
Glass Struct. Eng. (2016) 1:173–194
DOI 10.1007/s40940-016-0023-4

CHALLENGING GLASS PAPER

Elastic lateral-torsional buckling of glass beams
with continuous lateral restraints

Delphine Sonck · Jan Belis

Received: 26 January 2016 / Accepted: 21 April 2016 / Published online: 24 May 2016
© Springer International Publishing Switzerland 2016

Abstract Lateral-torsional buckling is a typical buck-
ling mode for slender members loaded in bending,
which is characterized by the lateral and torsional
displacement of the cross-section along the complete
member length. Structural glass members are often
connected to the encompassing structure by means of a
silicone sealant joint along the member length, which
acts as a partially rigid lateral connector, restraining
the movement of this side of the member. While this
will increase the lateral-torsional buckling resistance of
these members, this is currently not considered during
the design. In this paper the behaviour of glass beams
with a continuously restrained top edge, loadedbya line
load or central point load along this edge, will be inves-
tigated by executing a numerical parametric study. In
this study, the restraint provided by the silicone sealant
joint is modelled by lateral springs along the edge of
the beam. The influence of the spring stiffness on the
critical load and corresponding eigenmode shape will
be determined in an eigenvalue analysis, considering
bothmonolithic and laminated glass beams. The results
of this study will give some first insights in the influ-
ence of lateral restraints on the lateral-torsional buck-
ling behaviour.
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1 Introduction

In glass structures, glass beams or beam-like ele-
ments are often used to conserve the transparency of
the glass structure. As illustrated in Fig. 1, the pur-
pose of these elements is mainly to carry gravity and
wind loads on roofs, or to stiffen facades against wind
load actions (Fig. 1). Consequently, these elements are
mainly loaded in bending. These beams are connected
with the encompassing structure using a mechanic or
adhesive connection between one side of the beam and
the structure. As this connection will have a certain
stiffness, it will impede the lateral displacements along
one of the sides of the beam, either at discrete locations
or continuously. Currently, more and more researchers
are focusing on adhesive connections, such as Belis
et al. (2011a), Weller and Wuensch (2013), Dispersyn
et al. (2014, 2015), and Santarsiero (2015). This paper
will focus on continuous adhesive connections as well.

As these beam(-like) elements are often rather slen-
der, they are very susceptible to lateral-torsional buck-
ling (LTB). This is a global instability mode for a beam
loaded in bending, in which the compressed part of the
beambuckles. However, thismovement is restrained by
the part of the beam in tension, resulting in a combined
lateral and torsional movement of the cross-section.
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Fig. 1 Examples of beam-like element in facades (left) and roofs (right). The photos are reproduced from Christiaens (2009) and Giles
Pike Architects (2016)

The lateral restrains provided by adhesive or mechanic
connections could considerably increase the LTB resis-
tance. Up until recently, the existing research onLTBof
glass beamsonly covered basic cases of laterally unsup-
ported glass beams, disregarding certain advantages
that are linked to current building practices. To this
extent, the subject of LTB of unrestrained glass beams
has been covered bymultiple researchers (Luible 2004;
Belis et al. 2013;Haldimann et al. 2008; Feldmann et al.
2014). However, the advantageous effect of the lateral
restraints has only been covered very recently by Belis
and Bedon (2014), Bedon and Amadio (2015a), Bedon
et al. (2015b).

In Belis and Bedon (2014), the critical buckling
moment of simply supported monolithic glass beams,
loaded by a uniform bending moment and restrained
laterally along their top edge, was examined. Here, a
first analytical closed-form expression was proposed
for the critical buckling moment Mcr of a beam with
continuous lateral restraints. The obtained analytical
Mcrvalues agreed fairly well with the values obtained
in numerical simulations. However, the match was not
as good as it would be in later work by Bedon and
Amadio (2015a), because the number of half waves n
in the buckled shape was assumed to be equal to one.
Based on the numerical simulations, it was found that
the spring stiffness k provided by the lateral restraints
should be higher than about 103N/m2 for the restraints
to have a significant effect onMcr. Thisminimumvalue
of k decreases with increasing beam slenderness. The
advantageous effect of the lateral restraints increased
with increasing values of L and decreasing values of

the glass thickness. Additionally, the results of Verho-
even (2008) were proposed in this work to obtain an
estimate of a realistic spring stiffness k (see Sect. 2)
and the corresponding realistic amplification of Mcr.

Bedon and Amadio (2015a) also studied the elas-
tic buckling behaviour of monolithic glass beams with
an elastically restrained edge. A closed-form expres-
sion was formulated of the critical buckling load of
a beam loaded by a uniform bending moment, taking
into account that the number of half sine waves n in
the buckling shape can be greater than one. The thus
obtained expression for the critical buckling moment
and the corresponding amplification factormatched the
corresponding results almost perfectly, since the num-
ber of half waves n was found to increase with increas-
ing stiffness of the lateral restraint. In a next step,Bedon
and Amadio (2015a) studied the effect of the elastic
restraint along the top of the beam for a beam loaded
by a downward line load or central point load, at either
the top or bottom edge of the beam. For these load con-
figurations, a closed-form expression could not be for-
mulated. However, for practical design purposes a con-
servative correction factor was proposed to determine
the equivalent uniform moment for a restrained beam
loaded by a line load or point load, considering realistic
stiffness values k for silicone joints. This investigation
was extended in Bedon et al. (2015b), where the LTB
resistance of monolithic glass beams was examined in
a geometric nonlinear numerical simulation. The shape
and size of the geometric imperfection introduced dur-
ing these simulationswas found tobevery important for
the buckling resistance and beam deformation. Based
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Fig. 2 Experiments on
silicone joints. Top DC 895;
bottom SG 500 PsilPsil

2Psil2Psil

SG-500

DC 895

on the results obtained for the critical buckling load and
the buckling resistance, Bedon et al. (2015b) proposed
an extension for the current LTB design rules valid for
laterally unrestrained beams.

