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Abstract The numerical treatment of the residual
load-bearing behavior of laminated glasses (LG) in the
post-fractured state is highly topical. Nevertheless, cur-
rently only few numerical approaches for an accurate
representation of the experimentally observed behav-
ior are existent. In order to model the characteristics
of the load-bearing behavior of glass laminates in the
post-fractured state, the behavior of the interlayer, the
behavior of the glass fragments as well as the bond-
ing between glass and interlayer need to be charac-
terized correctly. This paper focuses on the modeling
of the frictional contacts between the glass fragments
itself. In order to allow for the calibration of failure
criteria for the fractured glass particles, framed shear
tests which are a common experimental technique in
geomechanical testing to determine the shear strength
of soils, are performed on glass fragments of differ-
ent thicknesses and levels of thermal pre-stress. The
test results are subsequently used to calibrate non-
associated Mohr–Coulomb criteria, which are widely
applied to the description of failure and frictional slid-
ing of soils, to the experimental data of four distinct
kinds of glass fragments. The obtained parameters of
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the Mohr–Coulomb models are in magnitude simi-
lar to the parameters of standard soils such as sand
or gravel. The experimental data further show, that
the Mohr–Coulomb model in general can be used to
approximate the stress failure plane of the glass frag-
ments but lacks for capturing correctly the plastic vol-
umetric strains (dilation) in Finite Element modelling.
Numerical investigations by the Finite Elementmethod
showed, that it is possible to reproduce experimental
data by using Mohr–Coulomb plasticity models and
hence the numerical models are validated for further
investigations.

Keywords Post-fractured state · Glass fragments ·
Geomechanical testing

1 Introduction

Nowadays glass is one of the most popular building
materials due to its inherent transparency and aesthetic
design possibility. Therefore, the requirement for the
residual load-bearing capacity of glass structures is also
highly topical. According to the “fail safe approach”
(Feldmann et al. 2014) in structural glass engineer-
ing, in case of partial or total fragmentation of glass,
the glass structure has to provide sufficient stiffness
and strength, delivering a certain post-fracture perfor-
mance under at least the permanent loads as well as a
fraction of the live loads. As glass alone in the frac-
tured state is not able to meet this requirement, at least
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two sheets of glass are laminated together with a poly-
meric interlayer to form laminated glass (LG). If further
requirements such as certain load-carrying behavior,
the maximum size of the glass fracture particles or the
glass shards remaining attached to the polymer, aremet,
LGs are classified laminated safety glass (LSG). The
fracture pattern of moderately to highly pre-stressed
glasses is very fine in scale and the shape of the particles
strongly depends on the actual level of pre-stress and
thickness of the glass (Kraus 2019; Pour-Moghaddam
2020, 2019). However, as the shape and strength of the
glass fragments are reminiscent of sharp-edged gravel
(Smoltczyk 2001), it can be assumed that they also act
accordingly and thus established constitutive laws from
geotechnical engineering look promising for a com-
putational mechanical modelling approach. The goal
within this paper therefore is to characterize the behav-
ior of the glass fragments by means of geomechanical
experiments and constitutivemodels for further numer-
ical treatment.

The contributions of this paper are fourfold: (1) the
modelling of fractured glass laminates is briefly elab-
orated for distinct numerical treatment frameworks (2)
it is suggested to use plasticity models for the incor-
poration of the contribution of the glass fragments in
further numerical analysis of fractured glass laminates
(3) conduction and reporting of experiments on several
fractured glass pane specimen and calibration of non-
associated Mohr–Coulomb material models (4) valida-
tion of Finite Element models against the experiments.

The rest of this paper is organized as follows: in
Sect. 2 the state of the art as well as the descrip-
tion of two frameworks for the numerical treatment
of fractured glass laminates and modelling strategies
are given. In Sect. 3 background information on the
mechanical constitutive modelling of plasticity as well
as failure criteria for geotechnical materials are reca-
pitulated and the modelling constraints are discussed.
In Sect. 4 the conduction of experiments on glass frag-
ments of glass panes with different thicknesses and lev-
els of pre-stress is described and the test results are
reported. A further analysis of the obtained data is con-
ducted and the calibration of the parameters of non-
associated Mohr–Coulomb models for the test speci-
men is carried out. In Sect. 5 the validation of Finite
Element models against the experiments is conducted
and reported. Further conclusions as well as an outlook
are given in Sect. 6.

2 Post-fracture load bearing capacity of glass
laminates

2.1 State-of-the-art

The load-carrying behavior of intact laminated glass
has been studied extensively from the theoretical
(Hooper 1973; Asik and Tezcan 2005; Ivanov 2006;
Foraboschi 2009; Galuppi and Royer-Carfagni 2012;
Aenlle et al. 2015), experimental (Behr et al. 1985,
1993), and numerical (Fröling and Persson 2013;
Fröling et al. 2014;Mantari andCanales 2016; Jaśkowiec
et al. 2017) point of view.

On the other hand, the modelling of the post-
fracture response of laminated glass still represents an
open issue. Currently there exist several approaches
to mechanically describe and experimentally capture
either the global load-bearing behavior of glass lam-
inates in the post-fractured state or local effects or
components thereof. A number of investigations and
experimental activities have been conducted on frac-
tured laminated glass: in Fahlbusch (2008), a global
stiffness of the fractured glass laminates is determined
using tensile creep tests, in Kott and Vogel (2006) and
Feirabend (2010) the yield-line theory is proposed,
which initiallywas derived in Johansen (1962) for biax-
ially stressed reinforced concrete slabs. Fractured lam-
inated glass was experimentally investigated under in-
plane (Biolzi et al. 2010, 2016; Speranzini and Agnetti
2014; Belis et al. 2009) and out-of-plane (Feirabend
andSobek2008;Castori andSperanzini 2017) bending.
Numerical simulations on fractured glass laminates are
recorded in Timmel et al. (2007), Baraldi et al. (2016),
Pelfrene (2016), Pelfrene et al. (2015) and Chen et al.
(2017). In Seshadri (2001) and Franz (2015) a cohesive
zone model is presented which considers the adhesion
between glass and interlayer. In Kraus et al. (2019)
and Kraus (2019) a machine learning based prediction
algorithm is presented which enables to generate glass
fracture patterns at low numerical effort for thermally
pre-stressed glass in dependence of the thickness and
pre-stress level of the glass pane. The implementation
of the fractured glass laminates in a Finite Element
Method code is numerically demanding due to the large
amount of degrees of freedom. Analytical approaches
are considered in Kott and Vogel (2004), Galuppi and
Royer-Carfagni (2017), D’Ambrosio et al. (2019) and
Galuppi and Royer-Carfagni (2018).
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A first methodical review and evaluation of differ-
ent modelling strategies for glass laminates in the post-
fractured state is only given in Teotia and Soni (2018)
and Vedrtnam and Pawar (2017), yet. Hence the next
section of the paper will briefly highlight two potential
modelling strategies for fractured glass laminates and
specify the necessary material parameters and corre-
sponding experiments.

2.2 Modelling

For the numerical treatment of post-fractured glass
laminates three components have to be specified by
appropriate mechanical models: fractured glass (green
box), polymeric interlayer (blue box) and adhesion of
glass particles to the interlayer (orange box), cf. Fig. 1.
In general, two distinct modelling choices for the frac-
tured glass laminate are now possible:

1. explicit modelling of the glass particles, their adhe-
sion to the interlayer and the modelling of the inter-
layer behavior

2. homogenized approach, where the fractured glass
and the interlayer are not modelled explicitly but
the whole fractured glass laminate.

