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Abstract The results from a new numerical method
for simulating the strength and fracture locations of
small glass specimens subjected to double ring bend-
ing are compared with experimental data. The method
implements the weakest-link principle while assuming
the existence of Griffith flaws. A Weibull distribution
for the strength is simulated based on a single popula-
tion of Pareto distributed crack sizes. The effect of using
different fracture criteria is investigated. An alternative
distribution is simulated based on two populations of
flaws. This distribution models the apparent bimodal-
ity in the empirical data set. The numerical method is
dependent on a representation of the surface flaws con-
dition in glass. As new techniques become available
for examining the surface characteristics, this numeri-
cal method is promising as a means for modelling the
strength better than current methods do.
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1 Introduction

In order to explain and predict the strength of annealed
glass a range of concepts and methods have been
applied with mixed results. Typically, the strength is
explained assuming the existence of Griffith flaws and
supposing the weakest-link principle. Predictions are
based either on some standard distribution or on tables
and diagrams obtained using a modelling tool such
as the Glass Failure Prediction Model (GFPM) (Bea-
son and Morgan 1984). There is disagreement among
researchers as to which prediction model is the correct
one to use (Fischer-Cripps and Collins 1995). A range
of experiments have shown a consistent bilinearity in
the probability plots when the Weibull distribution is
used for modelling the strength of annealed glass (Veer
2007; Veer et al. 2009). As regards the GFPM, it has
been said that it “is best suited to representing glass
strength for specific test conditions.” (Reid 2007) Nei-
ther the standard distributions nor the GFPM are able to
consistently provide for an acceptable goodness-of-fit
while modelling data from experiments, something that
is called for in a prediction model with true potential. At
the same time, structural glass is gaining in popularity
among designers and units are being installed in build-
ings and public spaces worldwide at an increasing rate.
The search for a failure prediction model is therefore
as topical as ever. Moreover, a study has indicated that
shear stress might affect the observed strength of glass
in double ring bending tests (Reid 2007). Shear stress
is generally not considered in current failure models
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for glass. In this article, a numerical method for pre-
dicting the failure of glass is investigated and applied
to double ring bending tests. The method is general
and can be applied to a range of specimen geome-
tries, loading setups and support conditions. The results
are compared with experimental data. The presented
method depends on a model that is based on fracture
mechanics and the weakest-link principle while assum-
ing a preexisting population of surface cracks. Stress
corrosion is not directly considered in this study. The
presented method should not be taken as a complete
and final strength design tool. The aim is to promote
a failure model for glass that is based on a logical and
tractable representation of the surface condition in glass
with a suitable consideration of the fracture mechanics.
With further research, this could in the end lead to an
improved strength design tool for use with glass.

2 Background

Flaws in glass are capable of promoting brittle failure
due to the lack in capacity for plastic flow. While assum-
ing that the surface contains a large number of minute
flaws that act like cracks, so-called Griffith flaws, it
is possible to explain the scatter in fracture location
observed in experiments. It also helps to explain the
variation in failure stress observed and the relatively
low strength attained in practice. Surface flaws arise
in the production line during manufacture as well as
in subsequent handling, transportation, assembly, use,
and maintenance. Bulk flaws are disregarded in the fol-
lowing, cf. Bourhis (2008). Griffith (1920) modelled
crack growth as a reversible thermodynamical process.
For a crack subjected to mode I opening displacement,
fracture is governed by the following criterion

K1 < Ky (D

where Kj is the Stress Intensity Factor (SIF) and
Ki. denotes the fracture toughness (Irwin 1957). The
value of Kj. for glass has been estimated at about
0.75 MPa m!/? (Mencik 1992). It is assumed that the
individual cracks do not interact with each other. The
shape of a surface crack in glass is typically conceived
of as being either a long, straight-fronted plane crack
or a semi-circular crack (Haldimann 2006). There exist
several solutions to the calculation of the SIF for a semi-
circular crack subjected to a uniform tensile stress field
oy, oriented perpendicular to the crack plane. Accord-
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Fig. 1 A plane crack subjected to a biaxial stress field with the
crack plane inclined at an angle 6 in the coordinate system of the
principal stresses o and on

ing to one solution the SIF at the deepest point on the
crack contour is (Newman and Raju 1981)

2
Ki=1.14 x —/ma x o, 2)
b4

where a denotes the crack depth, see also Thiemeier
et al. (1991). Figure 1 illustrates a crack subjected to
a biaxial stress field with the crack plane inclined at
an angle 0 in the coordinate system of the principal
stresses o1 and o3. If the crack plane is oriented per-
pendicular to the Maximum Principal Tensile Stress
(MPTS) o then

op = 01 3)

is substituted into Eq. (2). Otherwise, the tensile stress
acting normal to the crack plane can be calculated as

o, = 0] cos? 0 + o sin® 6 (@)

