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Abstract Experimental strength tests are performed
on two series of nominally equal plate specimens of
annealed soda-lime glass subjected to either ring-on-
ring or ball-on-ring bending. The Weibull effective
area which represents a fictitious surface area exposed
to uniform tension is calculated using closed-form
solutions. Finite-size weakest-link systems are imple-
mented numerically in a computationally intensive pro-
cedure for random sampling of plates extracted from a
virtual jumbo pane whose surface area contains a set
of stochastic Griffith flaws. A non-linear finite element
analysis is conducted to compute the bending stresses.
The glass surface condition is represented in different
flaw-size concepts that depend on a truncated exponen-
tially decaying flaw-size distribution. Stress corrosion
effects are modelled by implementation of subcritical
crack growth. The effective ball contacting radius is
determined in a numerical computation. The results
show that surface size effects in glass are not only a
matter of strength-scaling, as also the shape of the dis-
tribution changes. While the lowest strength value, as
per the major in-plane principal stress at the recorded
fracture origin, in the respective data sets is very similar,
the strongest specimen observed in ball-on-ring testing
is over 70%stronger than the correspondingly strongest
specimen observed in ring-on-ring bending. The Shift
function is used to make visual comparisons of the dif-
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ference in quantiles in the observed data sets. Use of an
ordinaryWeibull distribution leads to non-conservative
strength predictions on smaller effective areas, and to
too low strength predictions than are viable for glass
design on larger areas. The numerical implementation
of finite-size weakest-link systems can produce bet-
ter predictions for the strength-scaling compared to a
Weibull distribution, in particular when the flaw-size
concept ismodified to include a doubly stochastic flaw-
size distribution or a random noise added to each subdi-
vided region of the discretized surface area. The simu-
lated ball-on-ring fracture origins exhibit greater spread
from the centre point than otherwise observed in labo-
ratory tests. It is indicated that the chosen representa-
tion of surface condition may not be accurate enough
for the modelling of all fracture origins in the ball-on-
ring setup even though acceptable results are obtained
with the ring-on-ring model. There is a need for more
insight into the surface condition of glass which can
be conducive to the development of flaw-size based
weakest-link modelling.

Keywords Weibull effective area · Weakest-link
system · Ring-on-ring · Ball-on-ring · Glass strength

1 Introduction

Glass units are in demand in structural applications,
however, the strength is challenging to predict. Dur-
ing its lifetime, the glass component may be subject to
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diverse types of loading which expose the surface area
to tension zones of dissimilar size, e.g., due to uniform
lateral pressure, dynamic load from a soft body impact,
or a small projectile impact (Dalgliesh andTaylor 1990;
Schneider and Schula 2016; Osnes et al. 2019). In addi-
tion, with modern use of glass in building construction,
geometrical complexity of the glass unit can be consid-
erable (Kozlowski et al. 2018). A characteristic feature
of glass is the dependence of strength on the size of sur-
face area or length of edge that is exposed to tension
(Vandebroek et al. 2014). However, the standard EN
16612 (2019) does not address size scaling effects. It is
of great importance to be able to predict the strength of
one loading configuration from the results of another.
There is a need for more research on the modelling
of strength and strength scaling effects in glass. The
strength is defined as themajor in-plane principal stress
component at the fracture origin.

An experiment is carried out on annealed soda-lime
glass plates of uniform dimension that are subject to
biaxial loading. Two different bending configurations
are used to expose the surface area to tension zones of
considerably different size. The strength, fracture ori-
gin, and scaling effects are modelled in a numerical
implementation of finite-size weakest-link (WL) sys-
tems using randomly generated flaws on virtual speci-
mens. In addition, calculations of the statistical strength
distribution and effective area are performed analyti-
cally using closed-form solutions for stress.

The various strength models are fitted to the lab-
oratory data results from one of the biaxial bending
setups, and then used to make predictions for the other
setup, and vice versa. The results provide a basis for
further discussion about the meaning and utility of the
Weibull effective area in strength modelling, the rele-
vance of taking into account fracture origins in addi-
tion to strength values when appraising the numerical
models, and the potential for prediction-making of one
setup based on the results from another.

2 Background

Due to the statistical nature of fracture in glass, both
themagnitude of strength and failure origin exhibit ran-
dom variation. The fracture origin is the source from
which brittle failure begins (Quinn 2016). Fracture ori-
gins within the bulk are disregarded. The surface con-
dition determines the magnitude of strength that is pos-

Table 1 Typical values for a range of glass material properties
(EN 572-1 2012; Mencik 1992)

Young’s modulus (GPa) 70

Poisson’s ratio 0.22

Fracture toughness (MPa m
1
2 ) 0.75

Stress corrosion threshold limit (MPa m
1
2 ) 0.25

sible to attain. It is directly related to the flaws that are
present and which govern the fracture phenomenon.
Values for the elastic and brittle material properties are
given inTable 1.Whenfloat glass is produced, the batch
is melted and floaten onto a bath of tin which produces
an evenly flat surface. The side of glass that was in con-
tact with the molten tin is called the tin-side. Anneal-
ing allows the material to cool down to room temper-
ature while limiting the emergence of surface resid-
ual stresses. The glass is usually cut into standard size
panes, socalled jumbo sheets, with dimensions 6×3.21
m2 (Le Bourhis 2008; EN 572-1 2012).

Previous investigations into surface size scaling
effects in glass are rare, however, it was recently
addressed in Osnes et al. (2018) who carried out tests
on glass beams using a four-point bending fixture with
three different load spans. A mean strength increase
was observed as the surface area exposed to tension
decreased, even though the number of tests was rather
limited. The use of a four-point bending fixture to
appraise the surface condition may pose a challenge
because the proportion of surface-to-edge failures in
tests is basically an unknown a priori. So far, it is not
evident that edge failures can be used as a proxy for
surface failures (Yankelevsky et al. 2018).

Strength modelling in glass tends to be based on
either a Weibull weakest-link system, or the appli-
cation of a standard statistical distribution such as a
normal distribution (Weibull 1939; Calderone 1999).
A weakest-link system is comprised of critical sub-
systems. The subsystem that is the weakest when the
stresses are applied governs the failure of the entire
system. This represents the condition of the glass sur-
face which is brittle and presumably contains a large
number of microscopic defects that limit the practical
strength. With F(x) denoting the failure distribution
function, R(x) = 1 − F(x) is the survival function
which gives the probability that the system has not
failed. The weakest-link scaling premise is expressed
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in Eq. (1) for a system consisting of N links where
Ri,li (x) refers to the survival function of the i-th link
with support in li while the system as a whole has sup-
port in lN (Hristopulos et al. 2015).

RlN (x) =
N∏

i=1

Ri,li (x) (1)

Weibull (1939) assumed that all the links have a com-
mon survival function with an exponential depen-
dence and the Weibull distribution, Eq. (A.30), is the
archetypicalweakest-link scaling system.As expressed
in Eq. (2), such a system has a self-similarity property
which implies that except for a size scaling, the proba-
bility distribution for the survival of a system composed
of any cluster of subsystems has the same functional
form as the single-link survival function (Hristopulos
et al. 2015).

RlN (x) = RlN/2(x)RlN/2(x) = · · · = (
Rl0(x)

)2M
,

N = 2M
(2)

Based on the same premise are, e.g., the Glass Failure
Prediction Model in Beason and Morgan (1984) and
the Lifetime Prediction Model in Haldimann (2006).
In spite of the logical theory underpinning those WL-
models, it remains a great challenge in general to pre-
dict the strength of a glass structure and according to
some, there is no added benefit to safety prediction
from the use of WL-systems compared to a normal or
lognormal distribution (Calderone et al. 2001). In real-
ity, the computed probabilities of failure at the design
stresses are only notional (Calderone and Jacob 2005),
compare with the discussion in Annex A of EN 16612
(2019). It has been said that only a complex multipa-
rameter model can describe glass test results widely in
a single model (Veer et al. 2009). In the present study,
a possible WL-framework for such a model is inves-
tigated, based on recent work by Yankelevsky (2014),
Pathirana et al. (2017), Kinsella and Persson (2018),
and Osnes et al. (2018).