Both modelling variants differ in experimental and
numerical complexity. From experiments it is however
observed, that the fractured glass laminate shows two
effects: on the one hand, the fracture creates many con-
tact surfaces between the individual glass fragments,
which interlock with each other, resulting in a steep
increase in stiffness in the range of small and mod-
erately large strains compared to the behavior of the
interlayer only. Secondly, the glass laminate response
is stiffened by the adhesion of the interlayer to the glass
fragments (cf. Botz et al. 2019; Galuppi and Royer-
Carfagni 2016) and the transverse strain restraint. The

larger the deformation caused strains become, themore
the interlayer delaminates from the glass fragments
(cf. Pelfrene et al. 2015), which causes the stiffness to
decrease again: under very large deformations, almost
no glass fragments adhere to the interlayer and non-
linear viscoelastic material laws are required for the
constitutive modelling of stress–strain-time phenom-
ena.

As the contact behavior of the fractured glass par-
ticles is an important component of the load-bearing
of fractured glass laminates and as the glass frag-
ments are reminiscent of sharp-edged gravel, this paper
investigates for the first time the idea of characterizing
the glass fragments from panes with different thick-
nesses and levels of pre-stress via experiments used to
mechanically characterize soils and sub sequentially
calibrated models of plasticity. Usually information on
the level of pre-stress associated with the respective
fracture particles is recorded rarely when testing glass,
hence the experimental and their investigation is of
great value due to the data exclusivity. In the scope
of this work, geotechnical investigations are used to
characterize the mechanical material behavior of dis-
tinct glass fragments in order to allow the calibration of
further material models of the glass fracture particles.

In the state of completely fractured glass of the lam-
inate (state III), cf. Fig. 1, the verification of the load-
bearing capacity so far can only be carried out bymeans
of tests as there hardly exist reliable and realistic numer-
ical procedures. With a numerical model being able to
capture the complex mechanical behavior of fractured
laminated glass it would be much more cost-effective
and time-saving to investigate and analyze the resid-
ual load-bearing capacity of certain glass laminates
together with their boundary conditions. Hence it is
of great practical and theoretical interest to investigate
modelling strategies of fractured glass laminates and

Fig. 1 Mechanical model for the load carrying in the intact (I) and fractured states (II, III), characterized by the behaviour of fractured
glass (green box), polymeric interlayer (blue box) and adhesion of glass particles to the interlayer (orange box), Kraus (2019)
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the respective components from a theoretical as well
as an experimental point of view.

3 Characterization and modelling of granular
media: lessons from numerical methods in
geotechnical material modelling

Given the inspiration of using geomechanical exper-
iments for characterizing mechanical properties and
material behavior of fractured glass particles, a nat-
ural consequence is using established numerical pro-
cesses and methods from geomechanics for analyz-
ing soil in the limit states. The finite element method
(FEM) is widely used in engineering and hence inmod-
elling of geotechnical problems in order to gain insight
into how stresses and strains distribute within the soil.
To enable these investigations, constitutive models are
required, which are calibrated by test data from the
laboratory. The behavior of soils may be modelled
at different accuracy levels, typically for the case of
the stress–strain relationship. Similarly to the proposed
two modelling approaches of fractured glass laminates
in Sect. 2.2, in geomechanics several homogenized or
explicit constitutive models are known.

The experimental investigations of this paper in
Sect. 4 serve as data basis for both, modelling strategies
for quantifying the contributions of the glass particles
to respective numerical approaches and the extraction
of relevant phenomena to be captured by the material
models. This subsection however is concerned with the
particular material modelling choices for the fractured
glass phase within the Finite Element Method. In the
remainder of this section, at first the general setting
of numerical treatment of plasticity is briefly recap-
tured, the material modelling approaches for ’perfectly
plastic’ and subsequently the approaches for ’plastic-
ity with hardening/softening’ are introduced and set
into context with the experiments of this paper. Further
material modelling strategies for the fractured glass
laminate are outside the scope of this paper and will be
treated in future papers of the authors given the database
presented here. The concrete validation of a Finite Ele-
ment model for numerically assessing the experiments
of this paper is described together with the results in
detail in Sect. 5.

3.1 Background on the numerical plasticity setting

In case of large enough deformations, a linear stress–
strain relation is no longer justifiable to correctlymodel
the material behavior, for geotechnical materials then
linear elastic-perfectly plastic constitutive laws are
commonly applied (Senseny et al. 1983). Therefore the
development of critical state constitutive models has
provided a major advance in the use of plasticity the-
ory in geomechanics. A relatively simple model using
an associated flow rule is able to predict, at least qual-
itatively, a great number of the fundamental aspects of
soil behavior (Möller 2013; Smoltczyk 2001; Das and
Sivakugan 2016; Holtz et al. 1981). Plasticity mod-
els for frictional materials such as concrete, soil and
rock are most conveniently represented in the princi-
pal stress space (Möller 2013; Borja et al. 2003; Lang
et al. 2010; Dunne and Petrinic 2005; Das and Sivaku-
gan 2016). Using the mean value of the stress on the
main diagonal σm = (σ11 + σ22 + σ33)/3 = σkk

3 the
stress tensor σi j can be divided into a hydrostatic and
a deviatoric part (Katzenbach 2013; Smoltczyk 2001).
In the following the Einstein summation convention is
used, where i, j = 1, 2, 3:

σi j = σkk

3
δi j + si j (1)

where σkk
3 δi j presents the hydrostatic (spherical) and si j

the deviatoric part of the stress tensor. Flow surfaces in
general are expressed with respect to the hydrostatic
axis and the deviatoric plane, depicted in the princi-
pal stress space. Therefore each stress state can be
expressed in cylindrical coordinates within the prin-
cipal stress space. The axial distance along the hydro-
static axis is presented by ξ , the azimuth is present by
theLode angleΘ , and the distancewithin the deviatoric
plane is presented by ρ (cf. Jeltsch-Fricker and Meck-
bach 1999; Müllerschön 2000; He et al. 2018; Bigoni
and Piccolroaz 2004):

ξ =
√
3

3
(σ1 + σ2 + σ3) =

√
3

3
I1 (2)

ρ =
√
s21 + s22 + s23 = √

2J2 (3)

Θ = 1

3
cos−1

(
3
√
3

2

J3

J 3/22

)
(4)
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Fig. 2 Principal stress space representation

where I1 equals the first invariant of the stress tensor
and J1, J2 equal the first and second invariant of the
deviatoric part of the stress tensor. However the general
characteristics of the yield surface are described by its
shape on the deviatoric plane (π -plane) and its trace
on the meridian plane (spanned by ξ and ρ, while θ is
constant) (cf. Fig. 2).

Coming back to the context of plasticity, a point in
principal stress space shows elastic behavior as long
as it is within the flow surface, which is limited by a
certain flow rule. In other words, the surface in devi-
atoric stress space depicts the elastic domain with its
limit characterized by the flow rule.

In frictional materials the form of the failure enve-
lope is significantly affected by the value of the confin-
ing pressure. While the ’perfectly plastic’ approaches
are able to describe general soil behavior, necessary
refinements formore accurate capturing of themechan-
ical material behavior is reached through introducing
hardening and/or softening plasticity.

3.1.1 Introduction of a failure criterion

To formulate an elasto-plastic constitutive model,
the following three essential ingredients are required
(Möller 2013; Smoltczyk 2001; Holtz et al. 1981;
Dunne and Petrinic 2005):

– Yield function First of all a specific yield-function
needs to be defined, which for all kinds of stress
states relates the single stress entries of the stress
tensor with each other. If that function reaches zero,
the respective material shows plastic behaviour. In
the scope of this work only linear elastic ideal plas-

tic material behaviour is considered, hence the flow
functiononly depends on the respective stresses and
is scalar valued.