The presence of shear stress does not have any effect in
a pure mode I fracture criterion. There exists a range of
fracture criteria for a crack subjected to both normal and
shear stresses while assuming mode I crack opening
and mode Il in-plane shearing displacements. One such
mixed mode fracture criterion which is based on the
maximum non-coplanar energy release rate (Hellen and
Blackburn 1975) is given by the following inequality

K+ 6K2KE + K < Kic 5)
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where the left-hand side of inequality (5) is a mode I-
equivalent SIF, cf. Thiemeier et al. (1991). For a semi-
circular crack Ky can be approximated as (Thiemeier
etal. 1991)

4 1
Kyg=114 x —
T2—v

Jra xt (6)

In Eq. (6) v is Poisson’s ratio. t is the shear stress in the
crack plane which can be calculated from the in-plane
principal stresses as

1
T = §|01 — 07| sin 20 @)

The idea that you can calculate the distribution of
macroscopic strength of a stressed solid by starting
from an analysis of the microscopic defects dates back
at least to Peirce (1926). Peirce (1926) formulated the
Weakest-Link Principle (WLP), i.e. that the strength of
a chain is governed by its weakest link, and applied it
in the study of the tensile strength of cotton yarn. Also
using the WLP, Weibull (1939) came up with the fol-
lowing distribution function for the strength of a brittle
solid

S=1—-¢8 B>0 (8)

where B, denoted “the risk of rupture”, is a function
of body size and tensile stress. According to Weibull
(1939), a simple mathematical form that is in general
accord with experimental data is
o\m
B=(%)". oz0 ©)
k

where k and m denote the scale and shape parame-
ters, respectively. Inserting Eq. (9) into Eq. (8) gives
the standard two-parameter Weibull distribution func-
tion where k is also the 63rd percentile (Wachtman
et al. 2009). Various derivations of the strength dis-
tribution function for a brittle solid are offered by
e.g. Freudenthal (1968), Matthews et al. (1976), Bat-
dorf and Heinisch (1978), Evans and Jones (1978)
and Danzer (1992). In general, the derivation is based
on a subdivision of the stressed solid into regions.
It is assumed that there exists a population of non-
overlapping cracks which are distributed among the
regions. Each crack is associated with a critical stress.
It is assumed that the stress state varies slowly so that
all cracks within a subdivided region are subjected to
the same nominal stress. The solution methods, which
are analytical, vary. Also varying are certain assump-
tions, such as whether or not it is supposed that the
fracture of the crack depends only on the compo-
nent of stress normal to the crack plane, whether or

not there exist multiple crack populations, etc. Essen-
tially, the analytical expression for the strength distri-
bution is obtained through a limit operation in which
the region size shrinks infinitesimally while the num-
ber of subdivided regions increases indefinitely. All
these solution methods are capable of producing the
fundamental Eq. (8). However, the mathematics soon
become intractable when all but the simplest assump-
tions are made for the stress state, fracture criterion,
crack size distribution, flaw density, crack plane orien-
tation, and the existence of multiple flaw populations.
Yankelevsky (2014) offers a numerical solution method
to the problem of determining the strength distribution
of a brittle solid while building upon the same gen-
eral ideas as in the aforementioned studies except that
the limit operation is not carried out. In other words, it
is not necessary to assume that a crack of some finite
size is contained within an infinitesimally small space,
cf. Afferrante et al. (2006). Yankelevsky illustrates the
method in a study of a glass square plate subjected to
bending. He neglects bulk flaws and considers failures
starting from the surface area only. The surface area of
the plate is subdivided into unit cells measuring 1 cm?.
One crack is distributed into each cell. The flaw size
density function proposed by Yankelevsky (2014) and
which is motivated for use with glass material can be
interpreted as a truncated exponential distribution. The
square plate is laterally supported along two opposite
edges and subjected to a line-load at midspan produc-
ing a uniaxial state of stress in the plane of the ten-
sioned surface. A Monte Carlo simulation is carried
out for a large sample of thousands of virtual speci-
mens. This numerical method offers a tractable way
of calculating the strength distribution as well as the
fracture location distribution for arbitrary stress states,
fracture criteria, crack plane orientations, crack size
distributions, and multiple flaw populations. However,
in Yankelevsky (2014), only a uniaxial tensile stress
field is considered where the cracks are stressed nor-
mal to their crack planes. Subcritical crack growth is
not considered. Nor is the method applied to a double
ring bending test which is quite a common and rela-
tively inexpensive method to evaluate the strength of
small glass plates (Dalgliesh and Taylor 1990).