The expressions of Mcr for the critical moment
of a restrained beam loaded by a constant bending
moment are all based on work by Larue et al. (2007).
Here, the cross-section is assumed not to deform. How-
ever, work done by Bradford (1998, 2000), as well as
Vrcelj and Bradford (2009) for steel I-section beams
suggests that the governing buckling mode would be
lateral-distortional buckling for a beam with stiff lat-
eral restraints and a slender web. In this bucklingmode,
an interaction between LTB and local buckling, the
web deforms. In the current investigation, some cross-
sectional distortion was also perceived, as well as local
buckling of some geometries (see Sect. 5). Care should
be taken that these buckling modes are not overlooked
in an analytical formulation, if they were found to be
relevant for realistic applications.

In this work, the elastic lateral-torsional buckling
behaviour of both monolithic and laminated glass
beams was studied in a numerical parametric study.
All beams were restrained at their top edge and loaded
by either a downward or upward load. The upward
load was not previously considered, but is of practi-
cal importance for design. Restraining the compressed
edge will be more effective than restraining the ten-
sioned edge, and starting from a certain lateral con-
straint stiffness the critical load for an upward load
will become considerably smaller than that for a down-
ward load. In practice, the designer should consider
both cases, but depending on the relative upward and
downward load magnitudes, as well as the magnitude
of the joint stiffness, the upward or downward load case
can bemore restricting. In this study, the behaviour will
be studied for a large range of joint stiffness values k,
going from an almost zero stiffness to an extremely
large stiffness. This range encompasses the realistic
restraint stiffness values for sealant joints obtained

from two separate test series, each corresponding with
a different material.

In the next section, the test series used to determine
the stiffness of two different sealants joint materials
will be briefly discussed. Subsequently, the paramet-
ric study will be described, followed by the numerical
model used for the study. Next, the main results of the
study will be presented with a focus on the effect of the
lateral restraint providedby the sealant joint on the criti-
cal load, aswell as the corresponding eigenmode shape.

2 Stiffness of sealant joint

During lateral-torsional buckling, the silicone joint
between the top edge of the glass beam and the encom-
passing structure will deform elastically. To study the
effect of these elastic lateral restraints at the top of the
beam on the LTB failure of these beams, the behaviour
of these joints must be determined.

During two test series at Ghent university, exper-
iments were executed in which a silicone joint was
loaded in shear. In a first test series, executed by Ver-
hoeven (2008), the behaviour of Dow corning® 895
(DC 895) was examined. This one-component sealant,
used for glass structures in practice, is described in
(Dow Corning 2012). The sealant was applied between
two separate steel parts, as shown in Fig. 2, which
were pulled apart after sufficient curing. Two dif-
ferent geometries of the silicone joint were consid-
ered, as described in Table 1, with dimensions as
depicted in Fig. 3. During these tests, the complete
load-displacement behaviour of the silicone joint until
failure was recorded. However, only the obtained stiff-
ness values will be of importance in the current study
of the linear elastic buckling behaviour. In Table 1, the
obtained stiffness values are given: K is the measured
stiffness; k=K/Lsil is the measured stiffness per unit
length, for a joint width wsil (assuming a constant vari-
ation of K in length direction). More details about the
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tests and the obtained results can be found inVerhoeven
(2008), Belis and Bedon (2014), Bedon et al. (2015b).

The second test series was executed by Van Lancker
et al. (2015). In this series, the Sikasil® SG-500 (SG-
500) silicone sealant was used, a two-component sil-
icone as described by Sika (2015). In the test setup,
a silicone layer was applied between two cold-formed
profiles and two glass panes (Fig. 2). The two cold-
formed steel shapes were then pulled apart by means
of large screws connected to the steel profiles, introduc-
ing shear deformation in the silicone joints. Two types
of cold formed steel elements were used: a box profile
(as drawn in Fig. 2) and a C-profile. The dimensions
of the silicone joints and the obtained stiffness values
are given in Table 1. From the results, it is clear that
the SG-500 joint is stiffer than the DC 895 joint: for a
given area wsil x Lsil, the SG-500 sealants will be about
three times stiffer than the DC 895 sealant.

The sealant joints are applied between the top sur-
face of the glass beam and the encompassing structure.
As a first approximation, realistic stiffness values for
the geometries considered during the parametric study
(as specified inSect. 3) canbedeterminedby scaling the
stiffness values k, obtained for a certain width wsil,exp,
to the width of the silicone joint that can be used for
the considered member in the parametric study. This
can be done by multiplying the obtained experimental
k∗
mean values from Table 1 with the joint width wsil. In

Sect. 3.2, the range of realistic k values for the consid-
ered geometries is determined.

3 Numerical parametric study

3.1 Scope

The described study is limited to simply supported
beams in fork supports, which can be either monolithic
or laminated. The laminated beams consist out of two
glass panes and an interlayer. For the interlayers, only
one material is considered with a relatively low stiff-
ness corresponding with long term loading.