F(σ ) = 0 (5)

– Flow ruleAs the flow function tends to zero, plastic
behaviour occurs. From that point on the strains are
separated into elastic and plastic components:

εi j = εei j + ε
p
i j (6)

where εei j denotes the elastic (reversible) and ε
p
i j

the plastic (irreversible) deformation. At this point
it has to be noted, that this separation of the strain
only holds for small deformations. Since there is
no more clear connection between stresses and
deformations in the state of plasticity and also the
state of deformation depends on the stress history,
rate equations or infinitesimal incremental rela-
tions are required. The behaviour of the material
is assumed to not be time dependent and numeri-
cal solutions are mostly based on incremental for-
mulations. Therefore, an infinitesimal incremental
formulation is chosen in the following rather than
a rate equation:

dεi j = dεei j + dε
p
i j (7)

where dεei j denotes the infinitesimal incremen-

tal elastic (reversible) and dε
p
i j the infinitesimal

incremental plastic (irreversible) deformation. The
infinitesimal incremental plastic deformation is
characterized by the flow rule. Furthermore, two
kinds of flow rules can be distinguished:

1. Associated flow rule: for the associated rule the
vector of the plastic deformation is considered
normal to a convex yield surface. Therefore, the
principal directions of accumulated stress and
incremental plastic strain are enforced to coin-
cide. A yield function, F, is defined, which is
a scalar function of stress (expressed in terms
of either the stress components or stress invari-
ants) and state parameters:

dε
p
i j = dλ

∂F

∂σi j
(8)
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Hence the stress gradient ∂F
∂σi j

of the yield
surface determines the direction of the plas-
tic deformation dε

p
i j and the scalar factor dλ

determines its amount. Furthermore, dilatancy
is determined by the mean stress dependence
of the strength. It is known from Miller and
Cheatham (1972), that an associated flow rule
overestimates the dilatancy for deviatoric stress
states. Therefore, for an accurate prediction a
non-associated plastic flow rule is required.

2. Non-associated flow rule: in general, to receive
a better coincidence between test results and
model, there also canbe applied anon-associated
flow rule. Within the stress gradient ∂F

∂σi j
the

flow function is replaced by the plastic poten-
tial G. However, the flow surface as well as G
has to be convex:

dε
p
i j = dλ

∂G

∂σi j
(9)

In contradiction to e.g. the Mohr–Coulomb model,
which only considers elastic deformations within
a hydrostatic load state, the cap model presented
by Sandler et al. (1976) adds a cap to the flow sur-
face in compressional direction of the hydrostatic
stress axis. Thismodel is often used for the inelastic
behavior of rocks, if there is a remarkably plastic
volume reduction under hydrostatic pressure.
However, as this work is a first try to capture the
frictional behavior within glass fragments, in the
following only a non-associated Mohr–Coulomb
model is considered.

– Post failure hypothesis The post failure material
behavior basically can be characterized by three
types:

1. Linear elastic ideal plastic behavior: the yield
criterion stays the same after the material is
loaded and unloaded. The product of infinites-
imal incremental stress and strain is equal to
zero (dσ : dε = 0) and the state of plasticity is
therefore unstable.

2. Hardening behavior: the flow limit is increased
if the material is loaded and unloaded. It can be
split in isotropic hardening, where the plastic
strain depends on a scalar value, and kinematic
hardening,where the inner variable is expressed
by the stress tensor (tensile and compressional

loading). In general, the state is stable and the
product of infinitesimal incremental stress and
strain is greater than zero (dσ : dε > 0).

3. Softening behavior: wihtin a softening behav-
ior, the flow limit is reduced if the material is
loaded and unloaded. The product of infinites-
imal incremental stress and strain is lower than
zero (dσ : dε < 0) and therefore unstable.

For more detailed information regarding failure in gen-
eral, the reader is referred to Altenbach (2012), Mang
and Hofstetter (2000), Gurtin (1982), Spencer (2004)
and Fung (1977).

3.1.2 Perfectly plastic material models

In geotechnical engineering the strength of a soil or
granular medium in simple models is characterized by
its shear-strength and many failure descriptions build
up on this.A soil only shows a respective shear strength,
if there are normal stresses, which activate the fric-
tion between the single particles of the soil. Plasticity
based yield criteria commonly used to model geoma-
terials such as concrete, soils, rocks with distinctly dif-
ferent yield stresses in tension and compression can be
found in Lang et al. (2010). Amongst others, theMohr–
CoulombandDrucker–Pragermodel arewell-known in
both science and engineering practice as first attempts
to describe constitutive behaviour of soil. For reasons of
brevity, this paper will deduce material parameters just
for the Mohr–Coulomb model. In the remainder of this
paper, further analysis of the data allows calibration of
more complex constitutive behaviors as well and thus
make these data very valuable for the whole context
of numerical modelling of fractured glass laminates.
Nevertheless, it has to be mentioned, that the presence
of corners within the Mohr–Coulomb model possesses
certain difficulties to implementation and numerical
treatment within a general three-dimensional frame-
work, because differentiation on that corners is not pos-
sible. TheMohr–Coulombmodel however canbe trans-
ferred to the Drucker-Prager model, which possesses a
smooth yield surface.

3.2 Mohr–Coulomb criterion

A classical plasticity model that considers the shape of
the failure surface on the deviatoric plane is the Mohr–
Coulombmodel.Widely used for representing the yield
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Fig. 3 Mohr–Coulomb
yield functions: a principal
stress space representation;
b deviatoric plane
representation, Borja et al.
(2003)

(a) (b)

and failure behavior of cohesive-frictional materials,
this model has the shape of an irregular hexagon on
the deviatoric plane and predicts a higher yield/failure
strength in compression than in tension (Mang and
Hofstetter 2000), cf. Fig. 3. In the following, several
approaches regarding the Mohr–Coulomb failure cri-
terion from literature are represented and requirements
with respect to the numerical modelling are discussed.
A general formulation of the elasto-plastic matrix for
evaluating stress increments regarding the yield sur-
face with an associated flow rule for a Coulomb type
yield surfaces is presented for example in Zienkiewicz
et al. (1969). In addition to Mohr–Coulomb yield cri-
teria with linear or non-linear dependence of the Lode
angle for which the non-smooth deviatoric trace is of
major interest have been discussed by Bićanić et al.
(1989) and De Borst (1987). Furthermore in Anand
and Gu (2000) a three-dimensional elasto-plastic con-
stitutive model for dry granular materials, based on the
flow rule corresponding to the Mohr–Coulomb yield
condition, is introduced and in Senseny et al. (1983)
a hypoelastic, isotropically hardening plastic material
formulation, based of the Mohr–Coulomb failure cri-
terion is given for an associated as well as for a non-
associated flow rule in general.

As the Mohr–Coulomb is subject to further inves-
tigation, a more detailed explanation is given in the
remainder of this section. Following Mohr (1900),
Mohr–Coulomb is widely applied to the description
of intact rock failure and to the description of rock-
on-rock frictional sliding (Byerlee 1978; Al-Ajmi and
Zimmerman 2006; Rutter and Glover 2012). It plays
also a decisive role in practice in order to estimate
the far-field stresses from borehole breakout geometry
(Vernik and Zoback 1992).

The Mohr–Coulomb yield surface is described by a
cone with six edges, where the diameter increases in
compression and decreases in tension, cf. Fig. 3. The
friction angle ϕ is the slope of the yield surface and the
cohesion c is the material strength under no additional
confining normal stress, which is typically very small
for soil materials. It is assumed that failure occurs at
particular combinations of the largest and least prin-
cipal stresses, without any influence of the principal
stress in the third direction (Labuz and Zang 2012).
According to Jaeger (2009) the Mohr–Coulomb crite-
rion can be formulated either as a function of the prin-
cipal stresses σ1 and σ3 (σ1 > σ2 > σ3) or as a function
of normal stress σ and the respective shear stress τ on
the failure plane.

