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Abstract Electrical distribution system reconfiguration is
frequently addressed as a multi-objective problem, typically
taking into account the system losses together with other
objectives, among which reliability indicators are widely
used. In the multi-objective context, Pareto front analysis
enables the operator handling conflicting and even non-
commensurable objectives without needing the use of addi-
tional hypotheses or weights. This paper provides advances
on the application of Pareto front analysis to multi-objective
distribution network reconfiguration. Starting from previous
results in which genetic algorithms were effectively adopted
to find the best-known Pareto front, a version of the multi-
objective binary particle swarm optimization (MOBPSO)
customized for distribution network reconfiguration has been
developed by exploiting the internal ranking of the solutions
(based on a multi-criteria decision making method in the
selection of the local best) and the network topology. Fur-
thermore, the Pareto front mismatch metric (already used by
the authors to compare different methods for small networks
for which the complete Pareto front can be calculated) has
been generalized to be used with large systems for which
only the best-known Pareto front is found. Applications to a
test network and to a real urban distribution network are dis-
cussed, showing the consistent superiority of the customized
MOBPSO version with respect to the application of genetic
algorithms and of a more classical version of the particle
swarm optimization method.
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Introduction

In the analysis of electrical distribution systems with recon-
figurable structure and radial operation, for large networks
the number of possible radial network configurations (cal-
culated from the Kirchhoff’s matrix tree theorem) may be
so high to make exhaustive search of all the possible radial
configurations practically infeasible. As such, many deter-
ministic and probability-based methods have been exploited
to find out the configurations leading to pseudo-optimal solu-
tions for a given objective function or for multi-objective
functions [1–3]. In particular, multi-objective approaches
have been applied to address distribution system reconfigu-
ration by taking into account the trade-off among conflicting
objectives. Starting from early contributions [4,5], differ-
ent combinations of objectives have been considered by
various authors. The systems losses have been typically
used in combination with other objectives such as load bal-
ancing, reliability indices, number of switching operations,
branch current loading, emissions, and voltage deviations.
Multi-objective reconfiguration is an effective analysis and
decision-making tool for choosing the best configuration that
can be operated by considering a given set of load and gen-
eration patterns.

The multiple objectives have been handled with different
approaches, including:1

1 For each approach, an early paper introducing themethod for optimal
distribution network reconfiguration is indicated. A complete review of
multi-objective methods is outside the scope of this paper.
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• the weighted sum of the individual objectives, using per-
unitized individual objectives in order to deal with non-
commensurable quantities [4]; limitations on the use of
the weighted sum approach are indicated in [6];

• the use of membership functions in the fuzzy domain,
maximizing the fuzzy satisfaction of the optimization of
the individual objectives [7];

• Pareto front analysis, based on the notion of non-
dominated solutions for which no other solution exists
with better values for all the individual objectives [8];

• Grey correlation analysis, with the identification of
problem-independent superior and inferior solutions for
each objective [9].

Among these approaches, the Pareto front analysis is par-
ticularly effective because it handles non-commensurable
objectives without requiring additional hypotheses or
weights. The Pareto front is formed by the non-dominated
solutions related to the conflicting objectives considered
in multi-objective optimization. The Pareto front approach
is used in many applications of stochastic optimization in
different domains [10]. With reference to distribution net-
work reconfiguration, specific techniques operating in the
Pareto-based framework include the ε-constrained method
[5] and a number of heuristics that construct and update the
best-known Pareto front in an iterative way. A number of
these techniques are based on genetic algorithms (GA) and
evolutionary computation, such as the widely adopted Non-
dominated Sorting Genetic Algorithm II (NSGA II) [11]
applied in some contributions [12–14], the non-dominated
sorting evolutionary programming [15], and the micro-
genetic algorithm [16]. Further approaches use an artificial
immune systems hybridized with ant colony optimization
[8] or with graph theory-based techniques [17], the Multi-
Objective Binary Particle Swarm Optimisation (MOBPSO)
[18], and a branch-and-bound technique driven by non-
dominance concepts [19].

Comparisons amongdifferent techniques to addressmulti-
objective network reconfiguration have been presented in
[18]. In particular, a GA procedure based on NSGA-II con-
cepts and a version of MOBPSO have been tested, the
GA procedure showing better performance. From further
research carried out by the authors, the MOBPSO has been
largely improved by further customizing it with respect to
the specific problem addressed, providing results (shown in
this paper) significantly better than the ones of the methods
previously used.

Furthermore, in order to compare the results obtained
from different methods using Pareto front analysis, a proper
metric based on the points of the best-known Pareto front
has to be exploited. Some metrics have been defined in
terms of the location of the Pareto front points, such as
the quality factor used in [20], depending on the number

and location of the points forming the Pareto front, and the
Pareto front mismatch [12], a geometrical indicator depend-
ing on the location of the Pareto front points, based on the
concepts of hyper-volume calculation [21]. In order to com-
pute the hyper-volume, a reference point is needed. In [21]
the coordinates of the reference point are the worst values
of the objective obtained on each dimension for the solu-
tions found so far (including the dominated points). In this
paper, the coordinates of the reference point are the worst
values obtained for each dimension from the points of the
best-known Pareto front found so far (excluding the dom-
inated points). The rationale of this choice is that in the
problem under analysis the worst solutions from dominated
points could be very far from the region containing the
points forming the Pareto front. This would generate large
hyper-volumes and lead to obtain similar values for the hyper-
volume when the Pareto front changes. In the solution used,
the region of analysis is limited to the one defined by the
Pareto front points, emphasizing the differences among the
solutions with different Pareto fronts.

On these bases, the specific contributions of this paper are:

1. to extend and generalize the definition of the Pareto front
mismatch metric in order to apply it to real networks for
which the complete Pareto front cannot be formed and
only the best-known Pareto front is available;

2. to illustrate the rationale and the details of the improve-
ments introduced in the customized MOBPSO version,
in which the specific knowledge on the distribution net-
work topology is used to modify the formulation of the
solution procedure;

3. to show a set of significant and consistent results obtained
on different distribution systems, including a test system
and a real system.

The next sections of this paper are organized as follows.
Section “Objective Functions and Constraints” summarizes
the objective functions and constraints used in this paper. Sec-
tion “Generalized Metrics to Compare the Results of Pareto
Front-Based Optimization Methods” contains the formula-
tion of the generalized metric used to assess the effectiveness
of the Pareto front-based methods. Section “Binary PSO:
Concepts and Notation” introduces the notation used for the
binary PSO and illustrates the characteristics of the novel
MOBPSO version used for multi-objective distribution net-
work reconfiguration. Section “The Multi-Objective Binary
PSO (MOBPSO)” contains the discussion of the results
obtained in the case study applications. The last section con-
tains the concluding remarks.

Objective Functions and Constraints

Let us consider a distribution network with N nodes, Y phys-
ical branches (including the ones that are kept open during
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the system operation) and S supply points. The number of
branches that have to remain open for obtaining a radial net-
work isΛ = Y−N+S [22]. The identification of the best set
ofΛ branches to open (i.e., the identification of themost suit-
able configuration to be operated) depends on the objective
function defined by the user.