2.1 Fracture mechanics

Surface flaws in glass are represented by cracks and the
extension of a crack is modelled by an energy balance
(Griffith 1920). Crack growth is prompted by either of

three modes of deformation, viz. mode I, mode II and
mode III (Irwin 1958). Mode I refers to crack opening
due to displacements normal to the crack plane sur-
faces. Mode II and III describe in-plane and out-of-
plane shearing displacement cracking (Broek 1983).
As a simplification, only the impact of Mode I dis-
placements are considered. Failure is governed by the
critical release rate of elastic strain energy. The mode I
stress intensity factor (SIF) for a sharp crack subjected
to far-field tensile stress σ acting perpendicular to the
crack plane is

KI = σY
√
aπ (3)

where a is the crack size and Y is a geometrical con-
figuration factor whose value is roughly equal to unity
(Irwin 1957; Hellan 1984). For example, for a straight-
fronted planar edge crack it is Y = 1.12, and for a
half-penny shaped crack it is Y = 0.73 at the deepest
point on the crack contour (Irwin 1958; Newman and
Raju 1981). If the crack plane is inclined at an angle φ

in the coordinate system of the principal stresses σ1 and
σ2 with φ measured from the major axis, then the stress
component acting perpendicular to the crack plane is
calculated as

σ = σ1 cos
2 φ + σ2 sin

2 φ (4)

The fracture criterion is

KI ≥ KIc (5)

where KIc is the fracture toughness.
While subjected to tensile stress in an atmosphere

that contains water moisture, environmentally assisted
crack growth occurs in glass due to stress corrosion
(Charles 1958a, b). The general shape of the logarithm
of crack growth velocity as function of the magnitude
of SIF is illustrated in Fig. 1. For structural glass design
considerations, the influence of regions II and III on the
time-to-failure can be neglected (Fischer-Cripps and
Collins 1995). Subcritical crack growth in Region I is
modelled using Eq. (6) in which v0 and n are stress
corrosion parameters and KI,th is a threshold value of
SIF below which crack growth arrest occurs (Evans
1974). It is assumed that n = 16 (Mencik 1992).
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Fig. 1 General shape of
subcritical crack growth
velocity as function of mode
I SIF. Adapted from Evans
(1974)

lo
g 
v

KI

I

II

III

KIc

0

da =
{

v0

(
KI
KIc

)n
dt, KI,th < KI < KIc

0, 0 ≤ KI ≤ KI,th

(6)

It can be shown that combining Eqs. (3) and (6) and
introducing ai for the initial crack size and a(t) for
time-dependent size after crack extension, the follow-
ing equation holds (Haldimann 2006).

∫ a(t)

ai
a− n

2 da = v0

(
Y

√
π

KIc

)n ∫ t

0
σ n(τ ) dτ (7)

For the sake of interpreting laboratory tests at medium
stress rate (including 2 MPa s−1), Haldimann (2006)
recommends the value v0 = 10 µm s−1, whereas a
conservative assumption for design purposes is v0 = 6
mm s−1.

3 Tests

Tests were conducted on glass specimens subject to
ring-on-ring and ball-on-ring bending using a hydraulic
MTS uniaxial machine with a 10 kN load cell. In ring-
on-ring bending, a plate is supported on a large ring
on one side, and loaded through a smaller concentric
ring on the other. A state of uniform biaxial tensile
stress is produced within the centre part of the plate
specimen bounded within the load ring radius on the
rear surface. Beyond the load ring the tensile stresses

diminish rapidly and edge failures are deemed unlikely
(Simiu et al. 1984). The ball-on-ring configuration like-
wise depends on applying a load centrally, in this case
through a steel ball. The maximum stress occurs at the
centre where the radial and tangential components are
equal. The bending rigs are illustrated schematically in
Fig. 2. The ring-on-ring design was guided by ASTM
C 1499-02. Specimens with geometrical dimensions
according to Table 2were prepared from a single jumbo
plate. The experiment involves monolithic annealed
float glass panes that are new, in the as-received condi-
tion. The tests were performed in an ambient environ-
ment corresponding to an indoor climate. The average
temperature and relative humidity during tests were 23
◦C and 50%. Two series of tests were conducted with
the tin side of glass positioned in the tension zone. To
facilitate a fractographic analysis of the fracture origin,
the compression side of each specimen was covered in
self-adhesive plastic foil prior to testing. Centre point
displacement was measured using a linear potentiome-
ter positioned directly below the specimen.

InTable 3, the geometrical dimensions and crosshead
displacement rate, u̇, of the bending configuration are
specified where the load ring and equivalent ball con-
tacting radius (see App. A.2 for the determination
of effective ball contacting radius), respectively, are
denoted by r0, the support ring radius by r1, and the
load and support ring cross-sectional radii by c0 and
c1, respectively. The actual loading ball radius is 5 mm.
The crosshead displacement rate was selected to pro-
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Fig. 2 Schematic of the assembled jigs

Table 2 Geometrical dimensions of test specimens

Side length (mm) 220

Average thickness (mm) 5.87

Table 3 Properties of bending setup

r0 (mm) 3.7 30

r1 (mm) 90 90

c0 (mm) N/A 2.5

c1 (mm) 5.0 5.0

u̇ (mm min−1) 0.67 1.32

In the case of ball-on-ring bending, r0 refers to the effective ball
contacting radius

duce an approximate stress rate of 2 MPa s−1 at the
centre point on the tension side.

The strain was measured on the tension side of two
reference specimens at the centre point using a strain
gauge rosette (HBM RY11 6/120), and at four sym-
metrically located points 25 mm away from the centre
using linear strain gauges (HBM LY11 6/120) which
were oriented parallel to the radial direction. These ref-
erence plates were subject to ring-on-ring and ball-on-
ring ramp loading similarly to the specimens which
were destroyed in strength tests. The values of recorded
strain (in the principal directions) at the centre point,
and the average value at the four symmetry points,
respectively, were found to be within 1% of numerical

predictions in a finite element analysis (see Sect. 4.1
for details about the finite element model).

4 Modelling

In subsequent analysis, failure of the single-link is eval-
uated assuming that a given flaw has a representation
as a crack (1) with a geometrical configuration, and;
(2) with an orientation of the crack plane with respect
to the stress field, and; (3) which is possibly operated
on by stress corrosion producing time-dependent sub-
critical crack growth. In Lamon (2016), this notion of
the physical processes taking place inside the link is
referred to as a flaw-size based approach to fracture in
contrast to an elemental strength approach which is not
based specifically on a representation of flaws in terms
of a crack. In the latter case, only the density function of
elemental strengths is required as in, e.g., theMatthews
et al. (1976) failure model. The value of plate thickness
used in the stochastic failure modelling is equal to the
average value recorded in Table 2.

Assuming an infinite-size weakest-link system, i.e.
one with an infinite number of subsystems, the two-
parameter Weibull distribution is derived by taking
into account the correspondence between flaw size and
macro-mechanical stress field according to linear elas-
tic fracture mechanics. To determine theoretically the
strength scaling due to a size effect in plates subject to
biaxial loading, an effective area is calculated which
represents a fictitious surface exposed to a uniform
stress field. In the present study, this type of model
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Table 4 Flaw-size concepts
explained

Flaw density, μ, is 10,000
m−1. E=exponentially
decaying, P=power-law
decay

Symbolic marker E1 E2 P

Flaw-size distribution Equation (A.37) Equation (A.37) Equation (A.32)

Fitted parameters amax amax

{
a0
c

v0 (µm s−1) 0 10 0

Crack plane orientation ⊥ σ1 Random ⊥ σ1

Fig. 3 Superposed parts of
FE model from a side view,
from top to bottom: load
ball, load ring, glass part,
support ring

is generated by a flaw-size concept which depends on
a Pareto distributed flaw-size density. This approach is
referred to by a symbolic marker ‘P’, see Table 4, and
further details are given in Sect. 4.2.

Finite-size weakest-link systems are considered in
numerical implementations with randomly generated
cracks. The subsystems correspond with nodes on a
rectilinear lattice and represent potential fracture sites.
System failure is determined through a linear elastic
fracture mechanics analysis based on the computed
stress history which is obtained in a finite element anal-
ysis, see Sect. 4.1 for details about the finite element
model. The fracture stress and failure origin are iden-
tified using a numerical procedure. In a large number
of simulations, the statistical strength distribution is
obtained for the respective bending setups. The effect
of stress corrosion is accounted for in the numerical
computationmethodby implementing subcritical crack
growth. In the present study, this type of model is
generated by various flaw-size concepts governed by
an exponentially decaying flaw-size distribution. This
approach is referred to by symbolic markers ‘E1’, ‘E2’,
etc, see Table 4. Concept ‘E1’ corresponds basically
with what was implemented in Yankelevsky (2014)
whereas concept ‘E2’ includes random crack plane ori-
entation and an implementation of subcritical crack
growth, further details are given in Sect. 4.3.