The top edge of all considered beams is laterally sup-
ported by a continuous spring. At the same edge, the
member is loaded by either a central point load or a con-
stant line load. These loads are either upward or down-
ward, so that the effect of (negative) wind-suction on
the structure connected to the members is covered. The
different loads and the position of the lateral restraints
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Fig. 3 Dimensions of
tested silicone joints

wsil

Lsil

hsil
Psil

Psil

usilPsil

Psil

ppos

pneg

Fpos

Fneg

Fig. 4 Position of the lateral restraints and considered loads

is given in Fig 4. It is expected that the effect of the
spring stiffness will be most distinct for positive loads,
the restrained top edge being the compressed edge.

3.2 Varied parameters

In the parametric study, two different cross-sectional
geometries were used for the members: one monolithic
cross-section (1L), and one laminated cross-section
with two glass panes (2L). This is further specified in
Table 2. The general dimensions and the used coordi-
nate system are shown in Fig. 5.

For the considered geometries, the realistic range
of stiffness values of the springs k per unit length can
be determined based on Tables 1 and 2, as explained in
Sect. 2. In practice, the sealant jointwidth can be locally
smaller due to the presence of setting blocks which
serve to keep the distance between the glass beam and
the encompassing structure prior to silicone applica-
tion. However this local effect is neglected. Thus, a
constant width wsil equal to the glass thickness t was
considered for themonolithic beams (1L). For the lami-
nated beams, it was assumed that a backfill with amaxi-
mum thickness of oneglass panemight be present along
thewhole beam length, so that the stiffness for one lam-
inated beam (2L) is constant, but can vary between the

Table 2 Cross-sectional geometry

Geometry
name

Number of
glass panes

Thickness of
glass t [mm]

Thickness of
interlayer ti [mm]

1L 1 (monolithic) 19 –

2L 2 15 1.52

extreme values corresponding with widths wsil equal
to t and 2t. By rescaling the obtained k values from
Table 1, realistic minimum and maximum values for k
can be obtained (Table 3). Based on the obtained values,
a realistic stiffness range for the considered geometries
would be between 3× 105 N/m/m and 2× 106 N/m/m.

In the parametric study, a very large range of stiff-
ness values was considered (Table 4), going from very
small to very high values. While the higher stiffness
values can no longer be considered as realistic for sil-
icone sealant joints, they could be realistic for beams
of which the upper edge is clamped into a stiff steel
U-section. Furthermore, the investigation of the large
stiffness range enables the study of the gradual change
in behaviour of the beamswhile going from almost zero
stiffness to extremely large stiffness values of the lateral
restraints. The previously determined realistic stiffness
values for silicone joints lie within the studied range.
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Fig. 5 Member dimensions
and coordinate system

Table 3 Realistic stiffness
values for silicone joints
based on the experimental
stiffness measurements

Geometry wsil [mm] Sealant type k∗
mean [N/m/m2] k=k∗

mean × wsil [N/m/m]

Monolithic 19 DC 895 2.090 × 107 4.0 × 105

19 SG-500 6.770 × 107 1.3 × 106

Laminated (min wsil) 15 DS895 2.090 × 107 3.1 × 105

15 SG-500 6.770 × 107 1.0 × 106

Laminated (max wsil) 30 DS895 2.090 × 107 6.3 × 105

30 SG-500 6.770 × 107 2.0 × 106

Table 4 Studied
parameters Cross-section 1L 2L

Load Fpos Fneg ppos pneg
h/L 1/10 1/15 1/20 1/25

L [m] 3 4 5 6 9 12

k [N/m/m] 10−9 102 103 104 105 106 107 108 109

For both studied cross-sectional geometries, the
length L varied between six values and the height-
to-length ratio h/L could attain four values. For each
of these members, nine different stiffness values were
selected for the lateral constraint of the top of the mem-
ber (Table 4), ranging from an (almost) zero stiffness
to an almost rigid constraint, encompassing the real-
istic stiffness values described above. Finally, each
of these laterally supported members can be loaded
by a positive or negative point load or line load, as
depicted in Fig. 4. Consequently, an extensive group
of 1728 realistic cases is considered in the parametric
study.

In Appendix 2, it is detailed how the equivalent
weak-axis bending stiffness EIz,eff and equivalent tor-
sional stiffness GIt,eff can be calculated for laminated
beams consisting out of two identical glass layers with
an interlayer. These equivalent stiffness values were
obtained using the sandwich theory, as described by
Haldimann et al. (2008), originally fromLuible (2004).
Based on the equivalent stiffness values, an equivalent
thickness teff can be calculated for weak axis bend-

ing (teff,EIz) and torsion (teff,GIt), as also specified in
Appendix 2 (Eqs. 16–17). In the derivation of these val-
ues, the geometry from Table 2 and the material prop-
erties from Sect. 4.1 were used. The obtained equiva-
lent thickness values are depicted in Fig. 6. The equiv-
alent bending thickness teff,EIz is independent of the
beam height h, but the equivalent torsional stiffness
teff,Git does vary with h. Both equivalent thickness val-
ues increase with increasing L. Overall, the equivalent
thickness values of the laminated beams are all larger
than the thickness of the monolithic glass beam (19
mm).