The failure criterion ofMohr–Coulombwith respect
to normal and shear stress yields, (cf. Fig. 4):

τ f = c + σ f tan(ϕ) (10)

and with respect to principal stresses it is given accord-
ing to Mang and Hofstetter (2000) by:

(σ1 − σ3)

2
− (σ1 + σ3)

2
sin(ϕ) = c cos(ϕ) (11)

and after some rearrangements results in:

σ1
1 − sin(ϕ)

2c cos(ϕ)
− σ3

1 + sin(ϕ)

2c cos(ϕ)
= 1 (12)

where σ1 corresponds to the maximum and σ3 to the
minimum stress. If it is postulated that σ1 = fc, where
fc equals the maximum strength in compression, and
σ3 = 0 Eq. (12) is reduced to Mang and Hofstetter
(2000):
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Fig. 4 Mohr’s stress circle according to Mang and Hofstetter
(2000), Lang et al. (2010) and Witt (2008)

fc = 2c · cos(ϕ)

1 − sin(ϕ)
(13)

Themaximumvalue of σ3 has to be reduced to themax-
imum strength in tension ft , because failure is charac-
terized by a separation break and would be overesti-
mated if it would be determined just from the framed
shear test (Witt 2008).

If it is postulated, that σ1 = 0 and σ3 = − ft , failure
is characterized by a shear fracture (Witt 2008) and
Eq. (12) is reduced according to Mang and Hofstetter
(2000):

ft = 2c · cos(ϕ)

1 + sin(ϕ)
(14)

wherewithinEq. (14) the respectivemaximumstrength
in tension is determined and Eq. (13) yields the respec-
tive maximum strength in compression. If the angle of
inner friction in Eq. (12) is set to zero and the cohe-
sion is set to fy

2 , the Mohr–Coulomb flow condition
reduces to the Tresca failure criterion (Mang and Hof-
stetter 2000).

A respectiveflowfunction as introduced inSect. 3.1.1
can be derived from Eq. (10) with respect to shear τ f

and normal stress σ f . τ f and σ f present the stress state
where thematerial starts to flow. This state is located on
the outer surface of the cone, depicted in Fig. 3, which
marks the so called flow surface:

F(σ f , τ f ) = τ f − σ f tan(ϕ) − c (15)

Furthermore the flow function can also be expressed in
terms of the largest and least principal stresses σ1 and
σ3:

F(σ1, σ3) = (σ1 − σ3)

2
−

[
(σ1 + σ3)

2
sin(ϕ) + c cos(ϕ)

]

(16)

As material models in general need to be independent
from any basis, they need to be formulated in terms of
invariants (Smoltczyk 2001):

F(I1, J2, J3) = −I1
sin(ϕ)

3

+
(
cos

(
1

3
cos−1

(
3
√
3

2

J3

J 3/22

))

−
sin(ϕ) sin

(
1
3 cos

−1
(

3
√
3

2
J3
J 3/22

))

√
3

⎞
⎟⎟⎠

√
J2 − c cos(ϕ) (17)

where I1 equals the first invariant of the stress tensor
and J2 and J3 equal the second and third invariant of
the deviatoric stress tensor. An analogous formulation
is implemented in Ansys and used in Sect. 6 for the
numerical modelling of the experiments.

3.3 Mohr–Coulomb: finite element implementation

The material which is subject of the further investiga-
tions within this paper is modelled as a non-associated
linear elastic perfectly-plastic Mohr–Coulomb model,
which implies four independent material parameters:

– Young’s modulus E
– Poisson’s ratio ν (analogously to linear elasticity)
– friction angle ϕ

– cohesion c.

Within the Finite Element Method (FEM), the
Mohr–Coulomb hypothesis can either be modelled
associated or non-associated. In the case of an associ-
ated modelling, the flow rule F(σ ) which depends on
the stress is equivalent to the plastic potential function
which shows the direction of plastic strain increment.
With this approximation the material stiffness matrices
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and the global structural stiffness matrices are unsym-
metric. This is an advantage because the calculation
is time-saving. Furthermore, the material is modelled
perfectly plastic, hence there is no hardening/softening
law required. As already mentioned, the material mod-
elling in the context of an Finite Elements Analysis
is based on expressions in terms of invariants, which
is shown in Fig. 3 for the case of the Mohr–Coulomb
criterion (Witt 2008; Borja et al. 2003).

In the following sections it will be shown, that the
obtained experimental data allow for a further calibra-
tion of a post-failure softening of the Mohr–Coulomb
criterion, which will be investigated in Sect. 5. For
reasons of brevity, the further recapitulation of the
mechanical-numerical background on softening for-
mulations for plasticity and failure criteria is omitted
at this point. However a short introduction is given in
Sect. 3.1.1.

4 Experimental investigations

In order to calibrate respective parameters for the
Mohr–Coulomb failure criterion, basically two types of
tests are carried out on glass fragments on glass panes
with different but distinct thermal pre-stress levels. In
a first step respective sieving curves are investigated, to
check which size of the shear frame for the second test
setup can be used. After obtaining these curves, shear
tests with three different magnitudes of normal stress
for each specimen are carried out. The glass fracture
particles as well as the two tests and their respective
set-up and evaluation are described in the subsequent
sections.

4.1 Glass specimen for fracture particle investigations

The glass fragments under investigation were extracted
from panes (1100mm × 360mm) made of tempered
soda-lime-silica glass and remained from prior investi-
gations of Pour-Moghaddam (2019) with respect to the
characterization of glass fracture particles for different
levels of internal energy due to thermal tempering. It
has to be mentioned, that the amount of pre-stress of
these specimens is chosen to specific levels, which are
below the normative minimum value for safety glass.
This tempering was done on purpose to achieve differ-
ent fracture patterns with distinct characteristics such

Fig. 5 Extraction of the glass fragments within dashed regions
to exclude punch-induced artefacts in the glass fracture pattern,
Pour-Moghaddam (2019)

as fracture particle sizes, cf. Kraus (2019) and Pour-
Moghaddam (2019).

The panes were fractured by a center punch and
the fragments within specific areas were collected and
analyzed. From Kraus (2019) and Pour-Moghaddam
(2019) it is known, that the level of pre-stress together
with the thickness of the glass pane are correlated to
characteristics of the fracture pattern, hence this study
uses two different glass pane thicknesses and two lev-
els of pre-stress. Figure 5 shows the respective areas of
analysis, Table 1 shows the properties of the fragments
of each specimen. There σs is the magnitude of the sur-
face stress of the glass pane and σm is the magnitude of
the pre-stress in themid-plane. For more detailed infor-
mation on the specimen, its production and the stochas-
tic fracture pattern analysis the reader is referred to
Pour-Moghaddam (2019) and Kraus (2019). In Fig. 5
the evaluation area is marked by a dashed bounding
box, where the left part in clockwise direction of the
line is excluded from the evaluation. These areas are
not considered for further analysis as due to the geom-
etry of the specimen reflections of the punch-induced
Rayleigh wave occur. These reflected Rayleigh waves
then interfere with the crack fronts, which propagate
at slower velocity as the Rayleigh waves. EN 12150-1
(2015) is followed for deriving the size of the excluded
areas (dashed lines).