Based on Hertzian indentation tests it has been sug-
gested that flaw size in glass can be closely fitted by
a Pareto distribution (Poloniecki and Wilshaw 1971;
Poloniecki 1974; Tandon et al. 2013). The Pareto dis-
tribution has the scale and shape parameters ag > 0
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and ¢ > 0 and the distribution function is (Forbes et al.
2010)

Fuﬁﬂ—(%y,xz% (10)
It has moreover been shown that the Weibull distribu-
tion function is derived from the WLP if it is assumed
that the surface flaws condition is represented by a sin-
gle population of cracks whose size is Pareto distributed
in the tail (Jayatilaka and Trustrum 1977). In this view
the Weibull shape parameter is a true material parame-
ter. Then, the relation between the shape parameters m
and ¢ of the Weibull and Pareto distributions, respec-
tively, is found to be

m=2c (11)

When stressed in an ambient atmosphere, glass
strength is reduced over time due to a process known
as static fatigue which is due to subcritical crack
growth, the effects of which are only observed when
the mode I SIF lies above a threshold limit value at
about 0.25 MPa m'!/? (Wiederhorn and Bolz 1970). In
Charles’ stress corrosion rate theory (Charles 1958a, b),
subcritical crack growth is explained as a thermally
activated chemical process whereby water moisture
interacts with tensile stress at the crack tip. Equa-
tion (12), however, often approximates observed values
of subcritical crack growth (Mencik 1992)

v=AK] 12)

where v is the subcritical crack growth velocity, A is a
constant, and # is the stress corrosion parameter. While
the value of n was repeatedly estimated at about 16 for
soda-lime glass in ambient conditions, the value of A at
50% relative humidity was estimated in a range span-
ning more than two orders of magnitude, see Schula
(2015) for an overview of those experiments. Hence,
it is generally challenging to predict subcritical crack
growth in ambient conditions.

3 Surface flaws concept

For the representation of the surface flaws condition, we
consider two models. The first one comprises a single
population of semi-circular edge cracks with a Pareto
distributed crack size. The second model comprises a
dual population of semi-circular edge cracks with a
Pareto and Fréchet distributed crack size, respectively.
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In both cases, a choice of crack density at 2 cm™2 is

made. The purpose with the dual population model pre-
sented here is to provide a logical basis for a strength
distribution with a bimodality. The choice of crack den-
sity at 2 cm~2 is guided by the following observa-
tion. Based on optical scanning techniques applied to
a pair of small soda-lime silicate glass plates in the as-
received condition there were 632 flaws observed and
it was noted that the flaw mean density varied between
1.2 and 2.6 cm™2 for flaw sizes greater than approxi-
mately 8 microns (Wereszczak et al. 2014).

3.1 Single population model

For the single population model, it is assumed that the
cracks are uniformly distributed over the surface area of
the original plate and that the crack planes are oriented
between [0, ) according to a uniform distribution.

The logical basis for the selected choice of single
population model are the Hertzian indentation tests
that have been carried out in the past (Poloniecki and
Wilshaw 1971; Poloniecki 1974; Tandon et al. 2013)
and which have provided data that could be closely fit-
ted by a Pareto distribution, see Sect. 2.

3.2 Dual population model

For the dual population model it is assumed that it com-
prises two populations of semi-circular edge cracks
with a Pareto and Fréchet distributed crack size, respec-
tively. All cracks are uniformly distributed over the sur-
face area of the original plate and the crack planes are
oriented perpendicular to the MPTS. The Pareto popu-
lation cracks represent large surface flaws. The Fréchet
cracks represent small surface flaws. It is assumed that
the number of Pareto cracks is a small fraction of the
total number of cracks. It is assumed that the fraction
is 0.002.

The logical basis for the dual population model is the
following. First, glass fracture statistics tend to produce
bimodalities in the probability plots according to e.g.
Veer et al. (2009). In fact, the experiment considered
in Sect. 5 is no exception because the histogram of
the data appears to exhibit two modes, see also Fig. 3.
Other researchers have suggested to represent the sur-
face cracks using two populations. Mencik (1992) dis-
tinguishes between several populations of surface flaws



