.g. Harpalani and Chen 1997).

There are many factors that are need to be considered

for understanding the complexity of the interaction of

CO2 with coal in the cleat system and the coal matrix.

Different aspects like moisture, volatile matter per-

centage, Ash content, depth of coal formation,

Liptinite, Inertinite, Mineral Matter etc. that are

obtained from the laboratory are minimum require-

ment to deal with CO2 adsorption selectivity.

During CO2-ECBM processes, the injected CO2

flows through network of cleats by a complex mech-

anism of sorption/diffusion process (Mazzotti et al.

2009). It gets adsorb to the coal inner surface by

replacing CH4 from the walls. This replacement occurs

due to (1) by a reduction of the CH4 partial pressure or

(2) by a higher selective sorption of CO2 over CH4.

Concentration gradient between CH4 in the matrix

compared to the cleat system, results CH4 to diffuse

from the coal matrix into the cleat system where, by

pressure drawdown towards a production well, it is

produced.

Many methods have been put up to model sorption

isotherms on coal and Langmuir isotherm is among

such simple methods. Langmuir isotherm is used to

quantify the amount of gas adsorption on an adsorbent

as a function of partial pressure or concentration at a

certain temperature. The Langmuir volume constant

and Langmuir pressure constant are the two constant

that define the Langmuir isotherm model. It is well

known approach in the ECBM industry and related

reservoir simulations. It provides a reasonable fit to

most experimental data:

nads ¼
VL � p
PL þ p

Here VL is the Langmuir volume, representing the

amount of gas sorbed at infinite pressure and PL is the

Langmuir pressure (Fig. 1), equivalent to the pressure

at which half of the Langmuir volume VL is reached

(Crosdale et al. 1998a, b).

The adsorption of CO2 in coal beds can be explained

by the variation in Langmuir volume and Langmuir

pressure constants (for CO2). These two constant

parameters help in determining of CO2 adsorption

tendency in coals. Generally it has been seen that the

coal with higher Langmuir pressure constant value

shows very high sorption capacity in low pressure

range. It was observed that the adsorption isotherms of

the coals if are steadily increasing and remain under-

saturated within the experimental pressure range then

these coals have comparable or even higher Langmuir

volume constant.

This paper has a linear and nonlinear mathematical

models likeMultivariate regression analysis (MVRA),

Artificial Neural Network (ANN), Radial Bias neural

network (RBNN), and Layer Recurrent method which

are used to calculate Langmuir constants (for CO2)

using coal proximate and macerals properties like

moisture, volatile matter, ash content, fixed carbon

composition, vitrinite, semi-vitrinite, liptinite, iner-

tinite, mineral matter, mean and depth (Dutta et al.

2011). These parameters are taken as input parameters

for these mathematical models. The main objective of

this study is to develop intelligent models to calculate

coal having best adsorption capacity towards CO2 gas

for ECBM process.

2 Study area and data set

A previous study is the source of this study data set

(Dutta et al. 2011). Fourteen coal samples were

taken from the India’s major coal mining and CMB

exploration activity regions. Eight samples are from

the Raniganj coalfield, four samples are from the

Jharia coalfield, and the remaining two are from the

South Karanpura Coalfield (Fig. 2). Dry samples are

the source for analysis. The residual moisture of

samples is being represent by the moisture content

of a coal sample. The ash content is high in the

samples which strongly reduces the adsorption of a

coal for CO2 gas. It is found out that the Raniganj

formation coals have higher moisture content and

lower ash content than other samples. 32–45 % of

Volatile matter content has been found out in the

coal samples. Other parameters like carbon per-

centage, Liptinite and Inertinite which are helping

in knowing organic percentage in coal etc. have

also been obtained from experiments to understand

sorption capacity of coal for CO2 gas (Verma and

Sirvaiya 2015) (Table 1).
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Fig. 1 Typical langmuir volume and pressure curve

Fig. 2 Location of coal

samples from coalfields in

India (Dutta et al. 2011)
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3 Multivariate regression analysis

Multivariate regression analysis is a statistical method

used in estimation the relationship between a depen-

dent variable and one or more independent variables

(Alexopoulous 2010). It comprises of many technique

for analysis and modelling of the dependent and

independent variables. In other words, the regression

analysis purpose it to calculate Y on the basis of X or

to define the dependency of Y on X i.e.