In Sect. 4.3.1 a thorough discussion of the correla-
tion of the results of this study and the mentioned prior
studies Kraus (2019) and Pour-Moghaddam (2019) is
given as the very same fragments were used. Quantities
of interest here are the cumulative distribution func-
tions of size and shape of the glass fragments obtained
by computer vision methods (Kraus 2019) and sieving
curves (next section), and the influence of the thickness
and pre-stress level versus the strain energy density on
the resulting parameters of theMohr–Coulombmodels.
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Table 1 Summary of test specimen properties: thickness t ,
residual surface stress σs and residual midplane stress σm , after
Pour-Moghaddam (2019)

Specimen t [mm] σs [MPa] σm [MPa] UD

[
k J
m3

]

PK1 7.7 −72.9 36.3 11.60

stdev. 1.2 0.6

PK2 7.9 −106.3 53.7 25.38

stdev. 1.3 0.9

PK3 12 −77.7 38.4 12.98

stdev. 2.4 1.2

PK4 12 −110.9 55.7 27.30

stdev. 2.0 1.1

stdev. = standard deviation

4.2 Geomechanical characterization: test setup and
testing parameters

ISO17892-10 (2019) basically defines two test schemes
to characterize the effective shear strength of a soil. The
first experimental setup is called “frame shear test” and
the second one is known as “circular ring shear test”.
Both tests can be used to characterize the maximum as
well as the critical shear strength of a geomaterial. Due
to the limited number of test specimens available to this
work only “framed shear tests” are carried out. Figure 6
shows an exemplary test setup with respect to forcing
and measuring devices, cf. Kolymbas (1998), whereas
Fig. 7 captures impressions from the actual conduction
of the experiments.

The size of the shear frame sample is 100 mm ×
100 mm × 48 mm, cf. Fig. 7b and the test is carried
out displacement controlled with a respective velocity

Fig. 7 Impressions from conducting the experiments with the
shear frame setup

of 0.1 mm
min . During the test the horizontal displacement

(cf. Fig. 6/7), the horizontal force (cf. Fig. 6/9) and the
height (Fig. 6/10) of the specimen is measured. The
normal force (Fig. 6/1) for each test is kept constant
at its respective level. Each specimen was consolidated
with the respective normal stress, induced by a con-
stant normal force perpendicular to the shearing plane,
for one hour before the test was carried out. However
angularity and the porosity of the grains was not mea-
sured.

From the basic cross-section area of the shearing
plane (100 mm × 100 mm), the horizontal displace-
ment u and the measured horizontal force Tzx are used
to compute the respective Cauchy shear stress τzx :

τzx = Tzx
b × (b − u)

(18)

Fig. 6 Test setup of the “frame shear test”, ISO 17892-10 (2019)
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Note, that the shear stress given by Eq. (18) is a Cauchy
stress, whereas the standard (ISO 17892-10 2019) does
not definitely declare whether to use the true or engi-
neering stress measure.

For each specimen three test repetitions are carried
out, which differ in the magnitude of applied normal
stress in the set {100; 200; 300} kN

m2 . The testing veloc-
ity is kept identical for each test repetition. Given the
computed shear stresses together with the applied nor-
mal stresses it is possible to construct respective shear
straights, characterized by a cohesion value and a fric-
tion angle (cf. Figs. 11 and 12). The concrete evaluation
is explained in more detail in Sect. 4.3.2.

4.3 Test results

As mentioned before, two different types of tests are
carried out on the fractured glass material. On the one
hand side it is the framed shear tests and the other hand
side it is the determination of respective sieving curves.
The results of both tests are described in more detail in
the following subsections.

4.3.1 Determination of the sieving curve

According to ISO 17892-10 (2019) the size of the
biggest grain should not be larger than 1/6th of the
specimens height, which in the cases under considera-
tion establishes 8mm. To check if that condition is ful-
filled, the glass fragments of each specimen were sifted
according to ISO 17892-4 (2015) and respective siev-
ing curves, shown in Fig. 8, were obtained. The sieves
used are classified according to ISO 3310-2 (2015).

In Table 2 the amount of particles, that are crushed
during the frame shear test, is presented with respect to
the specific consolidation load.

The idea is to draw conclusions from the particle
size distribution given by the sieving curves in com-
parison to the cumulative distribution functions of the
glass fragment diameters obtained through computer
vision in Kraus (2019). As depicted in Fig. 8, the con-
dition according to ISO17892-10 (2019) is fulfilled and
therefore the testing apparatus is appropriate in size to
allow the deduction of the sieving lines. According to
ISO14688-1 (2018) the sieving curves of the glass frag-
ments, shown in Fig. 8, lead to the assumption, that the
glass fragments can be classified equivalently to fine
respectively medium gravel with a regular shape (size
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Fig. 8 Sieving curves of the four test specimen

of the fragments between 2 and 20mm). Furthermore
the fragments show a regular shape (Degree of non-
uniformity Cu = d60

d10
= 2 < 6, DIN 18196 2011; ISO

14688-2 2017). Therefore, the glass fragments show a
small specific surface area and few points of contact.
This is interesting, as in a mechanical model only at
these points of contact a shear strength is associated if
normal forces act, such that loads can be carried due to
friction (Lang et al. 2010).

Comparing the sieving curves to the properties of the
specimens (cf. Table 1), at a first glance it is not possible
to obtain clear correlations w.r.t. the respective param-
eters for geometry and strain energy or stress. Prior to
the sieving experiment it was reasoned, that the four
sieving curves might show a pairing in two charac-
teristic and distinct pattern lines, as from the stochas-
tic geometry considerations given in Kraus (2019) and
Pour-Moghaddam (2019) the fracture particle geome-
try is mainly driven by the strain energy density UD

and not the specimen thickness. As two levels of strain
energy densityUD (cf. Table 1) are used for this study,
the two pattern sieving curve would be plausible, on
the other hand side, in contrast to the computer vision
investigation on the frontal view of the whole fractured
glass pane, the sieving is invariant to the length scales
of the glass grain as this always passes with its shortest
extension parallel to the sieve.

4.3.2 Friction angle ϕ and cohesion c for maximum
and critical shear stress

An estimation of the storage density D, which is equal
to the weight of the glass particles divided by the vol-
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Table 2 Amount of crushed particles for test specimens PK1–
PK4 with respect to the different levels of consolidation

[%] 100 kN
m2 200 kN

m2 300 kN
m2

PK1 0.27 0.47 0.85

PK2 0.41 1.07 1.48

PK3 0.41 0.81 1.03

PK4 0.63 1.30 2.19

ume of the test chamber

D = 631.66g

10 cm × 10 cm × 4.8 cm
= 1.32 ≥ 0.65

g

cm3

(19)

leads to the assumption of a dense storage (Zou and
Boley 2012). The weight of the particles is hereby the
mean value of all tests.

Figure 9 shows themeasuredCauchy shear stress τzx
computed according to Eq. 18 with respect to the hor-
izontal displacement u of the frame. Due to the spread
in the data, an ensemble of a sliding-average function
together with the upper and lower prediction bounds
for a 95% confidence level are depicted in Fig. 9.