A numerical method for analysis of fracture

143

according to their origin. In doing so, Mencik (1992)
distinguishes between a large flaws and a small flaws
population of cracks with relevance for the practical
engineering strength of glass. Mencik (1992) charac-
terizes the large flaws population as being responsible
for the tensile stress to decrease to 20—-60 MPa. Sub-
stituting these values into Eq. (2) while assuming that
the SIF equals to 0.75 MPa m!/?, the corresponding
crack depth is found to be 94-850 microns. Mencik
(1992) characterizes the small flaws population as con-
taining cracks smaller than a hundredth of a millimeter
in depth. He associates this with a strength reduced
to 60-200 MPa. Substituting these values into Eq. (2)
yields a corresponding crack depth of 8-94 microns.
A statistical model for characterizing glass strength
when two flaw populations are superimposed due to
abrasive phenomena has been proposed in Pisano and
Carfagni (2017). Pathirana et al. (2017) implemented
a dual population of cracks in a numerical model for
the evaluation of the strength distribution in panels sub-
jected to point contact actions. Second, the choice for
the value of the fraction of large cracks, i.e. 0.002,
is guided by the following observation. Out of the
total number of flaws detected in the investigations by
Wereszczak et al. (2014), the proportion of large flaws
greater in size than or equal to about 200 microns was
approximately 0.002. This corresponds with a crack
depth of 100 microns assuming that the flaws are semi-
circular surface cracks. Taking a crack depth of about
100 microns as a value that separates large flaws from
small flaws is through adoption of the line of reason-
ing in Mencik (1992). Third, the logical basis for the
Pareto distribution are the Hertzian indentation tests
that have been carried out in the past and which have
been mentioned earlier in this paper already. Fourth, the
logical basis for the Fréchet distribution is motivated
as follows. Assuming that small flaws are exceedingly
numerous, one might select only the greatest small flaw
in a given region and let this one determine the fracture
mechanical behaviour of the small flaws population in
that region (Freudenthal 1968). Because it is assumed
that the cracks in the small population are abundant,
it is supposed that the selected crack plane is oriented
approximately normal to the maximum principal ten-
sile stress. If the numerous small flaws have an indepen-
dent Pareto size distribution then in the limit the largest
flaw size is Fréchet distributed (Beirlant et al. 2004).
For extreme-value theoretical reasons the greatest flaw
size among a large set of flaws whose size is iden-

tically and independently distributed is approximately
Fréchet distributed if the following holds (Horst 2009);
the sampled distribution has a range which is unlimited
from above and its distribution function F' is such that
there exist some positive numbers k, A such that

li)ngoxk(l —Fx)=A (13)

Hence, the Pareto distribution lies in the domain of
attraction of the Fréchet distribution (Beirlant et al.
2004).

4 Numerical modelling tool

Here follows a description of a numerical modelling
tool for the strength of glass plates in bending based
on an implementation of the weakest-link principle
and some concept for the surface flaws condition. The
numerical method adopted in this study is based on
the Monte Carlo simulation method carried out by
Yankelevsky (2014). The most important difference
between the present study and Yankelevsky (2014) is
that the present study considers multiple flaw popu-
lations with arbitrary crack plane orientations and a
mixed mode fracture criterion.

Float glass is usually produced and shipped in a stan-
dard size so-called jumbo plate with the dimensions
3.21 x 6.00 m?. Taking the standard jumbo plate as
a starting point, the plate is subdivided into unit cells
of 1 mm?. This cell size provides a reasonable com-
promise between resolution and computational cost.
A set of flaws are randomly scattered across the cells
according to a uniform distribution, although in gen-
eral another spatial distribution could be adopted. It is
supposed that the stochastic orientation of the crack
planes is uniformly distributed. This assumption might
not be conservative, however, if there is a tendency for
the flaws to lie in some particular direction due to e.g.
machining abrasion or contact with the rollers during
manufacture. The total number of flaws on the jumbo
plate is fixed and depends on the flaw density. It is
assumed that the flaw density is 2 cm~? yielding a total
of 385,200 flaws on either face of the plate. Each flaw is
independently assigned a size based on some statistical
distribution function which depends on the particular
flaws concept that is adopted. The random flaws are
resampled in each new simulation of the jumbo plate.
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Fig.2 Main steps leading up to the creation of the SIF envelope.
a Random flaws are sampled and located across the unit cells.
b The bending stresses are determined and compared with the
flaws. ¢ The resulting SIFs with magnitudes illustrated by discs

The stochastics of the flaws are the location, the orien-
tation in the plane, and the size. Next, a specimen of
given dimensions is extracted and separated from the
jumbo plate. In the following the cut out specimen is
analysed.

The cut out specimen is subjected to an arbitrary
loading in increments and the stress field history at the
centre of each flaw-containing unit cell determined. It
is supposed that the load type is such that tensile stress
actually develops on the face of the cut out specimen
otherwise failure will not be detected based on fracture
mechanics. In general the stress response is non-linear.
The loading increment is chosen so as to produce a ten-
sile stress increase of no more than 1 MPa per increment
anywhere on the specimen. However, if the response is
linear then it suffices with one increment and to scale
the results. The complete stress history needs only to be
calculated once for a given loading type and specimen
geometry because the stochastics of the cracks do not
affect the distribution of nominal bending stresses. It is
assumed that the sum of load increments is sufficiently
large in relation to the given flaw characteristics, i.e.
flaw density, flaw size distribution, etc., to prompt frac-
ture. Otherwise, failure might not have been detected
by the end of the last load increment. There exists a
SIF envelope that meets with the fracture toughness at
some point in time, the smallest of which is identified
as the time of failure. If the crack planes are always
oriented perpendicular to the MPTS then the SIF enve-
lope is calculated using Egs. (2) and (3). For reference,
this case is denoted MPTS mode I fracture criterion.
If the crack planes are inclined at an oblique angle in
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are calculated based on one of the fracture criteria. The large
white disc represents the critical event that the SIF exceeds the
fracture toughness