X1; X2; . . .;Xk ) Y

The Xi (X1, X2, …, Xk) are ‘‘independent’’ variable,

while Y is a ‘‘dependent’’ variable.

A Linear regression is made to estimate the

coefficients of the linear equation which are involving

one or more independent variables so that best

prediction of the value of the dependent variable can

be made quantitatively.

In the multivariate linear regression model, Y has

normal distribution with mean

Y ¼ b0 þ b1X1 þ � � � þ bqXq þ r �ð Þ

The parameters b0 þ b1 þ � � � þ bq and r are esti-

mated from data.

b0 ¼ intercept

b1. . .bq ¼ regression coefficients

r ¼ rres ¼ residual standard deviation

In the equation Y ¼ b0 þ b1X1 þ � � � þ bqXq; b1 is
the mean increase in Y per unit increase in Xi, when

other Xi’s are kept fixed. In general, bi is influence of
Xi corrected (adjusted) for the other X’s. This

estimation method follows the least squares criterion.

If b0, b1, …, bq are the estimates of b0, b1, …, bq
then the ‘‘fitted’’ value of Y is

Yfit ¼ b0 þ b1X1 þ � � � þ bqXq

The b0, b1, …, bq are computed such that

R(Y - Yfit)
2 to be minimal. Since (Y - Yfit) is called

the residual; one can also say that the sum of squared

residuals is minimized.

4 Back propagation neural network

To develop the understanding on functioning of

human brain and desire of building a machine that

can capable for solving complex problems has result in

Artificial neural network. It function as similar to a

human brain works and architecture is complex like

any human neural network. Neural network are used to

learn from the large data set.

ANN consists an input layer, output layer/Target

layer and one or more hidden layers (Cilimkovic 2015;

Santos et al. 2013). Input Layer, hidden layers and

output layers or Target layer are connected to each other

by nodes. Number of hidden layers and nodes vary from

the require training and result required. Every connec-

tion has some weight associated with them. Input

parameters whose value remain same throughout the

network are assigned to input layer. Hidden layer accept

the data from input layer which are send down to the

nodes in hidden layer. Hidden layer uses input values

from input layer and modify them using some weight

value and then new values are transferred to the output

layer where it also modify by some weight from

connection between hidden and target layer. Target

layer process the values from the hidden layer and

produce new values called as output. After that, these

output are processed by activation function to give the

results. The nonlinearity is introduce by the activation

function. There are three types of activation function (1)

linear function (2) threshold function and (3) sigmoid

function. In this paper we have use sigmoid activation

function. The architecture can be seen in following

figure.

Output ‘y’ can be calculated, if each neuron has x

inputs by equation

y ¼ f
Xn

i¼1

wi � xi þ bð Þ
 !

where xi are the ith input, wi are the ith weight, b is the

bias and f is the activation function for the neuron.

The new information to be obtain was get only

when the network is being trained. In this paper we

have use back propagation algorithmwhich is the most

robust and versatile technique in all algorithm. It

results in efficient learning method for multilayer

perception (MLP) neural networks.

When the received inputs are forwarded through the

all others next layer to obtain the output then it is

known as feed forward back-propagation neural

network (BPNN). The learning capability of back

propagation networks depend upon the internal map-

ping of the characteristic signal features in the process
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of network training onto the hidden layer. The stored

mappings in this layer during the training phase of the

network gets automatically retrieved during its appli-

cation phase.

When the network is trained, data processed from

input to hidden layer and hidden to output layer. At

output layer, the output is compared to the measured

values (target values) and the error is processed back

through the network by updating weights and biases of

distinct neurons. The network is trained until mini-

mum network error is reached (Verma and Sirvaiya

2015). The error is calculated from root mean square

error (RMSE).

In the paper, transfer function are nonlinear

sigmoid function (LOGSIG, TANSIG) and linear

function (POSLIN, PURELIN). The logarithmic sig-

moid function (LOGSIG) is defined as

f ¼ 1

1þ e�ex

whereas the tangent sigmoid function (TANSIG) is

defined as [7]

f ¼ eex � e�ex

eex þ e�ex

where ex is the weighted sum of the inputs for a

processing unit.

The sample values of proximate and macerals

parameters are taken as input data and sample values

of Langmuir volume constant and Langmuir pressure

constant of CO2 are consider as target data (Table 2;

Fig. 3).