Inspection of Fig. 9 is interesting given the typi-
cal behaviour of dense and loose sands acc. to Möller
(2013) and Lang et al. (2010). Looking at the measured
shear-stress—displacement curves for the tested spec-
imen at three distinct levels of normal force, just some
can statistically sound be labelled as “dense (supercriti-
cal dense) sand” with a characteristic peak in the shear-
stress—displacement curve. Statistically sound here is
interpreted when considering the upper and lower pre-
diction bounds of the test results and comparing max-
imum and critical shear stress (marked with a red/blue
circle) given these confidence bounds it exists a sta-
tistically significant difference in these characteristic
shear stress values. Within this paper a numerical com-
putation of the test for difference in means for the two
shear stresses for all test specimen and normal load-
ings is omitted given the graphical presentation. Hence
the glass fragments mostly show mechanical material
behaviour of “loose (subcritical dense) sand” (Möller
2013; Lang et al. 2010), which is in contradiction to
the assumption considering the storage density. At this
point it is repeated, that the conduction of experiments
with glass fracture particles from panes with specifi-

cially different levels of pre-stress in such a setting
for a greater amount of repetitions was economically
prohibitive for this study. In consequence of the lim-
ited amount of test specimen available, no statistical
evaluation of an ensemble of test repetitions for the
investigated specimen and loading conditions could be
evaluated to finally proof this observation, whether the
specimens can be allocated to loose or dense sand. The
amount of available experimental specimens is highly
unique and the kind and number of tests were selected
carefully to gain as much insight as possible. Neverthe-
less, in the following the maximum and critical values
of the fitted function are evaluated and shown in the
respective tables. Based on the outlines in Sect. 3 for
post-failure softening relations of the material, the pre-
sentation of the results are given in two distinct sets
of tables. One contains the results of the maximum
shear-stress (Table 3) and one contains the results of
the critical shear-stress (Table 4). For the assumption
of subcritical dense sand the maximum and critical
shear stress coincide and therefore result in the crit-
ical shear-stress, hence only Table 4 is necessary. For
the assumption of supercritical dense sand the values of
the maximum as well as of the critical shear-stress are
required (Tables 3 and 4). Figure 10 shows a schematic
of the expected trajectories for the results of framed
shear and triaxial tests are shown for dense (supercrit-
ical dense) and loose (subcritical dense) sand in order
to provide a classification of the results of the fractured
glass particles.

In the following all graphs of Fig. 9 are evaluated
with respect to the maximum and critical shear-stress.
Therefore, in each figure, the maximum value of the
shear stress (marked with a red circle) corresponds to
the maximum shear strength and the value of the shear
stress with respect to the largest horizontal displace-
ment (markedwith a blue circle) corresponds to the crit-
ical shear strength. The largest displacement is defined
as 15% of the inner length of the shear frame.

For each specimen the maximum (cf. Fig. 11) as
well as the critical (cf. Fig. 12) shear stresses are plot-
ted against the respective normal stresses. The three
resulting pairs of values are then approximated by a
straight line defined by a respective inclination, which
corresponds to the inner friction angle ϕ, and an inter-
sect of the vertical axis, which corresponds to the value
of cohesion c. Furthermore for each pair of values a
Mohr’s stress circle, presenting the principal stresses
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Fig. 9 Shear stress with respect to displacement for each specimen and load level (red marker: maximum shear stress, blue marker:
critical shear stress); results for: a specimen PK1, b specimen PK2, c specimen PK3, d specimen PK4

Fig. 10 Behavior of dense and loose sand for: a framed shear test; b triaxial test; according to Kolymbas (1998)

at the state of failure, is constructed as follows:

M = σ + tan(ϕ)τ (20)

R =
√

τ 2 + (tan(ϕ)τ)2 (21)

For each pair of values an error bar is depicted, which
is calculated as follows:

err = 1, 96
stdev.[X ]√

n
(22)
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Fig. 11 Shearlines and respective Mohr’s circles, representing the specific maximum shear stress states; results for: a specimen PK1,
b specimen PK2, c specimen PK3, d specimen PK4

where stdev.[X ] is equal to the standard deviation. The
standard deviation of each of the three stress values
as presented in each subfigure of Figs. 10 and 11 are
computed by considering 5 measured shear stresses
before and after the maximum respective critical shear
stress and the measured maximum respective critical
shear stress itself, n represents the number of random
samples and therefore results in 11. The factor 1,96 is
used to calculate the 95% quantile under assumption
of zero-mean Gaussian measurement errors. The eval-
uated angles of inner friction ϕ and values of cohesion
c are summarized in Tables 3 and 4 together with the
respective strength in tension ft and compression fc,
evaluated according to Eqs. (13) and (14).

Table 3 Values of cohesion c and friction angle ϕ for the test
specimens with respect to the maximum shear stress, together
with tensile ft and compression fc yield stresses

Specimen c
[
kN
m2

]
ϕ [◦] ft [MPa] fc [MPa]

PK1 24.11 41.75 0.02 0.11

PK2 14.89 43.53 0.01 0.07

PK3 26.70 42.80 0.02 0.12

PK4 51.16 38.80 0.05 0.21

Tables 3 and 4 show the inner friction angle and
value of cohesion, evaluated for the maximum as well
as the critical shear-stress for each of the specimens.
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Fig. 12 Shearlines and respective Mohr’s circles, representing the specific critical shear stress states; results for: a specimen PK1, b
specimen PK2, c specimen PK3, d specimen PK4

Table 4 Values of cohesion cc and friction angle ϕc for the test
specimens with respect to the critical shear stress, together with
tensile ft and compression fc yield stresses

Specimen cc
[
kN
m2

]
ϕc [◦] ft [MPa] fc [MPa]

PK1 16.67 39.63 0.02 0.07

PK2 0.00 42.00 0.00 0.00

PK3 25.64 37.84 0.03 0.10

PK4 73.76 36.86 0.07 0.29

Comparing the computed numbers for inner friction
angle and value of cohesion, a grouping into two classes
w.r.t. either the thickness (PK1, PK2 versus PK3, PK4)

or the level of thermal pre-stress (PK1,PK3 versus
PK2,PK4) cannot be established. Interestingly it is
noted, that the grouping of PK1, PK3 (with same level
of pre-stress, cf. Table 1) shows similar values for ϕ, c
(cf. Tables 3 and 4) and hence it can be concluded,
that despite their different thicknesses, the glass frac-
ture particles behave similarly in mechanical terms,
whereas PK2 andPK4 showdistinctmechanical behav-
ior. That furthermore leads to the conclusion, that nei-
ther the 2d computer vision evaluation of the fracture
pattern, nor the sieving curve is a reliable estimator for
Mohr–Coulomb parameters and establishing a correla-
tion is not possible.
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Table 5 Values of friction angle for the test specimens with
respect to the maximum and critical shear stress, considering
zero cohesion

Specimen ϕ [◦] ϕc [◦]

PK1 43.98 41.29

PK2 44.85 40.07

PK3 45.18 40.49

PK4 43.75 44.16

Moreover it is rather untypical, that gravel shows
cohesion at all, Zou and Boley (2012). An explanation
could be, that the measured cohesion is apparent cohe-
sion. As the crushing is higher at higher stress levels
cf. Table 2, the friction angle is less at higher stress lev-
els. In that case, fitting a straight line through the test
results does not result in the line going through the ori-
gin. Thus, it just seems as if there is cohesion although
there is not. However, within that work the cohesion,
resulting from the evaluation according to ISO 17892-
10 (2019), is assumed and the further calculations are
based on that. Nevertheless, to provide a complete data
set, the respective shear angles for the assumption of
no cohesion are depicted in Table 5.

4.3.3 Determination of the dilatancy angle

Basically the dilatancy angle describes the increase in
volume of the sheared specimen with respect to the
shear displacement (as obtained via the framed shear
test) and the stretch in volume with respect to the strain
in the longitudinal direction (as obtained via a triaxial
test), cf. Fig. 13. Usually the triaxial test is preferred
for evaluating the dilatancy angle. Nevertheless, due to
the limited number of available test specimen for this
investigation, the shear frame test is used. The compu-

tations for the dilatancy angle δ are:

δ = arctan

(
ΔV
V0
Δb
b0

)
180

π
= arctan

(
ΔVb0
V0Δb

)
180

π
(23)

considering ΔV = lb(h + s) − lbh, V0 = lbh, Δb =
(b + u) − b, b0 = b Eq. (23) results in

δ = arctan

( [lb(h + s) − lbh]b
lbh[(b + u) − b]

)
180

π

= arctan

(
sb

hu

)
180

π
(24)

where s equals the change in height, u equals the dis-
placement in direction of the applied shear force and
l, b, h equal the length, width and height of the shear
frame. As shown in Fig. 13 the dilatancy is computed
with respect to relative values, as it is usually done
within the evaluation of the triaxial test. This is due to
the fact, that this test is commonly used to determine the
dilantancy of soils and furthermore a higher accuracy
is expected by such an evaluation. As the dimensions
of the specimen are considered.