4 Numerical model

All elements studied in the parametric study were
modelled in Abaqus 6.14-1, using inputfiles (Dassault
2014). Python 2.7 was used for the creation and execu-
tion of the parametric study, as well as for the process-
ing of the results.
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Fig. 6 Equivalent thickness for weak-axis bending (teff,EIz) and torsion (teff,GIt)

4.1 Materials

The glass wasmodelled as a linear elastic material with
a modulus of elasticity E of 70 GPa and a Poisson’s
coefficient of 0.23. For the interlayer, a (fictive) linear
elastic interlayer material was introduced, with a shear
modulus G of 1 MPa and Poisson’s coefficient of 0.49.
The corresponding value of the modulus of elasticity E
of the interlayer can be determined using Eq. 1.

E = 2G(1 + ν) (1)

In reality, the interlayer material will display a vis-
coelastic instead of a linear elastic behaviour. How-
ever, in the linear buckling analyses executed in this
work (see Sect. 4.2), all nonlinear effects on the mate-
rial behaviour are ignored and the material properties
of the base state are used. To take into account the
effects of long-term loading on the interlayer, a linear
elastic material behaviour with a relatively low shear
modulus Gwas introduced. The employed G value of 1
MPa lies between the long term plateau value at 20◦C
for Polyvinyl Butyral (PVB) of about 0.1 MPa and an
elastic shear modulus after 30 years (109 s) of 4.2 MPa
for SentryGlas® (SG) at 20◦C (Bennison et al. 1999;
Callewaert 2012). Only one shear modulus was con-
sidered to limit the total number of calculations in the
parametric study.

4.2 Analysis step

The eigenvalue and eigenmode were determined in
a linear buckling analysis (BUCKLE step), using a
Lanczos eigensolver. The critical load is obtained by
multiplying the eigenvalue with the applied load. The

Lanczos eigensolver can be used to find eigenvalues
greater than a prescribed value. If this prescribed value
is chosen as zero, only the positive eigenvalues cor-
responding with each of the load cases displayed in
Fig. 4 are returned, so that the smallest critical load
corresponding with each of the four load cases is
found directly. In the current study, only the first pos-
itive eigenvalue and the corresponding eigenmode are
considered, as these will determine the critical buck-
ling load and buckling shape. The obtained values are
described in the next section.

4.3 Elements and mesh

The used element types andmesh sizes were the results
of the convergence and validation study described in
Sect. 4.6. All utilised elements were continuum ele-
ments, but the element type and mesh differed depend-
ing on the geometry of the modelled elements. For the
monolithic glass panes (1L), the mesh consisted out
of quadratic brick elements with reduced integration
(C3D20R) and 20 nodes. A mesh size of 0.025 m was
used. In the thickness direction, only one element was
present (Figs. 7, 8, 9).

For the laminated beams (2L), the mesh consisted
out of linear brick element with 8 nodes. For the glass,
C3D8I elements were used, enhanced with incompati-
ble nodes to obtain a better bending behaviour. For the
interlayer C3D8R elements with reduced integration
were chosen. Normally, C3D8RH elements would be
better suited due to the near incompressible behaviour
of the interlayer. However, these could not be combined
with the selected Lanczos solutionmethod of the eigen-
value problem. The mesh size was again 0.025m, but
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Fig. 7 Mesh and point load application for monolithic (left) and laminated (right) beams with L = 4 m and h/L = 1/20

Fig. 8 Boundary
conditions and mesh at right
end of monolithic (left) and
laminated (right) beams
with L=4 m and h/L=1/20

Fig. 9 Position of springs
and mesh at left top side of
monolithic (left) and
laminated (right) beams
with L=4 m and h/L=1/20

now two elements were present in the thickness direc-
tion for each layer to allow for stress variations over
the interlayer thickness (Figs. 7, 8, 9). This resulted in

high size-to-thickness ratio of the interlayer elements.
However, the convergence and validation study showed
no deviations caused by this high ratio.
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4.4 Boundary conditions and loading

All modelled members were simply supported by fork
supports at both ends, which restrain the sideways dis-
placement. The boundary conditions for the right side
of the beam, depicted in Fig. 8, will be discussed in the
following. For monolithic glass beams, the sideways
displacement (in y-direction) is restricted at one of the
vertical glass edges, while for the laminated beams,
this displacement is restricted at both vertical glass
edges. Furthermore, the vertical displacement (in z-
direction) of the glass plate(s) at the bottom of the end
sections is zero for both geometries. At the left beam
end the boundary conditions are similar, but one addi-
tional boundary condition is present: the displacement
in x-direction of one glass node at the bottom of the
cross-section must be zero.

The modelled beams were either loaded by a cen-
tral point load or a distributed load. Both loads were
modelled by a set of point loads on the glass layers of
the beam (Fig. 7). The central point load was modelled
by a set of equal point loads applied in all top nodes of
the twomid-span elements of each glass layer. The dis-
tributed load was modelled by applying an equal point
load in all top nodes of the glass layers of the beam.
For the laminated beams, all boundary conditions and
loads on the soft interlayer material were avoided to
prevent excessive local deformations.

4.5 Modelling of restraints and constraints

The structural silicone joint can be simplified as a con-
tinuous lateral spring with spring stiffness k (N/m/m),
safely neglecting the small torsional stiffness of the
joint. In themodel, this springwas represented by a row
of spring elements (SPRING1) along the top nodes of
one of the outer glass panes, connected with the ground
(Figs. 4, 9). For the considered linear buckling analy-
ses, the influence of the eccentricity of the springs was
examined and was found not to influence the analysis
results.