the coordinate system of the principal stresses while
mode I opening displacement is considered then the
SIF envelope is calculated using Egs. (2) and (4). This
case is denoted oblique angle mode I fracture criterion.
If both mode I opening and mode II shearing displace-
ments are accounted for then the SIF envelope is cal-
culated using the left-hand side of inequality (5). This
is the mixed mode fracture criterion. By token of the
WLP, the fracture origin is determined from the first
unit cell that contains a flaw with a SIF exceeding the
fracture toughness. A search algorithm is used to detect
this cell. By carrying out simulations on a whole series
of cut out specimens it is possible to obtain a sample of
the fracture stress which is defined as the MPTS at the
failure origin. In this study the number of cut out spec-
imens in a simulation series is 5,000. This sample size
offers a reasonable compromise between precision and
computational cost. Figure 2 illustrates the main steps
leading up to the creation of the SIF envelope; (a) the
flaw stochastics are sampled, (b) the in-plane principal
stresses are determined at each load increment and (c)
the SIF envelope is calculated per load increment based
on either of the fracture criteria. Failure is prompted
at the first instance of intersection between SIF enve-
lope and fracture toughness (white disc). Likewise, the
failure origin is determined by the first unit cell that
contains a SIF which exceeds the fracture toughness.
The so-called critical stress is the uniform tensile stress
perpendicular to a given crack plane that would bring
about failure with a pure mode I fracture criterion. The
critical stress can be calculated with Egs. (1) and (2).
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5 Experimental data comparison

Double ring bending tests are frequently carried out to
evaluate the strength of glass. In this testing device a
glass plate is supported on a reaction ring and subjected
to an applied loading through a smaller concentric ring
on its opposite side. An equibiaxial state of stress is pro-
duced within the loading ring. Failures that start from
edges are eliminated because tensile stress diminishes
near the edges. Some experimenters discard any obser-
vation associated with a failure originating from outside
the loading ring radius. Simiu et al. (1984) carried out
experiments on 56 small square glass plates in double
ring bending. The plates had the nominal dimensions
179 x 179 x 6 mm?>. The mean thickness was 5.4 mm.
The glass was new in the as-received condition and
it had been obtained from the same manufacturer and
batch. The loading ring radius was 25.4 mm and the
segmented reaction ring radius 60.3 mm. All speci-
mens were subjected to ramp loads that generated an
average rate of stress of 0.8 MPa/s inside the loading
ring. The load-duration until failure ranged from 48 to
117 s. It is not known whether it was the tin side or
air side of the glass plates that was subjected to tensile
stress. The tin side is defined as the side of the glass
that was in contact with the molten tin bath in the float
process production method.

This experiment is selected for a number of reasons.
The data report is complete with values for the fracture
stress even when the failure originated from outside
the loading ring. Because Simiu et al. (1984) reported
the fracture locations it is possible to make compar-
isons with the simulated failure origin data. The data
is challenging to model. A Weibull distribution for the
strength can be rejected, cf. Sect. 6.1. The modelling
of the surface flaws condition is simplified when edge
failures are eliminated.

Using a formula for a flat circular plate of constant
thickness, Simiu et al. (1984) calculated the in-plane
MPTS for each fractured specimen. The stress was cal-
culated at the centre of the plate, even when the fracture
origin was not located within the loading ring radius.
Twelve of the data points, however, were associated
with failures originating from outside the loading ring.
Those values have been readjusted by this author in
order to reflect the MPTS at the actual failure loca-
tion rather than the MPTS inside the loading ring. The
adjustments were made based on finite element cal-
culations with the computer software ABAQUS/CAE

(2013). The loading rings were modelled by analytic
rigid surfaces. The glass part was modelled with 20-
node quadratic solid elements with reduced integration,
although it would also be possible to use continuum
shell elements. The number of through-the-thickness
elements was 5 and the number of elements in the
plane was about 9500. Only a quarter of the plate was
modelled for symmetry reasons. It was assumed that
Young’s modulus is 70 GPa and Poisson’s ratio is 0.23
(Bourhis 2008). A friction coefficient of 0.1 was used
in modelling the contact between loading ring and glass
parts.