4.1 Finite element model

A static and geometrically non-linear finite element
(FE) analysis is conducted to compute the bending
stresses in a plate specimen using the commercial finite

element code ABAQUS/CAE, see also Fig. 3. The
elastic constants are adopted from Table 1. The self-
weight is not included in the analysis. To model the
glass part, an 8-node quadrilateral continuum shell ele-
ment (SC8R) with reduced integration is employed in
a structured mesh grid. The element size used in anal-
ysis is approximately equal to 1 mm with a total num-
ber of five through-the-thickness elements. The surface
dimensions of the glass body are given in Table 2. The
steel rings and ball are modelled by analytic rigid sur-
faces. The geometrical properties assigned to the ana-
lytic surfaces canbe found inTable 3, and the ball radius
used is 5 mm. The parts are assembled and interaction
surface-to-surface contact applied. It is assumed that
frictional effects are negligible. The analytic surface
representing the support ring is constrained to a ref-
erence point which is encastred. The analytic surface
representing the load ring/ball is constrained to a refer-
ence point which is prevented from moving except in
the lateral direction, and a concentrated force is applied
to this reference point. To prevent rigid body motion of
the glass part, it is constrained in the in-plane directions
at a select number of symmetry points as follows. Let
x, y be a Cartesian coordinate systemwith origin at the
centre of the glass bottom surface and contained in its
plane with axes parallel/orthogonal to the sides of the
glass part. Then with L equal to the side length, for
(x, y) = (±L/2, 0) movement is constrained in the y-
direction, and for (x, y) = (0,±L/2) it is constrained
in the x-direction.
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4.2 Infinite-size WL-system with Pareto flaws

The premise in Eq. (2) can be developed into a logical
expression for the total failure probability of an infinite-
size WL-system representing a surface area exposed to
uniform stress σ in a state of uniaxial tension as in
Eq. (8) (Wachtman et al. 2009).

Pf (σ ) = 1 − exp

[
−μA

(
Y

√
πa0

KIc
σ

)2c
]

(8)

The basis for Eq. (8) is that (1) the average number
of cracks, μA, is Poisson distributed, Eq. (A.34); (2)
cracks fail independently of each other, and; (3) cracks
are distributed over the surface according to a uni-
form random distribution with Pareto distributed sizes,
Eq. (A.32), where a0 and c are the Pareto scale and
shape parameters, respectively. Equation (8) can be
written in the form of theWeibull function (A.30) with,

σ0 =
(

1

μA

) 1
2c K Ic

Y
√

πa0
(9)

and,

m = 2c (10)

When the tensile stress field is non-uniform and uni-
axial, the total failure probability in Eq. (8) is rewritten
as (Haldimann 2006),

Pf = 1−exp

[
−μ

∫∫

A

(
Y

√
πa0

KIc
σ(x, y)

)2c

dx dy

]

(11)

In a biaxial stress state, the greatestmajor in-plane prin-
cipal stress, σmax, is introduced as parameter (Entwistle
1991). Rewriting Eq. (11) with this parameter, the dis-
tribution function for the strength is

F(σmax) = 1 − exp

[
−

(
σmax

σ0,eff

)m]
(12)

where

σ0,eff =
(

μ

∫∫

A

(
σ1(x, y)

σmax

)m

dx dy

)− 1
m

(
KIc

Y
√

πa0

)

(13)

Here it is assumed that only the major in-plane princi-
pal stress component contributes to failure so that with
the fracture criterion, Eq. (5), crack planes are always
oriented perpendicular to σ1. The original area, A, in
Eq. (9) has been replaced in Eq. (13) by an effective
area, Aeff, according to

Aeff =
∫∫

A

(
σ1(x, y)

σmax

)m

dx dy (14)

The strength-scaling effect when the flaw populations
and environmental conditions are otherwise held con-
stant is expressed as follows where σ0,eff is the scale
factor corresponding to Aeff and σ ′

0,eff to A′
eff, respec-

tively.

σ0,eff

σ ′
0,eff

=
(
A′
eff

Aeff

) 1
m

(15)

Equation (15) applies to the scale parameters only for
two distributions which have equal shape parameters.
The effective areas for plates subjected to ring-on-ring
and ball-on-ring bending, respectively, are calculated
using closed-form solutions for the stress which can be
found in Appendix A.2. The major principal stress is
given by σθ in Eqs. (A.40) and (A.47) for the ball-on-
ring and ring-on-ring setup, respectively. The effective
area, Eq. (14), is calculated using polar coordinates
expressed in the normalized geometrical parameters,
Eq. (A.38). After substituting for dr = r2dρ it is,

Aeff =
∫ 1

0

∫ 2π

0

(
σθ (ρ)

σmax

)m

· r2 dρ dθ

= 2πr22
σm
max

∫ 1

0
ρσm

θ (ρ) dρ

(16)

It is understood that the integral is performed only for
those values of stress that are tensile. Accounting for
the piece-wise expression for the ball-on-ring circum-
ferential stress component in Eq. (A.40), the integral
equation (16) can be written as a sum according to the
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solution in Frandsen (2014),

Aeff,B = 2πr22

I I I∑

j=I

J j,θB (17)

where fractions J j,θB for j = I, I I, I I I are as follows.

JI,θB = 1

cm12B

∫ ρ0

0

(
c11Bρ2 + c12B

)m
ρ dρ (18)

JI I,θB = 1

cm12B

∫ ρ1

ρ0

(
2 ln

ρ1

ρ
+ c(θ)

21B + · · ·

+ c(θ)
22B

1

ρ2

)m

ρ dρ (19)

JI I I,θB = 1

cm12B

∫ 1

ρ1

(
c31B + c(θ)

32B
1

ρ2

)m

ρ dρ (20)

JI , JI I , and JI I I represent the contribution to the (nor-
malized) effective area while 0 ≤ ρ < ρ0, ρ0 ≤ ρ <

ρ1, and ρ1 ≤ ρ ≤ 1, respectively. Closed-form solu-
tions to Eqs. (18) to (20) are given below on assumption
of integer values of the Weibull modulus, because the
multinomial theorem is used to handle the integration
of multiple terms raised to the power of m (Frandsen
2014).

JI,θB =
m∑

l=0

m!
(m − l)!l!

(
c(θ)
11B

c12B

)l
ρ2l+2
0

2l + 2
(21)

JI I,θB = 1

cm12B

m∑

l=0

l∑

k=0

m!
(m − l)!(l − k)!k! · . . .

·
(
c(θ)
21B

)m−l
2l−k

(
c(θ)
22B

)k · . . .

·
∫ ρ1

ρ0

ln

(
ρ1

ρ

)l−k

ρ1−2k dρ (22)

JI I I,θB = 1

cm12B

m∑

l=0

l∑

k=0

m!
(m − l)!l! · . . .

·cm−l
31B

(
c(θ)
32B

)l 1

2 − 2l

(
1 − ρ2−2l

1

)
(23)

Also, the integral in the expression for JI I,θB is

∫ ρ1

ρ0

ln

(
ρ1

ρ

)l−k

ρ1−2k dρ

=

⎧
⎪⎪⎨

⎪⎪⎩

[
− 1

l

(
ln ρ1

ρ

)l + δl−1 ln ρ1

]ρ1

ρ0

k = 1
[∑l−k

j=0
(l−k)!

j ! ln
(

ρ1
ρ

) j
ρ2(1−k)

(2−2k)l−k− j+1

]ρ1

ρ0

o.w.

(24)

where δi denotes the Dirac delta function (Frandsen
2014).

In the case of the ring-on-ring setup, the piece-wise
expression for the circumferential stress component in
Eq. (A.47) is combined with Eq. (16) to produce the
sum

Aeff,R = 2πr22

I I∑

j=I

J j,θR (25)

The fractions J j,θR for j = I, I I for the ring-on-ring
setup are obtained in analogy with the solution for the
ball-on-ring case, after slight modification of the equa-
tions and replacement of integration limits.

JI,θR = 1

cm12R

∫ ρ0

0
cm12Rρ dρ = ρ2

0

2
(26)

JI I,θR = 1

cm12R

∫ 1

ρ0

(
2 ln

ρ1

ρ
+ c(θ)

21R + c(θ)
22R

1

ρ2

)m

ρ dρ

(27)

The closed-form solution to Eq. (27) is similar in form
to Eq. (23) and is therefore not written out, compare
with Eq. (19).

The strength-scaling is determined by substitut-
ing Eqs. (17) and (25) into Eq. (15). According to
Eq. (15), this corresponds to the ratio of the 63rd per-
centiles in corresponding Weibull distributions (see
also App. A.1). The Weibull parameters in Eq. (A.30)
are estimated from experimental observations with the
maximum likelihood method (Young and Smith 2005),
where in practice the computations are performed using
the wblfit function in Matlab. The corresponding
Pareto flaw-size parameters in Eq. (A.32) can then be
determined from Eqs. (10) and (13).