The applied springs only have a non-zero stiffness
in lateral direction (y-direction). The stiffness of the
two outer spring elements (at the beam edges) was
determined by multiplying k with half the element
size, while the stiffness of the other spring elements
was determined by multiplying k with the full element
size.

For the laminated geometries, the connection
between the interlayer and glass layers in the beam
is achieved by tie constraints between the adjoining
surfaces of the glass and the interlayer.

4.6 Validation of the numerical model

Before validating the utilised numerical model, a con-
vergence study was executed to select an appropriate
mesh size and element type, as specified in Sect. 4.3.
Next, the numerical models of the monolithic and lam-
inated glass beams were validated by comparing the
converged results obtained for the zero spring stiffness
with the analytical values for the critical central point
load Fpos and critical line load ppos, given respectively
by Eqs. 2 and 3. The former equation finds its origin
in (Standards Australia 1994), while the latter equation
originates from (Van Impe 2010). In these equations,
EIz is the bending stiffness about the weak axis, GIt
the torsional stiffness, L the buckling length, and zg
the distance of the point of load application above the
shear centre of the beam (here equal to h/2). In Eq. 3,
c1 = 1.132 and c2 = 0.459. For the laminated beams,
the calculation of the equivalent bending stiffness EIz
and torsional stiffness GIt is specified in Appendix 2
(Eqs. 7 and 11). Overall, the maximum deviations for
the point loadwere 2%,while themaximumdeviations
for the line load were 4 %.

Fcr = 16.8

L2
√
E IzG It

(

1 − 1.7zg
L

√
E Iz
G It

)

(2)

Mcr = pcr L2

8
= c1π

2E Iz
L2

⎡

⎣

√
L2GIt
π2E Iz

+ (
c2zg

)2−c2zg

⎤

⎦

(3)

5 Results of parametric study

In this section, the results will be considered separately
for positive loads (Fpos or ppos) and negative loads (Fneg
and pneg), due to their significantly different behaviour.
For each of both groups, the critical buckling loads and
the corresponding buckling modes will be considered.
In the figures of the buckling modes, the total displace-
ment magnitudes are given as a contour plot, with min-
imum value 0 (blue) and maximum value 1 (red), as
Abaqus scales all displacements in an eigenmode so
that the maximum displacement is one.
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Fig. 10 Effect on buckling
shape of k (N/m/m) for
positive point load (Fpos)
and low length L.
Monolithic glass beam with
h/L = 1/10 and L = 3 m

k=102 k=103 k=104 k=105 

k=106 k=107 k=108 k=109 

Fig. 11 Effect on buckling
shape of k (N/m/m) for
positive point load (Fpos)
and high length L.
Monolithic glass beam with
h/L = 1/10 and L = 12 m

k=102 k=103 k=104 k=105 

k=106 k=107 k=108 k=109 

5.1 Positive loads Fpos and ppos

For the positive (downward) loads, the buckling shape
differs significantly, depending on the type of load and
dimensions of the considered beam. For most beams
loaded by a positive point load Fpos, the buckling mode
shape is similar to the one depicted in Fig 10. For
increasing spring stiffness the number of half waves
increases. For low spring stiffness values k, the max-
imum displacements are at the top edge, correspond-
ing with the expected lateral-torsional buckling behav-
iour: the compressed edge moves sideward. However,
as k increases, the stiffer springs will restrain the top
edge, and the bottom edge will display the largest dis-
placements. Simultaneously, the number of half waves
increases and the top edge will still buckle sideways,
but only at the location of the highest compressive

stresses and very locally. The buckling mode will
change from pure global to a global mode with dis-
tortions, in which the glass plate no longer remains
straight.

For beams with a higher length L, the effect of
the increasing spring stiffness manifests itself earlier
(Fig. 11). For the highest spring stiffness values, the
bucklingmodewill no longer be global, but local. In the
parametric study, this effectwas the strongest for beams
with the highest lengths L and highest h/L values. For
the lower h/L and L values, the buckling mode was a
mixed distortional bucklingmode,with both global and
local deformations.

For the beams loaded by the uniform line load ppos,
the behaviourwas generally similar to that of the beams
with point loads Fpos, especially for the low k values.
However, for the higher k values, it could be seen that
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Fig. 12 Effect on buckling
shape of k (N/m/m) for
positive line load (ppos) and
low length L. Monolithic
glass beam with h/L = 1/10
and L = 3 m

k=106 k=107 k=108 k=109 

Fig. 13 Effect on buckling
shape of k (N/m/m) for
positive line load (ppos) and
high length L. Monolithic
glass beam with h/L=1/10
and L = 12 m

k=106 k=107 k=108 k=109 

generally more local waves were present in the beams’
mid spans (Figs. 12, 13). This can be attributed to the
different bending moment distribution for a line load:
comparedwith the bendingmoment distribution result-
ing from a point load, a slower variation of the bending
moment in the mid span is present. This results in a
greater area of large compressive stresses in mid span
than for a point load. For the laminated beams, the
observed behaviour was similar to that of the mono-
lithic beams. Consequently, this will not be discussed
separately.