6 Results

Virtual glass specimens were tested until failure in dou-
ble ring bending and the results were compared with
data from the experiment conducted by Simiu et al.
(1984). The analysis was carried out using the software
ABAQUS/CAE (2013) and MATLAB (2016). The fol-
lowing cases were investigated, viz. a single population
of Pareto distributed flaw sizes using either the MPTS
mode I fracture criterion or oblique angle mode I crite-
rion or the mixed mode criterion, and a two-population
concept for the flaw sizes using only the MPTS mode I
fracture criterion.

6.1 Single population of flaws

A fracture stress distribution was simulated based
on the oblique angle mode I fracture criterion, cf.
Egs. (1), (2) and (4) while supposing that the sur-
face condition is characterized by a single population
of Pareto distributed flaw sizes. This is illustrated in
Fig. 3a and the values shown are the MPTS at the fail-
ure origins. The histogram in Fig. 3a is normalized so
as to reflect a probability density function. The area of
each bar is the relative number of observations. The
total sum of the bar areas is less than or equal to 1
depending on whether or not some of the data lies out-
side the bin limits. The sampled distribution was com-
pared with a Weibull distribution and the goodness-of-
fit was tested using the Anderson—Darling (AD) statis-
tic (D’ Agostino and Stephens 1986). No significance
was obtained in a test at the 5% level. The simulated dis-
tribution appears to be indistinguishable from a Weibull
distribution. An ordinary Weibull distribution was fit-
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Fig. 3 Simulated and
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ted to the empirical data set using the maximum likeli-
hood method and the estimated parameter values were
k = 78 MPa and m = 3.8. Using the AD statistic
it could be rejected at the 0.4% level that the empiri-
cal data set is Weibull distributed. The simulated dis-
tribution was optimized so as to match the ordinary
Weibull model which was fitted to the empirical data.
The optimization was carried out by varying the under-
lying Pareto distribution parameters until the simulated
strength distribution was similar to the Weibull distri-
bution that was fitted to the empirical data. The sim-
ilarity was measured by fitting a Weibull distribution
to the simulated sample and comparing the so fitted
Weibull parameters with the parameter estimates of
the Weibull model that was fitted to the empirical data
set. See Fig. 3a where both the empirical data set (red
bars), the fitted Weibull density function (solid line) and
the simulated distribution (black bars) are illustrated.
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Table 1 Pareto parameter values that generated an estimated
Weibull distribution with the scale and shape parameters k =
78 MPa and m = 3.8 while using the numerical method

Fracture criterion Scale param. (uLm) Shape param.
MPTS 8.4 2.34
Oblique angle 8.3 2.13
Mixed mode 8.8 2.26

The strength distribution was further simulated using
the MPTS mode I criterion and the mixed mode crite-
rion. The Pareto parameters were selected so that the
strength distribution could be fitted by a Weibull dis-
tribution with scale and shape parameters k = 78 MPa
and m = 3.8. Table | contains the Pareto parameter
values so far discussed according to the three fracture
criteria.
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In Fig. 3b the simulated fracture locations in the
radial direction are shown together with the empiri-
cal for the oblique angle mode I case. Using a two-
sample AD test (Scholz and Stephens 1987; Trujillo
et al. 2007), a significant deviation between the pair of
data sets could be detected. The spatial distribution of
failures is further illustrated in Fig. 4a.

The critical stresses in a single cut out specimen are
obtained by solving for o, in Eq. (2) after substituting
for the fracture toughness value in Eq. (1) as illustrated
in Fig. 4b.

Considering the various fracture criteria, the follow-
ing was noted while using identical Pareto parame-
ter values for generating the strength distribution. The
mode I fracture criterion in the oblique angle case pro-
duced only a very small difference in the strength data
sample compared with the mixed mode criterion, cf.
Egs. (1), (2), (4) and (5). The 63rd percentiles deviated
by less than 3%. However, taking mode II shearing dis-
placement into consideration increased the proportion
of failures originating from outside the loading ring
by 20%. Comparing the flaw-orientation independent
MPTS mode I criterion, Egs. (1), (2) and (3), with either
of the two other criteria yielded a significant difference
in the data samples; the 63rd percentile of the simu-
lated strength was more than 10% lower while using
the MPTS case. The proportion of failures originating
from outside the loading ring increased by over 60%.
The results are illustrated in Fig. 5.

6.2 Two populations of flaws

It is possible to obtain a simulated distribution like the
one shown in Fig. 3c while assuming that the flaws

originate from two different populations, see Sect. 3.
The flaw model parameters are given in Table 2. The
resulting distribution could not be distinguished from
the empirical data set with any statistical significance
at the 5% level judging from the two-sample AD test
statistic (p = 0.64). In Fig. 3d the simulated fracture
locations are shown together with the empirical. It was
found using the same test statistic that a significant
departure exists from the hypothesis that the experi-
mental and simulated fracture location data sets come
from equal distributions.