5 Generalized regression neural network

AGeneralized Regression Neural Network (GRNN) is

a variation of the radial basis neural networks which

does not require an iterative training procedure like

back propagation networks needed (Hannan et al.

2010). Hidden or kernel regression networks is a basis

of GRNN. Any arbitrary function between input and

output vectors are approximated by GRNN. As the

training set seize tends to a higher value, the function

estimation error approaches to zero, with minor

constraints on the function.

GRNN has input layer, pattern layer, summation

layer and output layer as in figure The number of the

observation parameters define number of input units.

In Pattern layer each neurons presents training pattern

and output from the layer. Summation layer is next to

the pattern layer. Summation layer with the output

layer perform a normalization of output set. Radial

basis and linear activation functions are used in hidden

and output layers while training the network. The

structure of GRNN is shown in Fig. 4.

The predicted value Y’i generated from an

unknown input vector x can be given by equation:

Y 0
i ¼

Pn
i¼1 yi � exp �D x; xið Þð ÞPn

i¼1 exp �D x; xið Þð Þ ;

Table 2 Ranges of the input and output parameters used to

develop intelligent models

Parameters Unit Range SD

Input

Moisture % 0.5–70 2.26

Volatile matter % 32–45 3.44

Ash % 10–48 9.92

Fixed carbon % 18.2–45 6.92

Vitrinite % 0.2–86.1 32.90

Semi-vitinite % 0–2.30 0.73

Litinite % 0–12.8 4.56

Intertinite % 5.5–64.6 22.31

Mineral matter % 4.5–81.2 20.37

Mean Ro % 0.61–1.94 0.35

Depth M 46–996 309.25

Target

Langmuir volume constant mL/gm 18–89 20.5

Langmuir pressure constant kPa 0.8–2.732 0.66

Fig. 3 A schematic diagram of neural network
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D x; xið Þ ¼
Xm

k¼1

xi � xik

r

� �2

where yi is the weight connection between the ith

neuron in the pattern layer, n is the number of the

training patterns, D is the Gaussian function, m is the

number of elements of an input vector, xk and xik are

the jth element of x and xi, respectively.

6 Radial basis neural network

RBF networks are similar to generalized regression

neural networks. In generalized regression neural net-

works, there have one neuron for each point in the

training file, whereas RBF networks have a variable

number of neurons. These number of neuron in RBF is

usually much less than the number of training points

(Hannan et al. 2010).

RBFN comprises three layers (1) an input layer (2)

hidden layer and (3) an output layer. All the layers are

fully connected by the nodes. The input layer has

assigned input parameters, and hidden layer neurons

comprise Gaussian transfer functions which is used as

radial basis function. The outputs from hidden layer are

inversely proportional to the distance from the center of

the neuron. Input Layer are direct to the hidden layer

without any weights. The transfer function used is RBF

which is symmetrical about a given mean or center

point in a multidimensional space. The number of

hidden nodes with RBF activation function in RBFN

are connected in a feed forward parallel architecture.

The optimization of the parameters associated with the

RBF occurs in network training.When training network

are accurately assumed then linear combination of

RBFs can give no error at the training vector. This

fitting of RBFs to data for function approximation is

closely related by distance weight regression.

Moody and Darken (1989) has given a radial neural

network in which they have selected exponential

activation function for their radial basis function

networks. The exponential activation function is

similar to the Gaussian density function centered at ci.

Fi ¼ exp � xi � cij jj j2

r2i

 !

where the function spread (ri) around the centre finds

the ratio of the function decay with its distance from

the centre. Spread constant value should be selected

small enough in order to restrict the basis function

spreading (Palit and Popovic 2005).

7 Layer recurrent neural network

A layer recurrent neural network (LRNN) is that type of

artificial neural network where connections between

units formadirected cycle. This results in an internal state

of the network which permits it in exhibiting dynamic

temporal behavior. In this network bi-directional data

flow occurs. RNNs use their internal memory to process

arbitrary sequences of inputs which is different from

feedforward neural networks. There are feedback con-

nections between units of different layers in RNN. This

explain that the dependency of output of the network on

both external inputs as well as on the state of the network

in the previous time step as shown in Fig. 5. The model

explain full feedback employment and interconnections

between all nodes. Advantages like the capability to

retain values from previous cycles of processing, which

can be used in current computations allows RNNs to

produce complex, time varying outputs in response to

simple static inputs (Nkoana 2011).