For each geometry, �load could be determined
according to Eq. 4, for a point load F or line load
p. In this equation, Fcr,k and pcr,k are the eigenval-
ues obtained in Abaqus for the considered spring stiff-
ness. The values Fcr,k= 0 and pcr,k= 0 are the numeri-
cally obtained values for the eigenvalues for the same
geometry, but with a zero spring stiffness. Thus, the
advantageous effect of the lateral restraints is repre-
sented by �load. Additionally, the ratio of positive
and negative loads for a given beam was determined
according to Eqs. 5 or 6. In Figs. 14 and 15, the result-
ing �load values for point loads and the load ratio
Fpos/Fneg are depicted for monolithic beams. Similar
graphs for line loads ppos, as well as those for laminated
beams are included in the Appendix 1 (Figs. 19, 21,
22, 23, 26, 27).

�load = Fcr,k
Fcr,k = 0

or �load = pcr,k
pcr,k = 0

(4)

Fpos

Fneg
= Fcr,k,pos

Fcr,k,neg
(5)

ppos
pneg

= pcr,k,pos
pcr,k,neg

(6)

5.2 Negative loads Fneg and pneg

The buckling modes for the downward point loads Fneg
all display the typical behaviour depicted in Fig. 16. For
low spring stiffness values k, the buckling mode is the
typical LTB mode, with a maximum displacement at
the compressed bottom edge. With increasing spring
stiffness, the displacement of the top edge decreases.
For high k values, the buckling mode changes from a
symmetric to antisymmetric shape.

For the line loads pneg, the observed behaviour corre-
sponded with the behaviour shown in Fig. 17. Different
towhat occurs for Fneg, the bucklingmode now remains
symmetric for increasing k values. For both negative
loads, the buckling mode remains global: no web dis-
tortion could be observed. For the laminated beams
subjected to negative points loads or line loads, the
observed buckling mode shapes were similar to those
for the monolithic beams.

In Fig. 18, the resulting �load values for point
loads Fneg are depicted for monolithic beams. The
corresponding graphs for line loads, as well as those
for laminated beams are included in the Appendix 1
(Figs. 20, 24, 25).
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Fig. 14 Fpos: effect of spring stiffness k for different h/L, monolithic glass

6 Discussion of results

6.1 Discussion of results for positive loads Fpos and
ppos

In Fig. 14, the �load value is given for a positive
point load Fpos working on a monolithic glass beam.
As expected, the effect of the restraint increases with
increasing k values. Furthermore,�load increases with
increasing lengths L and decreasing h/L ratios: it
reaches a maximum value of 176 for a length L of
12 m and h/L = 1/25. For small lengths however, the
effect of the restraint remains equal for all h/L ratios.
The effect of k is visible from minimum stiffness val-
ues kmin of about 102 N/m/m for the high lengths
(L = 12m), and k = 104 N/m/m for the low lengths
(L= 3m). These values are substantially below the real-
istic stiffness values for structural sealant joints, which
means that the sealant joints will exert a non-negligible
restraining effect on the top edge of the beam when
considering the critical LTB load.

For high h/L values and high lengths L, a plateau
is noticeable in Fig. 14 for the higher k values for
Fpos. This plateau is due to the observed local buckling
in Fig. 11. For these beams, the assumption that the
cross-section remains straight is no longer valid. Thus,
care should be taken that these local buckling modes
are not overlooked when considering only global buck-
ling with straight cross-sections. However, for realistic
stiffness values between 3 × 105 N/m/m and 2 × 106

N/m/m, as given in Table 3, the beams remain outside
of the zone governed by local buckling. For these stiff-
ness values, the values of � load vary between 3 and
27 for Fpos, which means that the critical load can be
multiplied by a factor between 3 and 27 if the lateral
restraint provided by the silicone sealant joint is taken
into account.Within the realistic slenderness range, the
effect on �load of variations of h/L is much smaller
than the effect of L.

The obtained �load values are given in the Appen-
dix in Fig. 19 for the positive line load ppos working
on a monolithic beam. The effect of lateral springs is
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Fig. 15 Load ratio Fpos,cr/Fneg,cr for monolithic glass

Fig. 16 Effect on buckling
shape of k (N/m/m) for
negative point load (Fneg)
and low length L.
Monolithic glass beam with
h/L = 1/10 and L = 3m

k=102 k=103 k=104 k=105 

k=106 k=107 k=108 k=109 

slightly higher for ppos than for Fpos, but overall similar
conclusions can be drawn for the line load as for the
point load. The values of �load vary between 4 and 30
for the earlier cited realistic stiffness values.

BedonandAmadio (2015a) also studied the strength-
ening effect of structural sealant joints on the critical
buckling load for a central point load on a beam with a
restrained top edge, subjected to top and bottom edge

123



186 D. Sonck, J. Belis

Fig. 17 Effect on buckling
shape of k (N/m/m) for
negative line load (pneg) and
low length L. Monolithic
glass beam with h/L = 1/25
and L = 3 m

k=102 k=103 k=104 k=105 

k=106 k=107 k=108 k=109 

Fig. 18 Fneg: effect of spring stiffness k for different h/L, monolithic glass

loads. The results obtained by Bedon and Amadio for
top edge line loads and central point loads can be com-
pared with the results obtained in this study for Fpos
and ppos. Bedon andAmadio have not noticed any local
buckling, whereas this was an important remark for the

current study. This could possibly be explained by the
different range of spring stiffness values studied, which
only goes up to 106 N/m/m in Bedon and Amadio’s
study.Apart from this, the general trends are confirmed.
The results shown in Bedon and Amadio (2015a) are
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of the same magnitude for comparable cross-sections.
Furthermore, the lower values of �load for point loads
compared with line loads, were corroborated. Lastly,
the increase in half-wave lengths in the eigenmode
shape for increasing k values was confirmed.