7 Discussion

Providing for consistency in a glass failure prediction
model calls for its foundation to be laid on physically
sound concepts such as the WLP. The WLP captures
an essential feature of brittle material failure. The exis-
tence of Griffith flaws is another physical concept to
build upon. The Weibull distribution implements the
WLP which makes it an attractive choice for a glass fail-
ure prediction model, at least from a theoretical point of
view. All major standards including the European draft
of a Eurocode of glass acknowledge Weibull’s Eq. (8) in
one form or another (prEN 16612:2013). A number of
studies, however, have indicated that the Weibull distri-
bution does not provide a superior fit compared with a
lognormal or normal distribution (Lt 1997; Calderone
et al. 2001; Veer et al. 2009; Huerta et al. 2011; Kin-
sella and Persson 2016). It has been noted that the
estimated value of the Weibull shape parameter varies
quite significantly from one sample to another in exper-
iments (Ritter et al. 1985; Carre 1996; Huerta et al.
2011). Some researchers have called for abandoning

@ Springer



148

D. T. Kinsella, K. Persson
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Table 2 Pareto and Fréchet parameter values used in the dual
population model that was implemented with the numerical
method

Pareto Fréchet
Scale (pum) Shape Scale (um) Shape
130 4.0 11 3.0

the Weibull model altogether in favour of a normal or
lognormal distribution (Calderone et al. 2001). But to
adopt a normal distribution in this case is to favour with
a model lacking in failure-based physical concept. In
contrast, by using the numerical method in this paper it
is possible to keep intact the WLP as well as the Grif-
fith flaws assumption while producing data fits equal
or superior to the Weibull model. Figure 3a illustrates
that it is possible to simulate a Weibull distribution
using this numerical tool while assuming that the sur-
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face flaws are sampled from one single population of
Pareto distributed sizes. In keeping with recent exper-
imental findings using optical scanning techniques, cf.
Wereszczak et al. (2014), it was assumed that the flaw
density is 2 cm~2. From a theoretical point of view, the
shape parameter of the simulated Weibull distribution
should relate with the Pareto shape parameter accord-
ing to Eq. (11) if the stress state is uniform uniaxial.
At any rate, the Weibull distribution doesn’t actually
model the experimental data that was compared with.
While exploring the possibility of implementing two
flaw populations, the idea is to distinguish between one
large flaws population of flaws greater in depth than
about 100 microns and one smaller flaws population.
An idea along a similar line was proposed by Mencik
(1992), cf. Sect. 3. The purpose is to model the bimodal-
ity that is frequently encountered in the strength distri-
bution from practical experiments. Turning to Fig. 3¢
it is evident that an acceptable fit can be achieved with
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Table 3 Weibull shape parameter estimates from 16 experiments on new annealed glass plates in double ring bending, tested in ambient

conditions

Reference Load. ring diam. (mm) Approx. stress rate (MPa/s) Sample size Weib. shape param.
Peeken (1982)? 600 2 97 10.1
Peeken (1982)? 600 2 99 11.3
Simiu et al. (1984) 51 0.8 56 4.0
Simiu et al. (1984) 51 1.0 29 3.6
Mellmann and Maultzsch (1989)* 600 2 113 5.1
Mellmann and Maultzsch (1989)* 600 2 108 3.9
Fink (2000) 55 2 20 3.5
Fink (2000) 55 2 107 5.9
Overend (2002) 51 0.7 10 2.4
Overend (2002) 51 0.9 10 1.8
Overend (2002) 51 0.6 10 4.9
Haldimann (2006) 51 0.2 10 3.7
Haldimann (2006) 51 21 10 4.2
Postigo (2010)° 180 2.4 41 2.9
Schula (2015) 80 2 15 7.8
Muniz et al. (2016) 60 2 28 4.5

20btained from Sedlacek et al. (1999)
bObtained from Huerta et al. (2011)

a two-population flaws concept. Moreover, this fit is at
least as good as the fitted Weibull model in Fig. 3aas can
be seen by comparing the p-values from the AD tests.
Moreover, the tail of the distribution is important when
calculating the design value. Therefore, when choosing
between the simulated distributions as seen in Fig. 3a
and c, as a matter of fact, the ordinary Weibull distribu-
tion appears to provide the most conservative approach.