8 Result and discussion

8.1 Multivariate regression (MVRA) analysis

to predict LVC and LPC

The macerals parameters are taken as ‘y’ variable

(independent variable) and LVC/LPC are taken as ‘x’

Fig. 4 A schematic diagram of generalized neural network
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variable (dependent variable) to develop MVRA

model. A correlation has been generated for each

Langmuir constant with the given macerals paramters

(Moisture, Volatile matter, Ash, Fixed carbon, Vitri-

nite, Semi-vitinite, Litinite, Intertinite, Mineral mat-

ter, Mean Ro% and Depth).

Multivariate linear equation for each LVC and LPC

are obtained. The equations are :

LVC ¼ 4:553826842 � mð Þ þ 0 � vð Þ
þ �0:627388513 � að Þ þ 1:345670812 � fð Þ
þ 2:603845223 � kð Þ þ 17:11085324 � sð Þ
þ 2:997470493 � lð Þ þ 1:931219754 � ið Þ
þ 3:490123182 � zð Þ þ 22:0153635 � wð Þ
þ �0:030223317 � dð Þ

And

LPV ¼ 0:119074233 �mð Þ þ 0 � vð Þ
þ � � 0:039505654 � að Þ þ 0:030893488 � fð Þ
þ 0:090233506 � kð Þ þ 0:404806961 � sð Þ
þ 0:09012357 � lð Þ þ 0:084394968 � ið Þ
þ 0:112784163 � zð Þ þ �0:213303844 � wð Þ
þ �0:000263957 � dð Þ

8.2 Artificial neural network (ANN)

Several researchers have used ANN to predict rock

parameters like oil flow rate of reservoir, permeability,

dynamic elastic constants, compressive strength, creep

parameters, ground vibration etc. (Tahmasebi and

Hezarkhani 2012; Ahmadia et al. 2013; Verma and

Singh 2013; Singh and Verma 2010; Verma and Singh

2009; Singh and Verma 2011).

In this paper, different type of neural network are

considered to predict LVC and LPC governing the

nature of Langmuir isotherms which associate the

adsorption of carbon dioxide gas molecules on a coal

surface to gas pressure or concentration at a fixed

temperature. The architect of all different neural

network are optimally optimized.

ANN application has some issues also and the

most common one is to define optimum number of

hidden layers, the number of neurons in these hidden

layers, functional relations between input and output

parameters, learning algorithm and avoiding over-

fitting. So, different neural network has been consid-

ered in study and a simulation has been done on the

same problem.

The RMSE method has been used to determine the

optimal model parameters. The RMSE is more

sensitive to the larger relative errors which are

resulted due to the low valued so that it offers a

balanced evaluation of the goodness of fit of the

model. The perfect model will have a RMSE value

approaching to zero. The formula for determining the

RMSE is:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Oi � Tið Þ2

N

s

where, Ti is measured output (Target),Oi is the

predicted output and N represent the number of

input–output data pairs.

Fig. 5 A simple recurrent

network
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8.2.1 Backpropagation feed forward neural network

(BPNN)

To determine the optimal architecture, two and three

hidden layer in network has been considered for

carrying out parametric simulation. In each hidden

layer, number of neurons has been changed to

determine the optimum model based on minimum

value of RMSE. The 80 % dataset is used for training,

10 % for validation and 10 % for testing. The network

with architecture 11–15–10–2 with transfer function

‘logsig–logsig-purelin’ has been found to have the

minimum RMSE of value 0.0022 (Fig. 6; Table 3).

8.2.2 Generalised regression neural network (GRNN)

The generalized regression neural network is consid-

ered and input parameters are assigned to input data

and measured LVC and LPC value are assigned to

target data. Input has been simulated with different

spread constant of 1, 5, and 10. The outputs are

obtained and RMSE value has been calculated from

obtained output to study the optimum of the network.

The network view for generalised neural network is as

follows (Fig. 7; Table 4).

8.2.3 Radial basis neural network (RBNN)

The radial basis network is considered and input

parameters are assigned to input data and measured

LVC and LPC value are assigned to target data. Input

has been simulated with different spread constant of 1,

10, and 100. Output for both Langmuir isotherm

constant has been obtained. There is no change in

output with the change in value of spread constant.

The network view for radial basis neural network is as

follows (Fig. 8).