The blue circles align with those shown in Fig. 9,
which depict the location of the critical shear stress,
and the red circles depict the intersection between the
respective curve and the abscissa. In addition to that,
a least squares fit of a straight, combining the graphs
of all load levels for each specimen, is computed, as
for standardMohr–Coulomb implementations in Finite
Element software just a single number for the dilatancy
angle can be provided. This calibrated function starts in
the origin and approximates the total change in volume
over change in length of the specimen.

As depicted in Fig. 14 at first there is some contrac-
tion. This is because grains fit in a somewhat denser
pattern. However, shearing further the grains cannot
remain in this pattern but have to shift over each other
resulting in an increase of volume, measured by the

Fig. 13 Behavior of dense and loose sand for: a framed shear test; b triaxial test; according to Kolymbas (1998)
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Fig. 14 Dilatancy angle δ over normalized displacement for each specimen; a results for: specimen PK1; b specimen PK2, c specimen
PK3, d specimen PK4

Table 6 Dilatancy angle δ for test specimens PK1–PK4 with
respect to the consolidation loads and respective mean values

δ[◦] PK1 PK2 PK3 PK4

σ = 100
[
kN
m2

]
37.51 37.88 36.62 26.33

σ = 200
[
kN
m2

]
34.23 28.41 35.71 24.93

σ = 300
[
kN
m2

]
25.42 21.24 26.86 19.62

Mean 32.39 29.18 33.06 23.63

stdev. 6.25 8.35 5.39 3.54

Least squares 22.08 20.58 21.81 11.55

angle of dilatancy. This observation together with the
comparison between Figs. 13 and 14 would lead to
the assumption, that the glass fragments behave simi-
lar to dense sand. As that contradicts the observation
made from the shearing curves, it is again shown, that
a clear statement whether glass fragments can be allo-
cated at dense or loose sand cannot be made. How-
ever the decrease in volume, which can be observed
for small displacements, coincides with the observa-
tions made during the testing of further crushing of the
fragments (cf. Fig. 2).
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Table 7 Parameters for Mohr–Coulomb material model—
Specimen PK1

Friction angle (initial) ϕ 41.75 [◦]

Cohesion (initial) c 24.11
[
kN
m2

]

Dilatancy angle δ 32.39 [◦]
Friction angle (remaining) ϕc 39.63 [◦]

Cohesion (remaining) cc 16.67
[
kN
m2

]

Table 8 Parameters for Mohr–Coulomb material model—
Specimen PK2

Friction angle (initial) ϕ 43.53 [◦]

Cohesion (initial) c 14.89
[
kN
m2

]

Dilatancy angle δ 29.18 [◦]
Friction angle (remaining) ϕc 42.00 [◦]

Cohesion (remaining) cc 0.00
[
kN
m2

]

Table 9 Parameters for Mohr–Coulomb material model—
Specimen PK3

Friction angle (initial) ϕ 42.80 [◦]

Cohesion (initial) c 26.70
[
kN
m2

]

Dilatancy angle δ 33.06 [◦]
Friction angle (remaining) ϕc 37.84 [◦]

Cohesion (remaining) cc 25.64
[
kN
m2

]

4.3.4 Calibrated Mohr–Coulomb material
parameters for each specimen

In this subsection, the obtained parameters for the
respective Mohr–Coulomb material models are sum-
marized in tabular form. For the dilatancy angle, the
mean values of Table 6 are chosen.

Given these data it is possible to simulate the respec-
tive test specimen and similar glass fracture particles
with a non-associated Mohr-Coulomb material model
within a Finite Element Analysis context (Tables 7, 8,
9 and 10), which is subject to the next section.

Table 10 Parameters for Mohr–Coulomb material model—
Specimen PK4

Friction angle (initial) ϕ 38.80 [◦]

Cohesion (initial) c 51.16
[
kN
m2

]

Dilatancy angle δ 23.63 [◦]
Friction angle (remaining) ϕc 36.86 [◦]

Cohesion (remaining) cc 73.76
[
kN
m2

]

5 Finite element model validation

In the previous section, experimental data were used to
derive respective parameters ofMohr–Coulomb consti-
tutive models, which in this section serve to calibrate
Finite Element models in order to allow further simula-
tion and sensitivity studies. All simulations within this
paper are conducted with ANSYS 2020R. In Fig. 15
the geometry (a) boundary conditions (b) and (c) the
mesh for the Finite Element system is shown.

As described in Sect. 4, the frame shear experiments
consisted of a 48mm in-total-height bulk material,
which was sheared in the middle plane at Y = 24mm.
In order to avoid modelling the shear frames and com-
plicated contact definitions of the glass particle bulk
material and the shear frame box, an effective total
height of 24mm was assumed for the ANSYS geome-
try model as an approximation, cf. Fig. 15a. This effec-
tive total height is deduced from considering a rect-
angular normal stress distribution on the faces of the
shear frame in contact with the glass bulk material,
which possess an inner lever arm of 2 · (48/2)/2mm
= 24mm.Thematerialmodelling of the fractured glass
particles moreover allows several numerical investiga-
tions, which are conducted within the scope of this val-
idation and sensitivity analysis:

– Mohr–Coulomb without dilatation
– Mohr–Coulomb with dilatation
– influence of the parameters of linear elasticity E, ν

of the fractured glass particles prior to yielding.

A consistent calibration of the parameters of linear elas-
ticity E, K , ν of the fractured glass particles prior to
yielding is not possible given the data from the shear
frame test, as just information on the isochoric defor-
mation parts and the dilatation (Jacobian J = det(F))

are available. The conduction and evaluation of triax-
ial experiments would provide sufficient information
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Fig. 15 Ansys model of the frame shear test: a geometry b boundary conditions c mesh

in that respect. This however was prohibited given the
available volume amount of glass fragments at a certain
pre-stress level for this study, as the production of such
specimen is demanding from a monetary and temporal
point of view. The deduction of suitable parameters for
the pre-yield linear elasticity is based on the shear stress
- shear angle graph of the test specimen for two cho-
sen Poisson’s ratios within this investigation. Based on
Fig. 14, thematerial parameter for the pre-yield are cho-
sen to be (ν; E) = {(0.23; 7.4); (0.48; 9.0)} [−;MPa].
Interestingly these values are in line with the magni-
tude range of Poisson’s ratios and Young’s moduli for
sand.In Table 11 the respective material parameters for
the FE analysis are depicted. The sand-like mechanical
behavior of fractured pre-stressed glass was already
recognized in Sects. 4.3.1 and 4.3.2. Given the main
scope and brevity of this paper, just results of the Finite
Element model validation and sensitivity analysis for
test specimen PK1 are shown, cf. Fig. 16. Further
results of and details on the numerical investigations
and modelling strategies such as using Drucker–Prager
plasticity etc. will be presented in a future paper by the
authors in more detail.