4.3 Numerical implementation of finite-size
WL-systems

The surface area A of a jumbo sheet is represented by
a uniform rectangular meshgrid, the nodes of which
correspond to potential fracture sites. Only nodes that
correspond to the surface area are considered so edge
failures are neglected. Each node is located at the cen-
tre of a unit cell of some predefined size. In the present
work, the cell size is 1mm2 and the spacing between the
nodes is 1 mm in the longitudinal and transversal direc-
tions, respectively. An average number of N0 = μA
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cracks are uniformly distributed over the cells; the total
number on a given plate is a Poisson random number
with expectation N0, Eq. (A.34). If a given cell con-
tains more than one crack, then the largest one only
is selected. An orientation is assigned to each crack
with the angle uniformly distributed in [0, π). Each
crack is assigned a size and shape according to some
assumed distribution and geometry. Virtual specimens
are extracted from the basic plate and analyzed as fol-
lows.

In a geometrically nonlinear analysis, the in-plane
stress components, and time-variantmode ISIF,Eq. (3),
are calculated at each crack-containing node and at a
predefined number of time frames each of length 	t
for i = 1, . . . , Nt with Nt being the total number
of time frames. The number of time frames is chosen
large enough so that the maximum stress increase any-
where on the plate is smaller than approximately 0.1
MPa. Subcritical crack growth is calculated based on
Eq. (7) with modified integration limits a(t) replaced
by ai + 	a on the left-hand side, and t by 	t on the
right-hand side. Also, to calculate the integral on the
right-hand side of Eq. (7), the stress is linearized in
each time frame. Subcritical crack growth is allowed
to occur only in time frames that correspond with a SIF
that exceeds the threshold limit value, KI,th. Subse-
quently, the SIF history is adjusted to reflect the influ-
ence of subcritical crack growth. An algorithm is used
to search through the SIF history for the first instance
of a failed crack, fracture being governed by the crite-
rion in Eq. (5). According to theweakest-link principle,
failure of the specimen is deemed when the first crack
fails. It is assumed that unit cells fail independently of
each other. The strength is defined as themajor in-plane
principal stress at the failure node. However, because
the SIF history is discretized, the time step associated
with failure corresponds to a SIF equal to or larger
than the fracture toughness. The strength is calculated
by linear interpolation of the maximum principal stress
at time steps before and after failure based on the cor-
responding SIF values.

The numerical method is implemented in a Python
script that interfaces with (1) ABAQUS/CAE where a
finite element analysis is carried out, and; (2) a Fortran
program where an analysis of the weakest-link scaling
system is performed. The Fortran program depends on
a module for random number generation (Miller 2000;
Blevins 2020). Strength statistics are obtained by run-
ning a series of tests on virtual specimens. The num-

ber of specimens that can be extracted from a single
jumbo plate is limited.As one jumbo plate is exhausted,
another one is sampled from which new specimens
are subsequently extracted. Statistics are computed
through repeated sampling from14base plateswhich in
the present case (given the surface dimensions of each
extracted specimen, see further Sect. 3) corresponds to
over 5000 individual tests. This number is sufficient for
convergence (Yankelevsky 2014).

The flaw-size concept that is implemented depends
on a range of parameters, e.g., the flaw-size density
function parameter(s). In the presentwork, a basic flaw-
size concept is adopted from recent literature and ana-
lyzed, namely the approach suggested in Yankelevsky
(2014), see below in the following subsection for a
further description of this approach. This basic flaw-
size concept, which is governed by an exponentially
decaying flaw-size distribution, is denoted by a sym-
bolic marker ‘E1’, see also Table 4. In addition, a flaw-
size concept ‘E2’ is implemented in numerical analysis
based on the exponentially decaying flaw-size concept
‘E1’ but with account for random crack plane orien-
tations and including an implementation of subcritical
crack growth. In order to fit the flaw-size concept to
laboratory data,minor adaptations aremade to the orig-
inal model; specifically the flaw-size density parame-
ter, amax, in Eq. (A.36) is optimized. Trial points for
the parameter are set up and a goodness-of-fit statis-
tic is computed at each one using a weighted measure
of the distance from the empirical strength distribu-
tion function. The optimization procedure depends on
selecting for the minimum of the Anderson-Darling
two-sample statistic (Scholz and Stephens 1987). In
practice the computations are performed using the
andersonksamp function in the stats module of
Python SciPy (Virtanen et al. 2020). To obtain a reason-
able estimate while limiting the computational time,
the resolution of the parameter space is restricted to
values of one micron in the interval [0, 300]µm. For
reference, Yankelevsky (2014) supposes that a value
of about amax = 200µm would be representative,
however this was not actually verified in laboratory
tests. In addition to the flaw-size concept proposed in
Yankelevsky (2014), see also Pathirana et al. (2017)
and Kinsella and Persson (2018) for examples of other
approaches which apply both single and multiple flaw-
populations that co-exist on a given surface.

The numerical implementation does not directly
lead to a closed-form expression for the strength-
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scaling similar to Eq. (15). However, the 63rd per-
centiles in the computed strength distributions can be
determined and their ratio calculated to produce a mea-
sure of size-effect comparable to Eq. (15).

Flaw-size approach in Yankelevsky (2014) The
straight-fronted edge crack shape is adopted by
Yankelevsky (2014) with an exponentially decaying
size distribution that is parametrized by the size of the
largest crack, amax, that is present in the population, see
Eq. (A.37). It is assumed that for new glass in the as-
received condition, a representative value is 1 flaw per
square centimetre density. It is claimed that with this
model, there is noneed for calibration because it is inde-
pendent of test results. Only the maximum crack size
that is present in the population is required as input and
this number can be inferred from the standards, e.g. EN
572-2 (2012), and the fact that manufacturers inspect
the glass for large defects. Subcritical crack growth is
not considered and all crack planes are assumed to be
oriented perpendicular to the major in-plane principal
stress.

5 Results

Table 5 lists the failure load, strength, and recorded
fracture origin from the conducted experiments. The
given strength value is the major in-plane principal
stress component at the fracture origin, computed
according to a FE analysis. For specimen B38, only
a fracture load is given because it disintegrated prior to
examination and a precise fracture origin could not be
established. Specimen B30 was by mistake positioned
upside down in the apparatus with the self-adhesive
plastic foil on the tension side, thus invalidating the
result. In Fig. 4, the computed failure stresses and
recorded fracture origins are displayed in histograms.
The difference in estimated quantiles between the data
sets is also illustrated in the figure using the Shift func-
tion which is described further in Appendix A.3. For
each decile in the shift function, a vertical line indicates
its 95% confidence interval obtained using a bootstrap
method, seeRousselet et al. (2017) for a further descrip-
tion. EstimatedWeibull parameters are given in Table 6
for the laboratory strength data samples.

Figure 5 shows the calculated effective area as func-
tion of Weibull modulus according to Eqs. (17) and
(25). The correspondence between Weibull modulus
and COV according to Eq. (A.31) is indicated on top

of the diagram in Fig. 5. The effective areas at the esti-
mated values ofWeibullmoduli (found in Table 6)were
calculated using linear interpolation where so neces-
sary and are specified in the figure.

Figures 6 and 7 compare the quantiles in the lab-
oratory data samples with a range of models that
are fitted to the ring-on-ring and ball-on-ring strength
data, respectively. The fitted models include (1) a
Weibull distribution, Eq. (A.30), and; (2) a normal dis-
tribution, Eq. (A.33), and; (3) numerical implemen-
tations of finite-size weakest-link systems governed
by different flaw-size concepts. The flaw-size con-
cepts are explained in Table 4 and the fitted flaw-
size distribution parameters are given in Table 7.
The flaw-size concept denoted by ‘P’ corresponds to
the Pareto flaw-size distribution which generates the
Weibull strength model as described in Sect. 4.2. The
flaw-size concepts denoted by ‘E1’ and ‘E2’ corre-
spond to an exponentially decaying flaw-size distribu-
tion used in numerical strength modelling with finite-
size weakest-link systems as described in Sect. 4.3.
The Pareto flaw-size parameters, Eq. (A.32), that
correspond to the fitted Weibull distributions are
inferred by substituting the values from Table 6 into
Eqs. (10) and (13). When stress corrosion is accounted
for in numerical simulations, it is assumed that the
applied loading rate is such that a 2 MPa s−1 stress
rate occurs at the centre point on the tension sur-
face.

Figure 8 presents a comparison of the experimen-
tally recorded quantiles with strength predictions made
from the fitted models. Hence, the models fitted to
the ring-on-ring strength data in Fig. 6 are used to
make predictions for the ball-on-ring setup as shown
in Fig. 8, and the models fitted to the ball-on-ring
strength data in Fig. 7 are used to make predictions
for the ring-on-ring setup. The predicted Weibull dis-
tributions depend on the calculated effective areas
shown in Fig. 5, which are substituted into Eq. (15)
while assuming a uniform value for the Weibull mod-
ulus. Hence, when Weibull predictions are made for
the ball-on-ring setup it is the estimated modulus
from the ring-on-ring case that is used, and vice
versa.