In this paper, the two typical conflicting objective func-
tions energy losses and energy not supplied (ENS) are
considered for multi-objective optimization. The conflicting
nature of these two objectives strongly depends on the values
of failure rates of the branches. For a given time interval with
h = 1,…, H time steps of duration τ each, the energy losses
in the network are computed from the energy losses τ Ryh I 2yh
at branch y = 1, . . .,Y as:

Wlosses = τ
∑H

h=1

∑Y

y=1
Ryh I

2
yh (1)

The power losses Ryh I 2yh are calculated by solving at each
time step h a power flow based on the backward-forward
sweep method [23], particularly suitable for radial distribu-
tion networks.

The ENS is a reliability indicator calculated on the basis
of rated power of the network loads and duration of supply
interruptions, by considering a multi-stage service restora-
tion process after the identification of the fault [24]. By
considering the set �n containing all the faults ϑ ∈ �n

which affect a given node n, the ENS formulation for node n
is:

ENSn = Cn

∑
ϑ∈�n

λϑ

∑�ϑ

ξ=1
ψ

(ξ)
ϑn τ

(ξ)
ϑ (2)

where�ϑ indicates the number of restoration stages for fault
ϑ , τ (ξ)

ϑ is the duration of the ξ th stage of the restoration pro-
cedure, λϑ is the failure rate, Cn is the reference power of
node n, and ψ

(ξ)
ϑn is a Boolean variable indicating whether

node n is supplied during the ξ th stage of fault ϑ , namely,
ψ

(ξ)
ϑn = 0 if node n is supplied, otherwise ψ

(ξ)
ϑn = 1. The

overall reliability indicator for the entire network is calcu-
lated by summing up the contributions coming from all the
nodes:

ENS =
∑N

n=1
ENSn (3)

The multi-objective optimization formulation is

min {Wlosses, ENS} (4)

subject to the constraints referring to the thermal limits of the
network branches and the lower and upper limits of the node
voltage magnitude (Vmin = 0.9 pu and Vmax = 1.1 pu).
Moreover, the topology constraint is handled in the solution

process in order to guarantee that any network configuration
formed during the solution procedure is radial [12].

Generalized Metrics to Compare the Results of
Pareto Front-Based Optimization Methods

Basic Concepts

The comparison among Pareto fronts requires to set up a
reference Pareto front, such that the points located on this
front cannot be dominated by any point of any other Pareto
front used in the analysis. The definition of the reference
Pareto front is straightforward when it is possible to deter-
mine the complete Pareto front. However, in distribution
network analysis, this happens only for small-size networks
and microgrids, for which it is possible to generate all the
radial configurations and calculate the objective functions
from exhaustive search in reasonable computational time. In
these cases, the metric defined in [12] can be used.

For the general case in which the network size makes
exhaustive search impracticable, the complete Pareto front is
not available. Hence, the extension and generalization of the
Pareto front mismatch metric provided in this paper is based
on using as reference Pareto front the generalized best-known
Pareto front obtained in an alternative way.

In particular, probability-based optimization methods are
run several times with different seeds for random num-
ber extraction, from which a certain number of best-known
Pareto fronts are found for all the compared methods. All
the points of the best-known Pareto fronts obtained from
the compared methods are then taken simultaneously. From
these points, the generalized best-known Pareto front is con-
structed by excluding all the dominated solutions appearing
in the best-known Pareto fronts of the individual methods
once considering all the points together.

Once the reference Pareto front has been defined, it is
possible to calculate some metrics for comparing the Pareto
front solutions. Some examples are provided below.

Quality Factor

The quality factor QF metric [20] is based on the percent-
age of solution points found from the optimization method
under analysis forming the best-known Pareto front. Let us
define with nF the total number of points of the reference
Pareto front and with n0 the number of points of the Pareto
front found by the solution method under analysis that are
located on the reference Pareto front. Then, the quality factor
is expressed in per cent as:

QF = 100
n0
nF

(5)
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Fig. 1 Areas used in the
definition of the generalized
best-known Pareto front
mismatch metric. a reference
area Sref . b solution area Ss . c
difference area Sd

(a) (b) (c)

Generalized Pareto Front Mismatch

The Pareto front mismatch has been defined in [12] to
introduce a more detailed metric based on geometrical con-
siderations, taking into account not only the number of points
located on the Pareto front (as in the quality factor) but also
their location.

In [12] the reference Pareto front is the complete Pareto
front obtained by performing exhaustive search of all the
feasible network configurations. In this paper, the general-
ized best-known Pareto front becomes the reference Pareto
front. In practice, the generalized best-known Pareto front
is formed by taking the non-dominated solutions extracted
frommerging all the best-known Pareto fronts (the final ones
obtained by repeating the optimization procedure for a given
number of times with different initial seeds for random num-
ber extraction).

The pseudo-optimal solutions of the individual objec-
tive functions appearing on the reference Pareto front are
used to define the upper limits for the other dimensions,
hence the reference area Sre f is calculated as indicated in
Fig. 1a. Then, taking the Pareto front under analysis, the cor-
responding solution area Ss (Fig. 1b) and the difference area
Sd = Sre f − Ss (Fig. 1c) are determined. The Pareto front
mismatch metric associates a performance value γs with a
solution method, resulting in a given Pareto front:

γs = Sd/Sre f (6)

The metric (6) is used to compare different Pareto fronts,
with better Pareto fronts corresponding to lower values of
γs . In our case, the metric (6) has been computed for all the
best-known Pareto fronts obtained by running the procedures
with different seeds for random number extraction.

Binary PSO: Concepts and Notation

Basic Formulation of the PSO and Related Notation

The PSO introduced in [25] is a fast meta-heuristic method
based on tracking the behavior of each element (called parti-

cle) belonging to a swarm by computing the velocity of each
particle.

In the optimization problem addressed in this paper,
the swarm is composed of j = 1, . . ., J particles, each
of which represents a network configuration and contains
b = 1, . . ., B decision variables (binary values identifying
the states of the branches, 1 = closed and 0 = open). The PSO
is solved through an iterative process, with the generic itera-
tion indicated with the letter k and the j = 1, . . ., J particles

denoted as x(k)
j =

{
x (k)
jb

}
.

Each particle changes its trajectory by following some
leaders that drive the direction of variation of all the particles.
In the presence of local leaders, the variation depends on
the behavior of particle j itself or of the nearest particles,
with different possible neighborhood topologies [26,27]. The
global leader affects the direction of variation of all particles,
taking into account the whole history of the entire swarm.