Inspection of Fig. 16 allows for several conclu-
sions. The models with nearly incompressible material
behavior (yellow and blue lines) show a too stiff initial
material behavior, where the model without dilatancy
overestimates the measured force reaction by a factor
of up to 1.5. The initial nearly incompressible mate-
rial behavior could be concluded from the dilatancy
graphs, however the curves with the Poisson’s ratio
of ν = 0.23 (green and orange lines), which is also
the Poisson’s ratio of intact glass and sandy geoma-

terials, fits the experimental observations better. Inter-
estingly the compressible Mohr–Coulomb model with
dilatancy (green line) can capture the softening after
maximumshear force.As already stated, themain focus
of this paper is to present the experimental investiga-
tions and the elaboration of a general validation of a
Finite Element Model for fracture particles from pre-
stressed glass by means of a Mohr–Coulomb plasticity
model, further analysis of the numerical investigations
will be presented in a future paper. At this stage how-
ever, the general validity and plausibility of the param-
eters deduced from the presented experiments within a
Finite Element Modelling framework can be proved.

6 Summary, conclusions and outlook

This paper is concerned with the conduction and eval-
uation of geomechanical experiments on glass frac-
ture particles obtained from fracturing thermally pre-
stressed glass specimen with different levels of pre-
stress and thicknesses. Further analysis of the experi-
mental data allowed the deduction of the parameters
for models of the Mohr–Coulomb plasticity type in
order to enable numerical analysis within the Finite
ElementMethod of the glass fracture particles and frac-
tured glass laminatesmade from tempered glasses. This
investigation is inspired form the constitutive mod-
elling approaches of geotechnical materials and the
respective experimental characterization methods for
deriving material parameters.
Within this paper, the general setting for using plastic-
ity models within a Finite Element context in order to
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Fig. 16 Results of the finite
element investigations with
different Mohr–Coulomb
material modelling choices
(compare Table 11) for
specimen PK1
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Table 11 Parameters for the FE analysis

Model M1 M2 M3 M4

Young’s modulus 9 7.4 9 7.4 [MPa]

Poisson’s ratio 0.48 0.23 0.48 0.23 [−]

Friction angle (initial) ϕ 41.75 41.75 41.75 41.75 [◦]
Cohesion (initial) c 0.024 0.024 0.024 0.024 [MPa]

Dilatancy angle δ 41.75 41.75 32.39 32.39 [◦]
Friction angle (remaining) ϕc 41.75 41.75 39.63 39.63 [◦]
Cohesion (remaining) cc 0.024 0.024 0.017 0.017 [MPa]

numerically model fractured glass particles and frac-
tured glass laminates was elaborated and described.
For reasons of brevity of this article, the discussion
on models of plasticity for describing the glass parti-
cles is restricted to the material model and failure crite-
rion of the Mohr–Coulomb type, where the associated
interpretation is discussed in detail and set into context
with the experimental findings. The correlation of the
obtained sieving curves to the diameters of the glass
fractures and the statistical distribution (as provided by
Kraus 2019) of the diameter as a function of glass thick-
ness and pre-stress level was not possible. The conclu-
sion here is, that the mesh size of the standard sieves
for geotechnical investigations is too coarse on the one
hand side and on the other hand side, the orientation of
the glass fracture particle during passage of the sieve
mesh is likely to not be maximum diameter and thus
censors the obtained diameter distribution by the sieve.
It then was shown, that the experimental setup is suited
for obtaining relevant results in terms of shear stress -
displacement and dilatancy - displacement, which sub-
sequently can be processed to obtain the parameters

initial cohesion c, initial friction angle ϕ and dilatancy
angle ν as well as the residual cohesion cc and residual
friction angle ϕc for Mohr–Coulomb material models.
Given the available amount of glass fracture particles,
it was not possible to conduct triaxial experiments to
further verify the data from the frame shear test. It was
obtained, that classifying the distinct glass fracture par-
ticles w.r.t. their respective thicknesses or initial strain
energy densities into groups of mechanically similar
shearing behavior is not possible in general, however
for a level of internal energy of UD ≈ 12 k J

m3 similar
values for cohesion c and friction angle ϕ are obtained.
This leads to the conclusion, that simulating glass frac-
ture particles with different thicknesses and/or levels of
thermal pre-stress need distinct Mohr–Coulomb plas-
ticity models. Furthermore, the assumption of a con-
stant dilatancy angle within the Mohr–Coulomb mod-
els has to be questioned critically. As shown by the
test results the dilatancy angle constantly changes with
respect to the deformation. If the angle is considered
to be a constant value corresponding to the change in
volume, the volumetric deformation and stress parts
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are overestimated. However, given the simplicity of
the Mohr–Coulomb model this modelling assumption
can be viewed as a first approximation step, where the
data reported within this paper allow for the calibra-
tion of more complicated constitutive models of frac-
tured glass. The validation of the Finite Element model
for recapturing the experimental results in a numeri-
cal manner was possible. There it was noted, that the
solution behavior was cumbersome in terms of conver-
gence, a sensitivity study with reasonable parameters
for the fractured glass particles proves, that a Finite Ele-
ment model could reproduce the obtained experiments.

Future work is concerned with the investigation
of alternative models of plasticity such as Drucker-
Prager, which also can be calibrated given the pre-
sented database (Kraus and Pauli, 2021). The focus
there will also ly in finding models, which are able to
reproduce the non-constant dilatancy. A greater numer-
ical sensitivity analyses by means of several Finite Ele-
ment investigations will reassess all tests to gain further
insight into the computational modelling of fractured
glass particles by means of plasticity models.

Acknowledgements We would like to thank Dr.-Ing. Navid
Pour-Moghaddam for providing the test specimen to us for fur-
ther analysis. Furthermore we would like to thank Prof. Dr.-Ing.
Boley and his laboratory, especially M.Sc. Michael Herrmann
(Bundeswehr University Munich) for the support in conducting
the experiments.

Funding Open Access funding enabled and organized by Pro-
jekt DEAL.

Compliance with ethical standards

Conflicts of interest The authors declare that there is no conflict
of interests.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in anymedium
or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or
other third partymaterial in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit
line to thematerial. If material is not included in the article’s Cre-
ative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/
by/4.0/.

References

Aenlle, M.L., Pelayo, F., Ismael, G.: An effective thickness to
estimate stresses in laminated glass beams under dynamic
loadings. Compos. Part B Eng. 82, 1–12 (2015)

Al-Ajmi, A.M., Zimmerman, R.W.: Stability analysis of vertical
boreholes using the Mohr–Coulomb failure criterion. Int. J.
Rock Mech. Min. Sci. 43(8), 1200–1211 (2006)

Altenbach, H: Materialverhalten und konstitutivgleichungen.
In: Kontinuumsmechanik, pp. 211–232. Springer, Berlin
(2012)

Anand, L., Gu, C.: Granularmaterials: constitutive equations and
strain localization. J. Mech. Phys. Solids 48(8), 1701–1733
(2000)

Asik,M.Z., Tezcan, S.: Amathematicalmodel for the behavior of
laminated glass beams. Comput. Struct. 83(21–22), 1742–
1753 (2005)

Baraldi, D., Cecchi, A., Foraboschi, P.: Broken tempered lami-
nated glass: non-linear discrete elementmodeling. Compos.
Struct. 140, 278–295 (2016)

Behr, R.A., Minor, J.E., Linden, M.P., Vallabhan, C.V.G.: Lam-
inated glass units under uniform lateral pressure. J. Struct.
Eng. 111(5), 1037–1050 (1985)

Behr, R.A., Minor, J.E., Norville, H.S.: Structural behavior of
architectural laminated glass. J. Struct. Eng. 119(1), 202–
222 (1993)

Belis, J., Depauw, J., Callewaert, D., Delincé, D., Van Impe,
R.: Failure mechanisms and residual capacity of annealed
glass/SGP laminated beams at room temperature. Eng. Fail.
Anal. 16(6), 1866–1875 (2009)
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