Figure 9 illustrates how the distribution of fracture
origins depends on the assumed value of flaw density
μ in the range 104 to 107. The flaw size concept that
was chosen to render the figure is otherwise the same
as E1 in Table 4.
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Fig. 4 Recorded strength and fracture origins. Radial coordinate ismeasured from the centre point of the plate. Below: the shift function.
The vertical dotted line in the diagram represents the median

The tests also provide information about the stiff-
ness of the glass material. Young’s modulus E can
be calculated using Eqs. (A.51) and (A.52) which
express the centre-point displacement as function of
applied load. The observed values of load and dis-
placement in laboratory tests inserted into those equa-
tions give an average of about E = 69.6 GPa. This
is close to the nominal value given in Table 1 and
therefore this value was used in the present investi-
gation.

Figure 10 shows the broken specimens no. R13,
B29, and B39, respectively, which exhibit representa-
tive fracture patterns.

Table 6 Weibull distribution parameters fitted to strength test
results

Ball-on-ring Ring-on-ring

σ0 (MPa) 151.1 102.5

m 4.0 7.4

6 Discussion

6.1 Weibull systems

Both the Weibull and normal distribution provide a
basic strength model that is in close agreement with the
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Fig. 5 Calculated effective
area, Eq. (14)
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Table 7 Fitted parameters of flaw-size concepts

Symbolic marker E1 E2 P

Ring-on-ring fit 41 µm 32 µm

{
4.9 µm

3.7

Ball-on-ring fit 32 µm 26 µm

{
3.1 µm

2.0

ring-on-ring and ball-on-ring laboratory test results. In
fact, their performance as a strength model is more or
less equal and from a pragmatic point of view only,
neither can be deemed better than the other, com-
pare Figs. 6 and 7. From a theoretical perspective,
the Weibull model has the quality of being founded
in a flaw-size based WL-system which is logical in
application to glass considering the underlying physi-
cal processes which are supposed to prompt fracture.
Indeed, the Weibull modulus can be given physical
meaning as a material parameter (De Jayatilaka and
Trustrum 1977). The Weibull model’s foundation in
a WL-system implies a well-defined strength-scaling
effect which is a function of the size of surface area
exposed to tension. In the laboratory tests on nomi-
nally identical glass specimens that were conducted as
part of this study, however, the estimatedWeibull mod-
ulus was observed to vary considerably between test
setups using a pair of biaxial bending configurations.
Hence, the self-similarity property at the core of the
WL-scaling premise in Eq. (2) is contradicted. Predic-
tion of the ball-on-ring (ring-on-ring) strength based on
theWeibull effective area, Eqs. (17) and (25), produces
a considerable overestimation (underestimation) when
based on a model fitted to the outcome of ring-on-ring
(ball-on-ring) bending, see Fig. 8. In summary, even
though the Weibull model has descriptive virtue, there
are limits to its predictive capacity and potential for use
in design rules.

Considering the histograms in Fig. 4 and the adja-
cent shift function for the laboratory test results, it is
strongly suggested that surface size effects in glass are
not only a matter of strength scaling. It is indicated that
the shape of the distribution changes, too, however this
is more apparent in the high-strength domain (right-
hand tail) than it is for quantiles below the median. In
other words, the right tail shifts more than the left, and
the ball-on-ring test data displays a larger spread in the
distribution of medium to high-strength specimens. It

is worth noting in this context that there exist variants
of the ordinary Weibull model that represent finite-size
WL-systems that do not obey the self-similarity prop-
erty in Eq. (2) and yet are expressed in closed-form.
The κ-Weibull distribution is an example of this and it
has a tail that decays like a power-law in contrast with
the usual Weibull distribution’s exponentially decay-
ing tail (Hristopulos et al. 2015). The κ-Weibull dis-
tribution lies beyond the scope of the present investi-
gation because its foundation in a strict flaw-size con-
cept is not evident like with the ordinary Weibull dis-
tribution. However, it may be worth exploring in future
work. An applied normal distribution is not associated
with a flaw-size based WL-system, and hence the typ-
ical notion of WL-scaling or indeed fracture mechan-
ics does not find a direct application. This is a draw-
back from a theoretical point of view. At least this has
the benefit that results are taken at face value (Gorski
1969).

6.2 Finite-size systems

Two types of finite-size weakest-link systems are
implemented numerically and are governed by an expo-
nentially decaying flaw-size distribution, see Table 4.
With each one, it is possible to obtain a reasonable
agreementwith the laboratory strength results. The ten-
dency is for the spread in the strength distribution to
get slightly underestimated, in particular with the fit-
ted ball-on-ring models, as suggested by the sloping
curve of the shift function (Fig. 7). When predictions
are made of ring-on-ring strength from the ball-on-ring
outcome, the location is shifted in the distribution and
themedian strength gets overestimated slightly (Fig. 8).
Predictions of ball-on-ring strength exhibit a clear lack
of spread compared to laboratory test results and pro-
duce an underestimated median strength. Considering
the strength predictions in Fig. 8, it should be noted
that theWeibull distribution gives the opposite effect in
terms of under/overestimation compared to the numeri-
cal analysiswith finite-sizeWL-systems, namely,when
the Weibull distribution underestimates the strength in
predictions of ring-on-ring bending, the numerical sim-
ulations slightly overestimate, and vice versa for the
ball-on-ring predictions. Notice, however, that in terms
of the median and lower quantiles, which are the most
important in design considerations, the numerical sim-
ulations tend to perform better than the Weibull distri-
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Fig. 8 Difference in
estimated deciles compared
to experimental results
when predictions of one
setup are made from
another. Here it is the flaw
size concepts that were
fitted to ring-on-ring
(ball-on-ring) test results
that are used to predict the
outcome of ball-on-ring
(ring-on-ring) results, and
vice versa. The difference in
quantiles along the y-axis
corresponds to experimental
observations minus model
predictions. The vertical
line represents the median
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bution, as these produce predictions for the quantiles
that are located closer to the estimated values observed
in experimental strength tests.

Thefittedflaw-size distributionparameters inTable 7
are considerably lower than suggested in Yankelevsky
(2014), compare Sect. 4.3. This presents a problem to
the physics-based interpretation of the parameter amax

in Eq. (A.37). The argument may not be viable that
this parameter value can simply be inferred from stan-

dard documents with quality requirements, e.g., on the
largest optical fault as new glass is inspected for large
defects by manufacturers, because that would suggest
a higher value than what is recorded in the table, com-
pare with the line of reasoning in Yankelevsky (2014)
and also Pisano and Royer-Carfagni (2017). Addition-
ally, with the values of amax recorded in the table, the
strength in numerical simulations (without implemen-
tation of subcritical crack growth) would never fall
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Fig. 9 Difference in
estimated deciles for
fracture origin data
compared to experimental
results as function of flaw
density, μ. The difference in
deciles along the y-axis
corresponds to experimental
observations minus fitted
model. The vertical line
represents the median
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below about 55 MPa, compare Eq. (3), irrespective
of how much the surface area were increased that is
exposed to tension, and this seems to be unrealistic and
a severe drawback from a practical point of view.

Taking into account also the modelled and predicted
failure origins, it is evident that the numerically simu-
lated WL-systems perform better for the ring-on-ring
than for the ball-on-ring setup. In the ball-on-ring lab-

oratory tests, most of the observed fracture origins
occurred close to the centre, within a radial distance
of about 5 mm. In contrast, with the numerically sim-
ulated weakest-link systems, the proportion of frac-
ture origins located nearest the centre is considerably
underestimated, compare Fig. 7 which shows that the
median value of radial coordinate is shifted away from
the centre by 5–10 mm. The same can be seen (in
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Fig. 10 Broken specimens. From left to right: Specimen R13, B39, and B29

Fig. 8) when predictions are made on the ball-on-ring
setup from a model originally fitted to the ring-on-
ring setup. In addition, the same feature in the ball-on-
ring fracture origin distribution as already mentioned
is also obtained when a flaw-size distribution with
power-law decay is implemented in numerical simu-
lations of finite-size systems, and hence the feature is
observed for all of the different types of flaw-size con-
cepts recorded in Table 4. The surface condition may
not be represented accurately enough in the flaw-size
concepts. For example, the assumed flaw density may
be too low. From a practical point of view, there is
limited knowledge about the true surface condition in
glass because surface flaws are hard to detect using cur-
rent technology and ultimately recourse has to be made
to elementary assumptions. There have been recent
attempts to probe flaws non-destructively using image
scanning techniques (Wereszczak et al. 2014), however
it remains to be demonstrated that such methods are
capable of detecting all pertinent flaws and to distin-
guish potential fracture-inducing flaws from other less
severe ones (Lamon 2016).