By considering the behavior of the leaders, at iteration k of
the iterative process the change of configuration from x(k−1)

j

to x(k)
j is expressed as

x(k)
j = x(k−1)

j + v(k)
j (7)

in which the velocity v(k)
j of particle j at iteration k is for-

mulated as:

v(k)
j = w(k)v(k−1)

j + r ′(k)A(k)
j

(
p(k−1)
j − x(k−1)

j

)
+

+ r ′′(k)B(k)
j

(
x̃(k−1) − x(k−1)

j

)
(8)

where

• p(k−1)
j represents the local (or personal) best, i.e., the

configuration of the particle j with the best objective
function found so far;

• x̃(k−1) represents the global best, i.e., the configuration
of the particle that provided the best objective function
in the previous k − 1 iterations;

• A(k)
j and B(k)

j are two learning factors that weigh the
termsdependingof the local andglobal best, respectively;
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• r ′(k) and r ′′(k) are randomnumbers belonging to the range
[0,1], applied to the whole population;

• w(k) is the inertia weight.

Adaptive Stop Criterion

The iterations proceed until the stop criterion is satisfied.
An effective and adaptive stop criterion is to conclude the
iterations when only changes in the objective function lower
than a user-defined threshold σs occur after a given number
Ns of successive iterations2 [28].

Considerations on the Solutions Found

For any heuristic method driven by probabilistic choices,
there is no proof that the global optimum can be reached in a
finite time. In the practical application of the discrete/binary
heuristic methods like MOBPSO, the possible solutions are
a countable number of points, and there is no restriction to
reaching any of these points, among which the global opti-
mum, in a finite (but not predictable) time. The evidence of
this fact may be also indicated with a proof by contradiction:
if there would exist a solution point that cannot be reached
during the evolution of the method, the method would not be
correctly formulated. However, during the execution of these
heuristic methods on large systems (for which exhaustive
search cannot be run because of the excessive computation
time needed) there is no certainty that the global optimum
has been found.

Discrete and Binary PSO Representations for
Single-Objective Optimization and Adaptability to the
Distribution System Reconfiguration Problem

Discrete and Binary PSO Coding

The principles of PSO operating with discrete values have
been indicated in [29]. Different types of representations
can be used in discrete PSO, for example based on binary
entries or on integer encoding strategies [30]. The treatment
of the discrete values depends on two user-defined thresh-
olds, denoted here as χ and E . In practice, once the new
velocity term is calculated as a real number from (8), the prob-
ability of particle evolution for each entry b = 1, . . ., B of
each particle j = 1, . . ., J is calculated through the expres-

sion S
(
v

(k)
jb

)
= 1/

(
1 + e−χ

)
. Then, if S

(
v

(k)
jb

)
≤ E the

entry x (k)
jb is not changed, otherwise it is changed. The change

depends on the integer or binary representations:

2 In addition, a last-resource large number of iterations N (max)
S is

included to avoid infinite loops (generally the convergence occurs by
satisfying the adaptive stop criterion before reaching N (max)

S iterations).

(a) For the integer encoding strategies, rounding the veloc-
ity results to integer values is considered in [31] and the
enhanced integer coded PSO method [32] has been used
to minimize the total branch losses by maintaining the
radial network structure and without violating the con-
straints. In these cases, the change can be implemented
by searching for a feasible configuration represented by
the integer coding used, for example adjacent to the con-
figuration that has to be changed. In particular, in [32] the
notion of local best is replaced with the so-called local
optimal list (LOL), which is updated at each iteration if
a good solution is found and provides a list of feasible
configurations that can replace the configuration to be
changed.

(b) In the binary case, the change of the entry is from 0
to 1, or vice versa. Applying this type of change to the
particles is appropriate for problems in which all the pos-
sible sequences of binary values are acceptable.However,
the application of these principles to distribution system
reconfiguration is not straightforward, as the mechanism
of changing 0’s to 1’s or vice versa may create particles
whose representations do not satisfy the radiality con-
straint [33]. This situation can be handled by generating
in any case all the configurations, checking their feasi-
bility and if infeasible generating a fictitious value of the
objective function such that these configurations will be
discarded in the successive part of the solution process
[34]. However, in this way the generation of many infea-
sible solutions may occur, with a drastic increase in the
solution time. Another possibility is to take the infeasi-
ble configurations and changing them in order to obtain
feasible configurations [35]. In [36] a dedicated shift
operator is applied to modify the chromosome structure.
The Prüfer number encoding is used in [37] to generate
only radial configurations for GA applications. The solu-
tion adopted in [38] and in this paper (based on binary
coding) automatically generates only feasible network
configurations, as described below.

Binary PSO Coding Preserving Radial Configurations

A dedicated version of the discrete PSO that benefits from
the distribution network representation has been reported in
[38] for the single-objective case. In this formulation, the
update of the velocity vector (8) for particle j at iteration k
is formulated as:

v(k)
j = w(k)v(k−1)

j + r ′(k)A(k)
j e(k)

j + r ′′(k)B(k)
j g(k)

j (9)

where, by denoting with &̄ the logical operator NAND:

A(k)
j = max

{
0; f

(
x(k−1)
j

)
− f

(
p(k−1)
j

)}
(10)
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Fig. 2 Layout of the 14-node system

B(k)
j = max

{
0; f

(
x(k−1)
j

)
− f

(
x̃(k−1)

)}
(11)

e(k)
j =

(
x(k−1)
j &̄ p(k−1)

j

)
(12)

g(k)
j =

(
x(k−1)
j &̄ x̃(k−1)

)
(13)

In practice, the values A(k)
j and B(k)

j indicated in (10) and
(11) depend on the values of the objective function calcu-
lated in the current configuration and in the configurations
corresponding to the local and global best. In addition, the
velocity vector terms are not applied to each branch, but only
to a subset of branches determined by using suitable logical
operations.

The result of theNAND operation is modified according to
the objective function values. For the addend of (9) depend-

ing on the local best, if the objective function f
(
x(k−1)
j

)

is lower (i.e., better) than the objective function of the

local best particle f
(
p(k−1)
j

)
, the non-null values coming

from the NAND operation are set to zero to avoid making
changes, except for the inertia weight, otherwise the dif-

ference f
(
x(k−1)
j

)
− f

(
p(k−1)
j

)
is applied to modify the

velocity in a way depending on the random number r ′(k), as
in the classical PSO. The same treatment is reserved to the
addend of (9) depending on the global best.

The procedure reported in [38] continues by considering
the velocity values related to the open branches of the con-
figuration x(k−1)

j . These values are normalized and are then
used to build the cumulative distribution function of the nor-
malized velocity, which is processed by a biased roulette
wheel procedure [39] to choose the open branch to close.
The loop resulting from closing that branch is detected and,
by choosing randomly the branch to open in the loop, the
radial configuration is restored.

In order to provide the details of the binary PSO represen-
tation on an illustrative example, let us consider the 14-bus
system [40] reported in Fig. 2, in which the nodes have been
renumbered and the supply nodes have been merged into a
single node (i.e., node 0) for purely topological reasoning.
Thenetwork is composedofY = 16branches, N = 14nodes

Table 1 Example of binary PSO operations on the 14-node network

Branch from/to x(k−1)
j p(k−1)

j x̃(k−1)
j e(k)

j g(k)
j

0 3 1 1 1 0 0

3 4 1 0 0 1 1

4 10 0 1 1 1 1

8 10 1 1 1 0 0

8 11 1 1 1 0 0

7 8 1 1 1 0 0

0 7 1 1 1 0 0

7 9 1 1 0 0 1

9 13 0 0 1 1 1

12 13 1 1 1 0 0

0 12 1 1 1 0 0

1 12 1 1 1 0 0

1 2 1 1 1 0 0

2 6 0 1 1 1 1

5 6 1 1 1 0 0

3 5 1 0 0 1 1

and S = 1 supply node, so that each radial configuration has
Λ = 3 open branches.