Fig. 6 Optimum ANN Network with typical feed-forward back propagation

Table 3 Comparison of the different ANN architecture based

on RMSE values

S. no. Transfer function Model RMSE

1. Tansig-purelin 11-7-2 3.4058

2. Tansig-purelin 11-20-2 3.0854

3. Logsig-purelin 11-20-2 2.7874

4. Tansig–tansig-purelin 11-15-5-2 0.3633

5. Logsig-logsig-purelin 11-15-10-2 0.0022

6. Logsig-poslin 11-15-2 6.2289

7. Tansig-tansig-purelin 11-7-15-2 1.5198

8. Tansig-tansig-poslin 11-15-20-2 4.1952

9. Logsig-logsig-purelin 11-10-5-2 0.7368

10. Tansig-logsig-purelin 11-10-20-2 4.8785

Fig. 7 Optimum GRNN

network
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8.2.4 Layer recurrent neural network (LRNN)

Input data are simulated with different training function

and adaption learning function in Layer recurrent

neural network. The training function considered are

TRAINLM, LEARNGDM and TRAINLM whereas

adaption learning function considered are LEARNGDM

and LEARNGD. The performance function is MSE.

The number of Layers are 2 with 15 neuron in 1st Layer

and transfer function as logsig-purelin. The network

view for recurrent neural network is as (Fig. 9; Table 5):

The optimized model is for network with training

function = TRAINLM, Adaption Learning Funtion

Table 4 Comparison of the different GRNN architecture

based on RMSE values

Spread constant RMSE

5 0.0099

10 0.4431

Fig. 8 Optimum RB

network

Fig. 9 Optimum recurrent

network

Table 5 RMSE values for

different network
S.No Training function Adaption learning function Performance function RMSE

1 TRAINLM LEARNGDM MSE 3.346640106

2 LEARNGDM LEARNGDM MSE 16.73320053

3 TRAINLM LEARNGD MSE 4.949747468

Table 6 RMSE of different prediction models for LVC

Model Root mean square

error (RMSE)

MVRA 279.6838

BPNN 1.2570

GRNN 0.0140

RBNN 1.4e-20

LRNN 1.23

Table 7 RMSE of different prediction models for LPC

Model Root mean square

error (RMSE)

MVRA 8.1305

BPNN 0.0970

GRNN 0.00064

RBNN 2.3e-23

LRNN 0.00443
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= LEARNGDM and Performance function = MSE

with RMSE value of 3.346640106.

The performance of LVC and LPC predicting

models has been evaluated using the root mean square

error (RMSE) criteria (Verma and Sirvaiya 2015) in

Tables 6, 7, 8 shows output from different networks

used in this study. Considering a coal mine with a coal

seam at a pressure of 1305.342 psia, reservoir

temperature of 536.67 deg. R (25 deg. C) and Z factor

to be 0.36, the moles of CO2 adsorbed for each coal

mines are shown in Table 9.

9 Conclusion

In this study, neural network models were efficiently

used to predict the CO2 adsorption parameters like

Langmuir volume constant and Langmuir pressure

constants of sub-bituminous to high-volatile bitumi-

nous Indian Gondwana coals. These applications

presented more accuracy in comparison with the

statistical methods. It can be concluded that ANN is a

useful resource to determine adsorption capacity of

CO2 gas in Indian Gondwana coal.

In this paper, multivariate regression model and

different neural network models like back propagation

with regression analysis, recurrent neural network,

generalized regression neural network and radial basis

function network (RBF) are developed and used to

predict adsorption capacity through Langmuir iso-

therm. The Neural Network architecture is optimum

with radial basis as best model. The target values and

output values are coming almost same. Back propa-

gation method and generalized regression also result

in low RMSE. Based on the study, it is can be

established that the neural network methods are the

better option for better prediction of Langmuir con-

stants of Indian Gondwana coals for CO2 adsorption.