For the ball-on-ring setup, Fig. 9 shows that by
increasing flaw density, the fracture origin spread in
radial direction is reduced with a shift towards the cen-
tre which generally reflects the empirical ball-on-ring
data set better. At the same time, with increased flaw
density, it is possible that spurious fractures that occur
at a greater distance from the centre-point get underes-
timated. With the ring-on-ring fracture origin distribu-
tion, a slight shift occurs in origin location towards the
centre as flaw density increases, and, the right-hand tail
gets diminished. It should be noted that there is much
greater uncertainty in the decile estimates of the right-
hand tail of the fracture origin distribution than in the
left-hand tail, comparewithFig. 4which shows the shift
function with confidence bounds for the laboratory test

data samples. For 104 ≤ μ ≤ 106 in both ring-on-ring
and ball-on-ring loading, the confidence bounds (not
shown in Fig. 9) for the 8th decile in fact cover the
value zero. In addition, by increasing the flaw density
while using the chosen flaw size concept from Table 4,
the spread in simulated strength distribution (not shown
in Fig. 9) gets severely reduced to the point of render-
ing the strength model ineffective. Therefore, it is not
possible to directly reconcile the observed strength and
fracture origin distributions for the ball-on-ring setup
in numerical simulations by increasing the flaw density
value alone.

The significance is emphasizedof taking into account
not just the recorded fracture stresses in weakest-link
analysis of glass strength, but also fracture origins
which for logical reasons are intrinsically intercon-
nected in such systems. In fact, the simultaneous mod-
elling of strength and fracture origins is easily over-
looked in casual fitting of a Weibull distribution to
brittle strength data. Even though it is intuitively com-
pelling to represent flaws as cracks (with geometri-
cal configuration, directional sensitivity to the applied
stresses, etc.), it may not be the most expedient way
to proceed in a weakest-link framework. For exam-
ple, the definition of crack geometry is straight-forward
whereas in reality a flaw may have a complex shape
(Lamon 2016).

6.3 Modified flaw-size concepts

Figures 6, 7 and 8 suggest a number of basic problems
that arise with the use of the flaw-size concepts from
Table 4, namely: (1) models based on these concepts
are not altogether capable of predicting the results from
one setup based on the outcome of another; (2) consid-
ering the E-type concepts fromTable 4, the fitted values
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Table 8 Modified flaw-size
concepts explained Symbolic marker E3 E4

Flaw-size distribution Equations (A.37) and (A.33) Equations (28) and (A.37)

Fitted parameters

{
amax

s
Amax

v0 (µm s−1) 0 0

Crack plane orientation Random Random

Flaw density μ 10,000 100,000

of amax are so small as to cause too low a limit on the
possible flaw-size than is practical; (3) the spread in
fracture origins for ball-on-ring bending gets consider-
ably overestimated.

To address the first two issues mentioned above, a
pair of modified flaw-size concepts are proposed in
Table 8. The first one, E3, addresses the issue relating
to the capacity for using the results from one bending
configuration to predict the outcome of another. It relies
on adding a small random noise to each unit cell after
the Griffith flaws have been sampled and distributed
across the surface. The random noise is assumed to
be normally distributed with mean zero and standard
deviation s, Eq. (A.33). A physics-based interpretation
of the random noise involves the compounded effect
of various phenomena acting locally, such as complex
flaw shapes that take on random geometrical configura-
tions, presence of residual stresses over the surfacewith
local deviations, and other random effects that arise as
a consequence of interaction between the surface and
its surroundings. In reality, such random noise could
be correlated in space, with neighbouring unit cells
potentially displaying stronger correlation; however, as
a simplification this is disregarded.

The second modified flaw-size concept, E4 in
Table 8, depends on adopting a doubly stochastic flaw-
size distribution in the form of allowing amax to display
random variability. The reasons for viewing amax as a
random variable include: (1) unless the glass surface
is artificially damaged, e.g., through abrasion (Blank
1993), it is unlikely that failure is governed by a single
flaw population. Random variability in amax allows for
amultitude of flawpopulations to be represented, all the
while maintaining the underlying exponential depen-
dence that is expressed in Eq. (A.35); (2) it enables a
shift in the flaw-size distribution towards smaller flaws
without destroying the possibility for rare occurrences
of a large flaw. As a model for the random variability

Table 9 Fitted parameters of modified flaw-size concepts

Symbolic marker E3 E4

Fitted values

{
46 µm

1.4
206 µm

in amax we consider the model expressed in Eq. (28)
which is the same as in Eq. (A.37) but with substituted
variables,

amax = Amax

(
1 − ln Ni

ln N0

)
(28)

and, where Ni is determined according to Eq. (A.37),
see further App. A.1. Hence, it is assumed that amax is a
positive random number smaller than some upper limit,
Amax, equal to say 200µm, and that it has an exponen-
tial decay. When the Griffith flaws are sampled in the
numerical procedure, a value for amax is first sampled
using Eq. (28) based on the fixed parameter value Amax,
and subsequently inserted into Eq. (A.37) to draw a ran-
dom flaw size which is then assigned to a unit cell. The
reason for adopting this particular stochastic model for
amax is: (1) it is a simple model that does not intro-
duce additional parameters into the system, and it also
retains the functional form already present; (2) it read-
ily shifts the sampled flaw sizes to much lower values
without destroying the possibility for very large flaws
to occur, however, rarely. Notice, that because of this
shift in flaw sizes, itmay be expected that the associated
flaw density, μ, requires additional adjustment.

Table 9 shows the fitted values of amax and s, and
Amax and μ, respectively. The fitting was performed
through trial and error; in the case of E3 by start-
ing out from a value of amax in the neighbourhood of
those already recorded in Table 7, and adding to this
a small random noise with standard deviation approxi-

123



416 D. Kinsella, E. Serrano

mately equal to one micron; in the case of E4 by start-
ing out from a value of Amax at about 200µm (which
would preserve this parameter’s physics-based inter-
pretation as the globally largest flaw size present in
new glass in the as-received condition, compare with
Yankelevsky (2014)), and then increasing the flaw den-
sity suitably. For sake of simplicity, subcritical crack
growth is neglected in the modified flaw-size concepts.

The addition of a small random noise leads to a
fit with the respective data sets which simultaneously
allows for prediction-making of one setup based on
the outcome of the other, see Fig. 11. The confidence
bounds for the quantiles (not shown in figure) suggest
that the fit is within statistical reproducibility. With the
use of the doubly stochastic flaw-size concept, a satis-
factory fit with the ring-on-ring and ball-on-ring data
sets is also produced simultaneously, while at the same
time maintaining a large enough value of Amax for the
preservation of its physical interpretation. In fact, with
the value Amax = 200µm a fit is just about obtained
within statistical reproducibility (as per the confidence
bounds of the quantiles) thus suggesting that this value
can be recommended as a rule of thumb. The condi-
tion for this is that the flaw density is increased one
order of magnitude from the original value in Table 7.
However, the modelled fracture origins (not shown in
figure) exhibit the same kind of features as previously
shown in Figs. 6 and 7, viz. the ring-on-ring origins
are modelled reasonably well whereas the spread in
ball-on-ring origins is considerably overestimated.

It should be noted that while the WLmodels E3 and
E4 show better results than the ordinary two-parameter
Weibull distribution, a three-parameter Weibull model
would also show better results compared to the two-
parameterWeibull distribution because of the increased
number of parameters used in the model fitting.

6.4 Low-strength prediction

As the laboratory test samples are somewhat limited in
size (≈ 50), it is hard to estimate with reasonable accu-
racy the behaviour of quantiles beyond approximately
0.1 and 0.9 (see also App. A.3). If the fitted strength
models are used to make extrapolation, the following
should be noted. The left-hand tail of fitted Weibull
and normal distributions is larger than for the numer-
ically simulated WL-systems. This means that predic-
tions of low-strength quantiles are most conservative

with a Weibull or normal distribution. This is not sur-
prising because the flaw-size concept that was imple-
mented in numerical simulations involves a truncated
exponential-type distribution, compare Eq. (A.37).

What would the left-hand tail in the ball-on-ring
data set look like if a much larger number of labora-
tory tests were carried out? Such a question is relevant
for strength design purposes. The ring-on-ring data set
could in principle provide information about this, when
it is considered that the calculated effective area rep-
resents a fictitious surface exposed to uniform tensile
stress. In fact, rather than to increase the sample size,
Danzer et al. (2007) proposes to test specimens of vary-
ing sizes to probe a greater range of the underlyingflaw-
size distribution. Given a data set of N observations of
the strength, the estimate of the failure probability for
a specimen is based on its rank in ascending order. The
failure probability associated with the i-th specimen
can be calculated using the Median rank estimate as
follows (Forbes et al. 2011).