For the laminated beams, Figs. 22 and 23 depict
the �load values for respectively point loads Fpos and
line loads ppos. Overall similar trends are noticeable,
but the obtained�load values are considerably smaller
for the laminated beams than for the monolithic beam,
which is probably due to the modified geometry and
the accompanying changes in cross-sectional proper-
ties of the cross-section: the effective thicknesses of
the laminated beams are higher (Fig. 6) than the thick-
ness of the monolithic beams. For both positive loads,
it can be seen that the horizontal plateaus for high k
values are reached for lower lengths than for the mono-
lithic beams. For the realistic range of stiffness values k
(3 × 105 − 2× 106 N/m2), the restraint amplification
factors�load vary between 2 and 12 for the point loads
Fpos and between 3 and 13 for the line load ppos.

6.2 Discussion of results for negative critical loads
Fneg and pneg

The critical loads for Fneg are depicted in Fig. 18 for
monolithic beams. As expected, the advantageous crit-
ical load amplification factor �load is considerably
smaller for all negative loads than for the positive loads.
The value of �load increases with increasing k; k
will have more influence for increasing lengths L and
decreasing h/L ratios or heights h. A horizontal plateau
is noticeable for almost all h/L andLvalues, and ismost
noticeable for a high L value and high h/L value. The
corresponding buckling mode shape is always a global
buckling mode shape without web distortion, but will
change from symmetric to antisymmetric for the higher
k values, as depicted in Fig. 16. For the range of realistic
stiffness values k (3× 105 to 2 × 106N/m2), the value
of�load varies between 2 and 8. Here, the effect of h/L
on the�load value cannot be neglected. The effect of k
is visible from minimum stiffness values kmin of about
102 N/m/m for the high lengths, and k = 104N/m/m
for the low lengths, which corresponds with the values
obtained for positive loads.

All other graphs are included in the Appendix 1. In
Fig. 20, the effect of the stiffness k for a negative line
load pneg is depicted. The overall effect on �load is

similar as for Fneg, but the obtained values are slightly
higher. For the range of realistic stiffness values k, the
value of �load varies between 3 and 9.

For the laminatedbeams, similar observations canbe
made as for the monolithic beams, taking into account
that the values of �load are smaller and that the hori-
zontal plateau for high k values has not yet been reached
for all considered geometries (Figs. 24, 25). For the
range of realistic stiffness values k, the value of �load
varies between 2 and 5 for both Fneg and pneg.

The plateau length is much longer for the nega-
tive loads than for the positive loads, and even enters
the range of realistic k values for L = 12 m and
h/L = 1/10. For these geometries, it would not be use-
ful to further increase the stiffness of the sealant joint
beyond the value for which the plateau is reached, if
only the critical load for negative loads was considered.

6.3 Ratio of positive and negative critical loads

The ratio between the positive and negative loads is
given in Fig. 15, for monolithic beamswith a point load
F. For monolithic beams with a line load, this ratio is
depicted in Fig. 21 in the Appendix 1. The values for
the laminated beams are in the Appendix 1 as well, in
Figs. 26 and 27. The ratios are higher for line loads than
for point loads, and higher for the considered mono-
lithic beams than for the considered laminated beams.

If k≈ 0, it is expected that the Fpos,cr is smaller than
Fneg,cr and likewise for the line load p. This is caused by
the more detrimental position of the load introduction
relative to the shear centre for positive loads than for
negative loads. However, it can be seen that this effect
disappears once a considerable lateral restraint at the
top of the beam is introduced. From values of k starting
between 1 × 104N/m/m and 1 × 105N/m/m, the crit-
ical positive load will become larger than the critical
negative load. This will occur earlier for line loads than
for point loads, and later for shorter beam lengths.

The effect of restraining the compressed side of the
beam for positive loads is considerably more advan-
tageous than restraining the side of the beam in ten-
sion. The ratios Fpos/Fneg and ppos/pneg generally keep
increasing with increasing k, because the critical neg-
ative loads reach a certain plateau, while the positive
loads keep increasing with increasing k. However, for
geometries with low L and high h/L, the ratio will also
reach a certain plateau, due to the local buckling that
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occurs for these geometries, already mentioned ear-
lier. It is expected that local buckling will occur for all
geometries once the stiffness is high enough, but the
corresponding stiffness values will lie far beyond the
range of realistic stiffness values.

7 Conclusions and further research

In the current investigation, the restraining effect of
structural sealant joints on the critical LTB load was
investigated for one typical monolithic and one typical
laminated cross-section, in a large numerical paramet-
ric study. Four load cases were considered for a beam
with a continuous spring restraint along its top edge: a
downward central point loadFpos, a downward line load
ppos, an upward point load Fneg and an upward line load
pneg. All loads were applied on the top edge. A wide
array of lengths L and height to length ratios h/L was
considered. The stiffness of the springs representing the
joints could vary between almost zero and very large
values, encompassing previously determined realistic
stiffness values of often used joint materials (DC 895
and SG-500).