By considering particle j at iteration k, Table 1 reports
for each branch the network configuration x(k−1)

j , the local

best p(k−1)
j and the global best x̃(k−1). The operator NAND

permits to find the open branches present in both configura-
tions analyzed, but it also sets to 1 the location of the open
branches present only in one of the two configurations.

The Multi-Objective Binary PSO (MOBPSO)

MOBPSO Formulation

In themulti-objective framework, a specific issue is the selec-
tion of the leaders (the local best and the global best) [41,42].
Furthermore, a quality metric is needed to understand how
much a solution is better than another one [43]. This sec-
tion presents a novel multi-objective version of the method
reported in [38], with binary representation of the particles
for multi-objective cases, solution ranking through an appro-
priate quality metric, and specific solutions implemented for
the choice of the local best and global best by taking into
account the distribution network topology.

The flow-chart is reported in Fig. 3. The initial Pareto front
is formed by identifying the non-dominated points from the
solutions of the initial radial configurations. The proposed
procedure contains the execution of the power flow calcula-
tions, obtaining all the voltages and currents in the system.
For each solution of the power flow the constraints (upper
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Fig. 3 Flow-chart of the proposed MOBPSO
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limits of the branch currents, and upper and lower limits of
the node voltages) are checked. Each solution containing one
or more violations is discarded. Thereby, only feasible solu-
tions are processed to form the Pareto fronts. The specific
aspects are addressed below, by considering two alternative
versions of the method:

• Base version: it is the multi-objective application of
the method composed of the equation set (9–13), with the
application of theMulti-Objective Solution RankingMethod
(MOSR) procedure (see Appendix) for the choice of the
new population components, and the procedure to preserve
the radial configuration implemented as reported in “Binary
PSO Coding Preserving Radial Configurations” section. The
choice of the branch to open in this case is completely ran-
dom, i.e., the information coming from the velocity term is
not used and all the branches forming the loop have the same
probability to be open.

• Customized version: in this case the choice of the closed
branch to open for keeping the network radial is made by
using the velocity term (see “How to Use the Velocity Term:
the Customized Version” section for details).

Creation of the New Population by Applying the
MOBPSO Routine: Base Version

A formulation equivalent to (9) in themulti-objective context
is presented, for m = 1, . . ., M objectives.

For each particle j = 1, . . ., J and each iteration k the

objective function values are indicated as fm
(
x(k)
j

)
∈ �J,1.

By considering the configuration x(k−1)
j , the local leader

p(k−1)
j , and the global leader x̃(k−1)

j (selected inside aLeaders
Archive as explained in “Update of the Global Best” section;
for this reason the global leader used may change for each
particle, and the subscript j appears also in this case), it is
possible to calculate the following quantities:

ζm

(
x(k−1)
j ,p(k−1)

j

)

=
{
1, if fm

(
x(k−1)
j

)
> fm

(
p(k−1)
j

)

0, Otherwise
(14)

ζ̃m

(
x(k−1)
j , x̃(k−1)

j

)

=
{
1, if fm

(
x(k−1)
j

)
> fm

(
x̃(k−1)
j

)

0, Otherwise
(15)

The logical values are calculated by (14) and (15) for all
the objective functions. By using the logical operation OR
(indicated here with ∪), it is possible to “sum” the logi-
cal values provided by (14) and (15) and to select all the
configurations presenting at least one objective higher than
the objective of the leaders p(k−1)

j and x̃(k−1)
j , respectively.

Hence, the formulation of the terms A(k)
j and B(k)

j indicated
in (9) is extended to the multi-objective case as follows:

A(k)
j =

⋃M

m=1
ζm

(
x(k−1)
j ,p(k−1)

j

)
(16)

B(k)
j =

⋃M

m=1
ζ̃m

(
x(k−1)
j , x̃(k−1)

j

)
(17)

In practice, the single-objective maximization appearing
in (10) and (11) is replaced by theOR operation giving result
equal to unity if at least one solution is worse than the corre-
sponding solution of the leader considered.

How to Use the Velocity Term: the Customized Version

With the coding used here, the velocity of each element of
the particle can be only either 0 or 1. It is then not possible
to apply it directly to change the network configuration. Fol-
lowing the approach used in [38] and [18], the velocity values
referring to the open branches in x(k−1)

j are used as inputs to
a biased roulette wheel mechanism, for choosing the open
branch ′ which has to be closed. Then, the set L̃(k)

j εN(Y,1)

(having an entry equal to 1 in correspondence to the branches
forming the loop) is created. The number of elements equal
to 1 in the set L̃(k)

j is L̃i .
In order to restore the radial network operation, one of the

branches belonging to the loop has to be chosen and open,
according with the branch exchange principles [40]. In [18]
the choice of this branch was random, i.e., the information
about the velocity of the branches forming the loop was not
used. In this paper, an improved technique based on the infor-
mation about the velocity of the branches forming the loop
is used.

For this purpose, a set Z̃(k)
j is introduced. Its entries Z̃ j

represent the indices of the branches both belonging to the
loop L̃(k)

j and being open branches in x(k−1)
j , p(k−1)

j and

x̃(k−1). The set Z̃(k)
j is calculated by applying the OR opera-

tion between the two Boolean vectors e(k)
j and g(k)

j , (defined
above), and then by applying the AND operation (indicated
here with

⋂
) with the loop L̃(k)

j :

u(k)
j =

(
e(k)
j ∪ g(k)

j

)
∩ L̃(k)

j (18)

Then, the set Z̃(k)
j can be written as

Z̃(k)
j = h̄

(
u(k)
j

)
(19)

where h̄
(
u(k)
j

)
indicates the operator giving as output the

positions of the elements set to 1 in the vector u(k)
j .

By denoting with � the empty set, in the customized ver-
sion the formerly open branch ′ (i.e., ′ ∈ Z̃(k)

j ) cannot be
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re-opened, i.e., the set Z̃(k)
j could be empty. If Z̃(k)

j = �
the entries of the auxiliary vector q(k) are directly obtained
as q(k)

l = 1/L̃ , for l = 1, . . ., L̃ , that is, all the branches
belonging to the loop have the same probability to be cho-
sen. On the other hand, if the set Z̃(k)

j is not empty (i.e.,

Z̃(k)
j 	= �) the determination of the probability to be open

for each loop’s branch is more articulated. In particular, an
auxiliary vector q(k) (with L̃ elements) is introduced, and its
entries q(k)

l are defined in such a way that the branches com-
ing from the leaders have a higher probability to be open.
At the same time, an offset δ > 0 is introduced3 in order to
avoid null entries in the vector q(k). Hence, for l = 1, . . ., L̃:

q(k)
l =

{
δ + v

(k)
z , if z ∈ Z̃(k)

j
δ, Otherwise

(20)

Then, the vector q(k) is sent to the biased roulette wheel
routine to choose the closed branch to open.