Fi = i − 0.3

N + 0.4
, i = 1, 2, . . . , N (29)

The values of Fi are located along the ordinate in a
probability plot, compare with Fig. 12 which shows
the Weibull plot for the ball-on-ring and ring-on-ring
samples. In addition, a reference line (dashed line) is
shown in the figure that represents a prediction for
the strength distribution based on the ball-on-ring out-
come when the effective area is increased by a factor
5893/413 ≈ 14 (compare the values of effective area in
Fig. 5). According to this Weibull weakest-link model,
one observation of ring-on-ring strength corresponds
effectively to the minimum value of ≈14 number of
ball-on-ring tests. Using Eq. (29), the lower quantile
that is probedwhen theminimumvalue is selected from
a sample of 14 observations is close to the 5%-fractile
(compare alsowithDanzer et al. (2001)).Another inter-
pretation of the effective area pertains to the minimum
value in the set of 45 ring-on-ring observations which
would represent the minimum value in a set of about
45 · 14 = 630 ball-on-ring observations, a sizeable set
of data. It is noteworthy that the minimum observed
strength in the ring-on-ring data set (55.1 MPa) is only
about 4% smaller than the correspondingly smallest
observed value in the ball-on-ring data set (57.4 MPa),
see Table 5. In summary, a number of conclusions
are conceivable. (1) The calculated effective areas are
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Fig. 11 Difference in
estimated deciles compared
to experimental results. The
difference in quantiles along
the y-axis corresponds to
experimental observations
minus model predictions.
The vertical line represents
the median
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incorrect, e.g., the effective area in ball-on-ring bend-
ing is in reality much greater; (2) the Weibull function
fitted to the ball-on-ring data cannot be used to model
correctly the distribution of the (for example) 5% frac-
tile which in such case produces overly conservative
estimates for the strength; (3) there is in reality some
sort of correlation between subregions/“links” in the
WL-system which renders comparisons between the
two biaxial configurations intractable when using stan-

dard (Weibull)WL-theory; (4) the underlying flaw-size
distribution that generates the observed strength sam-
ples is in reality multimodal.

The boxplots and added features in Fig. 13 provide
a visualization of summary statistics for the estimated
median and low-strength quantiles from simulations
with finite-size systems using the flaw-size concept E4
from Table 8. A number of 100,000 virtual tests were
conducted to generate the displayed statistics. The line
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Fig. 12 Weibull probability
plots. Dashed line represents
a prediction of ring-on-ring
outcome based on the fitted
ball-on-ring model
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Fig. 13 Comparison of
estimated low-strength
quantiles according to
numerical modelling with
finite-size systems based on
flaw-size concept E4.
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in themiddle of each box is the samplemedian. The top
and bottom of each box are the quartiles of the sample.
The dot below the box represents the estimated 5%-
fractile and the cross below it represents the 1 in 10,000
failure probability. The horizontal line at the bottom
and top of each whisker extends to the minimum and
maximum values in each data sample. The dashed hori-
zontal line near the bottom of the diagram indicates the

45MPacharacteristic value for the bending stress that is
mentioned in EN 572-1:2012, and which is further dis-
cussed in an annex to EN 16612 (2019). From Fig. 13,
it can be concluded that with the adopted model for
the tested glass, the material is considerably stronger
than the 45 MPa characteristic value mentioned in the
standards. In addition, the 5%-fractile value decreases
from about 84.0 MPa in ball-on-ring loading to 71.3
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MPa in ring-on-ring, corresponding to a 15% strength
decrease. It should be noted, that the 1 in 10,000 failure
probability is roughly equal to 45MPa in either loading
case. In reality, with much larger structures spanning
several metres and exposed to bending load, it may
be that the size-effect is differently pronounced. More
testing and numerical modelling is required to verify
this.

6.5 Stress corrosion and flaw randomness

Implementation of stress corrosion can have a profound
impact on the estimated flaw-size distribution param-
eters, depending on the chosen value of v0 in Eq. (7).
Unfortunately, the data on the crack velocity param-
eter, v0, exhibits a large scatter, see e.g. Haldimann
(2006) and Schula (2015) for a review of this. To sim-
ply adopt a conservative value for v0 is problematic for
a correct interpretation of the derived flaw-size distri-
bution parameters in the numerical simulations. There
is a need for more reliable information about the crack
velocity parameter that can be used in modelling of
tests performed in ambient conditions.

The location and orientation of flaws may in real-
ity not be uniformly random distributed. The assump-
tion that all crack planes are oriented perpendicular to
the major in-plane principal stress is conservative. In
reality, due to e.g. machining operations, there may
be some preferred flaw orientations. In the present
case with ring-on-ring and ball-on-ring bending, the
in-plane principal stresses are equal at the centre point
where the greatest tension arises. It is expected that the
choice of crack plane orientation (uniform random or
perpendicular to the major principal stress) has a lim-
ited impact on these results only. However, in other
cases such as with four-point bending tests, the impact
would be more significant.

6.6 Fracture patterns

Figure 10 illustrates some of the observed fracture pat-
terns in the broken specimens. The ring-on-ring plates
typically display circumferential cracking occurring
near the inner loading ring which indicates that the
specimen strength was moderate to high (Quinn 2016).
In addition, the circumferential cracking is likely exac-
erbated near the load ring because the suspended and

approximately 11 kg heavy load jig weighed down
on the broken specimen upon failure thus causing
increased fracturing locally. A visual inspection of the
broken ball-on-ring specimens reveals that the typical
fracture pattern was a star-like one. “Star” cracking
initiates on the rear tension side of the plate from a
flaw which immediately bifurcates to produce a multi-
tude of radial cracks which give a star-like appearance
(Ball and McKenzie 1994). In principle the number of
radial cracks is proportional to the stress (Shah and
Aung 2014). The failure load of specimen B29 is about
twice as large as that of B39 and indeed the number of
radial cracks is substantially greater. Basically, there
are two stress systems in a ball-on-ring bending situa-
tion that compete with each other to produce the failure
origin, namely Hertzian indentation stresses and bend-
ing stresses (Ball and McKenzie 1994). In the present
case with relatively thin specimens that are simply sup-
ported on a large-diameter ring and subject to quasi-
static loading, it is the bending stresses that govern
failure with “star” cracking as a result. However, for
thicker plates on a smaller ring, and/or with dynamic
loading, failure may be prompted by a cone fracture
that propagates through the thickness.

7 Conclusions

The theoretical strength-scaling in glass plates subject
to ring-on-ring and ball-on-ring loading can be deter-
mined, on the basis of a Weibull weakest-link system,
using the calculated effective areaswhich are expressed
in closed-form. The so predicted strength-scaling is
greater than the measured size effect in laboratory tests
on new annealed soda-lime glass plates. In fact, the
estimated Weibull modulus is found to vary consider-
ably between the ring-on-ring and ball-on-ring experi-
ments, thus rendering intractable the weakest-link scal-
ing premise of the Weibull distribution.

Numerical implementations of finite-size weakest-
link systems are carried out with flaw-size distributions
that decay as an exponential function. These systems
can provide more viable predictions for the strength-
scaling compared to a Weibull distribution. According
to this modelling, the characteristic 5%-fractile bend-
ing strength of the glass is considerably greater than
45 MPa. However, the simulated ball-on-ring fracture
origins exhibit greater spread in the radial direction
from the centre point compared to laboratory observa-
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tions. This indicates that the surface condition repre-
sentation considered in this work may not be properly
configured to model all fracture origins, even though
it is possible to make reasonable predictions for the
statistical distribution of origins in ring-on-ring load-
ing. The choice of stress corrosion parameter value can
have a profound impact on the simulated results and
the modelling of subcritical crack growth is important
to address in future work.

There is a need for more insight into the surface
condition of glass which can be conducive to the
development of flaw-size based weakest-link mod-
elling. Nevertheless, computationally intensive proce-
dures for implementation of finite-size weakest-link
scaling systems are likely conducive to the develop-
ment of improved modelling tools compared with the
basic Weibull distribution.
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A Appendix

A.1 Statistical distributions

A number of statistical distributions are used in the
present work to model flaw characteristics, specifically
flaw size and the number of flaws. The Weibull distri-

bution is given in Eq. (A.30) (Weibull 1939),

F(σ ) = 1 − exp

(
−

(
σ

σ0

)m)
, σ0 > 0,m > 0

(A.30)

where σ0 andm are scale and shape parameters, respec-
tively. The scale parameter coincides approximately
with the 63rd percentile in the distribution, and the
coefficient of variation (COV) is related to the shape
parameter according to Eq. (A.31) where �(·) is the
Gamma function, i.e., �(m) = (m − 1)! and general-
ized for non-integer m (Rinne 2009).