For all considered cases, the amplification factor rep-
resenting the increase in stiffness due to the presence of
the restraints could be determined. For all load cases,
the increase in critical load was significant, although it
was higher for line loads than for point loads, and for
the considered monolithic geometry than for the lam-
inated geometry. The latter is expected to be caused
by the different relative cross-sectional properties and
dimensions of the two geometries.

For the positive loads, an amplification factor of the
critical buckling load between 2 and 30 was obtained
for the considered geometries and realistic joint stiff-
ness values. For some geometries, local buckling or a
mix of local and global buckling occurred for the higher
stiffness values.

For the negative loads, a realistic amplification factor
of the critical buckling load varied between 2 and 9.
As expected, the advantageous effect of restraining the
part of the beam in tension is much lower than the
effect obtained for positive loads. All considered beams
buckled in a global mode, without any deformations of
the cross-section.

No large differences in behaviour between lami-
nated and monolithic glass beams were observed. This
makes it likely that equivalent or effective thickness
concepts such as those in Haldimann et al. (2008) and

(CEN 2013) could be used to determine the critical
load. However, at this point it is not certain whether the
expression for the equivalent thickness would be sim-
ilar as the expression used for laterally unrestrained
beams.

In a next step, this investigation should be extended
to cover more cross-sectional geometries with other
dimensions andmore layers. The effect of varying stiff-
ness properties of the interlayer should be considered
as well. If the effect of the local buckling modes is
discovered to be important, a more specific study of
global and local buckling modes, as well as their inter-
action could be set up, using General Beam theory as
explained by Schafer and Ádáany (2005).

In a further step, the buckling resistance should
be determined as well, taking into account geometric
imperfections, geometric nonlinear behaviour, the frac-
ture strength of glass and the strength of the joint. Ide-
ally, the numerical models used to obtain this buckling
resistancewould be validated by experiments on beams
with a laterally restrained edge.An important issue here
is which imperfection shape should be considered: the
imperfection should ideally correspond with the most
detrimental realistic imperfection shape. This detri-
mental imperfection shape is expected to have at least
a torsional component, as observed in the eigenmodes.
However, current information about realistic imperfec-
tion shapes is very limited: Belis et al. (2011) measured
the lateral imperfection shape, but information about
torsional imperfections is completely lacking.
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Appendix 1: Further results

Results for 1L (monolithic glass)

See Figs. 19, 20 and 21.

Results for 2L (laminated glass)

See Figs. 22, 23, 24, 25, 26 and 27.
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Fig. 19 ppos: effect of spring stiffness k for different h/L, monolithic glass

Fig. 20 pneg: effect of spring stiffness k for different h/L, monolithic glass
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Fig. 21 Load ratio ppos,cr/pneg,cr for monolithic glass

Fig. 22 Fpos: effect of spring stiffness k for different h/L, laminated glass
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Fig. 23 ppos: effect of spring stiffness k for different h/L, laminated glass

Fig. 24 Fneg: effect of spring stiffness k for different h/L, laminated glass
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Fig. 25 pneg: effect of spring stiffness k for different h/L, laminated glass

Fig. 26 Load ratio Fpos,cr/Fneg,cr for laminated glass
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Fig. 27 Load ratio ppos,cr/pneg,cr for laminated glass

Appendix 2: Equivalent cross-sectional properties
for laminated beams 2L

The expressions for the equivalent cross-sectional
properties in this appendix are valid for laminated
beams consisting out of two identical glass panes and
one interlayer, subjected to lateral-torsional buckling.
The derivation of the expressions is based on the sand-
wich theory, as described by Luible (2004). These
expressions are also given in Haldimann et al. (2008).
The corresponding dimensions are given in Fig. 5. In
these expressions, E and Ei are the moduli of elasticity
of respectively the glass and the interlayer, while G and
Gi are the shear moduli of respectively the glass and
the interlayer. Only simply supported beams with fork
supports are considered, corresponding with the scope
described in Sect. 3.1.

The equivalent weak-axis bending stiffness EIeff is
given by Eq. 7. This expression is valid for all lateral-
torsional buckling problems corresponding with a uni-
form bending moment sign along the beam. The values
of the parameters Is, α and β can be determined using
Eqs. 8–10.

E Iz,e f f = E Is

(
αβπ2 + α + 1

1 + π2β

)
(7)

Is = 2ht

(
ti + t

2

)2

(8)

α = ht3

6Is
(9)

β = ti
Gi h (t + ti )2

E Is
L2 (10)

The equivalent torsional stiffness GIt,eff (Eq. 11) is
composed of the contribution of each glass pane GI
(Eq. 12) and an additional term GIt,comp caused by the
composite action (Eq. 13). The values of λLT and Is,t
are determined by Eqs. 14 and 15.

GIt,eff = GIt + GIt + GIt,comp (11)

GIt = G
ht3

3
(12)

GIt,comp = GIs,t

(
1 − tanh (0.5λLT h)

0.5λLT h

)
(13)

λLT =
√
Gi

G

2

t · ti (14)
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Is,t = 2ht (t + ti )
2 (15)

Based on the equivalent bending stiffness EIz,eff , the
equivalent thickness (teff,EIz) for the bending stiffness
calculation for an equivalentmonolithic glass beam can
be determined (Eq. 16). Similarly, the equivalent thick-
ness (teff,GIt) for the torsional stiffness calculation can
be determined based on GIt,eff using Eq. 17.

te f f,E Iz = 3

√
12E Iz,eff

Eh
(16)

te f f,E Iz = 3

√
3GIt,eff
Gh

(17)
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