Selection and Update of the Local Best and Global Best

Update of the Local Best

The update of the local best p(k)
j , with j = 1, . . ., J , is

performed by comparing the new configuration x(k)
j with

the corresponding previous local best p(k−1)
j . By exploiting

the MOSR ranking concepts illustrated in the Appendix, if
the multi-objective function in the new configuration x(k)

j is

better than the multi-objective function in p(k−1)
j , the per-

sonal best is updated, i.e., p(k)
j = x(k)

j , otherwise p(k)
j =

p(k−1)
j . In particular, in the application used in this paper,

the comparison is carried out between two alternatives only.
Thereby, the mathematical expressions becomes simpler and
are expressed as follows:

D =
[
p(k−1)
j

x(k)
j

]
=

[
p1 p2
x1 x2

]
(21)

Thus, it is possible to calculate both the normalized deci-
sion matrix R and, after having defined the weights w1 and
w2 for the two objectives, the weighted normalized matrixV
becomes:

V =
[

v11 v12
v21 v22

]
= R

[
w1 0
0 w2

]

3 In order to adapt the offset δ to the velocity values under analysis, the
value of δ is obtained by finding the minimum value of velocity vmin
among the entries composing the set Z̃(k) and then computing the value
δ = vmin/2.

=
⎡

⎢⎣

p1√
p21+x21

p2√
p22+x22

x1√
p21+x21

x2√
p22+x22

⎤

⎥⎦
[

w1 0
0 w2

]

=
⎡

⎢⎣
w1

p1√
p21+x21

w2
p2√

p22+x22

w1
x1√
p21+x21

w2
x2√
p22+x22

⎤

⎥⎦ (22)

From the entries of the matrix V, the ideal solution A+ and
the negative-ideal solution A− are calculated as:

A+ = [min {v11, v21} min {v12, v22}] = [
v+
1 v+

2

]
(23)

A− = [max {v11, v21} max {v12, v22}] = [
v−
1 v−

2

]
(24)

Finally, the similarity indices of the twoparticles under analy-
sis are obtained as:

C+
1 = S−

1

S+
1 + S−

1

=
√(

v11 − v−
1

)2 + (
v12 − v−

2

)2
√(

v11 − v+
1

)2 + (
v12 − v+

2

)2 +
√(

v11 − v−
1

)2 + (
v12 − v−

2

)2

(25)

C+
2 = S−

2

S+
2 + S−

2

=
√(

v21 − v−
1

)2 + (
v22 − v−

2

)2
√(

v21 − v+
1

)2 + (
v22 − v+

2

)2 +
√(

v21 − v−
1

)2 + (
v22 − v−

2

)2

(26)

If C+
1 > C+

2 the local best does not change, i.e., p(k)
j =

p(k−1)
j ; otherwise, p(k)

j = x(k)
j .

Update of the Global Best

The selection of the global best does not happen by resorting
to the MOSR procedure, to avoid the possibility of obtaining
a global best in which the Pareto front points are concen-
trated too much on the “central” locations, because of the
trend of the ranking criterion to fall on the central region
of the Pareto front. A classical procedure is the creation of
a Leaders Archive, i.e., a set of solutions corresponding to
non-dominated points, from which the global best is chosen
in a random way each time the velocity of a particle has to
be updated.4 In this way, it is possible to drive the evolu-
tion of the best-known Pareto front to include points located
in different regions [44]. The Leaders Archive is formed by
a predefined maximum number NA of points. If there are

4 In one of the variants adopted in [46], each time a global best has to be
used, instead of extracting only one solution, two solutions are selected
at random from the archive, and the one with the better hyper-volume
is considered as the global best.
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more then NA candidate points, a selection procedure has
to be used. A classical procedure is based on the crowding
distance (the average distance of a point with respect to the
two—or more—neighboring points [45]), reducing the num-
ber of points in the regions in which the points are very close
to each other. A recent version [46] constructs the Leaders
Archive by calculating the hyper-volume [21] obtained by
using the point under analysis and the reference point, and
updates the archive up to NA points.

In this paper, the update of the Leaders Archive occurs at
the beginning of each iteration, by using the hyper-volume
criterion [46]. Starting from the solution closest to the refer-
ence point for the hyper-volume calculation, each candidate
point to be included in the Leaders Archive, sequentially
taken from the adjacent solutions along the different dimen-
sions, is associated with its incremental contribution to the
global hyper-volume. If the number of candidate points is
higher than NA, the points in excess providing the small-
est incremental contribution to the hyper-volume are not
included in the Leaders Archive. At iteration k, for each par-
ticle j = 1, . . ., J the global best x̃(k)

j chosen to contribute

in the formation of the new configuration x(k)
j is randomly

selected among the components of the Leaders Archive.

Stop Criterion

The adaptive stop criterion is the one indicated in “Adaptive
Stop Criterion” section.

Case Study Applications

The multi-objective distribution system reconfiguration has
been solved by using the customized NSGA-II method illus-
trated in [12] (denoted here as GA) and the two MOBPSO
versions addressed in this paper. The optimization has been
coded in Matlab®. The applications have been run on the 33-
node network [47] modified as in [12] to add time-varying
load and generation power patterns, and on a 90-node real
medium voltage (MV) distribution network.

For the test network, the performance of the methods is
quantified by using the Pareto front mismatch metric based
on the complete Pareto front [12]. For the real MV network,
the best-known Pareto front is built by using the results of
the different optimization methods, and the performance is
assessed by using the quality factor from [20] (see “Quality
Factor” section) and the new generalized best-known Pareto
front mismatch metric (see “Generalized Pareto Front Mis-
match” section).

The input data used for theMOBPSOare J = 50particles,
Ns = 15 iterations and N (max)

s = 1000 iterations for the stop
criterion, and the inertia weight progressively changing from

(a) 

(b)

Fig. 4 Comparison among GA, MOBPSO from Mazza et al. [18] and
MOBPSO base case. a Pareto fronts used to determine the Pareto front
mismatch. b CDF of the Pareto front mismatch

0.9 to 0.4 during the iterations [27]. For the GA, the same
parameters reported in [12] have been used.