References

Ahmadia MohammadAli, Ebadib Mohammad, Shokrollahic

Amin, Majidic SeyedMohammadJavad (2013) Evolving

artificial neural network and imperialist competitive algo-

rithm for prediction oil flow rate of the reservoir. Appl Soft

Comput 13(2):1085–1098

Alexopoulous EC (2010) Introduction to multivariate regression

analysis. Hippokratia 14:23–28

Busch A, Gensterblum Y (2011) CBM and CO2-ECBM related

sorption process in coal: a review. Int J Coal Geol

87(2):49–71

Cilimkovic M (2015) Neural networks and back propagation

algorithm. Institute of Technology Blanchardstown

Crosdale PJ, Beamish BB, Valix M (1998a) Coalbed methane

sorption related to coal composition. Int J Coal Geol

35(1–4):147–158

Crosdale PJ, Beamish BB, Valix M (1998b) Coalbed methane

sorption related to coal composition. Int J Coal Geol

35:147–158

Dutta P, Bhowmik S, Das S (2011) Methane and carbon dioxide

sorption on a set of coals from India. Int J Coal Geol

85:289–299

Hannan SA, Manza RR, Ramteke RJ (2010) Generalized

regression neural network and radial basis function for

heart disease diagnosis. Int J Comput Appl 7(13):0975–

8887

Harpalani S, Chen G (1997) Influence of gas production induced

volumetric strain on permeability of coal. Geotech Geol

Eng 15:303–325

Krooss BM, van Bergen F, Gensterblum Y, Siemons N, Pagnier

HJM, David P (2002) High-pressure methane and carbon

dioxide adsorption on dry and moistureequilibrated Penn-

sylvanian coals. Int J Coal Geol 51:69–92

Mazzotti M, Pini R, Storti G (2009) Enhanced coalbed methane

recovery. J Supercrit Fluids 47:619–627

Moody J, Darken C (1989) Fast learning in networks of locally-

tuned processing units. Neural Comput 1:281–294

Nkoana R (2011) Artificial neural network modelling of flood

prediction and early warning. Master Degree, University of

the Free State, Bloemfontein

Palit AjoyK, Popovic Dobrivoje (2005) Computational intelli-

gence in time series forecasting. Springer, London

Santos RB, Ruppb M, Bonzi SJ, Filetia AMF (2013) Compar-

ison between multilayer feedforward neural networks and a

Table 9 Moles of CO2 adsorbed for each coal mines

Coal mines No. of moles of

CO2 adsorbed/g

Bogra 0.001645516

Kenda 0.001512095

Narayankuri 0.001979066

Satgram 0.001289728

Kalimati 0.000555917

Local II 0.000400261

Mehaladih 0.000689338

Mugma special 0.000578154

SKAC 1 0.000733811

SKAC 3 0.000911705

15th Seam 0.000778284

16th Top seam 0.000933941

16th Bottom seam 0.000933941

18th Seam 0.000867231

108 Geomech. Geophys. Geo-energ. Geo-resour. (2016) 2:97–109

123



radial basis function network to detect and locate leaks in

Pipelines transporting gas. Chem Eng Trans 32:1375–1380

Singh TN, Verma AK (2010) Sensitivity of total charge and

maximum charge per delay on ground vibration. Geomat

Nat Hazards Risk 1(3):259–272

Singh TN, Verma AK (2011) Comparative analysis of intelli-

gent algorithms to correlate strength and petrographic

properties of some schistose rocks. Engh Comput 28:1–12

Tahmasebi R, Hezarkhani A (2012) A fast and independent

architecture of artificial neural network for permeability

prediction. J Pet Sci Eng 86–87:118–126

Verma AK, Singh TN (2009) A neuro-genetic approach for

prediction of compressional wave velocity of rock and its

sensitivity analysis. J Earth Sci Eng 2(2):81–94

Verma AK, Singh TN (2013) Comparative study of cognitive

systems for ground vibration measurements. Neural

Comput Appl 22(1):341–350

Verma AK, Sirvaiya A (2015) Intelligent prediction of Lang-

muir isotherms of Gondwana coals in India. J Pet Explor

Prod Technol. doi:10.1007/s13202-015-0157-y

Geomech. Geophys. Geo-energ. Geo-resour. (2016) 2:97–109 109

123

http://dx.doi.org/10.1007/s13202-015-0157-y

	Comparative analysis of intelligent models for prediction of Langmuir constants for CO2 adsorption of Gondwana coals in India
	Abstract
	Introduction
	Study area and data set
	Multivariate regression analysis
	Back propagation neural network
	Generalized regression neural network
	Radial basis neural network
	Layer recurrent neural network
	Result and discussion
	Multivariate regression (MVRA) analysis to predict LVC and LPC
	Artificial neural network (ANN)
	Backpropagation feed forward neural network (BPNN)
	Generalised regression neural network (GRNN)
	Radial basis neural network (RBNN)
	Layer recurrent neural network (LRNN)


	Conclusion
	References