With a two-parameter Weibull distribution, only two
parameters are fitted to the data. With the numerical
model presented in this paper, the Pareto and Fréchet
distributions each require two parameters. As the num-
ber of parameters increase, it is only logical that a better
fit might be produced. Therefore, the outcome while
comparing Fig. 3a with c is rather predictable. How-
ever, if it were possible to estimate some of the surface
flaw parameters a priori, the numerical modelling tool
would gain in potential. Then, these parameter esti-
mates would be based on the material physics. There
is a need for more data on the surface flaws condition
in glass. Up to date, the published data is scarce. As
new techniques become available for examination and
assessment of the surface condition in glass, more reli-
able input data will likely become available for use in
this kind of numerical prediction tool.

Moreover, with this numerical tool it is possible to
simulate the distribution of fracture locations. The sim-
ulations were not quite able to model the empirical dis-
tribution of fracture location. This is due to the lower
mean value in the simulations as well as the longer tail,
cf. Fig. 3b and d. However, it may also be due to the fact
that a large number of fractures in the empirical data set
occured at the loading ring contact circle. About one
in five specimens failed under the loading ring. This
could have an impact not only on the failure location
statistics but also on the fracture stress statistics.

The Weibull shape parameter value that was esti-
mated based on the double ring bending experiment
carried out by Simiu et al. (1984), i.e. m = 3.8, might
indicate a high dispersion for the experimental data
because the value is quite low. The data refers to an
experimental campaign carried out almost 40 years ago.
In order to investigate the dispersion, a table was orga-
nized, cf. Table 3, which contains the estimated Weibull
shape parameter values from a range of experiments
with the double ring bending device. All listed items
in Table 3 refer to experiments on new, annealed glass
that was tested in ambient conditions. The experiment
carried out by Simiu et al. (1984) is included in Table 3
where the estimated shape parameter value was based
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on the original data, unadjusted with respect to the true
stress at the fracture origin, see also Sect. 5. The results
found in Table 3 show clearly that there appears to
be nothing unusual about the estimated Weibull shape
parameter value in the experimental data of Simiu et al.
(1984). However, it is possible that the estimated shape
parameter values in Table 3 were affected by the fol-
lowing circumstances. The table comprises both the
results from glass tested with the tin side in tension
and glass tested with the air side in tension. It has been
noted that some experiments with the double ring bend-
ing device generate a substantial number of fractures
near the loading ring contact area, see e.g. Simiu et al.
(1984).

Reid (2007) studied the proportion of failures occur-
ing inside and outside the loading ring in coaxial double
ring bending tests and compared the observed results
with what might be expected based on theoretical con-
siderations using Weibull statistics. He found that a
series of 59 small specimens of annealed plates 6 mm
in thickness produced anomalous results. The propor-
tion of failures occuring outside the loading ring was
substantially greater than expected. Reid hypothesized
that this might be related to the glass having to with-
stand shear stresses outside the loading ring. Due to
the equibiaxial state of stress within the loading ring,
shear stresses are not present there. Our results show
thatif a uniformly distributed flaw orientation is consid-
ered in the fracture criterion, then there is a significant
effect on the observed proportion of failures originat-
ing from outside the loading ring while taking mode II
shearing displacement into consideration. The propor-
tion increases by 20% with the mixed mode failure
criterion. However, disregarding flaw orientation alto-
gether in the fracture criterion, i.e. considering only the
MPTS, yields the highest proportion of failures orig-
inating from outside the loading ring. Our results are
therefore not conclusive with respect to Reid’s hypoth-
esis. It depends on whether or not it is assumed that
flaw orientation matters. More experiments need to be
carried out in order to verify or disprove this hypothe-
sis while taking note of the fracture statistics of failures
occuring outside the loading ring.

Although the simulations are more time-consuming
than fitting a standard statistical distribution, signifi-
cant improvements in computational efficiency can cer-
tainly be made. There is mounting evidence in the lit-
erature, see e.g. Veer (2007), that the fitted models for
glass fracture data in general are lacking in potential
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when using a standard distribution such as the Weibull
or Normal distributions. The present study was under-
taken in order to explore a novel approach towards the
failure prediction of glass. In order to further validate
this method, more experiments could be carried out and
the surface condition of glass should be investigated
further.

The effects of stress corrosion on the strength of
glass were neglected in this study. In a future paper,
the implementation of subcritical crack growth into the
numerical method will be considered.

8 Conclusions

Using anumerical simulation tool based on the weakest-
link principle and assuming the existence of Griffith
flaws it is possible to simulate a Weibull distribution
for the strength of glass. The incorporation of mode II
shearing displacement into the fracture criterion has
only a very small impact on the simulated strength dis-
tribution when the glass is subjected to double ring
bending. In the case of small plates in double ring bend-
ing where edge failures can be neglected, it is feasible to
model the strength based on a large-flaws and a small-
flaws concept while capturing a bimodality in the data
set. There is a need for more knowledge and data on
the surface condition in glass.
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