33-Node Network

The 33-node network [47] is composed of N = 33 nodes,
Y = 37 branches, and S = 1 supply point, from which
Λ = 5 branches have to be open to obtain radial configu-
rations. The base voltage is 12.66 kV and the base power is
10 MVA. The voltage of the slack node is 1.05 pu. The two
objectives have been computed for all the 50,751 network
configurations [22] and the complete Pareto front (with 20
points) has been obtained [12]. Figure 4a shows the complete
Pareto front, and two examples of best-known Pareto front
(coming from the application of GA and from the application
of the version of MOPSO reported in [18])

For a more complete analysis, both the GA and the ver-
sion of MOBPSO reported in [18] have been run for 200
times, with different seeds for random number extraction.
The Leaders Archive for the selection of the global best has
dimension NA = 20 (i.e., all the points can be randomly cho-
sen as global best, being part of the complete Pareto front).
The results shown in Fig. 4b highlight that the performance
of the version of MOBPSO reported in [18] was worse than
the one of the GA. Now, the results of the MOBPSO base
version (in terms of reaching low values of the Pareto front
mismatch, as shown from the cumulative distribution func-
tion, CDF) are already considerably better than the results of
the application of the GA and of the MOBPSO from [18].
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(a)

(b) 

Fig. 5 Comparisons among GA and the two MOBPSO versions. a
Pareto fronts used to determine the Pareto front mismatch. b CDF of
the Pareto front mismatch

Fig. 6 Comparisons among the voltage profiles in the initial Pareto
front and in the best-known Pareto front obtained with the MOBPSO
customized version

Both MOBPSO versions (namely, base version and cus-
tomized version) have been applied to the network. An
example of best-known Pareto front for the two MOBPSO
versions is shown in Fig. 5a, whereas the statistical repre-
sentation (reported in Fig. 5b) shows the better performance
of the MOBPSO customized version with respect to the GA
and the MOBPSO base version. This means that the use of
the information about the topology can effectively improve
the results in the search of the complete Pareto Front.

Table 2 Computational burden for the 33-node network

Method Mean value [min] SD [min]

GA 58.4 5.65

MOBPSO base version 2.4 0.73

MOBPSO customized version 2.6 0.95

The voltage profiles related to the 33-node network in four
cases are shown in Fig. 6. Two cases refer to the minimum
losses andminimumENS in the initial Pareto front. The other
two cases refer to the best-known Pareto front obtained by
theMOBPSO customized version (Fig. 5a). Starting from the
solutions belonging to the initial Pareto front, the solutions
obtained in the MOBPSO customized version are character-
ized by remarkable improvement of the voltage profile.

Concerning the computational burden of the methods,
Table 2 shows the mean value and the standard deviation of
the computational times obtained by running 200 executions
of the three methods on an Intel i7-4790 personal computer
with CPU at 3.6 GHz and 16 GB RAM. The execution times
of theMOBPSO versions are relatively and significantly less
than the GA version. This is mainly due to different aspects:

(i) The customized GA code contains a number of internal
consistency checks to confirm that the mutation operator
leads to radial configurations also by performing branch
exchange when the open branch to close connects two
nodes supplied by the same feeder [12]. These checks are
repeated many times and increase the computation time
considerably. All checks were successful, so in future
version they could be skipped.

(ii) The two MOBPSO versions guarantee the radiality of
the new particles formed, because the closed branches
to open are chosen by using the information related to
x(k−1)
j . Thereby no more checks are requested during the

execution.
(iii) The computational time of the customized version of

MOBPSO is slightly longer and more variable than the
one of the base version, due to the handling of the
topology. In fact, the branch exchange mechanism takes
into account both the loop L̃(k)

j and the open branches

in x(k−1)
j , p(k−1)

j and x̃(k−1). The radiality is always
guaranteed and the probability to choose open branches
belonging to the leaders is higher, but the time consump-
tion slightly increases.

Real MV Urban Distribution Network

A further comparison among the methods has been carried
out on the real MV network of Fig. 7 serving an urban area.
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Fig. 7 Scheme of the real
urban MV distribution network.
The dashed lines correspond to
the open branches in a radial
configuration. A generic radial
configuration is shown

Thenetwork is composedof N = 90 nodes,Y = 98branches
and S = 3 supply nodes, leading toΛ = 11 branches to open
to obtain radial configurations. The network base voltage is
20 kV and the base power is 100 MVA. The supply point
voltage is 1.05 pu.

The total number of radial configurations is as high as
1.176× 1010. Hence, it is not practicable to obtain the com-
plete Pareto front for this network. The reference Pareto front
needed to assess the performance of the methods is then con-
structed by combining the points of the best-known Pareto
fronts obtained from the GA and the twoMOBPSO versions,
running each method 200 times to get a relatively higher
number of best-known Pareto fronts to combine for extract-
ing the non-dominated solutions. The Leaders Archive for
the selection of the global best has dimension NA = 20. The
resulting best-known Pareto front (with 67 points, Fig. 8a)
is the reference Pareto front used for calculating the perfor-
mance indicators. Furthermore, Fig. 8a, shows an example
of best-known Pareto front obtained by applying GA and the
two MOBPSO versions.

Figure 8b shows that also in this case the results of the
customized version are substantially better than the results of
the GA application. The generalized best-known Pareto front
mismatch reaches relatively low values in the best cases. This
is also due to the fact that the reference Pareto front in this
case is not the complete one (the valueswould be higher if the
complete Pareto front would be available). However, for the
comparison among the methods, the use of the new metric
introduced is fully appropriate.

The quality factors computed for the GA and for the two
MOBPSO versions are reported in Table 3. In this case,
higher values correspond to better performance. The cus-

(a) 

(b) 

Fig. 8 Comparisons among the GA and theMOBPSO versions for the
real urban MV distribution network. a Pareto fronts used to determine
the Pareto front mismatch b CDF of the generalized best-known Pareto
front mismatch

tomized version of MOBPSO largely outperforms both GA
and the MOBPSO base version.

The value of the median is interesting: in fact, it highlights
the most common quality factor value for both GA and base
case ofMOBPSO is zero, i.e., for most of the simulations the

123



Intell Ind Syst (2016) 2:287–302 299

Table 3 Quality factor

Version Max (%) Mean (%) SD (%) Median (%) 95th percentile (%)

GA 10.45 0.6632 1.8198 0.00 5.22

MOBPSO base version 2.99 0.3234 0.6614 0.00 1.49

MOBPSO customized version 25.37 7.3010 5.2290 6.71 17.54

Table 4 Computational burden for the real urban MV network

Method Mean value [min] SD [min]

GA 48.2 18.9

MOBPSO base version 6.0 2.9

MOBPSO customized version 7.7 3.1

Fig. 9 Quality factor versus computational burden for the two
MOBPSO versions. Higher values of the quality factor represent better
solutions

solutions found do not belong to the Pareto front. In the cus-
tomized version of MOBPSO versions the median is always
higher than zero.

Information on the computational burden is reported in
Table 4. The order of magnitude of the computational burden
for the two MOBPSO versions is comparable (mean values
from about 6 minutes to about 8 minutes, obtained on an
Intel i7-4790 personal computer with CPU at 3.6 GHz and 16
GB RAM). The customized version of MOBPSO has longer
computational time than the base version, justified by the
handling of the topology.

A detailed representation of the relation between the per-
formance indices and the computational burden is shown in
Fig. 9 for the quality factor and in Fig. 10 for the general-
ized best-known Pareto front mismatch. The performance
improvement for customized version is evident from the
higher values of quality factor and the lower values of the
generalized Pareto front mismatch, at the expense of an
acceptable increase in the computational burden.