COV =

√√√√√√
�

(
m + 2

m

)

�
(m+1

m

)2 − 1 (A.31)

The Pareto distribution function for a > 0, is

F(a) = 1 −
(a0
a

)c
, a0 > 0, c > 0 (A.32)

where a0 and c are scale and shape parameters (Forbes
et al. 2011).

The normal distribution has the probability density
function (Forbes et al. 2011)

f (a) = 1√
2πs2

exp

(
− (a − μ0)

2

2s2

)
(A.33)

where μ0 and s2 are the mean and variance, respec-
tively.

The Poisson distribution has the probability mass
function

pM (k) = e−μ · μk

k! (A.34)

where integer k denotes the number of occurrenses and
μ is the expected number of occurrences (Forbes et al.
2011).

A truncated distribution for flaw size was proposed
in Yankelevsky (2014) and expressed as

N f

N0
= exp

[
−

(
a

η

)]
(A.35)
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Table 10 Equivalent radius of contact between loading ball and
specimen at various magnitudes of applied load

F = 50 N F = 500 N F = 5000 N

r0 (mm) 3.603 3.696 3.751

where N f is the number of flaws that are larger than
or equal to a, N0 is the total number of flaws in the
population, and η is a parameter that can be specified
as

η = amax

| ln N0| (A.36)

where amax is the largest flaw that occurs in the popu-
lation. Random samples of a according to Eq. (A.35)
can be calculated with

ai = amax

(
1 − ln Ni

ln N0

)
,

Ni = R(N0 − 1) + 1,

R ∼ U ([0, 1])
(A.37)

where R is a random variable uniformly distributed on
[0, 1] (Osnes et al. 2018).

A.2 Closed-form solutions for stress

The small displacement solutions for the stress distribu-
tion are derived assuming elastic bending of a rigid cir-
cular plate and considering only the bending stresses.
It is assumed that the contact between the plate and
ring/ball is ideally elastic and that the compliance of
the test system is small relative to that of the test speci-
men. The radial and circumferential stress components
are denoted by σr and σθ . The contact radius between
ball and specimen can be calculated using Hertz’ elas-
tic contact theory, however the contact stress directly
under the ball is not homogeneous (Le Bourhis 2008).
Instead, an equivalent radius of uniform loading is
adopted and substituted in the closed-form solutions for
the stress, Eq. (A.40). The effective radius of contact
between loading ball and specimen where the loading
can be considered uniform is in the general case dif-
ficult to determine (Chae et al. 2010). The equivalent
radius of uniform loading for the present ball-on-ring
configuration was determined by comparing the ana-

lytical solution for centre-point stress on the bottom of
the plate with FE-computations. The value of r0 was
chosen such that the corresponding maximum tensile
stress under the plate using Eq. (A.40) is in close agree-
ment with a FE analysis. The equivalent radius varies
by about 1% within the range of load magnitudes that
prompt failure in the tests. Table 10 shows the distri-
bution of equivalent r0 as function of load magnitude
for the ball-on-ring configuration at a select number of
points in the load history.

The normalized geometrical parameters are

ρ = r

r2
, ρ0 = r0

r2
, ρ1 = r1

r2
(A.38)

where r2 is the radius of a circular disk specimen. For
a square plate with edge length L , the effective circular
radius can be approximated as one half times the aver-
age value of the plate diagonal and side-length, i.e.,

r2 = 1

2
· L(1 + √

2)

2
(A.39)

The following ball-on-ring formulae were obtained
from Frandsen (2014), and the expressions for ring-on-
ring bending were obtained from Shetty et al. (1980)
who developed the original solution by Vitman et al.
(1962). The circumferential and radial stress compo-
nents are expressed in terms of the normalized geo-
metrical parameters on a general form with i = {θ, r}.
In the case of ball-on-ring bending, the equations are as
follows where the subscript B refers to the ball-on-ring
setup.

σ
(i)
B = 3(1 + ν)F

4π t2
· . . .

·

⎧
⎪⎪⎨

⎪⎪⎩

c(i)
11Bρ2 + c12B for 0 ≤ ρ ≤ ρ0

2 ln ρ1
ρ

+ c(i)
21B + c(i)

22B
1
ρ2 for ρ0 < ρ ≤ ρ1

c31B + c(i)
32B

1
ρ2 for ρ1 < ρ ≤ 1

(A.40)

The constants in Eq. (A.40) are the following.

c(θ)
11B = −1 + 3ν

1 + ν

1

2ρ2
0

, c(r)
11B = −3 + ν

1 + ν

1

2ρ2
0

(A.41)

c12B = 1 + 2 ln
ρ1

ρ0
+ 1 − ν

1 + ν

(
ρ2
1 − ρ2

0

2

)
(A.42)
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Fig. 14 Maj. in-plane
princ. stress in the radial
direction from the centre
point on the tension side of
a plate subjected to biaxial
loading
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c(θ)
21B = 1 − ν

1 + ν

(
ρ2
1 − ρ2

0

2
+ 1

)
, (A.43)

c(r)
21B = 1 − ν

1 + ν

(
ρ2
1 − ρ2

0

2
− 1

)

c(θ)
22B = −c(r)

22B = −1 − ν

1 + ν

ρ2
0

2
(A.44)

c31B = 1 − ν

1 + ν

(
ρ2
1 − ρ2

0

2

)
(A.45)

c(θ)
32B = −c(r)

32B
1 − ν

1 + ν

(
ρ2
1 − ρ2

0

2

)
(A.46)

For the ring-on-ring configuration, the following equa-
tions are used where subscript R signifies the ring-on-
ring type.

σ
(i)
R = 3(1 + ν)F

4π t2
· . . .

. . . ·
{
c12R for 0 ≤ ρ ≤ ρ0

2 ln ρ1
ρ + c(i)21R + c(i)22R

1
ρ2

for ρ0 < ρ ≤ 1

(A.47)

The constants in Eq. (A.47) are the following,

c12R = 2 ln
ρ1

ρ0
+ 1 − ν

1 + ν
(ρ2

1 − ρ2
0 ) (A.48)

c(θ)
21R = 1 − ν

1 + ν
(2ρ2

1 − ρ2
0 ), c(r)

21R = −1 − ν

1 + ν
ρ2
0

(A.49)

c(θ)
22R = −c(r)

22R = −1 − ν

1 + ν
ρ2
0 · ρ2

1 (A.50)

Figure 14 compares the calculated major in-plane
principal stress in the radial direction from the centre
point at three values of load for the ring-on-ring and
ball-on-ring bending configuration, respectively, with
FE-computations.

The centre-point displacements are, respectively
(Vitman et al. 1962; Frandsen 2012),

uB = 3F(1 − ν2)r20
4πEh3

· . . .

. . . ·
(
r11
r22

(
1 + 2 ln

r1
r0

+ 1 − ν

1 + ν

(
1 − r20

2r21

)
r21
r22

)
· · ·

+ · · · +
(
1

2
− ln

r1
r0

) (
2r21 + r20

r20

)
− 7

4

)
(A.51)

uR = 3F(1 − ν2)r20
4πEh3

· . . .

·
(
r21
r20

(
2 + 1 − ν

1 + ν

(
1 − r20

r21

)
r21
r22

)
− . . .

−2

(
1 + ln

r1
r0

))
(A.52)

A.3 Shift function

The shift function provides a tool for systematic group
comparisons that combines a graphical method for
comprehensive data visualization with robust infer-
ential statistics and is further described in Rousselet
et al. (2017). The shift function is a plot of the dif-
ference between the quantiles of two distributions as a
function of the quantiles in one group. The quantiles
are estimated and 95% confidence intervals are com-
puted for the quantile differences. The shift function
describes how much one distribution must be shifted
or re-arranged to match another. For example, two dis-
tributions that differ only in location would in princi-
ple produce a shift function in the form of a horizontal
line displaced from the origin in the vertical direction.
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Whereas, two distributions that differ only in spread
would produce a shift function in the form of a sloping
straight line. Small sample sizes can pose a problem
when addressing the question of how two distributions
differ. According to Rousselet et al. (2017), it is recom-
mended that at least 30 observations be included in an
analysis to compare the 0.1 or 0.9 quantiles. 20 obser-
vations appear to be sufficient to compare the quartiles,
i.e. the 0.25 and 0.75 quantiles. At least 50 observations
per group should be used to compare the 0.05 and 0.95
quantiles.
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