Figures 11 and 12 show the voltage profiles related to
the real network. In Fig. 11, the reconfiguration at minimum

Fig. 10 Generalized best-known Pareto front mismatch versus com-
putational burden for the two MOBPSO versions. Lower values of the
generalized best-known Pareto front mismatch represent better solu-
tions

Fig. 11 Voltage profiles at minimum losses in the initial Pareto front
and in the MOBPSO customized version

Fig. 12 Voltage profiles at minimum ENS in the initial Pareto front
and in the MOBPSO customized version
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losses with the MOBPSO customized version leads to a sig-
nificant improvement of the voltage profile for a large part of
the network, while in the remaining part of the network (in
which the open branches have not been changed with respect
to the initial network) the node voltages remain the same.
In Fig. 12 the optimal reconfiguration at minimum ENS car-
ried out with the MOBPSO customized version introduces
more general variations in the voltage profile. This is due
to the fact that the reduction of losses is consistent with the
improvement of the voltage profile, while the ENS improve-
ment follows reliability aspects not necessarily linked with
the variation of the network voltages.

Conclusions

In the research on heuristic methods, it has been often found
that the customization of the algorithms to embed specific
properties of the problem under analysis is successful with
respect to the straightforward application of the standard
version of the algorithms as general-purpose tools. Follow-
ing this rationale, in this paper specific novel contributions
have been presented on the performance assessment ofmulti-
objective distribution system reconfigurationmethods and on
the definition of a customized MOBPSO version providing
significantly better performance than previous versions of
MOBPSO and GA. The generalized best-known Pareto front
mismatchmetric enables the user to quantify the performance
of a given solution method based on the best-known Pareto
front in comparison with other methods, in the application
to distribution networks of any size. The MOBPSO perfor-
mance has been largely improved by (i) applying internal
ranking in the update of population and leaders and (ii) prop-
erly handling the elements involved in the topology variation
by maintaining the radial structure. Two MOBPSO versions
have been applied to test and real systems, with customized
version regularly resulting as the best one. This result shows
that theMOBPSO becomes more effective than the GA, rais-
ing the interest for using the customized version ofMOBPSO
in the light of the substantially better solutions provided.
Future developments refer to the investigation of the use of
further metrics in the comparison of heuristic methods and to
the use of further conflicting objectives in themulti-objective
reconfiguration problem.

Appendix

Multi-Objective Solution Ranking (MOSR)

In the multi-objective framework, handling the multiple
objective function values indicating a single point in the
solution space needs a ranking criterion acting on multi-

ple dimensions, as it is not possible to use the concepts of
“higher” or “lower” as in a single dimension. The ranking
criterion can be based on general decision-making methods
providing the ranking of two solutions (i.e., configurations, in
this paper) withM objective values for each solution (M = 2
in the examples of this paper) and identifying the winner
as the top-ranked solution. Decision-making methods such
as Analytic Hierarchy Process (AHP), TOPSIS and a cus-
tomized decision theory-based method (details are reported
in [12]) have been tested, with similar results for the var-
ious methods. The MOSR procedure used here to choose
the top-ranked configuration when a decision between two
alternatives occurs is based on the Technique for Order Pref-
erence bySimilarity to Ideal Solution (TOPSIS)method [48].
A brief explanation of TOPSIS is provided below.

Technique for Order Preference by Similarity to Ideal
Solution (TOPSIS)

A multi-criteria problem can be properly represented by a
decisionmatrixD, composing of NP rows (equal to the num-
ber of solutions under analysis) and M columns (equal to the
number of the objectives):

D =
⎡

⎢⎣
x11 · · · x1M
...

. . .
...

xNp1 · · · xNpM

⎤

⎥⎦ (27)

The first step of the TOPSIS is a normalization process,
for getting the normalized decision matrix R: every element
of each column is divided by the norm of its column:

ri j = xi j√∑NP
i=1 x

2
i j

(28)

The decision maker has to define the set of weights
w = {w1, . . . , wM } ,(one weight for each criterion) accord-
ing to his/her opinion about them (i.e., for defining relative
importance among the criteria) such that

∑M
j=1 w j = 1.

Then, the weighted normalized matrix V (with entries vi j ,
i = 1 . . . NP , j = 1 . . . M) is calculated by multiplying
each column of the matrix R by the weight w j .

By supposing to handling a minimization problem, from
theweighted normalizedmatrixV themost preferable (ideal)
solution A+ and the least preferable (negative-ideal) solution
A− are calculated as:

A+ = {
mini

(
vi j

)}
,∀i = 1, . . . , Np (29)

A− = {
maxi

(
vi j

)}
,∀i = 1, . . . , Np (30)

Then, the indicator S+
i showing the distance from the

ideal solution, and the indicator S−
i showing the distance
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from the negative-ideal solution, are calculated as the multi-
dimensional Euclidean distance for every point i = 1 . . . NP :

S+
i =

√∑M

j=1

(
vi j − v+

j

)2 ∀i = 1, . . . , Np (31)

S−
i =

√∑M

j=1

(
vi j − v−

j

)2 ∀i = 1, . . . , Np (32)

Finally, the relative closeness of every point to the ideal
solution is computed and the best solution is found according
to the following similarity index C+

i :

C+
i = S−

i

S+
i + S−

i

, 0 < C+
i < 1,∀i = 1, . . . , Np (33)

The solution having the maximum value of C+
i is the best

solution, because it is the closest one to the ideal solution.
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14. Tomoiagă, B., Chindriş, M., Sumper, A., Sudria-Andreu, A.,
Villafafila-Robles, R.: Pareto optimal reconfiguration of power dis-
tribution systems using a genetic algorithm based on NSGA-II.
Energies 6, 1439–1455 (2013)

15. Hsu, F.Y., Tsai, M.S.: A non-dominated sorting evolutionary
programming algorithm for multi-objectives power distribution
system feeder reconfiguration problems. Int. Trans. Electr. Energy
Syst. 23, 191–213 (2013)

16. Mendoza, J.E., Lopez, M.E., Coello Coello, C.A., Lopez, E.A.:
Microgenetic multiobjective reconfiguration algorithm consider-
ing power losses and reliability indices for medium voltage
distribution network. IET Gener. Transm. Distrib. 3, 825–840
(2009)

17. Alonso, F.R., Oliveira, D.Q., Zambroni de Souza, A.C.: Artificial
immune systems optimization approach for multiobjective distrib-
ution system reconfiguration. IEEETrans. Power Syst.30, 840–847
(2015)

18. Mazza, A., Chicco, G., Russo, A.: Comparison of multi-objective
optimization approaches for distribution system reconfiguration.
In: Proceedings of IEEE PowerTech, Grenoble (2013)

19. Guedes, L.S.M., Lisboa, A.C., Vieira, D.A.G., Saldanha, R.R.: A
multiobjective heuristic for reconfiguration of the electrical radial
network. IEEE Trans. Power Deliv. 28, 311–319 (2013)

20. Rabiee, M., Zandieh, M., Ramezani, P.: Bi-objective partial flexi-
ble job scheduling problem: NSGA-II, NRGA, MOGA and PAES
approaches. Int. J. Prod. Res. 50, 1–16 (2012)

21. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a
comparative case study and the strength Pareto approach. IEEE
Trans. Evol. Comput. 3, 257–271 (1999)

22. Andrei, H., Chicco, G.: Identification of the radial configurations
extracted from the weakly meshed structures of electrical distrib-
ution systems. IEEE Trans. Circuits Syst. I 55, 1149–1158 (2008)

23. Shirmohammadi, D., Hong, H.W., Semlyen, A., Luo, G.X.: A
compensation-based power flow method for weakly meshed dis-
tribution and transmission networks. IEEE Trans. Power Syst. 3,
753–762 (1988)

24. Carpaneto, E., Chicco, G.: Evaluation of the probability density
functions of distribution system reliability indices with a char-
acteristic functions-based approach. IEEE Trans. Power Syst. 19,
724–734 (2004)

25. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: Pro-
ceedings of IEEE International Conference on Neural Networks,
Perth, vol. 4, pp. 1942–1948 (1995)

26. Kennedy, J.: Small worlds and mega-minds: effects of neighbor-
hood topology on particle swarm performance. In: Proceedings of
the 1999 Congress on Evolutionary Computation, vol. 3, pp. 1931–
1938 (1999)

27. Kennedy, J., Eberhart, R.: Swarm Intelligence. Morgan Kaufmann
Publisher, San Francisco (2001)

28. Chicco, G.,Mazza, A.: An overview of the probability-basedmeth-
ods for optimal electrical distribution system reconfiguration. In:
Proceedings of 4th International Symposium on Electrical and
Electronics Engineering, Galati (2013)

29. Kennedy, J., Eberhart, RC.: A discrete binary version of the particle
swarm algorithm. In: Proceedings of Conference on Systems,Man,
and Cybernetics, pp. 4104–4109 (1997)

30. Enacheanu, B., Raison, B., Caire, R., Devaux, O., Bienia, W., Had-
jSaid, N.: Radial network reconfiguration using genetic algorithm
based on the matroid theory. IEEE Trans. Power Syst. 23, 186–195
(2008)

31. Sivanagaraju, S., Rao, J.V., Raju, P.S.: Discrete particle swarmopti-
mization to network reconfiguration for loss reduction and load
balancing. Electr. Power Compon. Syst. 36, 513–524 (2008)

123



302 Intell Ind Syst (2016) 2:287–302

32. Wu, W.C., Tsai, M.S.: Application of enhanced integer coded
particle swarm optimization for distribution system feeder recon-
figuration. IEEE Trans. Power Syst. 26, 1591–1599 (2011)

33. Chang, R.F., Lu, C.N.: Feeder reconfiguration for load factor
improvement. IEEE Power Eng. Soc. Winter Meet. 2, 980–984
(2002)

34. Amanulla, B., Chakrabarti, S., Singh, S.N.: Reconfiguration of
power distribution systems considering reliability and power loss.
IEEE Trans. Power Deliv. 27, 918–926 (2012)

35. Liu, Y., Gu, X.: Skeleton-network reconfiguration based on topo-
logical characteristics of scale-free networks and discrete particle
swarm optimization. IEEE Trans. Power Syst. 22, 1267–1274
(2007)

36. Wu, W.C., Tsai, M.S., Hsu, F.Y.: A new binary coding particle
swarm optimization for feeder reconfiguration. In: Proceeding of
the International Conference on Intelligent Systems Applications
to Power Systems (2007)

37. Hong, Y.Y., Ho, S.Y.: Determination of network configuration
considering multiobjective in distribution systems using genetic
algorithms. IEEE Trans. Power Syst. 20, 1062–1069 (2005)

38. Batrinu, F., Carpaneto, E., Chicco, G.: A novel particle swarm
method for distribution system optimal reconfiguration. In: Pro-
ceedings of IEEE PowerTech (2005)

39. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley, Reading (1968)

40. Civanlar, S., Grainger, J., Yin, H., Lee, S.: Distribution feeder
reconfiguration for loss reduction. IEEE Trans. Power Deliv. 3,
1217–1223 (1988)

41. Coello, C.C., Lechuga M.S.: MOPSO: a proposal for multiple
objective particle swarm optimization. In: Proceedings of the 2002
Congress on Evolutionary Computation, pp. 1051–1056 (2002)

42. Reyes-Sierra, M., Coello Coello, C.A.: Multi-objective particle
swarm optimizers: a survey of the state of the art. Int. J. Comput.
Intell. Res. 2, 287–308 (2006)

43. Andervazh, M.R., Olamaei, J., Haghifam, M.R.: Adaptive
multi-objective distribution network reconfiguration using multi-
objective discrete particles swarm optimisation algorithm and
graph theory. IET Gener. Transm. Distrib. 7, 1367–1382 (2013)

44. Del Valle, Y., Venayagamoorthy, G., Mohagheghi, S., Hernandez,
J.C., Harley, R.: Particle swarm optimization: basic concepts, vari-
ants and applications in power systems. IEEETrans. Evol. Comput.
12, 171–195 (2008)

45. Coello, C., Pulido, G., Lechuga, M.: Handling multiple objectives
with particle swarm optimization. IEEE Trans. Evol. Comput. 8,
256–279 (2004)

46. Nebro, A.J., Durillo, J.J., Coello, C.C.: Analysis of leader selec-
tion strategies in a multi-objective particle swarm optimizer. In:
Proceedings of IEEE Congress on Evolutionary Computation, pp.
3153–3160 (2013)

47. Baran,M.E.,Wu, F.F.: Network reconfiguration in distribution sys-
tems for loss reduction and load balancing. IEEE Trans. Power
Deliv. 4, 1401–1407 (1989)

48. Hwang,C.L.,Yoon,K.:MultipleAttributeDecisionMaking.Meth-
ods and Applications: A State-of-the-Art Survey. Springer, Berlin
(1981)

123


	Multi-Objective Distribution Network Reconfiguration  Based on Pareto Front Ranking
	Abstract
	Introduction
	Objective Functions and Constraints
	Generalized Metrics to Compare the Results of Pareto Front-Based Optimization Methods
	Basic Concepts
	Quality Factor
	Generalized Pareto Front Mismatch


	Binary PSO: Concepts and Notation
	Basic Formulation of the PSO and Related Notation
	Adaptive Stop Criterion
	Considerations on the Solutions Found

	Discrete and Binary PSO Representations for Single-Objective Optimization and Adaptability to the Distribution System Reconfiguration Problem
	Discrete and Binary PSO Coding
	Binary PSO Coding Preserving Radial Configurations


	The Multi-Objective Binary PSO (MOBPSO)
	MOBPSO Formulation
	Creation of the New Population by Applying the MOBPSO Routine: Base Version
	How to Use the Velocity Term: the Customized Version
	Selection and Update of the Local Best and Global Best
	Update of the Local Best
	Update of the Global Best

	Stop Criterion

	Case Study Applications
	33-Node Network
	Real MV Urban Distribution Network

	Conclusions
	Appendix
	Multi-Objective Solution Ranking (MOSR)
	Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)

	References




